
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

Faculty Publications School of Plant, Environmental & Soil Sciences 

10-16-2024 

Rootzone Soil Moisture Dynamics Using Terrestrial Water-Energy Rootzone Soil Moisture Dynamics Using Terrestrial Water-Energy 

Coupling Coupling 

Vinit Sehgal 
Department of Biological and Agricultural Engineering 

Binayak P. Mohanty 
Department of Biological and Agricultural Engineering 

Rolf H. Reichle 
NASA Goddard Space Flight Center 

Follow this and additional works at: https://repository.lsu.edu/plantsoil_pubs 

Recommended Citation Recommended Citation 
Sehgal, V., Mohanty, B., & Reichle, R. (2024). Rootzone Soil Moisture Dynamics Using Terrestrial Water-
Energy Coupling. Geophysical Research Letters, 51 (19) https://doi.org/10.1029/2024GL110342 

This Article is brought to you for free and open access by the School of Plant, Environmental & Soil Sciences at LSU 
Scholarly Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of 
LSU Scholarly Repository. For more information, please contact ir@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/plantsoil_pubs
https://repository.lsu.edu/plantsoil
https://repository.lsu.edu/plantsoil_pubs?utm_source=repository.lsu.edu%2Fplantsoil_pubs%2F696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1029/2024GL110342
mailto:ir@lsu.edu


Rootzone Soil Moisture Dynamics Using Terrestrial Water‐
Energy Coupling
Vinit Sehgal1,2,3 , Binayak P. Mohanty1 , and Rolf H. Reichle4

1Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA, 2Water Management and
Hydrological Science, Texas A&MUniversity, College Station, TX, USA, 3Now at the School of Plant, Environmental, and
Soil Sciences, Louisiana State University, Baton Rouge, LA, USA, 4Global Modeling and Assimilation Office, NASA
Goddard Space Flight Center, Greenbelt, MD, USA

Abstract A lack of high‐density rootzone soil moisture (θRZ) observations limits the estimation of
continental‐scale, space‐time contiguous θRZ dynamics. We derive a proxy of daily θRZ dynamics — active
rootzone degree of saturation (SRZ) — by recursive low‐pass (LP) filtering of surface soil moisture (θS) within a
terrestrial water‐energy coupling (WEC) framework. We estimate the LP filter parameters and WEC thresholds
for the piecewise‐linear coupling between SRZ and evaporative fraction (EF) at remote sensing and field scale
over the Contiguous U.S. We use θS from the Soil Moisture Active‐Passive (SMAP) satellite and 218 in‐situ
stations, with EF from the Moderate Resolution Imaging Spectroradiometer. The estimated SRZ compares well
against SMAP Level‐4 estimates and in‐situ θRZ, at the corresponding scale. The instantaneous hydrologic state
(SRZ) vis‐à‐vis the WEC thresholds is proposed as a rootzone soil moisture stress index (SMSRZ) for near‐real‐
time operational agricultural drought monitoring and agrees well with established drought metrics.

Plain Language Summary Rootzone soil moisture plays a vital role in agricultural, hydrological,
and ecosystem processes. The available spaceborne satellites for monitoring soil moisture can only capture
variability in a shallow soil layer at the surface, typically limited to the top 5 cm. Hence, spatiotemporally
continuous estimation of rootzone soil moisture dynamics typically relies on soil moisture estimates from land‐
surface models, which are subject to errors in the surface meteorological forcing data, process formulations, and
model parameters. Some studies suggest that the rootzone soil moisture dynamics can be estimated by filtering
the high‐frequency variability in the surface soil moisture. However, such “filters” require observed rootzone
data (often unavailable at high spatial density) for calibration. This study uses the relationship between surface
soil moisture and evaporative fraction derived using spaceborne observations from the Soil Moisture Active
Passive mission and the Moderate Resolution Imaging Spectroradiometer to estimate rootzone soil moisture
dynamics for the Contiguous U.S. at 9 km grid resolution. We further demonstrate that this approach can be
extended into a near‐real‐time agricultural drought monitor to assess drought impacts on vegetation using
surface soil moisture observations.

