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Abstract

Traffic Engineering (TE) attempts to establish paths for the flow of data in a network
so as to optimize the resource utilization and maximize the network performance. One of the
main goals of Traffic Engineering is to bring about efficient and reliable network operations.
Constraint based routing is the key to Multiprotocol label switching TE. Constraint based
routing helps to manage traffic paths within a MPLS network and allows for traffic to
flow along certain desired paths. MPLS also supports explicit routing thus providing TE
capabilities. MPLS TE enables resiliency and reliability to be built into networks, thus
increasing the value and availability of the network. TE is deployed in MPLS networks
by providing TE extensions to interior gateway protocols like OSPF and IS-IS. MPLS
creates a connection oriented model over the traditional connectionless framework of IP
based networks. This connection oriented model helps to overcome several shortcomings
of the IP network and also provide the necessary framework to give quality guarantees to
IP traffic. Quality of Service (QoS) can be built into MPLS networks where TE is used.
MPLS has made significant progress in recent years and is used for deployment of networks
all over the world. In this thesis, we propose several constraint-based routing algorithms for
MPLS based VPN’s. Our algorithms support routing of both Quality of Service (QoS) and
BE traffic over the MPLS network. We have implemented a route based and a link based
approach for routing of QoS and BE traffic. We also implement the 1 + 1 and 1 : 1 link
disjoint and node disjoint path protection mechanisms for the QoS traffic. We study the
effect of the various parameters used in our equations such as epsilon, granularity, earning
rate and hop count. The problem is formulated as a multicommodity flow (MCF) problem
and is solved using the optimization tool - ILOG CPLEX. Our approach is scalable to large
networks having a number of VPN’s.

xi



Chapter 1

Introduction
In this chapter we provide an overview of the working of MPLS in Section 1.1. The concept
of Virtual Private Networks (VPN’s) and an overview of the architecture and operation in
MPLS VPN’s is discussed in Section 1.2. In Section 1.3 we explain the concepts of Traffic
Engineering and Constraint Based Routing. Path Protection is introduced in Section 1.4.

1.1 Multiprotocol Label Switching

In a traditional IP network the router analyzes the destination address in the packet header
at each hop and makes a independent forwarding decision as the packet travels from the
source to the destination. IP forwarding is based on routing protocols such as Open Shortest
Path First (OSPF) and Border Gateway Protocol (BGP). These protocols are designed to
find the shortest path from the source to the destination and do not consider factors such as
latency and traffic congestion. In order to overcome some of these restrictions Multiprotocol
Label Switching (MPLS) was introduced. MPLS establishes a connection oriented network
overlaid onto the connectionless framework of IP networks. Due to this connection oriented
architecture, a number of new techniques for traffic management are available. In MPLS
packets are forwarded by label swapping or label switching. The labels are contained in a
MPLS header inserted into the data packet. The label is a short fixed length physically
contiguous identifier that tells the routers how to forward the packets from the source to
the destination. The packets follow a predetermined path called the Label Switched Path
(LSP). LSP is also referred to as a MPLS tunnel. It is simply a concatenation of one or
more hops in the network. Signaling protocols such as Resource reSerVation protocol with
Tunneling Extensions (RSVP-TE) and Label Distribution Protocol (LDP) can be used to
establish connections and distribute labels. These protocols establish paths through the
MPLS network and reserve network resources along the path according to the requirement.
The routers in the MPLS network are called the Label Switch Routers (LSR’s) and the
routers in the edge of the network are called Label Edge Routers (LER’s). The router
at the entry point of the tunnel is referred to as the ingress router and the router at the
end point is called the egress router. When packets enter the network they are classified
into Forwarding Equivalence Classes (FEC). All the packets belonging to the same FEC

1



receive the same forwarding treatment. A FEC is a logical entity created by the router to
represent a class of packets. After the initial classification the packets are then assigned a
label and the path corresponding to that FEC by the LER. The label is used to identify a
FEC. The packets are then forwarded along the LSP. At each hop, the LSR removes the
incoming label and attaches a outgoing label. This outgoing label tells the next router how
the packet should be forwarded. Fig 1.1 shows a typical MPLS network and the associated
elements. The central cloud represents the MPLS network. The customer edge routers
(CE routers) interface with the provider edge routers (PE routers). The PE router at the
ingress point attaches the MPLS label to the packet and the PE router at the egress point
removes the MPLS label from the packet. The CE and PE routers are the LER’s. Within
the MPLS domain, the Provider (P) routers forward the traffic hop by hop based on the
labels. The P routers are the LSR’s.

Figure 1.1: MPLS Network

As the name suggests, the techniques of MPLS are applicable to any network layer
protocol. MPLS is a framework of functions. MPLS combines the benefits of packet
forwarding based on Layer2 Switching with that of Layer3 Routing. MPLS also provides
the benefit of Traffic Engineering (TE). It can also be used to set up Virtual Private
Networks.

1.2 Virtual Private Networks

A Virtual Private Network is a private communication network that makes use of the
public telecommunication infrastructure to transmit data. It can be used within a sin-
gle organization or several different organizations. It uses tunneling protocols to maintain
confidentiality of data and message integrity. The main purpose of a VPN is to provide
a company with the capabilities of private leased lines at a much lower price by using
the shared public infrastructure. The Internet is a shared public infrastructure with open
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transmission protocols. Hence, in order to set up a VPN, it must include packet encapsu-
lation or tunneling, encryption and sender authentication in order that the data reaches
the destination without being tampered.

• MPLS VPN Architecture Overview

Since MPLS allows the tunneling of packets from the ingress router to the egress router VPN
applications that require this capability can be easily built. VPN’s built on MPLS provide
users with all the benefits of MPLS such as traffic engineering, Quality of Service (QoS)
and separation of traffic. MPLS VPN’s allow service providers to deploy scalable VPN’s
and provide value added services. MPLS VPN’s can be divided into two categories. One
is the customer based VPN where the VPN is configured on the customer side equipment.
The second category is the network based VPN where the VPN is configured on the service
provider equipment and is operated by the provider. MPLS VPN’s are network based
and offer considerable cost savings and increased scalability. MPLS provides for traffic
separation by uniquely identifying each VPN flow and setting up circuit like connections.
A VPN consists of CE routers attached to the customer site. The customer sites use the
CE routers to communicate with other customer sites. Only the PE routers are aware of
the VPN’s. The MPLS architecture is as shown in 1.2. The figure shows five customer
sites communicating with three VPN’s.

Figure 1.2: MPLS VPN Architecture

• MPLS VPN Operation Overview

Fig 1.3 shows the operation of a MPLS VPN. The CE router provides the PE router with
the routing information of the corresponding customer site. This routing information is
stored in a distinct routing and forwarding table called the Virtual Routing and Forwarding
table (VRF) in the PE router to guarantee isolation between the various VPN’s. Thus the
PE router maintains a separate VRF table for each VPN. Each PE router needs a unique
router ID that is used to allocate a label and enable VPN forwarding in the backbone of
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the network. Each PE router allocates a unique label to each route in each VRF. The PE
routers exchange information about the VPN customers and routes among themselves by
using Border Gateway Protocol (BGP) as the routing protocol. In order to make the IP
addresses used within a VPN unique, they are concatenated with a 64 bit prefix called a
route distinguisher (RD). In order to uniquely recognize the VPN originated IP packets
each of the packets are labeled by the ingress PE router with a label that uniquely identifies
the egress PE router.

Figure 1.3: MPLS VPN Operation

Each PE-router assigns a unique label for each route in each VPN routing and for-
warding (VRF) instance. These labels are then propagated along with the corresponding
routes to all the other PE-routers . The PE-routers then install the received routes and the
label assigned by the egress routers in the VRF tables. The MPLS/VPN network is now
ready to forward VPN packets. When a VPN packet is received by the ingress PE-router,
the corresponding VRF is examined, and the label associated with the destination address
by the egress PE-router is obtained. Another label, pointing toward the egress PE-router,
is obtained from the global forwarding table. Both labels are combined into an MPLS label
stack, are attached in front of the VPN packet, and are sent toward the egress PE-router.
All the P-routers in the network switch the VPN packet based only on the top label in the
stack, which points toward the egress PE-router. Because of the normal MPLS forwarding
rules, the P-routers never look beyond the first label and are thus completely unaware of
the second label or the VPN packet carried across the network. The egress PE-router on
receiving the labeled packet, drops the first label, and performs a lookup on the second
label, which uniquely identifies the target VRF. A lookup is performed in the target VRF,
and the packet is sent toward the proper CE-router.
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1.3 Traffic Engineering

Traffic Engineering (TE) is the process of selecting suitable paths for the flow of data in a
network so as to efficiently utilize the network resources and enhance the network perfor-
mance while maximizing the network revenue. One of the main goals of Traffic Engineering
is to bring about efficient and reliable network operations. Traffic Engineering attempts to
compute a path from the source node to the destination while adhering to constraints such
as bandwidth,delay and other administrative requirements. After the path is computed,
Traffic Engineering enables the establishment of the path and also maintains the forwarding
capability of the path. In IP routing traffic between two points is sent over the shortest path
available even though multiple paths may exist. During traffic congestion, this may lead
to a few routes being overused and some routes being underused. This leads to inefficient
utilization of network resources. MPLS manages bandwidth more efficiently by specifying
explicit routes and by setting certain bandwidth guarantees. MPLS has a number of tech-
niques that support Traffic Engineering. MPLS computes a path at the source taking into
account all the constraints. This is possible only if the source has some way of gathering
the network information either locally or from other routers. In addition to supporting ex-
plicit routing, MPLS also has the ability to distribute information about network resources
and topology, reserve network resources and modify link attributes. MPLS Traffic Engi-
neering (MPLS TE) increases the availability and the value of the network to users. TE
is built into MPLS networks via traffic engineering extensions to protocols such as OSPF
and IS-IS. OSPF-TE and IS-IS-TE carry additional information such as link bandwidth,
link utilization, delay, priority, etc. to allow the network to utilize paths that meet service
requirements, resource availability and other constraints. RSVP-TE is commonly used for
MPLS Traffic Engineering. MPLS TE is deployed in the core of the MPLS network and it
helps to reduce traffic congestion and enables efficient utilization of the available resources.

