
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

Faculty Publications Department of Physics & Astronomy 

4-20-2020 

A joint fermi-gbm and ligo/virgo analysis of compact binary A joint fermi-gbm and ligo/virgo analysis of compact binary 

mergers from the first and second gravitational-wave observing mergers from the first and second gravitational-wave observing 

runs runs 

R. Hamburg 
The University of Alabama in Huntsville 

C. Fletcher 
Huntsville Program Office 

E. Burns 
NASA Goddard Space Flight Center 

A. Goldstein 
Huntsville Program Office 

E. Bissaldi 
Politecnico di Bari 

See next page for additional authors 
Follow this and additional works at: https://repository.lsu.edu/physics_astronomy_pubs 

Recommended Citation Recommended Citation 
Hamburg, R., Fletcher, C., Burns, E., Goldstein, A., Bissaldi, E., Briggs, M., Cleveland, W., Giles, M., Hui, C., 
Kocevski, D., Lesage, S., Mailyan, B., Malacaria, C., Poolakkil, S., Preece, R., Roberts, O., Veres, P., Von 
Kienlin, A., Wilson-Hodge, C., Wood, J., Abbott, R., Abbott, T., Abraham, S., Acernese, F., Ackley, K., Adams, 
C., Adhikari, R., Adya, V., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., & Aguiar, O. (2020). A joint 
fermi-gbm and ligo/virgo analysis of compact binary mergers from the first and second gravitational-
wave observing runs. Astrophysical Journal, 893 (2) https://doi.org/10.3847/1538-4357/ab7d3e 

This Article is brought to you for free and open access by the Department of Physics & Astronomy at LSU Scholarly 
Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU 
Scholarly Repository. For more information, please contact ir@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/physics_astronomy_pubs
https://repository.lsu.edu/physics_astronomy
https://repository.lsu.edu/physics_astronomy_pubs?utm_source=repository.lsu.edu%2Fphysics_astronomy_pubs%2F562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3847/1538-4357/ab7d3e
mailto:ir@lsu.edu


Authors Authors 
R. Hamburg, C. Fletcher, E. Burns, A. Goldstein, E. Bissaldi, M. S. Briggs, W. H. Cleveland, M. M. Giles, C. M. 
Hui, D. Kocevski, S. Lesage, B. Mailyan, C. Malacaria, S. Poolakkil, R. Preece, O. J. Roberts, P. Veres, A. Von 
Kienlin, C. A. Wilson-Hodge, J. Wood, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, 
R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, and O. D. Aguiar 

This article is available at LSU Scholarly Repository: https://repository.lsu.edu/physics_astronomy_pubs/562 

https://repository.lsu.edu/physics_astronomy_pubs/562


A Joint Fermi-GBM and LIGO/Virgo Analysis
of Compact Binary Mergers from the First and

Second Gravitational-wave Observing Runs

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

As Published 10.3847/1538-4357/AB7D3E

Publisher American Astronomical Society

Version Final published version

Citable link https://hdl.handle.net/1721.1/132422

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/132422


A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the
First and Second Gravitational-wave Observing Runs

R. Hamburg1,2, C. Fletcher3, E. Burns4,212, A. Goldstein3 , E. Bissaldi5,6 , M. S. Briggs1,2, W. H. Cleveland3, M. M. Giles7,
C. M. Hui8, D. Kocevski8, S. Lesage1,2, B. Mailyan2, C. Malacaria3,8,212 , S. Poolakkil1,2 , R. Preece1, O. J. Roberts3,

P. Veres2 , A. von Kienlin9 , C. A. Wilson-Hodge8 , J. Wood10,212

Fermi Gamma-Ray Burst Monitor,
and

R. Abbott11, T. D. Abbott12, S. Abraham13, F. Acernese14,15, K. Ackley16, C. Adams17, R. X. Adhikari11, V. B. Adya18,
C. Affeldt19,20, M. Agathos21,22, K. Agatsuma23 , N. Aggarwal24, O. D. Aguiar25, A. Aich26, L. Aiello27,28, A. Ain13, P. Ajith29,

G. Allen30, A. Allocca31, P. A. Altin18, A. Amato32, S. Anand11, A. Ananyeva11, S. B. Anderson11, W. G. Anderson33,
S. V. Angelova34, S. Ansoldi35,36, S. Antier37, S. Appert11, K. Arai11, M. C. Araya11, J. S. Areeda38, M. Arène37, N. Arnaud39,40,
S. M. Aronson41, S. Ascenzi27,42, G. Ashton16, S. M. Aston17, P. Astone43, F. Aubin44, P. Aufmuth20, K. AultONeal45, C. Austin12,
V. Avendano46, S. Babak37, P. Bacon37, F. Badaracco27,28, M. K. M. Bader47, S. Bae48, A. M. Baer49, J. Baird37, F. Baldaccini50,51,