1. Introduction
Dynamic soil‐vegetation‐atmosphere interactions are manifested in the space‐time variability of the active
rootzone soil moisture (θRZ), thereby governing several ecohydrological processes such as watershed‐scale
streamflow generation (Koster et al., 2023), nutrient recycling and soil microbial activities (Li et al., 2021;
Wang et al., 2017), terrestrial carbon fluxes (Lin et al., 2019; Raghav & Kumar, 2021; Sebastian et al., 2023), and
groundwater recharge (Dash et al., 2019). However, long‐term space‐time‐contiguous studies of θRZ dynamics at
the continental scale typically rely on land‐surface models (LSMs) owing to the shallow penetration depth
(∼5 cm) of microwave remote‐sensors and the cost of maintaining high‐density in‐situ networks. Alternatively,
data‐driven techniques such as low‐pass (LP) filters (exponential or moving‐average) can generate a dimen-
sionless index that mimics θRZ by smoothing the temporal variability in surface soil moisture (θS). The expo-
nential filter approach (Albergel et al., 2008; Wagner et al., 1999) is used in several studies across point‐scale
(Bouaziz et al., 2020; Manfreda et al., 2014; Rossini & Patrignani, 2021) and remote‐sensing scale (Bisselink
et al., 2011; Brocca et al., 2011; Ford et al., 2014). Koster et al. (2023) used a LP filter on watershed‐scale θS to
demonstrate the potential of remotely sensed soil moisture observations to improve seasonal streamflow forecast
skill.
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While parametrically parsimonious, θRZ estimation from LP‐filtered θS is limited by the scarcity of θRZ mea-
surements to calibrate such filters. The use of model simulations for LP filter calibration (Liu et al., 2023; Tobin
et al., 2019; Yang et al., 2022) can only mimic the functional relationships encoded a‐priori in the models.
Significant inter‐model disagreement is common due to differences in the treatment of subgrid‐scale heteroge-
neity in soil/vegetation properties (Qiu et al., 2020), exacerbated by the risk of equifinality during model cali-
bration (Bouaziz et al., 2020; Boer‐Euser et al., 2016). Moreover, the “active” rootzone layer, that is, the
preferential depth for root‐water uptake and land‐atmospheric interactions, displays significant spatial variability
owing to a combination of climate (temperature, net radiation and precipitation patterns), vegetation (rooting
patterns, and preferential water uptake depth), and landscape characteristics, such as albedo and soil type
(Feldman et al., 2024; Guswa, 2008; Jayawickreme et al., 2008; Milly, 2001). In contrast, most LSMs assume a
fixed rootzone depth (typically, 1–2 m).

Terrestrial water and energy fluxes are strongly coupled at the landscape‐scale through dynamic soil‐
vegetation‐atmosphere interactions (Koster et al., 2023; Seneviratne et al., 2010; Zeppetello et al., 2019).
The relationship between evaporative fraction (EF, ratio of actual and potential evapotranspiration) and θRZ
manifests in two (Budyko) regimes and can be approximated as a piecewise‐linear function (Figure 1a),
constrained by the rootzone soil hydrologic regime thresholds. Knowing that (a) the temporal variability in the
landscape‐scale evaporative losses is moderated by the hydrologic state of θRZ, and (b) the temporal dynamics
of θRZ can be mimicked by LP filtered θS; we hypothesize that the LP filter effect of the soil over θS is
inherently engrained in the coupling dynamics of the terrestrial water and energy fluxes. Hence, the question
arises ̶ Can the temporal dynamics of θRZ be reliably estimated using terrestrial water‐energy coupling (WEC)
principles together with θS and EF measurements?

We develop a data‐driven approach for estimating the active rootzone degree of saturation (SRZ [‒]) to mimic the
temporal θRZ dynamics using θS observations from in‐situ or Soil Moisture Active Passive (SMAP) satellite
measurements, and EF from the Moderate Resolution Imaging Spectroradiometer (MODIS). As an extension,
we generate rootzone soil moisture stress (SMSRZ) as an indicator of drought stress on soil and vegetation, based
on the instantaneous hydrologic state of θRZ relative to the hydrologic regime thresholds ̶ both measured in terms
of SRZ.