MPLS also supports Quality Of Service (QoS). QoS is defined in RFC2386 as ’a
set of service requirements to be met by the network while transporting a flow.’ A flow
refers to a packet of data being transmitted with a certain level of QoS. QoS is basically a
certain level of service provided to customers. Some of the characteristics that determine
the level of service are probability of packet loss, bandwidth requirements, delay etc. QoS
based routing is a mechanism wherein paths are determined on the basis of availability
of network resources and QoS requirement. QoS routing selects routes that satisfy the
QoS requirement. MPLS along with Differentiated Services (Diffserv) makes QoS support
possible. Some of the techniques used by MPLS to provide QoS are IP Precedence, Random
Early Detection (RED), Weighted RED, Weighted Fair Queuing (WFQ), Class -Based
WFQ and Priority Queuing. Unlike MPLS TE, QoS is used at the edge of the MPLS
network. It ensures that high priority packets get a preference over low priority traffic.
Together, QoS and traffic engineering enable organizations to move away from multiple,
specialized networks for voice, video, and data to a single converged IP/MPLS network,
dramatically reducing overhead and cost.

Constraint Based Routing (CBR) is a mechanism of determining a path from the
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source to the destination subjected to certain constraints such as link capacity, available
bandwidth, delay requirement and administrative policies. It uses information about net-
work resources, topology and traffic patterns to compute routes. CBR only determines the
path and does not reserve any resources on the path. For reserving resources a reservation
protocol such as RSVP has to be used. CBR manages traffic paths within a MPLS network,
allowing the traffic to flow along desired paths. CBR can be online or offline depending
on where the path computation is performed. Online CBR takes into account resource
constraints and calculates one LSP at a time. Path calculation is performed at the routers
and hosts without knowledge of new requested traffic. Online CBR can adapt to network
changes and state updates. In Offline CBR, path computation is performed outside the
network for a fixed traffic demand and network topology. Offline CBR helps to optimize
network resource usage but it cannot adapt to network changes.

1.4 MPLS Path Protection

Since MPLS supports Traffic Engineering, it allows explicit routing of packets. This fea-
ture allows MPLS networks to pre-establish backup paths for the primary paths. Each
of these backup LSP’s have the same amount of bandwidth as the primary LSP’s. Path
Protection provides an end to end failure recovery mechanism for MPLS Traffic Engineer-
ing tunnels.The backup paths have the same source-destination pair as the corresponding
primary paths. One or more LSP’s are established in advance to provide failure protec-
tion for the protected LSP. If the primary LSP fails, the traffic is immediately temporarily
switched onto the backup LSP’s. It is important that the backup LSP’s are either link
disjoint or node disjoint with the primary LSP’s i.e the backup LSP’s do not share a link
or a node with the primary LSP’s else the failure of a shared link or node would affect both
the primary and backup paths.

Rerouting is another technique of providing path protection. In this method, upon
failure of the primary path the traffic is simply rerouted along a new path or path segment.
No resources are reserved in advance until the fault occurs. This mechanism provides a
higher resource utilization, but is slow compared to protection switching as the secondary
path is established upon detection of a failure.

• 1+1 Path Protection mechanism

In 1+1 path protection the backup path carries a copy of the traffic on the primary path.
Upon detection of a failure, the traffic is routed along the backup path. The backup path
resources are not available to low priority traffic. There is no sharing of the resources of
the backup path. It is the fastest path protection mechanism. 1+1 path protection can be
link disjoint or node disjoint.

6



• 1:1 Path Protection mechanism

In 1:1 path protection, the resources of the backup path are available to low priority traffic.
There is a sharing of the backup path resources. Upon detection of a failure, the low
priority traffic is preempted and the traffic is switched from the primary to the backup
LSP. 1:1 path protection can be link disjoint or node disjoint.
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Chapter 2

Traffic Engineering for MPLS VPN’s

2.1 Introduction

In section 2.2 we review off-line constraint-based algorithms for routing both Quality of
Service (QoS) and Best Effort(BE) service classes. We review the notations used in the
formulation of the multi commodity flow (MCF) problems and also discuss certain MPLS
attributes such as label constraint and hop constraint.Our approach towards traffic engi-
neering including link based and route based routing is introduced in 2.3. The experimental
results showing the effects of various parameters on routing for several example networks
is explained in 2.4.

2.2 Previous Work

In [1], Mitra and Ramakrishnan proposed a technique for multiservice, multipriority traffic
engineering in QoS supported data networks using a multi-commodity flow problem. In
their approach the high priority QoS traffic is routed first utilizing all the available link
capacities. The Best Effort traffic is routed after QoS and is allowed to utilize the residual
capacities. But this method had some drawbacks. In [4], Chung-Yu Wei proposed a method
to overcome these drawbacks and extended the multi-commodity flow problem to support
QoS and Best Effort routing in MPLS networks. We have extended the approach in [4], to
MPLS Virtual Private Networks and have incorporated link based routing for QoS and BE
classes of traffic. We have also extended the route based approach in [1] to accommodate
MPLS VPN’s and have modified the objective function. In the following sections we will
explain the approach in [1] and [4] and our contribution in detail.

2.2.1 Route Based Routing

Traffic within a network can be differentiated into several classes depending on the kind
of service required. A network should be able to accommodate and provide service for
different classes of traffic. Different kinds of traffic require different constraints and grades
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of service. To handle these end to end constraints the concept of admissible route sets is
introduced in [1]. The admissible route sets are specific to each QoS service class s and
to each origin-destination pair σ and are denoted as R(s, σ). For each class that requires
QoS, an admissible route set is pre-determined for a specific origin- destination (OD) pair
and the final routes for routing are selected from this route set. Real-time services such
as voice and video are sensitive to delay and hence require admissible route sets which are
restricted in their hop number, while for a delay insensitive service class such as data traffic
the admissible route set could have a less stringent hop restriction. Based on the service
classes, traffic can be differentiated into high priority Quality of Service (QoS) traffic and
low priority Best Effort (BE) traffic. The routing of high priority QoS traffic is not affected
by the presence of the Best Effort traffic. Admissibility of a route depends on factors
such as link capacities, available bandwidth, ability of nodes to handle certain services,
administrative policies, etc., The concept of route based routing for a single data network
was introduced in [1]. We will discuss this concept in detail and show our extension of this
approach to MPLS Virtual Private Networks.

• Network Model and Problem Formulation

Consider a connected network with N nodes and L links with each link having a
capacity Cl. The group of service classes that require QoS are denoted as SQoS. Each
individual class is denoted by s. s ∈ SQoS. Let the network be represented by a graph
G = (V, E), where V is the set of all vertices that represent the nodes in the network and
E is the set of all edges representing the links in the network.For each class s, we consider a
N × N matrix Ds of bandwidth demands from source node σi to destination node σj . The
problem is formulated as a multi-commodity flow problem with the objective to maximize
the network revenue subjected to various constraints. Additional notation is given in Table
2.1.

In [1], the network revenue for QoS traffic is defined as follows:

WQoS =
∑

s∈SQoS

∑
σ

∑
r∈R(s,σ)

es,rXs,r

where es,r and Xs,r are given in Table 2.1. The multi-commodity flow problem presented
in [1] is described below.

MCF problem P1:
Maximize WQoS =

∑
s∈SQoS

∑
σ

∑
r∈R(s,σ)

es,rXs,r (2.1)

subject to the constraints

∑
r∈R(s,σ) Xs,r ≤ Ds,σ

Xs,r ≥ 0, ∀r ∈ R(s, σ)

}
∀s ∈ SQoS, ∀σ (2.2)

∑
s∈SQoS

∑
σ

∑
r∈R(s,σ):l∈r

Xs,r ≤ Cl, ∀l (2.3)
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Table 2.1: Notation of MCF problem for route based routing of QoS traffic.

V set of vertices (routers) in the network
E set of edges (directed links) in the network

G = (V, E) Representation of the network as a graph
l ∈ E Link

Cl Capacity on link l
Ds,σ Bandwidth demand for class s and OD pair σ, σ = (σi, σj)

R(s, σ) The pre-selected route set for class s and OD pair σ
SQoS The set of service classes for QoS traffic
es,r The earning per unit of carried traffic for class s on route r

WQoS Network revenue for QoS traffic
Xs,r Allocated bandwidth for class s on route r

In (2.1), the objective is to maximize the network revenue WQoS which is the product of
the earning rate per unit of carried traffic for class s ∈ SQoS, on route r ∈ R(s, σ) and
the allocated bandwidth for a OD pair σ on the route r. The summation is taken over all
classes s ∈ SQoS, for all OD pairs σ in the network and for all routes r ∈ R(s, σ). The
constraint in (2.2) ensures that the carried bandwidth for class s and OD pair σ does not
exceed the demand Ds,σ for that class and that OD pair. It also ensures that the allocated
bandwidths should be greater than zero i.e non-negative. The constraint in (2.3) ensures
that the total carried bandwidth on a link l for all routes r ∈ R(s, σ), for all OD pairs and
for all classes s ∈ SQoS does not exceed Cl, the capacity of that link. The MCF problem
P1 is a linear programming problem and can be solved by using a linear programming
package such as CPLEX [14] to obtain a solution.On solving the above problem we obtain
the maximum revenue W ∗

QoS.

In [1], Best Effort traffic is routed using link based routing. An explanation of the link
based routing for QoS and Best Effort traffic provided in [4] are discussed below.

2.2.2 Link Based Routing

In link based routing, there are no pre-selected route sets for a specific class or for a
particular origin destination pair. The MCF problem here attempts to determine the
allocated bandwidth on the links in a network instead of the routes.

• Network model and Problem Formulation for Best Effort Traffic

The network model and problem formulation for link based routing of Best Effort traffic
according to [1] and [4] is as follows. Consider a connected network with N nodes and
L links with each link having a capacity Cl. Let the network be represented by a graph
G = (V, E), where V is the set of all vertices that represent the nodes in the network and
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E is the set of all edges representing the links in the network. We consider a N × N matrix
Ds,σ of bandwidth demands from source node σi to destination node σj. The problem is
formulated as a multi-commodity flow problem with the objective to maximize the network
revenue subjected to various constraints.

WBE =
∑
σ

eBE,σFBE,σ,

where FBE,σ is the total Best Effort traffic carried for OD pair σ, and eBE,σ is the earning
per unit of carried Best Effort traffic of OD pair σ.
The objective is to maximize the network revenue WBE . The notation and the problem
formulation are given in the following.

Table 2.2: Notation of MCF problem for link based routing of BE traffic.