G. Ballardin40, S. W. Ballmer52, A. Bals45, A. Balsamo49, G. Baltus53, S. Banagiri54 , D. Bankar13, R. S. Bankar13,
J. C. Barayoga11, C. Barbieri55,56, B. C. Barish11, D. Barker57, K. Barkett58, P. Barneo59, F. Barone15,60, B. Barr61, L. Barsotti62,
M. Barsuglia37, D. Barta63, J. Bartlett57, I. Bartos41 , R. Bassiri64, A. Basti31,65, M. Bawaj51,66, J. C. Bayley61, M. Bazzan67,68,

B. Bécsy69, M. Bejger70, I. Belahcene39, A. S. Bell61, D. Beniwal71, M. G. Benjamin45, J. D. Bentley23, F. Bergamin19,
B. K. Berger64, G. Bergmann19,20, S. Bernuzzi21, C. P. L. Berry24, D. Bersanetti72, A. Bertolini47, J. Betzwieser17, R. Bhandare73,

A. V. Bhandari13, J. Bidler38, E. Biggs33, I. A. Bilenko74, G. Billingsley11, R. Birney75, O. Birnholtz76,77, S. Biscans11,62,
M. Bischi78,79, S. Biscoveanu62, A. Bisht20, G. Bissenbayeva26, M. Bitossi31,40, M. A. Bizouard80, J. K. Blackburn11,

J. Blackman58, C. D. Blair17, D. G. Blair81, R. M. Blair57, F. Bobba82,83, N. Bode19,20, M. Boer80, Y. Boetzel84, G. Bogaert80,
F. Bondu85, E. Bonilla64, R. Bonnand44, P. Booker19,20, B. A. Boom47, R. Bork11, V. Boschi31, S. Bose13, V. Bossilkov81,
J. Bosveld81, Y. Bouffanais67,68, A. Bozzi40, C. Bradaschia31, P. R. Brady33, A. Bramley17, M. Branchesi27,28, J. E. Brau86,
M. Breschi21, T. Briant87, J. H. Briggs61, F. Brighenti78,79, A. Brillet80, M. Brinkmann19,20, P. Brockill33, A. F. Brooks11,

J. Brooks40, D. D. Brown71, S. Brunett11, G. Bruno88, R. Bruntz49, A. Buikema62, T. Bulik89, H. J. Bulten47,90, A. Buonanno91,92,
D. Buskulic44, R. L. Byer64, M. Cabero19,20, L. Cadonati93, G. Cagnoli94, C. Cahillane11, J. Calderón Bustillo16, J. D. Callaghan61,

T. A. Callister11, E. Calloni15,95, J. B. Camp4, M. Canepa72,96, K. C. Cannon97, H. Cao71, J. Cao98, G. Carapella82,83,
F. Carbognani40, S. Caride99, M. F. Carney24, G. Carullo31,65, J. Casanueva Diaz31, C. Casentini42,100 , J. Castañeda59,
S. Caudill47, M. Cavaglià101, F. Cavalier39, R. Cavalieri40, G. Cella31, P. Cerdá-Durán102, E. Cesarini42,103, O. Chaibi80,

K. Chakravarti13, C. Chan97, M. Chan61, S. Chao104, P. Charlton105, E. A. Chase24, E. Chassande-Mottin37, D. Chatterjee33,
M. Chaturvedi73, H. Y. Chen106, X. Chen81, Y. Chen58, H.-P. Cheng41, C. K. Cheong107, H. Y. Chia41, F. Chiadini83,108,
R. Chierici109, A. Chincarini72, A. Chiummo40, G. Cho110, H. S. Cho111, M. Cho92, N. Christensen80, Q. Chu81, S. Chua87,
K. W. Chung107, S. Chung81, G. Ciani67,68, P. Ciecielag70, M. Cieślar70, A. A. Ciobanu71, R. Ciolfi68,112, F. Cipriano80,

A. Cirone72,96, F. Clara57, J. A. Clark93, P. Clearwater113, S. Clesse88, F. Cleva80, E. Coccia27,28, P.-F. Cohadon87, D. Cohen39,
M. Colleoni114, C. G. Collette115, C. Collins23, M. Colpi55,56, M. Constancio, Jr.25, L. Conti68, S. J. Cooper23, P. Corban17,

T. R. Corbitt12, I. Cordero-Carrión116, S. Corezzi50,51, K. R. Corley117, N. Cornish69 , D. Corre39, A. Corsi99 , S. Cortese40,
C. A. Costa25, R. Cotesta91, M. W. Coughlin11 , S. B. Coughlin24,118, J.-P. Coulon80, S. T. Countryman117, P. Couvares11,

P. B. Covas114, D. M. Coward81, M. J. Cowart17, D. C. Coyne11, R. Coyne119, J. D. E. Creighton33, T. D. Creighton26, J. Cripe12,
M. Croquette87, S. G. Crowder120, J.-R. Cudell53, T. J. Cullen12, A. Cumming61, R. Cummings61, L. Cunningham61, E. Cuoco40,
M. Curylo89, T. Dal Canton91, G. Dálya121, A. Dana64, L. M. Daneshgaran-Bajastani122, B. D’Angelo72,96, S. L. Danilishin19,20,
S. D’Antonio42, K. Danzmann19,20, C. Darsow-Fromm123, A. Dasgupta124, L. E. H. Datrier61, V. Dattilo40, I. Dave73, M. Davier39,
G. S. Davies125, D. Davis52, E. J. Daw126, D. DeBra64, M. Deenadayalan13, J. Degallaix32, M. De Laurentis15,95, S. Deléglise87,