2. Data
2.1. Soil Moisture Observations From SMAP and Sparse In‐Situ Networks

We use volumetric surface (0–5 cm) soil moisture (m3/m3) from the SMAP Level‐3 Soil Moisture Enhanced
(SPL3E, version 5, 9 km gridded) product from 31st March 2015 to 31st December 2021. SMAP uses an L‐
band (1.41 GHz) microwave radiometer (Entekhabi et al., 2014; O’Neill et al., 2021), with 2–3 days revisit
interval. The effect of diurnal variability in satellite retrievals is reduced by temporal thinning of θS to a
uniform 1 day retrieval frequency as used by McColl et al. (2017) and Sehgal et al. (2020). SPL3E data flags
(high vegetation water content, urban areas, large water bodies, precipitation, snow cover, etc.) are recorded
during the analysis and are provided as an ancillary field with SRZ estimates. The daily mean of ascending and
descending overpasses from January 2022 through March 2023 is used for operational simulations of SMSRZ
(with a 2 day latency). The SMAP Level‐4 Soil Moisture (SPL4) product (version 7, Reichle et al., 2022)
provides global, 9 km gridded, 3 hourly mean volumetric soil moisture for the 0–100 cm layer (θ100), which
was averaged to daily values. SPL4 is generated using the Global Earth Observing System (GEOS) land data
assimilation system, which ingests SMAP Level‐1 brightness temperature into the Catchment land surface
model, driven by meteorological forcings from the GEOS atmospheric data assimilation system and
observation‐corrected precipitation.

Daily in‐situ volumetric soil moisture is obtained from the US Climate Reference Network (USCRN, Bell
et al., 2013) and the Soil Climate Analysis Network (SCAN, Schaefer et al., 2007) at depths of 5, 10, 20, 50,
and 100 cm. In‐situ observed θ100 is calculated using the weighted average of records from the five mea-
surement depths (details in the Supplement).
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2.2. Potential and Actual Evapotranspiration

Gap‐filled, eight‐day composite total evapotranspiration (ET, in kg/m2) is accessed fromMODIS (MOD16A2GF,
Version 6.1, Mu et al., 2011) for the period and extent matching SPL3E. MODIS uses the Penman− Monteith
equation (Monteith, 1965; Penman, 1948) for estimating ET from daily meteorological reanalysis data and
remotely sensed vegetation characteristics (Mu et al., 2011). MODIS ET and PET are bilinearly resampled to the
9 km SPL3E grid. For analysis at USCRN and SCAN sites, ET and PET are used at their 500m (native) resolution,
representing landscape‐scale EF dynamics surrounding the soil node.

2.3. Drought Metrics

For comparison, we use drought severity maps from the U.S. Drought Monitor (USDM, Svoboda et al., 2002) and
30 day Evaporative Demand Drought Index (EDDI‐30, Hobbins et al., 2016; McEvoy et al., 2016) and Stan-
dardized Precipitation Evapotranspiration Index (SPEI‐30, Beguería et al., 2014; Vicente‐Serrano et al., 2010)
data based on the 4 km Gridded Surface Meteorological (gridMET) product (Abatzoglou, 2013).

Figure 1. (a) Thematic representation of the WEC regimes, with sample plots at two in‐situ locations (indicated by red dots in the inset maps) in contrasting
hydroclimates. (b) WEC parameters (STD, SWT, m, and Λ; all unitless). (c) WEC feedback regimes (d) RMSE and d for the fitted SRZ ─ EF curves.
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3. Methodology
3.1. Low‐Pass (LP) Filter Design and Rootzone Degree of Saturation, SRZ