WBE Network revenue for BE traffic
eBE,σ The earning per unit of carried BE traffic for OD pair σ
FBE,σ Total carried BE traffic for OD pair σ
DBE,σ Bandwidth demand of OD pair σ for BE traffic
Yσ,l Allocated bandwidth for OD pair σ on link l
Cl Capacity of link l

Lin(n) Set of links directed into node n
Lout(n) Set of links directed out of node n

σi Source node of OD pair σ
σj Destination node of OD pair σ

MCF problem P2:

Maximize WBE =
∑
σ

eBE,σFBE,σ (2.4)

subject to
0 ≤ FBE,σ ≤ DBE,σ, ∀σ (2.5)

∑
l∈Lin(n)

Yσ,l −
∑

l∈Lout(n)

Yσ,l =

⎧⎪⎨
⎪⎩

FBE,σ if n = σj

−FBE,σ if n = σi

0 otherwise

⎫⎪⎬
⎪⎭ ∀n, ∀σ (2.6)

Yσ,l ≥ 0, ∀σ, ∀l (2.7)∑
σ

Yσ,l ≤ Cl, ∀l (2.8)

The objective function in (2.4) is the network revenue. The constraint in (2.5) ensures
that the total carried traffic FBE,σ for OD pair σ does not exceed the demand DBE,σ for
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that OD pair. Equation (2.6) is the flow conservation constraint. It ensures that the total
incoming traffic equals the total outgoing traffic for all nodes except the source node σi

and the destination node σj . The constraint in (2.7) ensures that the allocated bandwidths
are all non-negative. (2.8) ensures that the total allocated bandwidths on link l does not
exceed its capacity Cl.

The allocated bandwidth Yσ,l indicates the bandwidth allocated on each link l for
each OD pair σ. It does not give the utilized paths. Multiple paths could share a single
link. In order to determine the routes for the flow of traffic a procedure called flow de-
composition is necessary. This procedure is repeated for all OD pairs and is as follows.
Flow-decomposition:

1. Fix an OD pair σ.

2. A subgraph N ′ is generated by removing all the links l such that Yσ,l = 0 and the
remaining graph is denoted by G. The BE traffic for OD pair σ uses only those links
present in graph G.

3. Trace a route r in G from the source σi to the destination σj using the depth first
search method. Let YBE,r = minl∈rYσ,l. Compute
FBE,σ = FBE,σ − YBE,r,
and
Yσ,l = Yσ,l − YBE,r, ∀l ∈ r.

4. End if FBE,σ = 0
else goto 2

Repeat for all OD pairs σ. In [4] the flow decomposition procedure is modified such that
the path with the maximum bandwidth is chosen from the source to the destination.

2.2.3 Label Constraint

In the above approach, there is no constraint on the number of Label Switched Paths
that are set up for each OD pair. As a result, the label space becomes very large at the
Label Switch Routers and this is undesirable. In [6], Applegate and Thorup proposed some
algorithms to reduce the label space. Label constraint was introduced in [4] to overcome
these drawbacks.

In order to constrain the label space, the number of incoming labels at a node has
to be controlled. Since MPLS supports label merge,the number of incoming labels equals
the number of outgoing labels. The traffic bifurcation and traffic non-bifurcation concepts
introduced in [10] and [11] can be used to constrain the label space. This leads to a Mixed
Integer Programming (MIP) problem. A parameter called granularity g (0 ≤ g ≤ 1) is
introduced to control the splitting of traffic among multiple paths. Granularity specifies
how coarsely the traffic is divided. For a granularity g, the traffic is split among 1/g paths.
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Thus, by defining the granularity the splitting of traffic can be controlled and the label
space can be restricted. The label constraint defined in [4] is as follows.

Yσ,l = Mσ,l × (DBE,σ × g), ∀σ, ∀l (2.9)

∑
σ

∑
l∈Lin(n)

Mσ,l ≤ Lmax(n), ∀n (2.10)

Mσ,l ∈ Z, where Z is the set of integers. 0 ≤ Mσ,l ≤ �1/g�, ∀σ, ∀l (2.11)

In (2.9), (DBE,σ × g) is the basic unit of flow that can be allocated to Yσ,l, and Mσ,l

is an integer variable corresponding to Yσ,l. The constraint in (2.9) ensures that the traffic
carried on link l for OD pair σ can only be an integer multiple of the basic unit of traffic
(DBE,σ × g). In (2.10), Lmax(n) is the maximum number of labels allowed on a node n.
The constraint in (2.10) ensures the maximum number of incoming labels

∑
σ

∑
l∈Lin(n) Mσ,l

to a node n does not exceed the label bound Lmax(n).

When g is set to 1, the demand between an OD pair will not be split between multiple
LSP’s.A single path is used to carry the demand between the OD pair. When g = 1, Mσ,l

is 0 or 1 for all σ and for all l. If g < 1, the range of Mσ,l increases. The demand can be
split up to at most among [1/g] different LSP’s.

Adding the above label constraint to MCF problem P2, modifies it to a MIP problem.
The MIP problem is similar to a LP problem except that in a LP problem some of the
variables are constrained to be integers. Here Mσ,l is an integer. One of the methods
of solving a MIP problem is the branch and bound method. In this method the optimal
solution is first found without the integer constraints. If the variables whose values are
constrained to be integers already have integer values, then it stops. If one or more integer
variables have non-integral values, one fractional variable is chosen for branching, and
two new subproblems are generated where the variable is more tightly constrained. In the
branch and bound method, a series of LP subproblems are solved, and a tree of subproblem
is built. Solving such problems requires far more computing time than the same problem
without any integer constraints. The commercial package CPLEX can be used to solve
MIP problems. This approach however, is extremely time consuming. In Section 2.4, we
propose a method for getting around the complexity of solving MIP problems.

2.2.4 Loop Elimination

The routing technique described in [1], could lead to the creation of loops within a network.
These loops increase the network resource utilization without increasing the efficiency or
the network revenue. The loops can be eliminated by modifying the objective function so
as to account for the utilized resources. The modified objective function is given by:

MaximizeWBE =
∑
σ

eBE,σFBE,σ − ε
∑
σ

∑
l

Yσ,l (2.12)
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In (2.12), the first term
∑

σ eBE,σFBE,σ is the total network revenue resulting from
the carried traffic. The second term

∑
σ

∑
l Yσ,l is the total bandwidth or network resource

consumed in the network and may be considered as the cost of carrying the traffic. If
there are loops in the network the utilized resources would increase without increasing
the network revenue.By accounting for the utilized resources in the network revenue, we
penalize the network revenue and thus eliminate the loops in the network. The parameter
ε must be chosen appropriately for the prevention of loops. The effect of ε is discussed
later in Section 2.4.3.

The modified MCF including label constraint and loop elimination is given below.

MCF problem P3:
Input: G=(V,E), 0 ≤ g ≤ 1, DBE,σ, {Cl : l = 1, 2, ..., |E|}, Lmax(n), ε

maximize WBE =
∑
σ

eBE,σFBE,σ − ε
∑
σ

∑
l

Yσ,l (2.13)

subject to
0 ≤ FBE,σ ≤ DBE,σ, ∀σ

∑
l∈Lin(n)

Yσ,l −
∑

l∈Lout(n)

Yσ,l =

⎧⎪⎨
⎪⎩

FBE,σ if n = σj

−FBE,σ if n = σi

0 otherwise

⎫⎪⎬
⎪⎭ ∀n, ∀σ

Yσ,l = Mσ,l × (DBE,σ × g), ∀σ, ∀l∑
σ

Yσ,l ≤ Cl, ∀l

Label limitation: ∑
σ

∑
l∈Lin(n)

Mσ,l ≤ Lmax(n), ∀n

Mσ,l ∈ Z, where Z is the set of integers, 0 ≤ Mσ,l ≤ �1/g�, ∀σ, ∀l

In the objective function (2.13), we reduce the network revenue by accounting for the
utilization of resources and thus eliminate loops in the network. The other constraints are
as explained earlier.

Problem Formulation for Link Based QoS Routing

QoS traffic can be differentiated into several classes depending on the kind of service re-
quired. Each class is assigned a different earning rate es,σ. The class that has a higher
earning rate es,σ has a higher precedence than that with a lower earning rate. The traffic
flow for a lower class cannot preempt that of a higher class. The constraints imposed in
MCF problem P3 hold good for QoS traffic also. An additional hop constraint is imposed
so as to limit the number of hops in the route [4],[8]. For the hop constraint to be effective,
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a non- bifurcation problem is considered i.e the granularity g is set to 1. The hop constraint
is as follows. ∑

l

Y s
σ,l ≤ Hmax(s) × Ds

σ (2.14)

In (2.15), Hmax(s) is the maximum number of hops for the traffic of class s. Ds
σ is the

traffic demand for class s and OD pair σ. Y s
σ,l is the allocated bandwidth on link l, for class

s and OD pair σ. Since it is a non-bifurcation problem, the traffic does not split among
multiple paths and the bandwidth allocated on link l for OD pair σ and class s, Y s

σ,l is
either Ds

σ or zero. By ensuring that the allocated bandwidth for OD pair σ and class s on
all the network links does not exceed Hmax(s)×Ds

σ, we ensure that the length of the path
for this OD pair does not exceed Hmax(s).

The formulation of the MCF problem for the QoS traffic as in [4] is given below.
Additional notations are given in Table 2.3.

Table 2.3: Notation of MCF problem with Hop Constraint.

es,σ The earning per unit carried traffic for class s and OD pair σ
F s

σ Total carried traffic for class s and OD pair σ
Ds

σ Bandwidth demand for class s and OD pair σ
Y s

σ,l Allocated bandwidth for class s and OD pair σ on link l
Hmax(s) Allocated bandwidth for class s and OD pair σ on link l

MCF problem P4:

Maximize WQoS =
∑
s,σ

es,σF
s
σ − ε

∑
s,σ

∑
l

Y s
σ,l

subject to
0 ≤ F s

σ ≤ Ds
σ, ∀σ, ∀s

∑
l∈Lin(n)

Y s
σ,l −

∑
l∈Lout(n)

Y s
σ,l =

⎧⎪⎨
⎪⎩

F s
σ if n = σj

−F s
σ if n = σi

0 otherwise

⎫⎪⎬
⎪⎭ ∀n, ∀σ, ∀s

∑
l

Y s
σ,l ≤ Hmax(s) × Ds

σ, ∀s, σ

Y s
σ,l = Ms

σ,l × Ds
σ, ∀σ, ∀l, ∀s∑

s

∑
σ

Y s
σ,l ≤ Cl, ∀l

0 ≤ Ms
σ,l ≤ 1
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2.3 Our Approach to Traffic Engineering in MPLS

VPN’s

In this section we propose our model for traffic engineering of QoS and Best Effort traffic
in MPLS VPN’s.In section 2.3.1, the MCF problem for route based routing in a MPLS
VPN is explained. The link based routing approach for QoS traffic are discussed in detail
in section 2.3.2. Traffic bifurcation in MPLS VPN’s and hop constraint is also presented
in this section. The link based routing approach for BE traffic are discussed in detail in
section 2.3.3.Our experimental results showing the effect of various parameters is presented
in section 2.4.