M. Delfavero76, N. De Lillo61, W. Del Pozzo31,65, L. M. DeMarchi24, V. D’Emilio118, N. Demos62, T. Dent125 ,
R. De Pietri127,128, R. De Rosa15,95, C. De Rossi40, R. DeSalvo129, O. de Varona19,20, S. Dhurandhar13, M. C. Díaz26,

M. Diaz-Ortiz, Jr.41, T. Dietrich47, L. Di Fiore15, C. Di Fronzo23, C. Di Giorgio82,83, F. Di Giovanni102, M. Di Giovanni130,131,
T. Di Girolamo15,95, A. Di Lieto31,65, B. Ding115, S. Di Pace43,132, I. Di Palma43,132, F. Di Renzo31,65, A. K. Divakarla41,

A. Dmitriev23, Z. Doctor106 , F. Donovan62, K. L. Dooley118, S. Doravari13, I. Dorrington118, T. P. Downes33, M. Drago27,28,
J. C. Driggers57, Z. Du98, J.-G. Ducoin39, P. Dupej61, O. Durante82,83, D. D’Urso133,134, S. E. Dwyer57, P. J. Easter16, G. Eddolls61,

B. Edelman86, T. B. Edo126, O. Edy135, A. Effler17, P. Ehrens11, J. Eichholz18, S. S. Eikenberry41, M. Eisenmann44,
R. A. Eisenstein62, A. Ejlli118, L. Errico15,95, R. C. Essick106, H. Estelles114, D. Estevez44, Z. B. Etienne136, T. Etzel11, M. Evans62,
T. M. Evans17, B. E. Ewing137, V. Fafone27,42,100, S. Fairhurst118 , X. Fan98, S. Farinon72, B. Farr86, W. M. Farr138,139 ,

E. J. Fauchon-Jones118, M. Favata46, M. Fays126, M. Fazio140, J. Feicht11, M. M. Fejer64, F. Feng37, E. Fenyvesi63,141,
D. L. Ferguson93, A. Fernandez-Galiana62, I. Ferrante31,65, E. C. Ferreira25, T. A. Ferreira25, F. Fidecaro31,65, I. Fiori40,

D. Fiorucci27,28, M. Fishbach106 , R. P. Fisher49, R. Fittipaldi83,142, M. Fitz-Axen54, V. Fiumara83,143, R. Flaminio44,144,

The Astrophysical Journal, 893:100 (14pp), 2020 April 20 https://doi.org/10.3847/1538-4357/ab7d3e
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-0587-7042
https://orcid.org/0000-0002-0587-7042
https://orcid.org/0000-0002-0587-7042
https://orcid.org/0000-0001-9935-8106
https://orcid.org/0000-0001-9935-8106
https://orcid.org/0000-0001-9935-8106
https://orcid.org/0000-0002-0380-0041
https://orcid.org/0000-0002-0380-0041
https://orcid.org/0000-0002-0380-0041
https://orcid.org/0000-0002-6269-0452
https://orcid.org/0000-0002-6269-0452
https://orcid.org/0000-0002-6269-0452
https://orcid.org/0000-0002-2149-9846
https://orcid.org/0000-0002-2149-9846
https://orcid.org/0000-0002-2149-9846
https://orcid.org/0000-0002-0221-5916
https://orcid.org/0000-0002-0221-5916
https://orcid.org/0000-0002-0221-5916
https://orcid.org/0000-0002-8585-0084
https://orcid.org/0000-0002-8585-0084
https://orcid.org/0000-0002-8585-0084
https://orcid.org/0000-0002-3952-5985
https://orcid.org/0000-0002-3952-5985
https://orcid.org/0000-0002-3952-5985
https://orcid.org/0000-0001-7852-7484
https://orcid.org/0000-0001-7852-7484
https://orcid.org/0000-0001-7852-7484
https://orcid.org/0000-0001-5607-3637
https://orcid.org/0000-0001-5607-3637
https://orcid.org/0000-0001-5607-3637
https://orcid.org/0000-0001-8100-0579
https://orcid.org/0000-0001-8100-0579
https://orcid.org/0000-0001-8100-0579
https://orcid.org/0000-0002-7435-0869
https://orcid.org/0000-0002-7435-0869
https://orcid.org/0000-0002-7435-0869
https://orcid.org/0000-0001-8104-3536
https://orcid.org/0000-0001-8104-3536
https://orcid.org/0000-0001-8104-3536
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0002-8262-2924
https://orcid.org/0000-0003-1354-7809
https://orcid.org/0000-0003-1354-7809
https://orcid.org/0000-0003-1354-7809
https://orcid.org/0000-0002-2077-4914
https://orcid.org/0000-0002-2077-4914
https://orcid.org/0000-0002-2077-4914
https://orcid.org/0000-0001-8480-1961
https://orcid.org/0000-0001-8480-1961
https://orcid.org/0000-0001-8480-1961
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://orcid.org/0000-0002-1980-5293
https://doi.org/10.3847/1538-4357/ab7d3e
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab7d3e&domain=pdf&date_stamp=2020-04-20
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab7d3e&domain=pdf&date_stamp=2020-04-20