Under hydrologic equilibrium, the analytical solution of the 1‐dimensional vertical water balance (differential)
equation can be approximated using the relationship between the temporal θRZ changes and the difference be-
tween θS and the antecedent rootzone conditions (Albergel et al., 2008; Manfreda et al., 2014; Wagner
et al., 1999). A simple recursive exponential LP filter to simulate the 1‐dimensional first‐order infinite‐impulse
response of θRZ to temporal variability in θS is given as:

θ′t = θ′t− 1 + Λ (θS,t − θ′t− 1), t≥ 1; at t = 1,θ′t=0 = θS,t=0 (1)

where, t = time [days], θ′ = temporally smoothed (filtered) θs [m3/m3], Λ = exponential filter smoothing
factor [ ̶ ]; Λ ∈ [0,1]

The resulting θ′ provides a first‐order approximation of rootzone soil moisture dynamics under the assumption
that lateral moisture flux to/from the rootzone is negligible, which is reasonable when the groundwater table is
significantly deeper than the rootzone depth. Equation 1 yields the exponential weighted average (details in
supplementary material, Section S2 in Supporting Information S1) of the antecedent observations using weights
that are proportional to the terms of the geometric progression: 1, (1 ‒ Λ), (1 ‒ Λ)2, … (1 ‒ Λ)n, which is the
discrete form of an exponential function (Hunter, 1986; Perry, 2010). This approach is advantageous because the
periodicity in the hydrologic connections between θRZ and ET at the RS‐footprint is often unknown, and can range
from a few days (for barren or grassland landscapes) to seasonal scale (for deep‐rooted vegetation) based on
environmental conditions.

Temporal variability in θ′ for a location with a smaller Λ is less responsive to recent θS changes (greater filtering of
surface temporal variability), and vice‐versa. Here, Λ is assumed to be time invariant. Λ controls the degree of
attenuation and delay in θ′ relative to surface conditions and is related to the e‐folding time (τ) of the exponential
filter as Λ = 1 − e− Δtτ , where Δt is the temporal resolution of θs. For each pixel/location, Λ is assumed to represent
the effective influence of various bio‐geo‐physical controls such as vegetation, topography, hydroclimatology and
pedological characteristics (soil profile thickness, effective soil hydraulic characteristics, etc.) on vertical fluxes
between the soil surface and the rootzone.

Since we make no explicit considerations to bias‐correct θ′ to the dynamic range of true θRZ , we normalize θ′ to
[0,1] to obtain SRZ , a standardized measure of the θRZ hydrologic state, as:

SRZ,t =
θ′t − θ′min
θ′max − θ′min

(2)

Similarly, θ100 from SPL4 and in‐situ stations is normalized to [0,1] for comparison with SRZ , and is denoted
as S100.

3.2. Terrestrial Water‐Energy Coupling

Terrestrial WEC regimes can be explained through a piece‐wise linear function (Laio et al., 2001) between SRZ
and EF at time t as:

EFt =
ETt
PETt

=

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

0 SRZ,t ≤ STD
m(SRZ,t − STD) STD < SRZ,t < SWT

m(SWT − STD) SRZ,t ≥ SWT

(3)

Here, SWT is the effective critical point, which refers to the threshold value of SRZ at which the pixel transitions
from energy‐limited to moisture‐limited conditions.

Geophysical Research Letters 10.1029/2024GL110342
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During wet soil conditions (SRZ,t > SWT), the system is in an energy‐limited (Stage I ET) state, where the at-
mospheric moisture demand is satisfied by moisture‐excess conditions. As the soil dries, the soil‐vegetation‐
atmosphere system enters a water‐limited state (Stage II ET), where soil moisture is the dominant source of
daily temporal variability in ET. In Stage II, a positive land‐atmospheric feedback is reached, whereas subsequent
loss in soil moisture increases the land‐surface temperature (thereby increasing PET). This supports moisture loss
from the soil, albeit at a decreasing rate. The pixel enters the dry regime when SRZ ≤ STD, where STD is the effective
wilting point of the pixel. The pixel maintains a transitional regime when STD < SRZ < SWT.