2.3.1 Route Based Routing of QoS Traffic for MPLS VPN’s

The concept of route based routing for a single data network has been explained earlier in
section 2.2.1. We have extended this algorithm to accommodate MPLS VPN’s and also
modified the objective function to account for utilization of network resources.

• Network Model and Problem Formulation

Consider a connected network with N nodes and L links with each link having a
capacity Cl. Let T be the set of all VPN’s which is defined as T = t1, t2, t3, .... The group
of service classes that require QoS are denoted by SQoS. Each individual class is denoted
by s. s ∈ SQoS. Let the network be represented by a graph G = (V, E), where V is the
set of all vertices that represent the nodes in the network and E is the set of all edges
representing the links in the network.For each class s, we consider a N × N matrix Ds of
bandwidth demands from source node σi to destination node σj . The problem is formulated
as a multi-commodity flow problem with the objective to maximize the network revenue
subjected to various constraints.Additional notation is given in Table 2.4.

The network revenue for route based routing for QoS traffic is given as:

WQoS =
∑

s∈SQoS

∑
t

∑
σ

∑
rt
σ∈R(s,σt)

es,rt
σ
Ps,rt

σ
− ε

∑
s∈SQoS

∑
t

∑
σ

∑
rt
σ

∑
l

es,rt
σ
P l

s,rt
σ

(2.15)

The MCF problem P5 for route based routing of QoS traffic is as follows.

MCF problem P5:

Maximize WQoS =
∑

s∈SQoS

∑
t

∑
σ

∑
rt
σ∈R(s,σt)

es,rt
σ
Ps,rt

σ
− ε

∑
s∈SQoS

∑
t

∑
σ

∑
rt
σ

∑
l

es,rt
σ
P l

s,rt
σ

(2.16)

subject to the constraints

∑
rt
σ∈R(s,σt) Ps,rt

σ
≤ Ds,σt

Ps,rt
σ
≥ 0, ∀r ∈ R(s, σ)

}
, ∀s ∈ SQoS, ∀σ, ∀t (2.17)
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Table 2.4: Notation of MCF problem with route based routing in MPLS VPNs.

σt OD pair with source node σi and destination node σj for VPN t
rt
σ Route for OD pair σ and VPN t

R(s, σt) Admissible route set for class s, OD pair σ and VPN t, rt
σ ∈ R(s, σt)

es,rt
σ

earning per unit of carried traffic for class s , route r, OD pair σ and VPN t
Ps,rt

σ
allocated bandwidth for class s, route r, OD pair σ and VPN t

P l
s,rt

σ
allocated bandwidth for class s , route r, OD pair σ and VPN t on link l

Ds,σt demand for class s, OD pair σ and VPN t
WQoS Network revenue for QoS traffic

∑
s∈SQoS

∑
t

∑
σ

∑
rt
σ∈R(s,σt):l∈r

Ps,rt
σ
≤ Cl, ∀l (2.18)

The objective is to maximize the network revenue given by (2.16). The first term in
(2.16) represents the total network revenue as a result of carrying the traffic. It is the
product of the earning rate per unit of carried QoS traffic for a particular OD pair and
the carried traffic for that class and OD pair. The second term in (2.16) accounts for the
utilization of resources. P l

s,rt
σ

is the carried traffic on a single link l. A longer route has
more links than a shorter one. The different classes s ∈ SQoS are assigned different earning
rates es,rt

σ
with a higher rate being assigned to the high priority traffic. The second term in

(2.16) has to be as small as possible in order to maximize the network revenue. By including
the earning rate in the second term we ensure that the routes for high priority traffic are
shorter than those of low priority traffic. WQoS which is the sum of the earnings over all
classes s ∈ SQoS, all VPN’s in T ,all OD pairs σ and over all routes r ∈ R(s, σ) indicates
the total network revenue. The constraint in (2.17) ensures that the carried bandwidth for
class s ,VPN t and OD pair σ does not exceed the demand Ds,σt for that class and that
OD pair. It also ensures that the allocated bandwidths should be greater than zero i.e
non-negative. The constraint in (2.18) ensures that the total carried bandwidth on a link l
for all routes rt

σ ∈ R(s, σt), for all VPN’s T , for all OD pairs σ and for all classes s ∈ SQoS

that utilize a link l does not exceed Cl, the capacity of that link. The MCF problem P5 is a
linear programming problem and can be solved by using a commercial linear programming
package such as CPLEX [13] to obtain a solution.On solving the above problem we obtain
the maximum revenue W ∗

QoS.

2.3.2 Link Based Routing of QoS Traffic

Our approach to link based routing of QoS traffic is presented in this section. The MCF
problems in [4] are extended to support MPLS Virtual Private Networks.
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• Network Model and Problem Formulation for Link Based QoS Routing

Consider a connected network with N nodes and L links with each link having a capacity
Cl. Let T be the set of all VPN’s which is defined as T = t1, t2, t3, .... The group of
service classes that require QoS are denoted by SQoS. Each individual class is denoted
by s. s ∈ SQoS. Let the network be represented by a graph G = (V, E), where V is the
set of all vertices that represent the nodes in the network and E is the set of all edges
representing the links in the network.For each class s, we consider a N × N matrix Ds of
bandwidth demands from source node σi to destination node σj . The problem is formulated
as a multi-commodity flow problem with the objective to maximize the network revenue
subjected to various constraints. Additional notation is given in the table below

Table 2.5: Notations for link based routing of QoS traffic in MPLS VPNs.

σt origin destination pair with source i, destination j for vpn t, σ = (σi, σj)
g Granularity- controls number of LSP’s

es,σt earning per unit of carried traffic for class s and OD pair σ in vpn t
Fs,σt carried traffic for class s and OD pair σ in vpn t
Ds,σt demand for class s and OD pair σ in vpn t
Y l

s,σt allocated traffic for class s and OD pair σ in vpn t on link l
M l

s,σt integer variable corresponding to Y l
s,σt

Cl Capacity of link l
Lin(n) set of links incoming into node n
Lout(n) set of links outgoing from node n

The MCF problem P6 for link based QoS routing is given below. The network revenue
for link based routing for QoS traffic is given as:

WQoS =
∑
s

∑
t

∑
σ

es,σtFs,σt − ε
∑
s

∑
t

∑
σ

∑
l

Y l
s,σt (2.19)

MCF problem P6:

Maximize WQoS =
∑
s

∑
t

∑
σ

es,σtFs,σt − ε
∑
s

∑
t

∑
σ

∑
l

Y l
s,σt (2.20)

subject to the constraints
0 ≤ Fs,σt ≤ Ds,σt ∀σ, ∀t, ∀s (2.21)

∑
l∈Lin(n)

Y l
s,σt −

∑
l∈Lout(n)

Y l
s,σt =

⎧⎪⎨
⎪⎩

Fs,σt if n = σj

−Fs,σt if n = σi

0 otherwise

⎫⎪⎬
⎪⎭ ∀n, ∀σ, ∀t, ∀s (2.22)

∑
s

∑
t

∑
σ

Y l
s,σt ≤ Cl ∀l (2.23)
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(2.20) represents the total network revenue. The first term in (2.20) represents the
total network reward as a result of carrying the traffic. It is the product of the earning
rate per unit of carried QoS traffic and the carried traffic for that class.The second term in
(2.20) accounts for the utilization of resources. Y l

s,σt is the allocated traffic on a single link l
for class s and OD pair σt. The second term can be viewed as the cost of carrying the traffic
and this is subtracted from the network revenue to account for the utilized resources.If the
utilized bandwidth is increased without increasing the network revenue, as in the case of
loops in the network, the network revenue is penalized. The constraint in (2.21) ensures that
the carried bandwidth for class s ,VPN t and OD pair σ does not exceed the demand Ds,σt

for that class and that OD pair and also that the carried bandwidth is greater than zero i.e
nonnegative. The constraint in (2.22) is the flow conservation constraint. It ensures that
the total incoming traffic equals the total outgoing traffic for all nodes except the source
node σi and destination node σj . (2.23) ensures that the total traffic carried on a particular
link l for all classes s, for all OD pairs and all VPN’s does not exceed the capacity of that
link. The MCF problem P6 is a linear programming problem and can be solved by using
a commercial linear programming package such as CPLEX [13] to obtain a solution.On
solving the above problem we obtain the maximum revenue W ∗

QoS.

• Traffic Bifurcation in MPLS VPN’s

In order to constrain the label space and prevent large routing tables at the routers we use
the traffic bifurcation technique discussed in section 2.2.4.

The traffic bifurcation constraint for MPLS VPN’s is :

Y l
s,σt = M l

s,σt × (Ds,σt × g), ∀σ, ∀t, ∀s, ∀l (2.24)

0 ≤ M l
s,σt ≤ �1/g�, ∀σ, ∀t, ∀s, ∀l (2.25)

M l
s,σt ∈ Z, where Z is the set of integers. (2.26)

In (2.24), (Ds,σt ×g) is the basic unit of flow that can be allocated to Y l
s,σt, and M l

s,σt is

an integer variable corresponding to Y l
s,σt. The constraint in (2.24) ensures that the traffic

carried on link l for OD pair σ can only be an integer multiple of the basic unit of traffic
(DBE,σt × g).

When g is set to 1, the demand between an OD pair will not be split between multiple
LSP’s. A single path is used to carry the demand between the OD pair. When g = 1, M l

s,σt

is 0 or 1 for all σ and for all l. If g < 1, the range of M l
s,σt increases. The demand can be

split up to at most among [1/g] different LSP’s. The MCF problem along with the traffic
bifurcation constraint is given below.

MCF problem P7:

Maximize WQoS =
∑
s

∑
t

∑
σ

es,σtFs,σt − ε
∑
s

∑
t

∑
σ

∑
l

Y l
s,σt (2.27)
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subject to the constraints
0 ≤ Fs,σt ≤ Ds,σt ∀σ, ∀t, ∀s (2.28)

∑
l∈Lin(n)

Y l
s,σt −

∑
l∈Lout(n)

Y l
s,σt =

⎧⎪⎨
⎪⎩

Fs,σt if n = σj

−Fs,σt if n = σi

0 otherwise

⎫⎪⎬
⎪⎭ ∀n, ∀σ, ∀t, ∀s (2.29)

Y l
s,σt = M l

s,σt × (Ds,σt × g), ∀σ, ∀t, ∀s, ∀l (2.30)

0 ≤ M l
s,σt ≤ �1/g�, ∀σ, ∀t, ∀s, ∀l (2.31)

M l
s,σt ∈ Z, where Z is the set of integers. (2.32)∑

s

∑
t

∑
σ

Y l
s,σt ≤ Cl, ∀l (2.33)

(2.30) augments the problem to a Mixed Integer Programming problem as Ms
σ,l is an

integer. The above problem is solved using CPLEX with the LP-to-Integer method.