E. Floden54, E. Flynn38, H. Fong97, J. A. Font102,145, P. W. F. Forsyth18, J.-D. Fournier80, S. Frasca43,132, F. Frasconi31, Z. Frei121,
A. Freise23, R. Frey86, V. Frey39, P. Fritschel62, V. V. Frolov17, G. Fronzè146, P. Fulda41, M. Fyffe17, H. A. Gabbard61,

B. U. Gadre91, S. M. Gaebel23, J. R. Gair91, S. Galaudage16, D. Ganapathy62, S. G. Gaonkar13, C. García-Quirós114, F. Garufi15,95,
B. Gateley57, S. Gaudio45, V. Gayathri147, G. Gemme72, E. Genin40, A. Gennai31, D. George30, J. George73, L. Gergely148,

S. Ghonge93, Abhirup Ghosh91, Archisman Ghosh47,149,150,151, S. Ghosh33, B. Giacomazzo130,131, J. A. Giaime12,17,
K. D. Giardina17, D. R. Gibson75, C. Gier34, K. Gill117, J. Glanzer12, J. Gniesmer123, P. Godwin137, E. Goetz12,101, R. Goetz41,
N. Gohlke19,20, B. Goncharov16, G. González12, A. Gopakumar152, S. E. Gossan11, M. Gosselin31,40,65, R. Gouaty44, B. Grace18,
A. Grado15,153, M. Granata32, A. Grant61, S. Gras62, P. Grassia11, C. Gray57, R. Gray61, G. Greco78,79, A. C. Green41, R. Green118,

E. M. Gretarsson45, H. L. Griggs93, G. Grignani50,51, A. Grimaldi130,131, S. J. Grimm27,28, H. Grote118, S. Grunewald91,
P. Gruning39, G. M. Guidi78,79, A. R. Guimaraes12, G. Guixé59, H. K. Gulati124, Y. Guo47, A. Gupta137, Anchal Gupta11,

P. Gupta47, E. K. Gustafson11, R. Gustafson154, L. Haegel114, O. Halim27,28, E. D. Hall62, E. Z. Hamilton118, G. Hammond61,
M. Haney84, M. M. Hanke19,20, J. Hanks57, C. Hanna137, M. D. Hannam118, O. A. Hannuksela107, T. J. Hansen45 , J. Hanson17,

T. Harder80, T. Hardwick12, K. Haris29, J. Harms27,28, G. M. Harry155, I. W. Harry135, R. K. Hasskew17, C.-J. Haster62,
K. Haughian61, F. J. Hayes61, J. Healy76, A. Heidmann87, M. C. Heintze17, J. Heinze19,20 , H. Heitmann80, F. Hellman156,

P. Hello39, G. Hemming40, M. Hendry61, I. S. Heng61, E. Hennes47, J. Hennig19,20, M. Heurs19,20, S. Hild61,157,
T. Hinderer47,149,151, S. Y. Hoback38,155, S. Hochheim19,20, E. Hofgard64, D. Hofman32, A. M. Holgado30 , N. A. Holland18,
K. Holt17, D. E. Holz106 , P. Hopkins118, C. Horst33, J. Hough61, E. J. Howell81, C. G. Hoy118, Y. Huang62, M. T. Hübner16,
E. A. Huerta30, D. Huet39, B. Hughey45, V. Hui44, S. Husa114, S. H. Huttner61, R. Huxford137, T. Huynh-Dinh17, B. Idzkowski89,

A. Iess42,100, H. Inchauspe41, C. Ingram71, G. Intini43,132, J.-M. Isac87, M. Isi62, B. R. Iyer29, T. Jacqmin87, S. J. Jadhav158,
S. P. Jadhav13, A. L. James118, K. Jani93, N. N. Janthalur158, P. Jaranowski159, D. Jariwala41, R. Jaume114, A. C. Jenkins160,

J. Jiang41, G. R. Johns49, A. W. Jones23, D. I. Jones161, J. D. Jones57, P. Jones23, R. Jones61, R. J. G. Jonker47, L. Ju81, J. Junker19,20,
C. V. Kalaghatgi118, V. Kalogera24, B. Kamai11, S. Kandhasamy13, G. Kang48, J. B. Kanner11, S. J. Kapadia29, S. Karki86,