3.3. Parameter Optimization and Uncertainty Quantification

Equations 1–3 are implemented to optimize {STD, SWT, m, Λ} in an iterative framework using particle swarm
optimization (PSO, Kennedy & Eberhart, 1995; Wang et al., 2018). The optimization minimizes the error
function, ξ (with a tolerance threshold of 0.001), given as,

ξ =∑
N

t=1

|EFe,t − EFo,t|
N

(4)

where, EFo,t is the observed EF fromMODIS at time t, EFe,t is the WEC‐based estimated EF at time t,N= number
of EF observations.

The root‐mean‐square error (RMSE) andWillmott's index of agreement (d∈ [0,1]; Willmott et al., 2012) are used
as goodness‐of‐fit (GOF) indicators of the fitted SRZ − EF curves. Higher values of d and lower values of RMSE
indicate better EFo − EFe agreement.

Model uncertainty is quantified using a drydown‐based resampling and cross‐validation where time‐continuous
resampling is used for ensemble model development (details in Section S2 in Supporting Information S1, sup-
plementary material). For each ensemble run, the optimized WEC parameters (STD, SWT, m, and Λ), θ′min and θ′max
are stored. This facilitates a seamless conversion of future θs observations to equivalent SRZ values in operational
mode. SPL3E and EF pairs for each 36 km pixel (matching SMAP Level‐3) are used for the development of the
WEC parameters to ensure sufficient data samples for SRZ − EFmodels. The estimated WEC parameters are later
resampled back to the SPL3E 9 km grid using bilinear interpolation.

3.4. Rootzone Soil Moisture Stress

We introduce θRZ stress (SMSRZ [− ] ∈ [0,1]), which captures the transition of the rootzone soil wetness from the
energy‐limited (SRZ > SWT, no stress) to the dry state (SRZ < STD, maximum stress). SMSRZ follows a non‐linear,
sigmoid relationship with SRZ, following Sehgal et al., 2021, as given by Equation 6:

SMSRZ,t =
1

1 + (SRZ,tSIP
)
2 (5)

SIP = (
SWT + STD

2
) (6)

The inflection point, SIP, in the SRZ − SMSRZ curve occurs when SRZ= SIP and SMSRZ= 0.5 [− ]. The sensitivity of
SMSRZ to SRZ is moderated by the exponent, which is fixed at 2.

4. Results and Discussion
4.1. Spatial Patterns of WEC Parameters and Land‐Atmosphere Feedback Regimes

The spatial distributions of the WEC parameters and the GOF of the SRZ − EF curves over the Contiguous U.S.
(CONUS) are shown in Figure 1b–1d. The relative availability of moisture and energy in the soil‐vegetation‐
atmosphere continuum regulates the spatial patterns of m. The temporal variability in EF can be ∼1.5 times
(areal median) that of SRZ and decreases as aridity increases. High rootzone water storage in wetter climates (e.g.,
Midwest, and Northeastern U.S.) supports a strong vegetation‐atmosphere coupling through high transpiration

Geophysical Research Letters 10.1029/2024GL110342
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and canopy evaporation (Williams & Torn, 2015; Zscheischler et al., 2015), contributing to higher m. The
magnitude of PET in (hyper) arid climates is significantly higher than the actual soil evaporation or transpiration.
Here, despite soil moisture being the dominant control of the daily temporal variability in ET (Akbar et al., 2018;
Sehgal et al., 2020), the control of θRZ (or SRZ) over EF is observed to be lower than previously reported by
reanalysis or model data‐based studies, such as Schwingshackl et al., 2017.

Lower Λ values are observed over the U.S. corn belt, where silty loam or loamy soils lead to slower infiltration
rates than in the typical sandier soils of (hyper‐) arid climates (Kumar et al., 2019). Higher SWT values overlap
with (semi‐) arid regions, demonstrating preferentially dry hydrologic states (Sehgal & Mohanty, 2024), which
contributes to the transition to an energy‐limited regime at a higher SRZ. Regions with intermediate WEC regimes
(and bistable soil moisture states) typically have SWT < 0.5, that is, the dynamic soil moisture range shows a near‐
equal distribution of energy‐ and moisture‐limited states. For arid regions with sandy soils, the change from
transitional to dry state (at STD) occurs at a higher soil moisture. This rapid desiccation of the coarse‐textured
surface soil plays an important ecological function (through inverse texture effect) by preventing moisture loss
from the deeper layers (Fernandez‐Illescas et al., 2001). For most other parts of CONUS, STD is observed to be
close to the lower extreme of the dynamic range of SRZ.