• Hop Constraint in MPLS VPN’s

As mentioned earlier, differentiation of VPN traffic can be done by choosing earning rates
for all the classes of traffic. The class with a higher earning rate receives a higher priority
compared to other classes that have a lower earning rate. The hop constraint discussed in
section [2.2.6] is extended to MPLS VPN’s. The hop constraint for MPLS VPN’s is given
below. ∑

l

Y l
s,σt ≤ Hmax(s) × Ds,σt , ∀s, ∀σ, ∀t (2.34)

In (2.31), Hmax(s) is the maximum number of hops for the traffic of class s. Ds,σt is the
traffic demand for class s and OD pair σ. Y l

s,σt is the allocated bandwidth on link l, for class
s and OD pair σ. We treat this is as a non-bifurcation problem and set the granularity to
1. As a result, the traffic does not split among multiple paths and the bandwidth allocated
on link l for OD pair σ and class s, Y l

s,σt is either Ds,σt or zero. By ensuring that the
allocated bandwidth for OD pair σ and class s on all the network links does not exceed
Hmax(s) × Ds,σt , we ensure that the length of the path for this OD pair does not exceed
Hmax(s). The MCF problem P8 with the hop constraint for QoS routing is given below.

MCF problem P8:

Maximize WQoS =
∑
s

∑
t

∑
σ

es,σtFs,σt − ε
∑
s

∑
t

∑
σ

∑
l

Y l
s,σt (2.35)

subject to the constraints subject to

0 ≤ Fs,σt ≤ Ds,σt , ∀σ, ∀t, ∀s (2.36)

∑
l∈Lin(n)

Y l
s,σt −

∑
l∈Lout(n)

Y l
s,σt =

⎧⎪⎨
⎪⎩

Fs,σt if n = σj

−Fs,σt if n = σi

0 otherwise

⎫⎪⎬
⎪⎭ ∀n, ∀σ, ∀t, ∀s (2.37)

20



∑
l

Y l
s,σt ≤ Hmax(s) × Ds,σt , ∀s, ∀σ, ∀t (2.38)

Y l
s,σt = M l

s,σt × (Ds,σt × g), ∀σ, ∀t, ∀s, ∀l (2.39)

0 ≤ M l
s,σt ≤ �1/g�, ∀σ, ∀t, ∀s, ∀l (2.40)

M l
s,σt ∈ Z, where Z is the set of integers. (2.41)∑

s

∑
t

∑
σ

Y l
s,σt ≤ Cl, ∀l (2.42)

2.3.3 Link Based Routing of Best Effort Traffic

Our approach to link based routing of BE traffic is presented in this section. The MCF
problems in [4] are extended to support MPLS Virtual Private Networks.

• Network Model and Problem Formulation for Link Based BE traffic Rout-
ing

Consider a connected network with N nodes and L links with each link having a
capacity Cl. Let T be the set of all VPN’s which is defined as T = t1, t2, t3, .... Here
we consider only a single class of traffic i.e Best Effort. Let the network be represented
by a graph G = (V, E), where V is the set of all vertices that represent the nodes in the
network and E is the set of all edges representing the links in the network.We consider a
N × N matrix DBE of bandwidth demands from source node σi to destination node σj . The
problem is formulated as a multi-commodity flow problem with the objective to maximize
the network revenue subjected to various constraints. Additional notation is given in Table
2.6.

Table 2.6: Notation of MCF problem for link based routing of BE traffic in MPLS VPNs.

σt origin destination pair with source i, destination j for vpn t, σ = (σi, σj)
g Granularity- controls number of LSP’s

eBE,σt earning per unit of carried BE traffic for OD pair σ in vpn t
FBE,σt carried traffic for class BE and OD pair σ in vpn t
DBE,σt demand for class BE and OD pair σ in vpn t
Y l

BE,σt allocated traffic for class BE and OD pair σ in vpn ton link l
Cl Capacity of link l

Lin(n) set of links incoming into node n
Lout(n) set of links outgoing from node n
M l

BE,σt integer variable corresponding to Y l
BE,σt
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The MCF problem P9 for link based routing of BE traffic is given below. The network
revenue for link based routing for BE traffic is given as:

WBE =
∑

t

∑
σ

eBE,σtFBE,σt − ε
∑

t

∑
σ

∑
l

Y l
BE,σt (2.43)

MCF problem P9:

Maximize WQoS =
∑

t

∑
σ

eBE,σtFBE,σt − ε
∑

t

∑
σ

∑
l

Y l
BE,σt (2.44)

subject to the constraints
0 ≤ FBE,σt ≤ DBE,σt , ∀σ, ∀t (2.45)

∑
σ

∑
l∈Lin(n)

Y l
BE,σt −

∑
σ

∑
l∈Lout(n)

Y l
BE,σt =

⎧⎪⎨
⎪⎩

FBE,σt if n = σj

−FBE,σt if n = σi

0 otherwise

⎫⎪⎬
⎪⎭∀n, ∀σ, ∀t (2.46)

Y l
BE,σt = M l

BE,σt × (DBE,σt × g), ∀σ, ∀t, ∀l (2.47)

0 ≤ M l
BE,σt ≤ [1/g], ∀σ, ∀t, ∀l

M l
BE,σt ∈ Z, where Z is the set of integers. (2.48)∑

t

∑
σ

Y l
BE,σt ≤ Cl, ∀l (2.49)

The MCF problem formulation is similar to that of QoS with the exception of the
hop constraint. There is no hop constraint imposed on the routing of Best Effort traffic.
(2.41) represents the total network revenue. The first term in (2.41) represents the total
network reward and the second term in (2.41) accounts for the utilization of resources. The
constraint in (2.42) ensures that the carried bandwidth for Best Effort does not exceed the
demand DBE,σt for that OD pair and also that the carried bandwidth is greater than zero
i.e nonnegative. The constraint in (2.43) is the flow conservation constraint. (2.44) ensures
that the carried traffic is always an integer multiple of the basic unit of traffic. (2.46)
ensures that the total traffic carried on a particular link l for class Best Effort for all OD
pairs and all VPN’s does not exceed the capacity of that link. The MCF problem P9 is a
linear programming problem and is solved by using a linear programming package such as
CPLEX [13] to obtain a solution. On solving the above problem we obtain the maximum
revenue W ∗

QoS.

2.4 Experimental Results

In this section, we present our experimental results. In Section 2.4.1, we describe the
networks used in our simulations. The method of generation of synthetic networks is
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described. In Section 2.4.2 the results for route based routing of QoS traffic are presented.
In Section 2.4.3, the effect of parameters like ε, granularity and the earning rate are shown.
The results for onestage and twostage routing for all three networks are also presented.
The LP-to-Integer method and its comparison with the LP method is also presented.

2.4.1 Networks

Figure 2.1: Abstract US network

In this experiment, two types of networks are considered. The first one is the abstract
US backbone network which has a fixed topology. The network has 12 nodes and 38 edges.
The network topology along with link capacities are shown in Figure 2.1. We consider the
US network as network 1 in all our simulations.

The second type of networks are randomly generated by a graph generator GT-ITM
[10] to produce synthetic 2-level networks. The 2-level networks are used to simulate the
hierarchical networks. The construction of the network topology is as follows. In the first
level, a connected graph is generated with the given node number inside a unit square as
in Figure 2.2. In the second level, the nodes of the first level which are denoted as cluster
are replaced by a smaller connected graph which is generated inside a unit square with
the given node number. The first level edges are typically longer than the second level
edges. We have generated two hierarchical networks. One has 18 nodes and 62 edges and
is considered as network 2. The other hierarchical network has 30 nodes and 94 edges and
is considered as network 3.

The individual VPNs for each of these networks are generated by the user. The size
of the VPN, the OD pairs for the VPN and the number of VPN’s are specified by the
user. The demand for each OD pair for a given VPN is generated as described in [6]. The
method is based on the Euclidean distance of the OD pair. The graph generator randomly
places the nodes in a unit square. The distance δ(x, y) between two nodes x and y is
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Figure 2.2: 2 level Hierarchical Topology

obtained from their coordinates. For node x, we generate two random numbers ox, dx ∈
[0,1]. Similarly, for node y, we have oy, dy ∈ [0,1]. For each OD pair (x, y), we pick a
random number c(x,y) ∈ [0,1]. Then the demand between x and y is given by

αoxdyc(x,y)e
−δ(x,y)/2� (2.50)

Here α is the parameter that controls the maximum demand and � is the largest Eu-
clidean distance between any pair of nodes. This method generates more demand between
pairs of nodes that have a smaller distance than those that have a longer distance. The
networks generated by GT-ITM are listed as in Table 2.7.
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Table 2.7: Networks generated by two level Hierarchical Topology.

Network Number of Nodes Number of Edges
network 2 18 62
network 3 30 94

2.4.2 Experimental results for route based routing

In this section we present the results for route based routing of QoS traffic. We have
implemented route based routing only for the US network as it has a fixed topology and
it is possible to specify certain admissible route sets for each OD pair. We specified two
VPN’s each with 3 OD pairs and each OD pair having 3 routes between them. The results
are shown in Figures 2.3 and 2.4. We plot the percentage of carried traffic vs. percentage
of demand for both VPN’s and both classes of traffic. The percentage of carried traffic for
each class for a individual VPN is also plotted. It can be seen that Class A has a higher
percentage of carried traffic when compared to Class B. This is due to the higher earning
rate of Class A which gives it a higher priority and it also generates a higher network
revenue.The average hop number for each class is also shown. It is seen that Class B has a
higher average hop number than Class A. This shows that a shorter route is being chosen
for Class A when compared to Class B.
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Figure 2.3: Route based routing
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26



2.4.3 Experimental results for link based routing

• Effect of ε

In this section, we show the effect of varying ε in networks 1, 2 and 3 and also identify
its proper range. We compare the network resources, the percentage of carried traffic, the
total number of paths, and the number of loops for different values of ε. The earning rate
es,σt is set to one for all VPNs, so that the carried traffic is maximized in the network.