R. Kashyap29, M. Kasprzack11, W. Kastaun19,20, S. Katsanevas40, E. Katsavounidis62, W. Katzman17, S. Kaufer20, K. Kawabe57,
F. Kéfélian80, D. Keitel135, A. Keivani117, R. Kennedy126, J. S. Key162 , S. Khadka64, F. Y. Khalili74, I. Khan27,42, S. Khan19,20,
Z. A. Khan98, E. A. Khazanov163, N. Khetan27,28, M. Khursheed73, N. Kijbunchoo18, Chunglee Kim164, G. J. Kim93, J. C. Kim165,

K. Kim107, W. Kim71, W. S. Kim166, Y.-M. Kim167, C. Kimball24, P. J. King57, M. Kinley-Hanlon61, R. Kirchhoff19,20,
J. S. Kissel57, L. Kleybolte123, S. Klimenko41, T. D. Knowles136, P. Koch19,20 , S. M. Koehlenbeck19,20, G. Koekoek47,157,
S. Koley47, V. Kondrashov11, A. Kontos168, N. Koper19,20, M. Korobko123, W. Z. Korth11, M. Kovalam81, D. B. Kozak11,

V. Kringel19,20, N. V. Krishnendu169, A. Królak170,171, N. Krupinski33, G. Kuehn19,20, A. Kumar158, P. Kumar172, Rahul Kumar57,
Rakesh Kumar124, S. Kumar29, L. Kuo104, A. Kutynia170, B. D. Lackey91, D. Laghi31,65, E. Lalande173, T. L. Lam107,
A. Lamberts80,174, M. Landry57, B. B. Lane62, R. N. Lang175, J. Lange76, B. Lantz64, R. K. Lanza62, I. La Rosa44,

A. Lartaux-Vollard39, P. D. Lasky16, M. Laxen17, A. Lazzarini11, C. Lazzaro68, P. Leaci43,132, S. Leavey19,20, Y. K. Lecoeuche57,
C. H. Lee111, H. M. Lee176, H. W. Lee165, J. Lee110, K. Lee64, J. Lehmann19,20, N. Leroy39, N. Letendre44, Y. Levin16,

A. K. Y. Li107, J. Li98, K. li107, T. G. F. Li107, X. Li58, F. Linde47,177, S. D. Linker122, J. N. Linley61, T. B. Littenberg178, J. Liu19,20,
X. Liu33, M. Llorens-Monteagudo102, R. K. L. Lo11, A. Lockwood179, L. T. London62, A. Longo180,181, M. Lorenzini27,28,

V. Loriette182, M. Lormand17, G. Losurdo31, J. D. Lough19,20, C. O. Lousto76, G. Lovelace38, H. Lück19,20, D. Lumaca42,100,
A. P. Lundgren135, Y. Ma58, R. Macas118, S. Macfoy34, M. MacInnis62, D. M. Macleod118, I. A. O. MacMillan155, A. Macquet80,

I. Magaña Hernandez33, F. Magaña-Sandoval41, R. M. Magee137, E. Majorana43, I. Maksimovic182, A. Malik73, N. Man80,
V. Mandic54, V. Mangano43,61,132, G. L. Mansell57,62, M. Manske33, M. Mantovani40, M. Mapelli67,68 , F. Marchesoni51,66,183,

F. Marion44, S. Márka117, Z. Márka117, C. Markakis22, A. S. Markosyan64, A. Markowitz11, E. Maros11, A. Marquina116,
S. Marsat37, F. Martelli78,79, I. W. Martin61, R. M. Martin46, V. Martinez94, D. V. Martynov23, H. Masalehdan123, K. Mason62,

E. Massera126, A. Masserot44, T. J. Massinger62, M. Masso-Reid61, S. Mastrogiovanni37, A. Matas91, F. Matichard11,62,
N. Mavalvala62, E. Maynard12, J. J. McCann81, R. McCarthy57, D. E. McClelland18, S. McCormick17, L. McCuller62,

S. C. McGuire184, C. McIsaac135, J. McIver11, D. J. McManus18, T. McRae18, S. T. McWilliams136, D. Meacher33, G. D. Meadors16,
M. Mehmet19,20, A. K. Mehta29, E. Mejuto Villa83,129, A. Melatos113, G. Mendell57, R. A. Mercer33, L. Mereni32, K. Merfeld86,
E. L. Merilh57, J. D. Merritt86, M. Merzougui80, S. Meshkov11, C. Messenger61, C. Messick185, R. Metzdorff87, P. M. Meyers113,
F. Meylahn19,20, A. Mhaske13, A. Miani130,131, H. Miao23, I. Michaloliakos41, C. Michel32, H. Middleton113, L. Milano15,95,

A. L. Miller41,43,132, M. Millhouse113, J. C. Mills118, E. Milotti36,186, M. C. Milovich-Goff122, O. Minazzoli80,187, Y. Minenkov42,
A. Mishkin41, C. Mishra188, T. Mistry126, S. Mitra13, V. P. Mitrofanov74, G. Mitselmakher41, R. Mittleman62, G. Mo62,