The spatial distribution of Λ (i.e., θS − θRZ response relationship) andm (θRZ − EF interactions) reflects mesoscale
soil‐vegetation‐climate interactions and WEC feedbacks (Figure 1c). In (hyper) arid climates, sparse vegetation,
coarse‐textured soils, and high PET yield high soil evaporation rates. Land‐atmospheric interactions in such
regions are governed by negative WEC feedback, where increased soil moisture loss leads to warming and drying
of the atmospheric boundary layer, resulting in further increase in PET, and lower EF (Gentine et al., 2019). These
regions are characterized by a rapid loss of moisture pulse from shallower profiles, as captured by high Λ and low
m. In contrast, in humid and sub‐humid regions, a larger fraction of atmospheric moisture demand is satisfied by
ET (high m). Here, an increase in ET cools the atmospheric boundary layer, reduces PET and increases EF—
thereby establishing a negative feedback mechanism. Lower values of Λ over these regions are the result of
the deep‐rooted vegetation sustaining high transpiration rates over long periods (despite drying of the surface
layer). Grasslands in the Central Great Plains show intense transpiration rates immediately following a moisture
pulse, followed by a drought‐induced dormancy (Williams & Torn, 2015) which contributes to longer time scales
of SM‐EF coupling (low Λ). Differences in the plant functional type and phenological characteristics impact the
preferential depths of root water uptake (Feldman et al., 2024) and can significantly impact the overall Λ– m
relationship.

Interestingly, positive and negative WEC feedback regimes align, respectively, with the dry and wet‐preferential
hydrologic states of soil moisture (Sehgal & Mohanty, 2024). The intermediate regions display a bistable hy-
drologic state, where complementary tipping mechanisms dictate dynamic changes in the WEC state from
energy‐limited to moisture‐limited, and vice‐versa. Hence, while the SRZ − EF coupling is primarily a climate‐
controlled process, the relative state of soil moisture and vegetation characteristics dictates WEC feedback
processes and the intensity, duration, and frequency of the transition between WEC regimes. This highlights the
coevolution and coexistence of soil‐vegetation‐climate through complementary and constrained processes.

The shallow groundwater table and rapid infiltration owing to shallow fractured‐rock aquifers over the Mis-
sissippi alluvial plains—a phenomenon also observed in the US southwest coastal plains (Shapiro & Fal-
cone, 2022; Zell & Sanford, 2020)—overlaps with unusually high values of SWT and STD, and low m. Widespread
irrigation in the Mississippi alluvial plains further contributes in altering the landscape evaporative regimes by
reducing the land‐surface temperature (Chen & Dirmeyer, 2019), thereby reducing SRZ controls over EF, which is
reflected in low m values.

Significant seasonal changes in the landscape characteristics (snow‐cover and/or frozen ground during winter,
and dramatic changes in the grassland biomass and productivity during spring) in the higher latitudes, including
the Northern Great Plains and US Northeast, may lead to seasonal variability in the SRZ − EF characteristics as
reflected in the higher fitting RMSE (Figure 1d). Preference is given to the RMSE statistic in adjudicating the
fitting accuracy of the SRZ − EF curves (see Section S3 in Supporting Information S1), which are deemed
satisfactory over CONUS with a median value of 0.14 [− ].