Since the sum of allocated bandwidth Y l
s,σt is greater than the total carried traffic∑

σ Fs,σt over all the OD pairs σ for all VPN’s t the ε should be small enough,so that the
second term in the objective function is as small as possible and the network revenue is
maximized. If ε is set to zero, it has the same effect as removing the utilized resource from
the network revenue and this will create loops in the network.

In Figures 2.5-2.7 we plot the network resources, percentage of carried traffic, the
total number of paths, and the total number of loops vs the value of ε for each of the three
networks. The percentage of the carried traffic is defined as the ratio of carried traffic to the
traffic demand. It can be seen in some cases from the figures as ε is close to zero or equal
to zero, loops are created in the network. But as ε increases from zero, the number of loops
decreases and reaches 0 for ε in the range of 10−6 to 10−2. As the number of loops decreases,
the utilized resources in the network also decreases. But, the percentage of carried traffic
and total number of paths remains unchanged. For large values of ε, (e.g, ε > 0.01) the
carried traffic, the number of paths, and the utilized resources all decrease rapidly. This is
due to the fact that as ε increases, the cost of carrying the traffic increases compared to
the network reward. In order to maximize the network revenue, the percentage of carried
traffic is reduced for large values of ε.Very large values of ε should therefore be avoided.

• Granularity

In this section, we show the effect of granularity on the total carried traffic for all the
three networks. The problem is treated as a MIP problem due to the integer constraint in
equation (2.38) and is solved using CPLEX. The carried traffic plotted in Figure 2.8 is the
largest amount that the given network can carry for the given value of granularity g. For a
given granularity g, the demand for an OD pair can be split among �1/g� different paths.
Consequently, if the value of g is very large, the routing conditions will be more stringent,
and may result in lesser carried traffic. However, from Figure 2.8 it is seen that this effect
is small and the carried traffic does not vary significantly with the choice of granularity g.
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Figure 2.5: Effect of Epsilon in Network 1
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Figure 2.6: Effect of Epsilon for Network 2

29



10
-10

10
-5

10
0

500

1000

1500

2000

2500

3000

3500

Epsilon

N
et

w
or

k 
R

es
ou

rc
e

10
-10

10
-5

10
0

80

85

90

95

100

Epsilon

%
 o

f c
ar

rie
d 

tr
af

fic

10
-10

10
-5

10
0

13

14

15

16

17

18

Epsilon

N
um

be
r 

of
 p

at
hs

10
-10

10
-5

10
0

0

0.5

1

1.5

2

Epsilon

N
um

be
r 

of
 lo

op
s

Figure 2.7: Effect of Epsilon in Network 3
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In Figure 2.9 we show the effect of granularity for varying demand. It is seen that
when granularity is set to 1, for varying demand the percentage of carried traffic is low.
When granularity is set to 0.5, the percentage of carried traffic increases and is highest
when granularity is set to 0.1. This is because when granularity is set to 0.1 the traffic is
split among [1/0.1] multiple paths.
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Figure 2.9: Effect of granularity with varying overload
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• LP to Integer Approach

As discussed earlier, MIP problems are computationally extensive and complex. Therefore
we try to find a solution which is computationally less complex, although the solution may
not be optimal. Such a suboptimal solution will be acceptable only if it’s performance is
close to that of the optimal solution. Since most demands can be satisfied in one or two
routes, we propose an approach that seeks an LP solution first and later modifies it to
obtain a MIP solution. We first solve the original MIP problem, but do not enforce the
variables M l

s,σt to be integer. As a result,M l
s,σt may be a real number. We then round down

M l
s,σt to the nearest integer to obtain a MIP solution.

In this section, we compare the difference of the LP-to-Integer approach and the LP
approach for all the three networks. The granularity g is set to one to study the worst
case performance. In this case, if the demand is split, the traffic demand will be dropped
by the LP-to-Integer approach. We plot the combined traffic demands of all VPNs’s in
a network. In Figure 2.10 we plot the percentage of carried traffic vs the value of alpha.
The parameter α controls the amount of the demands as described in Section 2.4.1. As α
increases, demands between OD pairs also increases but the percentage of carried traffic
drops. It can be seen that the LP-to-Integer approach does not carry as much traffic as LP
approach in the worst case, but it stays quite close to the LP. The biggest gap between the
LP-to-Integer and LP approach is around 4%. This is quite acceptable for saving a lot of
computational time when compared to the MIP problem.

• Effect of Earning Rates

In this section, we illustrate the effect of the earning rate es,σt on the priorities of
routing traffic. We assign different earning rates for the three classes of traffic namely Class
A, Class B and Best Effort. We perform the experiment on all the networks considering
that all three networks carry all three classes of traffic. The QoS and BE traffic of each
network are routed together. The different service classes are differentiated by the values
of es,σt . The graphs show the plot of the percentage of carried traffic vs the percentage of
demand for different earning rates of all three classes.

The Figures 2.11, 2.12 and 2.13, show the effect of earning rate es,σt for network 1,
network2 and network 3 respectively. We tested the effect of earning rate by setting the
values for Class A, Class B and BE as (1, 1, 1), (30, 20, 1), (90, 20, 1), (90, 60, 30). It can be
seen that all the three classes have a different drop precedence. Since the earning rate for
Class A is higher when compared to Class B and BE it is dropped to a much lesser degree.
BE traffic receives lowest priority. As we increase the demand, the traffic class with the
lowest earning rates starts dropping.
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Figure 2.10: Comparison of LP and LP-to-INT for all networks
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Figure 2.11: Effect of earning rate for Network 1
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Figure 2.12: Effect of earning rate for Network 2
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Figure 2.13: Effect of earning rate for Network 3
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• Onestage and Twostage Routing

In this section we further show the effect of earning rate es,σt by routing the traffic in two
different methods. In the first case, referred to as one stage routing, the high priority QoS
traffic and the low priority BE traffic are routed together. We plot the percentage of carried
traffic and the average hop number vs the percentage of demand for all the three networks.
The different earning rates for all the classes results in a different drop precedence. In this
case, BE traffic is dropped faster than the QoS traffic as it has a lower earning rate. The
BE traffic is followed by Class B and then Class A. In some cases Class B might have a
higher percentage of carried traffic. This is because of the approximation to the LP-to-
INT approach, network topology and VPN distribution. The result is shown for both LP
and LP-to-INT approach. The average hop number also starts to drop as the demand
increases. This is because the route with a larger hop number utilizes more resources and
this is undesirable when resources are deficient. In Figures 2.14-2.20 we show the effect of
one stage routing for Networks 1, 2 and 3.

In two stage routing, the QoS and BE traffic are routed separately in two different
stages. In the first stage, the high priority QoS traffic is routed allowing it to use the
available link capacities. In the second stage, the BE traffic is routed and it uses the
residual capacities left after routing QoS traffic. Our results show that in this method of
routing, BE has a higher percentage of carried traffic than in onestage routing. The result
is shown for both LP and LP-to-INT approach. The average hop number also starts to
drop as the demand increases. This reduces the resource utilization when resources are
deficient and helps in maintaining the network revenue. In Figures 2.21-2.27 we show the
effect of two stage routing for Networks 1, 2 and 3. It is clearly seen that the percentage
of carried traffic for BE is higher than that in onestage routing.

• Effect of Hop Constraint

In this section we show the performance of QoS traffic under the hop constraint. The hop
constraint is set only for Class A and Class B traffic of all VPN’s. BE traffic is unaffected
by the hop constraint. We consider two different sets of traffic demands : a light load and
a heavy load, to show the effect of the hop constraint. The light load has less demands and
is sufficient to carry all the VPN traffic in the network. The heavy load is more than the
network can afford, and results in the dropping of demands for certain VPNs. The Figure
2.28, show the performance of each network under light load conditions. We observe that
once the hop bound is more then the maximum number of hops, the network acts as if no
hop constraint is imposed. At a lower value of the hop number, the percentage of carried
traffic for Class A and Class B is low and as the hop number increases the amount of carried
traffic also increases. Beyond the maximum hop number, the hop constraint does not have
any effect. Also, we observe that the BE traffic is not affected by the hop constraint.

38



In Figure 2.29, we show the performance of the network under heavy load conditions.
In this case we observe that all of the BE traffic is not allocated bandwidth. This is
because of the heavy load conditions. When the hop bound is less, the percentage of
carried traffic for Class A and Class B is less. But, as the hop bound increases, the network
can accommodate more of class A and class B traffic and BE traffic is dropped due to the
heavy load.
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Figure 2.14: Effect of es,σt for Network 1: One Stage Routing
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Figure 2.15: Effect of es,σt for Network 1: One Stage Routing
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Figure 2.16: Effect of es,σt for Network 2: One Stage Routing
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Figure 2.17: Effect of es,σt for Network 2: One Stage Routing
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Figure 2.18: Effect of es,σt for Network 3: One Stage Routing
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Figure 2.19: Effect of es,σt for Network 3: One Stage Routing
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Figure 2.20: Effect of es,σt for Network 3: One Stage Routing
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Figure 2.21: Effect of es,σt for Network 1: Two Stage Routing

46



1 2 3 4 5
0

20

40

60

80

100

120

% of Demand

%
 o

f c
ar

rie
d 

tr
af

fic

Carried traffic for VPN 1

CLASS A
CLASS B
BE     

1 2 3 4 5
0

20

40

60

80

100

120

% of Demand

%
 o

f c
ar

rie
d 

tr
af

fic

Carried traffic for VPN 2

CLASS A
CLASS B
BE     

1 2 3 4 5
0

20

40

60

80

100

120

% of Demand

%
 o

f c
ar

rie
d 

tr
af

fic

Carried traffic for VPN 3

CLASS A
CLASS B
BE     

Figure 2.22: Effect of es,σt for Network 1: Two Stage Routing
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Figure 2.23: Effect of es,σt for Network 2: Two Stage Routing
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Figure 2.24: Effect of es,σt for Network 2: Two Stage Routing
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Figure 2.25: Effect of es,σt for Network 3: Two Stage Routing
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Figure 2.26: Effect of es,σt for Network 3: Two Stage Routing
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Figure 2.27: Effect of es,σt for Network 3: Two Stage Routing
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Figure 2.28: Effect of hop constraint under light load
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Figure 2.29: Effect of hop constraint under heavy load
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Chapter 3

Path Protection

3.1 Introduction

In this chapter we introduce the path protection algorithms for MPLS Virtual Private
Networks.In section (3.2) we review the path protection techniques proposed in [4]. Our
approach to path protection in MPLS Virtual Private Networks is introduced in section
(3.3). The experimental results for our approach is explained in section (3.4).