K. Mogushi101, S. R. P. Mohapatra62, S. R. Mohite33, M. Molina-Ruiz156, M. Mondin122, M. Montani78,79, C. J. Moore23,
D. Moraru57, F. Morawski70, G. Moreno57, S. Morisaki97, B. Mours189, C. M. Mow-Lowry23, S. Mozzon135, F. Muciaccia43,132,
Arunava Mukherjee61, D. Mukherjee137, S. Mukherjee26, Subroto Mukherjee124, N. Mukund19,20, A. Mullavey17, J. Munch71,
E. A. Muñiz52, P. G. Murray61, A. Nagar103,146,190, I. Nardecchia42,100, L. Naticchioni43,132, R. K. Nayak191, B. F. Neil81,
J. Neilson83,129, G. Nelemans47,192, T. J. N. Nelson17, M. Nery19,20, A. Neunzert154, K. Y. Ng62, S. Ng71, C. Nguyen37,
P. Nguyen86, D. Nichols47,151, S. A. Nichols12, S. Nissanke47,151, F. Nocera40, M. Noh62, C. North118, D. Nothard193,

L. K. Nuttall135, J. Oberling57, B. D. O’Brien41, G. Oganesyan27,28, G. H. Ogin194, J. J. Oh166, S. H. Oh166, F. Ohme19,20, H. Ohta97,
M. A. Okada25, M. Oliver114, C. Olivetto40, P. Oppermann19,20, Richard J. Oram17, B. O’Reilly17, R. G. Ormiston54, L. F. Ortega41,

2

The Astrophysical Journal, 893:100 (14pp), 2020 April 20 Hamburg et al.

https://orcid.org/0000-0001-6154-8983
https://orcid.org/0000-0001-6154-8983
https://orcid.org/0000-0001-6154-8983
https://orcid.org/0000-0003-4983-7672
https://orcid.org/0000-0003-4983-7672
https://orcid.org/0000-0003-4983-7672
https://orcid.org/0000-0003-4143-8132
https://orcid.org/0000-0003-4143-8132
https://orcid.org/0000-0003-4143-8132
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0003-0123-7600
https://orcid.org/0000-0003-0123-7600
https://orcid.org/0000-0003-0123-7600
https://orcid.org/0000-0003-2777-5861
https://orcid.org/0000-0003-2777-5861
https://orcid.org/0000-0003-2777-5861
https://orcid.org/0000-0001-8799-2548
https://orcid.org/0000-0001-8799-2548
https://orcid.org/0000-0001-8799-2548


R. O’Shaughnessy76, S. Ossokine91, C. Osthelder11, D. J. Ottaway71, H. Overmier17, B. J. Owen99 , A. E. Pace137, G. Pagano31,65,
M. A. Page81, G. Pagliaroli27,28, A. Pai147, S. A. Pai73, J. R. Palamos86, O. Palashov163, C. Palomba43, H. Pan104, P. K. Panda158,

P. T. H. Pang47, C. Pankow24 , F. Pannarale43,132, B. C. Pant73, F. Paoletti31, A. Paoli40, A. Parida13, W. Parker17,184,
D. Pascucci47,61, A. Pasqualetti40, R. Passaquieti31,65, D. Passuello31, B. Patricelli31,65, E. Payne16, B. L. Pearlstone61,
T. C. Pechsiri41, A. J. Pedersen52, M. Pedraza11, A. Pele17, S. Penn195, A. Perego130,131, C. J. Perez57, C. Périgois44,

A. Perreca130,131, S. Perriès109, J. Petermann123, H. P. Pfeiffer91, M. Phelps19,20, K. S. Phukon13,47,177, O. J. Piccinni43,132,
M. Pichot80, M. Piendibene31,65, F. Piergiovanni78,79, V. Pierro83,129, G. Pillant40, L. Pinard32, I. M. Pinto83,103,129,

K. Piotrzkowski88, M. Pirello57, M. Pitkin196, W. Plastino180,181, R. Poggiani31,65, D. Y. T. Pong107, S. Ponrathnam13,
P. Popolizio40, E. K. Porter37, J. Powell197, A. K. Prajapati124, K. Prasai64, R. Prasanna158, G. Pratten23, T. Prestegard33,

M. Principe83,103,129, G. A. Prodi130,131, L. Prokhorov23, M. Punturo51, P. Puppo43, M. Pürrer91, H. Qi118, V. Quetschke26,
P. J. Quinonez45, F. J. Raab57, G. Raaijmakers47,151, H. Radkins57, N. Radulesco80, P. Raffai121, H. Rafferty198, S. Raja73,

C. Rajan73, B. Rajbhandari99, M. Rakhmanov26, K. E. Ramirez26, A. Ramos-Buades114, Javed Rana13, K. Rao24,
P. Rapagnani43,132, V. Raymond118, M. Razzano31,65, J. Read38, T. Regimbau44, L. Rei72, S. Reid34, D. H. Reitze11,41,