Geophysical Research Letters 10.1029/2024GL110342
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4.2. Validation of WEC‐Based SRZ Across CONUS

A comparison between WEC‐based SRZ estimates with S100 from SPL4 shows strong spatio‐temporal agreement
(Figures 2a and 2b). RMSE and d between the SRZ and S100 anomalies (RMSEa and da, details in the supple-
mentary material) are observed to be satisfactory across CONUS, with a median RMSEa of 0.14 and da of 0.82
(Figures 2c and 2d). Correlation between the two datasets shows a seasonal trend (Figure 2e and Figure S2 in
Supporting Information S1) with areal‐median R = 0.45 [− ] in January, 0.65 [− ] in May, and 0.52 [− ] in August.
The drop in the SRZ versus S100 correlation in winter is primarily driven by increased uncertainty in WEC‐based
EF estimates over Central/Northern plains as previously discussed (Figure 1d). In contrast, θS in the arid regions
of the Southwestern U.S. (Mojave, Sonora and Baja Deserts, for example) may decorrelate from the rootzone
during summer, while temporal variability in EF may, instead, be regulated by vapor diffusion and transpiration
from deep soil profiles by the xeric vegetation (Stocker et al., 2023). In contrast, SPL4 uses a fixed 1 m rootzone
thickness, which leads to differences in the estimated rootzone soil moisture dynamics in the two datasets. This
indicates a potential limitation of temporally invariant Λ in representing space‐time variability in the land‐
atmospheric interactions governing the true SRZ − EF relationship across different hydroclimates. A tempo-
rally invariant SRZ − EF pathway ignores the seasonal variability in the WEC dynamics owing to the complex,
nonlinear micrometeorological processes and resultant changes in the radiative, thermal and kinetic energy
balance of land‐atmospheric interaction (Haghighi et al., 2018; Hsu & Dirmeyer, 2023). Such factors may cause a
shift in the critical thresholds of the WEC regimes, as reported by Hsu & Dirmeyer, 2023. It is noteworthy that
SPL4 employs explicit parameterization of actual rooting depth, and seasonally varying vegetation control on
transpiration, which further adds to the model complexity and error sources. The overall performance of the SRZ
estimates from the WEC‐based approach is similar to those of S100 estimates derived from LP filter parameters
trained with the in‐situ observed θ100 at USCRN/SCAN stations (Figure 3). GOF for the WEC‐based SRZ esti-
mates is satisfactory, with median unbiased RMSE = 0.044 [− ], d = 0.76 [− ] and R = 0.8 [− ]. While both the

Figure 2. (a–b) SRZ (fromWEC) and S100 (from SPL4) for select dates (c–d) RMSEa and da between SRZ and S100 anomalies (computed after removing seasonal means;
details in supplementary material). (e) Areal median of the seasonal SRZ versus S100 correlation.

Geophysical Research Letters 10.1029/2024GL110342

SEHGAL ET AL. 7 of 12

 19448007, 2024, 19, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
110342 by L

ouisiana State U
niv School of V

eterinary M
edicine, W

iley O
nline L

ibrary on [11/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 3. Estimated SRZ (red line) using the LP filter calibrated with (a),(c) in‐situ observed θ100 and (b),(d) the WEC‐based approach, for locations in (a),(b) Colorado
(semi‐arid) and (c),(d) Louisiana (humid). The observed SS (gray line) and S100 (blue line) are θS and θ100 normalized to a range [0,1] (e)–(h) GOF summary of the
estimated SRZ at the USCRN/SCAN stations (n= 218) generated with θ100 andWEC‐based LP filters. Spatial maps of the seasonal statistics are provided in Figure S3 in
Supporting Information S1 of the supplementary material.
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WEC and observed θ100‐based LP filters show a negative bias in estimating SRZ, the overall bias of WEC‐based
SRZ is marginally higher (median value of − 0.017) owing to the random error associated with the SRZ − EF curves
parameterization.