3.2 Previous Work

In [4], the authors proposed both 1 + 1 and 1 : 1 link and node disjoint path protection
schemes for an MPLS network.In section 3.2 we explain the method of establishing the
backup paths as in [4] and provide the constraints for link disjoint and node disjoint backup.
The length of the backup path is important for effective traffic engineering and this is
explained in section 3.2.

Path Protection schemes

Path protection in the network is provided only for the QoS class of traffic. The estab-
lishment of the backup path is very similar to that of a primary path. Backup paths are
established based on MCF problem P7 for different classes of QoS traffic and OD pairs
depending on the kind of service requested. Path protection can be link-disjoint where ,
none of the links l ∈ L in the network are shared by the primary and backup paths for a
given OD pair and a given class s. This is to ensure that failure of a certain link on the
primary path will not affect the backup path. In node-disjoint path protection the primary
and backup paths for a given OD pair and a given class s do not share a common node.
This ensures that failure of a node in the primary path will not affect the traffic flow in the
backup path. The 1+1 path protection requires two link-disjoint or two node-disjoint label
switched paths for a single OD pair. In this scheme all classes of traffic is routed in a single
stage. The 1:1 path protection scheme requires that the resources of the backup path are
available to preemptible low priority traffic. In this mechanism the traffic is routed in two
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different stages. In the first stage the high priority QoS traffic is routed and in the second
stage the low priority Best Effort traffic is routed which uses the residual capacities.

The backup path can be easily created as a new OD pair.Thus there is an additional
OD pair from the same source node to the same destination node. Let σp be the OD pair
for QoS traffic on the primary or the working path and σb be the OD pair for the backup
path. Since the OD pairs for both the primary and backup paths are the same, they will
have the same demand i.e Dσp =Dσb

. We let Fσp =Fσb
so the bandwidth allocated on the

primary and the backup paths are the same. As a result, the traffic on both the paths will
be accepted or rejected simultaneously.

The backup path can be link disjoint or node disjoint with the primary path. The
granularity g is set to 1 to prevent splitting of traffic along multiple LSP’s. Hence, there is
a single LSP established for each traffic demand. The link-disjoint constraint given in [4]
is given below:

Yσp,l + Yσb,l ≤ Dσp , ∀l. (3.1)

The constraint (3.1), ensures that the link l is utilized either by the primary path or the
backup path, and not both.

The node disjoint constraint for the primary path and backup path proposed in [4] is
as follows. ∑

l∈Li(n)

Yσp,l +
∑

l∈Li(n)

Yσb,l ≤ Dσp, ∀n /∈ T, (3.2)

or ∑
l∈Lo(n)

Yσp,l +
∑

l∈Lo(n)

Yσb,l ≤ Dσp , ∀n /∈ S. (3.3)

The constraint (3.2) ensures that either the primary path OD pair σp or the backup path
OD pair σb has the traffic entering node n. Similarly (3.3) ensures that either the OD pair
σp or the OD pair σb has the traffic leaving node n. T is the set of all source nodes in the
network and S is the set of all destination nodes in the network. The above constraints
hold good only when the problem is a non-bifurcation problem.

Length of the Backup Path

While establishing the primary and backup paths, it is possible that the backup path
established might be shorter than the primary path. This is undesirable as it prevents
efficient traffic engineering. The longer working path will use more resources and cause more
delay while there is a shorter available path. The hop constraint discussed earlier ensures
that the primary and the backup path will have a limited hop count, but a longer path
could still be chosen for the primary path. To prevent this situation, we need to distinguish
between the primary and backup paths. Since the longer path uses more network resources,
a parameter Bσ is introduced to distinguish the utilized resources between the working path
and the backup path The MCF problem with the parameter Bσ as given in [4] is as follows.

maximize
∑
σ

es,σF
s
σ − ε

∑
σ

Bσ

∑
l

Yσ,l. (3.4)
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Bσ is used to differentiate the working path and backup path. The parameter Bσ is chosen
to be larger for the primary path than the backup path. Thus, in (3.4), if a working path
utilize more resources than backup path, we will obtain less revenue. Since our objective
is to maximize the revenue, this situation will not happen, and we can obtain a shorter
working path.

3.3 Our Approach to Path Protection in MPLS VPN’s

The approach discussed in section(3.2) hold good for a single MPLS network. We have
extended this approach to accommodate MPLS Virtual Private Networks.

3.3.1 Path Protection in MPLS VPN’s

Path protection is provided depending on the service requested. The technique of establish-
ing backup paths is similar to that presented in section [3.2.1]. In the 1+1 path protection
scheme, the primary and the backup path resources are reserved for the high priority QoS
traffic. There is no sharing of the backup path resources. The backup path carries a second
copy of the traffic on the primary path. The traffic in this method is routed in a single
stage. 1 + 1 path protection can be either link disjoint or node disjoint. In 1 : 1 path pro-
tection, the traffic is routed in two separate stages. In the first stage, only the high priority
QoS traffic is routed allowing it use all available link capacities. In the second stage, the
low priority Best Effort traffic is routed which uses the residual capacities on all the links.
In this method, there is a sharing of backup path resources. 1 + 1 path protection can be
implemented as either link disjoint or node disjoint. The notations uses in our approach
are given in Table 3.1.

The link disjoint constraint for our approach is as follows:

Y l
s,σt

p
+ Y l

s,σt
b
≤ Ds,σt

p
, ∀l (3.5)

The constraint (3.5) ensures that the link l is only utilized by the primary path or the
backup path and not both.

The node disjoint constraint for our approach is as follows:

∑
l∈Li(n)

Y l
s,σt

p
+

∑
l∈Li(n)

Y l
s,σt

b
≤ Ds,σt

p
, ∀n /∈ T (3.6)

or ∑
l∈Lo(n)

Y l
s,σt

p
+

∑
l∈Lo(n)

Y l
s,σt

b
≤ Ds,σt

p
, ∀n /∈ S (3.7)

(3.6) ensures that the traffic entering node n is either on the OD pair σt
p or on the OD

pair σt
b. (3.7) ensures that the traffic leaving node n is either on the OD pair σt

p or on the
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Table 3.1: Notation of MCF problem for Path Protection of QoS traffic.

σt
p Origin Destination pair for vpn t on the primary path

σt
b Origin Destination pair for vpn t on the backup path

Cl Capacity on link l
Bσ parameter for backup path

Ds,σt
p

Bandwidth demand for class s and OD pair σ for VPN t for the primary path

Ds,σt
b

Bandwidth demand for class s and OD pair σ for for VPN t the backup path

SQoS The set of service classes for QoS traffic
WQoS network revenue for QoS traffic
Fs,σt

p
Carried bandwidth for class s,OD pair σp and VPN t on the primary path

Fs,σt
b

Carried bandwidth for class s,OD pair σp and VPN t on the backup path

Y l
s,σt

p
Carried bandwidth for class s,OD pair σp and VPN t on the primary path

Y l
s,σt

b
Carried bandwidth for class s,OD pair σp and VPN t on the backup path

OD pair σt
b. The above link and node disjoint constraints hold good only for the traffic

non-bifurcation case when granularity g is set to one.

To ensure that a shorter path is chosen for the primary path and to distinguish between
the primary and backup paths , the objective function is modified to include the backup
parameter Bσ discussed in section 3.2. The objective function in the MCF problem P10
along with the backup path parameter Bσ is as follows: MCF Problem P10:

Maximize WQoS =
∑
s

∑
t

∑
σ

es,σtFs,σt − ε
∑
s

∑
t

∑
σ

Bσ

∑
l

Y l
s,σt (3.8)

The parameter Bσ (3.8) ensures that a shorter path is chosen for the primary path than
the backup path.

3.4 Experimental Results

In this section we present the experimental results for 1 + 1 and 1 : 1 link disjoint and
node disjoint path protection mechanisms. The graphs verify the efficiency of the path
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protection scheme for different cases including the sharing of the backup resources, the
link-disjoint constraint, the node-disjoint constraint and the use of Bσ. In Section 3.4.1,
the networks used and the experimental configuration is described. In Section ??, the result
of the experiments are illustrated and discussed.

3.4.1 Simulation Configuration

The network models used are similar to that of QoS traffic in Section 2.4.1. We have two
high priority QoS classes Class A and Class B and the low priority Best Effort traffic.
Backup paths are established only for the QoS classes of traffic. The bandwidth is assigned
for the traffic demand between a OD pair only when both the primary path and backup
path can be accommodated for that OD pair.

We compare the performance of 1 + 1 and 1 : 1 path protection scheme. In 1 + 1 path
protection, the backup resources of the QoS traffic are not shared by the BE traffic, the
resources of the backup paths are fully occupied by another copy of the carried traffic. In
the 1 : 1 path protection, the resources of the backup path are available to the BE traffic.
There is a sharing of resources between the QoS and the BE traffic classes. The resource of
backup paths are considered as the residual capacities available for the BE traffic. Bσ has
to be chosen carefully to make sure it does not affect the use of ε. Bσ is intended to reduce
the importance of resources reserved for backup path comparing to the resources allocated
for the primary path. Therefore, Bσ is assigned a smaller value in the backup path than in
the primary path. In our experiments, we set Bσ = 1 for the working path and Bσ = 0.1
for the backup paths.

3.4.2 1 + 1 and 1 : 1 Path Protection

In this section, we show the experimental results and performance of each of the backup
schemes. We also show the effect of the parameter Bσ in 1 + 1 and 1 : 1 path protection
mechanism. We explain the results for the 1 + 1 path protection mechanism and 1 : 1
path protection mechanism in the sections that follow. The results for both link and node
disjoint path protection mechanisms is shown.

• 1 + 1 Link Disjoint Path Protection

In Figures 3.1 - 3.2 we show the results of 1 + 1 link-disjoint path protection scheme
with Bσ for network 1.In Figures 3.4 - 3.6 we show the results of 1 + 1 link-disjoint path
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protection scheme with Bσ for network 2. In Figures 3.8 - 3.10 we show the results of 1 +1
link-disjoint path protection scheme with Bσ for network 3.

The percentage of carried traffic, average hop number and backup average hop number
are plotted vs the percentage of demand. The percentage of carried traffic for each class
of each VPN is also shown. The results are shown both for LP and LP-to-INT. The LPI
solution shows the round off effect with the increase in demand. As the traffic demand
increases, the percentage of traffic carried drops.

The difference from the QoS traffic experiment using two stage routing is that all
classes of traffic drops early because of the demand of the backup path.The BE traffic is
dropped first due to its lower priority followed by the other QoS classes. early because of
the backup provided to class A and class B. It is seen that the average backup hop number
is larger compared the average hop number of working path. This shows that a longer path
is selected for the backup path.It is also seen that as the demand increases the average hop
number also drops. This is done to conserve resources as a longer path would utilize more
resources.