P. Rettegno146,199, F. Ricci43,132, C. J. Richardson45, J. W. Richardson11, P. M. Ricker30 , G. Riemenschneider146,199, K. Riles154,
M. Rizzo24, N. A. Robertson11,61, F. Robinet39, A. Rocchi42, R. D. Rodriguez-Soto45, L. Rolland44, J. G. Rollins11, V. J. Roma86,
M. Romanelli85, R. Romano14,15, C. L. Romel57, I. M. Romero-Shaw16, J. H. Romie17, C. A. Rose33, D. Rose38, K. Rose193,
D. Rosińska89, S. G. Rosofsky30, M. P. Ross179, S. Rowan61, S. J. Rowlinson23, P. K. Roy26, Santosh Roy13, Soumen Roy200,

P. Ruggi40, G. Rutins75, K. Ryan57, S. Sachdev137, T. Sadecki57, M. Sakellariadou160, O. S. Salafia55,56,201, L. Salconi40,
M. Saleem169, A. Samajdar47, E. J. Sanchez11, L. E. Sanchez11, N. Sanchis-Gual202, J. R. Sanders203, K. A. Santiago46, E. Santos80,

N. Sarin16, B. Sassolas32, B. S. Sathyaprakash118,137, O. Sauter44, R. L. Savage57, V. Savant13, D. Sawant147, S. Sayah32,
D. Schaetzl11, P. Schale86, M. Scheel58, J. Scheuer24, P. Schmidt23, R. Schnabel123, R. M. S. Schofield86, A. Schönbeck123,
E. Schreiber19,20, B. W. Schulte19,20, B. F. Schutz118, O. Schwarm194, E. Schwartz17, J. Scott61, S. M. Scott18, E. Seidel30,

D. Sellers17, A. S. Sengupta200, N. Sennett91, D. Sentenac40, V. Sequino72, A. Sergeev163, Y. Setyawati19,20, D. A. Shaddock18,
T. Shaffer57, M. S. Shahriar24, A. Sharma27,28, P. Sharma73, P. Shawhan92, H. Shen30, M. Shikauchi97, R. Shink173,

D. H. Shoemaker62, D. M. Shoemaker93, K. Shukla156, S. ShyamSundar73, K. Siellez93, M. Sieniawska70, D. Sigg57, L. P. Singer4,
D. Singh137, N. Singh89, A. Singha61, A. Singhal27,43, A. M. Sintes114, V. Sipala133,134, V. Skliris118, B. J. J. Slagmolen18,

T. J. Slaven-Blair81, J. Smetana23, J. R. Smith38, R. J. E. Smith16, S. Somala204, E. J. Son166, S. Soni12, B. Sorazu61, V. Sordini109,
F. Sorrentino72, T. Souradeep13, E. Sowell99, A. P. Spencer61, M. Spera67,68, A. K. Srivastava124, V. Srivastava52, K. Staats24,

C. Stachie80, M. Standke19,20, D. A. Steer37, M. Steinke19,20, J. Steinlechner61,123, S. Steinlechner123, D. Steinmeyer19,20,
D. Stocks64, D. J. Stops23, M. Stover193, K. A. Strain61, G. Stratta79,205, A. Strunk57, R. Sturani206, A. L. Stuver207, S. Sudhagar13,

V. Sudhir62, T. Z. Summerscales208, L. Sun11, S. Sunil124, A. Sur70, J. Suresh97, P. J. Sutton118, B. L. Swinkels47,
M. J. Szczepańczyk41, M. Tacca47, S. C. Tait61, C. Talbot16, A. J. Tanasijczuk88, D. B. Tanner41, D. Tao11, M. Tápai148, A. Tapia38,

E. N. Tapia San Martin47, J. D. Tasson209, R. Taylor11, R. Tenorio114, L. Terkowski123, M. P. Thirugnanasambandam13,
M. Thomas17, P. Thomas57, J. E. Thompson118, S. R. Thondapu73, K. A. Thorne17, E. Thrane16, C. L. Tinsman16, T. R. Saravanan13,

Shubhanshu Tiwari84,130,131 , S. Tiwari152, V. Tiwari118, K. Toland61, M. Tonelli31,65, Z. Tornasi61, A. Torres-Forné91,
C. I. Torrie11, I. Tosta e Melo133,134, D. Töyrä18, E. A. Trail12, F. Travasso51,66, G. Traylor17, M. C. Tringali89, A. Tripathee154,

A. Trovato37, R. J. Trudeau11, K. W. Tsang47, M. Tse62, R. Tso58, L. Tsukada97, D. Tsuna97, T. Tsutsui97, M. Turconi80,
A. S. Ubhi23, K. Ueno97, D. Ugolini198, C. S. Unnikrishnan152, A. L. Urban12, S. A. Usman106, A. C. Utina61, H. Vahlbruch20,

G. Vajente11, G. Valdes12, M. Valentini130,131 , N. van Bakel47, M. van Beuzekom47, J. F. J. van den Brand47,90,157,
C. Van Den Broeck47,210, D. C. Vander-Hyde52, L. van der Schaaf47, J. V. Van Heijningen81, A. A. van Veggel61, M. Vardaro67,68,