4.3. Operational Near‐Real‐Time Agricultural Drought Monitoring Using WEC‐Based SRZ

The thresholds of the WEC regimes facilitate daily, operational near‐real‐time SMSRZ estimation using θS for
agricultural drought impact monitoring. A retrospective comparison between SMSRZ and the US Drought
Monitor (USDM, Svoboda et al., 2002) for select dates (Figures 4a and 4b) shows a general agreement between
the two datasets for droughts in the US Southeast (November 2016), Great Plains and Western U.S. (October
2020), andMidwestern and Southwestern U.S. (May 2021), among others. The analysis is extended in operational
mode using θS from SLP3E (with 2 day latency), which captures drought stress over the U.S. Southwest (Summer

Figure 4. (a) SMSRZ and USDM outlook for select dates. (b) Time series and scatterplot of areal‐median SMSRZ (blue dots), EDDI‐30 (light blue) and SPEI‐30 (light
red) for six CONUS regions (following the Fifth National Climate Assessment report, Jay et al., 2023). August 2022 values of SMSRZ (blue) are missing because SMAP
was in safe mode.
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2022), Northwest and Southeastern U.S., and Great Plains (fall, 2022). The areal median SMSRZ for six CONUS
regions show statistically significant positive (negative) correlation with 30 day EDDI (SPEI) (Figure 4c) ranging
from 0.74 (− 0.74) for the US Southwest, and relatively low values of 0.35 (− 0.14) for the Northeastern US. Since
the (linear) correlation‐based assessment ignores the non‐linear interactions between SMSRZ and meteorological
variables such as ET, the true temporal association between these indices might be higher.

Differences in SMSRZ (soil hydrologic state vis‐à‐vis WEC thresholds) and climatology‐based drought indices
(deviation from long‐term normals) may occur due to the differing definition of drought. For example, clima-
tologically normal warm and dry conditions during summer in the Southwestern US, may not be categorized as a
drought in terms of long‐term anomalies, while SMSRZ may indicate high stress for the region due to sustenance
of water‐limited hydrologic conditions. Horizontal fluxes may not be negligible in regions with shallow
groundwater, thereby invalidating one of the key assumptions of the piecewise‐linear WEC framework. SMSRZ
estimates in such cases may overestimate drought severity as it doesn't account for the θRZ‐groundwater in-
teractions. Therefore, an understanding of regional hydrology is important to correctly interpret SMSRZ for
decision making.

5. Conclusion
Despite advancements in remote‐sensing techniques for retrieving θS, accurate estimation of θRZ dynamics re-
mains a challenge. We use satellite‐based EF and θS to design a LP filter to estimate active rootzone soil moisture
dynamics (as SRZ [− ]) through a constrained optimization of the pixel‐scale WEC pathway (SRZ − EF). This
addresses the challenge posed by sparse coverage of in‐situ θRZ observations to calibrate the LP filters to model/
monitor space‐time contiguous, continental‐scale dynamics of θRZ.

The accuracy of the proposed approach in estimating θRZ dynamics is comparable to LP filters parameterized
using in‐situ observed rootzone soil moisture. We use this methodology to develop spatiotemporal fields of SRZ at
9 km spatial resolution for CONUS, which displays a high degree of agreement with a similar index generated
from the SPL4 product. The advantage of simultaneous parameterization of the WEC pathway and LP filter is the
availability of the critical thresholds of water‐limited and energy‐limited regimes. This facilitates the translation
of SRZ to SMSRZ—an indicator of drought impacts on soil and vegetation—which is demonstrated as a tool to
generate low‐latency (2 day), daily, spatially continuous updates of agricultural drought impact across CONUS.

Data Availability Statement
SMAP soil moisture, MODIS PET and ET data is available at NASA National Snow, and Ice Data Center
Distributed Active Archive Center (NSIDC‐DAAC, https://nsidc.org/data/data‐programs/nsidc‐daac). The Wa-
ter‐Energy Coupling parameters generated in this study are available in raster format (9 × 9 km2 grids) on
HydroShare through Sehgal and Mohanty (2023). US Climate Reference dataset is accessed through: https://
www.ncei.noaa.gov/access/crn/. SCAN dataset is available through: https://www.drought.gov/data‐maps‐tools/
soil‐climate‐analysis‐network‐scan. EDDI‐30 and SPEI‐30 data is accessed from GridMet webpage at https://
www.climatologylab.org/gridmet.html. USDM drought outlook is accessed from: https://droughtmonitor.unl.
edu/.
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