We also show the link-disjoint path protection scheme without differentiation between
the working path and backup path i.e without the parameter Bσ in 3.3, 3.7 and 3.11 for
networks 1,2 and 3. We observe from the graphs that the average backup hop number is
smaller compared to the average hop number of working path showing the effect of Bσ.

• 1 + 1 Node Disjoint Path Protection

In Figures 3.12 - 3.13 we show the results of 1 + 1 node-disjoint path protection scheme
with Bσ for network 1. In Figures 3.15 - 3.17 we show the results of 1 + 1 node-disjoint
path protection scheme with Bσ for network 2. In Figures 3.19 - 3.21 we show the results of
1+1 node-disjoint path protection scheme with Bσ for network 3.The percentage of carried
traffic, average hop number and backup average hop number are plotted vs the percentage
of demand. The results are shown both for LP and LP-to-INT. The results are similar to
link disjoint backup scheme except that the QoS traffic of each VPN is dropped earlier.
This is because it is difficult to establish a node disjoint backup path when compared to a
link disjoint backup path. We see that the average hop number also drops as the demand
increases as in the link protection scheme. The effect of the parameter Bσ is also seen.

In Figures 3.14, 3.18 and 3.22 we show the 1 +1 node-disjoint path protection scheme
without differentiation between the working path and backup path i.e without the pa-
rameter Bσ. We observe from the graphs that the average backup hop number is smaller
compared the average hop number of working path showing the effect of Bσ that a shorter
path is chosen for the backup path in the absence of Bσ. The percentage of carried traf-
fic drops as the demand increases and is faster than the drop in case of the link disjoint
backup.
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Figure 3.1: 1+1 link disjoint path protection with Bσ for Network 1
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Figure 3.2: 1+1 link disjoint path protection with Bσ for Network 1
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Figure 3.3: 1+1 link disjoint path protection without Bσ for Network 1
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Figure 3.4: 1+1 link disjoint path protection with Bσ for Network 2
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Figure 3.5: 1+1 link disjoint path protection with Bσ for Network 2
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Figure 3.6: 1+1 link disjoint path protection with Bσ for Network 2
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Figure 3.7: 1+1 link disjoint path protection without Bσ for Network 2
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Figure 3.8: 1+1 link disjoint path protection with Bσ for Network 3
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Figure 3.9: 1+1 link disjoint path protection with Bσ for Network 3
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Figure 3.10: 1+1 link disjoint path protection with Bσ for Network 3

70



1 2 3 4 5
0

1

2

3

4

% of Demand

A
ve

ra
ge

 h
op

 n
um

be
r

Average Hop

CLASS A
CLASS B
BE     

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

% of Demand

A
ve

ra
ge

 b
ac

ku
p 

ho
p

Average Backup Hop

CLASS A
CLASS B

1 2 3 4 5
0

20

40

60

80

100

% of Demand

%
 o

f c
ar

rie
d 

tr
af

fic

Comparison of LP and LPtoINT

LPtoINT
LP     

Figure 3.11: 1+1 link disjoint path protection without Bσ for Network 3
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Figure 3.12: 1+1 node disjoint path protection with Bσ for Network 1
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Figure 3.13: 1+1 node disjoint path protection with Bσ for Network 1
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Figure 3.14: 1+1 node disjoint path protection without Bσ for Network 1
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Figure 3.15: 1+1 node disjoint path protection with Bσ for Network 2
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Figure 3.16: 1+1 node disjoint path protection with Bσ for Network 2
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Figure 3.17: 1+1 node disjoint path protection with Bσ for Network 2
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Figure 3.18: 1+1 node disjoint path protection without Bσ for Network 2
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Figure 3.19: 1+1 node disjoint path protection with Bσ for Network 3
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Figure 3.20: 1+1 node disjoint path protection with Bσ for Network 3
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Figure 3.21: 1+1 node disjoint path protection with Bσ for Network 3
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Figure 3.22: 1+1 node disjoint path protection without Bσ for Network 3
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• 1 : 1 Link Disjoint Path Protection

In Figures 3.23 - 3.24 we show the results of 1 : 1 link-disjoint path protection scheme with
Bσ for network 1. In Figures 3.26 - 3.28 we show the results of 1 : 1 link-disjoint path
protection scheme with Bσ for network 2. In Figures 3.30 - 3.32 we show the results of 1 : 1
link-disjoint path protection scheme with Bσ for network 3.

The percentage of carried traffic, average hop number and backup average hop number
are plotted vs the percentage of demand.The results are shown both for LP and LP-to-INT.
T As the traffic demand increases, the percentage of traffic carried drops. The percentage
of traffic carried for the QoS classes of traffic is the same as in the 1 + 1 path protection
scheme. But, the BE traffic has a higher percentage of carried traffic. This is because the
resources of the backup path are available to the BE traffic. It is seen that the average
backup hop number is larger compared to the average hop number of working path. This
shows that a longer path is selected for the backup path.It is also seen that as the demand
increases the average hop number also drops. This is done to conserve resources as a longer
path would utilize more resources.

In Figures 3.25, 3.29 and 3.33 we show the 1 : 1 link-disjoint path protection scheme
without differentiation between the working path and backup path i.e without the param-
eter Bσ . We observe from the graphs that the average backup hop number is smaller
compared the average hop number of working path showing the effect of Bσ.

• 1 : 1 Node Disjoint Path Protection

In Figures 3.34 - 3.35 we show the results of 1 : 1 node-disjoint path protection scheme
with Bσ for network 1. In Figures 3.37 - 3.39 we show the results of 1 : 1 node-disjoint
path protection scheme with Bσ for network 2. In Figures 3.41 - 3.43 we show the results
of 1 : 1 node-disjoint path protection scheme with Bσ for network 3.

The percentage of carried traffic, average hop number and backup average hop number
vs the percentage of the demand is plotted. The results are shown both for LP and LP-
to-INT. The results are similar to link disjoint backup scheme except that the QoS traffic
of each VPN is dropped earlier. This is because it is difficult to establish a node disjoint
backup path. We see that the average hop number also drops as the demand increases as
in the link protection scheme. The effect of the parameter Bσ is also seen.

In Figures 3.36, 3.40 and 3.44 we show the 1 : 1 node-disjoint path protection scheme
without differentiation between the working path and backup path i.e without the param-
eter Bσ . We observe from the graphs that the average backup hop number is smaller
compared the average hop number of working path showing the effect of Bσ.
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Figure 3.23: 1:1 link disjoint path protection with Bσ for Network 1
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Figure 3.24: 1:1 link disjoint path protection with Bσ for Network 1
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Figure 3.25: 1:1 link disjoint path protection without Bσ for Network 1
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Figure 3.26: 1:1 link disjoint path protection with Bσ for Network 2
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Figure 3.27: 1:1 link disjoint path protection with Bσ for Network 2
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Figure 3.28: 1:1 link disjoint path protection with Bσ for Network 2
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Figure 3.29: 1:1 link disjoint path protection without Bσ for Network 2
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Figure 3.30: 1:1 link disjoint path protection with Bσ for Network 3
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Figure 3.31: 1:1 link disjoint path protection with Bσ for Network 3
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Figure 3.32: 1:1 link disjoint path protection with Bσ for Network 3
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Figure 3.33: 1:1 link disjoint path protection without Bσ for Network 3
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Figure 3.34: 1:1 node disjoint path protection with Bσ for Network 1
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Figure 3.35: 1:1 node disjoint path protection with Bσ for Network 1
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Figure 3.36: 1:1 node disjoint path protection without Bσ for Network 1
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Figure 3.37: 1:1 node disjoint path protection with Bσ for Network 2
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Figure 3.38: 1:1 node disjoint path protection with Bσ for Network 2
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Figure 3.39: 1:1 node disjoint path protection with Bσ for Network 2
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Figure 3.40: 1:1 node disjoint path protection without Bσ for Network 2
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Figure 3.41: 1:1 node disjoint path protection with Bσ for Network 3

102



1 2 3 4 5
0

20

40

60

80

100

120

% of Demand

%
 o

f c
ar

rie
d 

tr
af

fic

Carried traffic for VPN 2

CLASS A
CLASS B
BE     

1 2 3 4 5
0

20

40

60

80

% of Demand

%
 o

f c
ar

rie
d 

tr
af

fic

Carried traffic for VPN 3

CLASS A
CLASS B
BE     

1 2 3 4 5
0

20

40

60

80

100

% of Demand

%
 o

f c
ar

rie
d 

tr
af

fic

Carried traffic for VPN 4

CLASS A
CLASS B
BE     

1 2 3 4 5
0

20

40

60

80

100

% of Demand

%
 o

f c
ar

rie
d 

tr
af

fic

Carried traffic for VPN 5

CLASS A
CLASS B
BE     

Figure 3.42: 1:1 node disjoint path protection with Bσ for Network 3
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Figure 3.43: 1:1 node disjoint path protection with Bσ for Network 3
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Figure 3.44: 1:1 node disjoint path protection without Bσ for Network 3
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Chapter 4

Conclusion
In this thesis, we proposed several approaches to offline constraint-based routing algorithms
for MPLS VPNs. We reviewed several algorithms from literature on MPLS network to
extend the approach to VPNs. We implemented the route based and link based routing
techniques for QoS and BE traffic. We modified the route based routing technique to
accommodate MPLS VPN’s. Thus, it is possible to specify certain admissible route sets
for each OD pair and each class of traffic for each of the VPN’s in the MPLS network.
We modified the objective function to accommodate MPLS VPN’s and also to account
for utilization of network resources. We also modified the link based routing algorithm
discussed in the literature to accommodate routing of QoS and BE traffic in MPLS VPN’s.
We also studied the effect of parameters such as epsilon, granularity and earning rate on
traffic routed in the network. We implemented onestage and twostage routing of QoS and
BE traffic to show the effect of different earning rates and priorities in the network. We
also studied the effect of hop count on routing under light and heavy load conditions.
Our algorithms also supported various path protection schemes such as 1 +1 and 1 : 1 link
disjoint and node disjoint for link based routing of QoS traffic. Our approach is scalable and
can be employed to large number of VPNs as inferred from the results. The algorithms
were simulated on three networks (US abstract network and two hierarchical synthetic
networks). In order to overcome the computational complexity of solving MIP problems,
we used the LP -to-Integer approach discussed in [4]. We also studied the comparison of
the results obtained from the LP and LP-to-Integer approach.The approximation provides
an optimal result as seen from the graphs.
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