V. Varma58, S. Vass11, M. Vasúth63, A. Vecchio23, G. Vedovato68, J. Veitch61, P. J. Veitch71, K. Venkateswara179,
G. Venugopalan11, D. Verkindt44, D. Veske117 , F. Vetrano78,79, A. Viceré78,79, A. D. Viets211, S. Vinciguerra23, D. J. Vine75,
J.-Y. Vinet80, S. Vitale62, Francisco Hernandez Vivanco16, T. Vo52, H. Vocca50,51, C. Vorvick57, S. P. Vyatchanin74, A. R. Wade18,
L. E. Wade193, M. Wade193, R. Walet47, M. Walker38, G. S. Wallace34, L. Wallace11, S. Walsh33, J. Z. Wang154, S. Wang30,

W. H. Wang26, R. L. Ward18, Z. A. Warden45, J. Warner57, M. Was44, J. Watchi115, B. Weaver57, L.-W. Wei19,20, M. Weinert19,20,
A. J. Weinstein11, R. Weiss62, F. Wellmann19,20, L. Wen81, P. Weßels19,20, J. W. Westhouse45, K. Wette18, J. T. Whelan76,

B. F. Whiting41, C. Whittle62, D. M. Wilken19,20, D. Williams61, J. L. Willis11, B. Willke19,20, W. Winkler19,20, C. C. Wipf11,
H. Wittel19,20, G. Woan61, J. Woehler19,20, J. K. Wofford76, C. Wong107, J. L. Wright61, D. S. Wu19,20, D. M. Wysocki76, L. Xiao11,
H. Yamamoto11, L. Yang140, Y. Yang41, Z. Yang54, M. J. Yap18, M. Yazback41, D. W. Yeeles118, Hang Yu62, Haocun Yu62,
S. H. R. Yuen107, A. K. Zadrożny26, A. Zadrożny170, M. Zanolin45, T. Zelenova40, J.-P. Zendri68, M. Zevin24, J. Zhang81,

L. Zhang11, T. Zhang61, C. Zhao81, G. Zhao115, M. Zhou24, Z. Zhou24, X. J. Zhu16, A. B. Zimmerman185, M. E. Zucker11,62, and
J. Zweizig11

The LIGO Scientific Collaboration and the Virgo Collaboration
1 Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899, USA

2 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899, USA
3 Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805, USA

4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
5 Dipartimento Interateneo di Fisica, Politecnico di Bari, Via G. Amendola 126, I-70126, Bari, Italy

3

The Astrophysical Journal, 893:100 (14pp), 2020 April 20 Hamburg et al.

https://orcid.org/0000-0003-3919-0780
https://orcid.org/0000-0003-3919-0780
https://orcid.org/0000-0003-3919-0780
https://orcid.org/0000-0002-1128-3662
https://orcid.org/0000-0002-1128-3662
https://orcid.org/0000-0002-1128-3662
https://orcid.org/0000-0002-5294-0630
https://orcid.org/0000-0002-5294-0630
https://orcid.org/0000-0002-5294-0630
https://orcid.org/0000-0003-1611-6625
https://orcid.org/0000-0003-1611-6625
https://orcid.org/0000-0003-1611-6625
https://orcid.org/0000-0003-0974-4148
https://orcid.org/0000-0003-0974-4148
https://orcid.org/0000-0003-0974-4148
https://orcid.org/0000-0003-4225-0895
https://orcid.org/0000-0003-4225-0895
https://orcid.org/0000-0003-4225-0895


6 Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Bari, Via E. Orabona 4, I-70125, Bari, Italy
7 Jacobs Space Exploration Group, Huntsville, AL 35806, USA

8 NASA Marshall Space Flight Center, Huntsville, AL 35812, USA
9 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany

10 NASA Marshall Space Flight Center, Huntsville, AL 35805, USA
11 LIGO, California Institute of Technology, Pasadena, CA 91125, USA

12 Louisiana State University, Baton Rouge, LA 70803, USA
13 Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India

14 Dipartimento di Farmacia, Università di Salerno, I-84084 Fisciano, Salerno, Italy
15 INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy

16 OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia
17 LIGO Livingston Observatory, Livingston, LA 70754, USA

18 OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
19 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany

20 Leibniz Universität Hannover, D-30167 Hannover, Germany
21 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany

22 University of Cambridge, Cambridge CB2 1TN, UK
23 University of Birmingham, Birmingham B15 2TT, UK

24 Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA
25 Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil

26 The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
27 Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy

28 INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
29 International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India

30 NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
31 INFN, Sezione di Pisa, I-56127 Pisa, Italy

32 Laboratoire des Matériaux Avancés (LMA), IP2I—UMR 5822, CNRS, Université de Lyon, F-69622 Villeurbanne, France
33 University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

34 SUPA, University of Strathclyde, Glasgow G1 1XQ, UK
35 Dipartimento di Matematica e Informatica, Università di Udine, I-33100 Udine, Italy

36 INFN, Sezione di Trieste, I-34127 Trieste, Italy
37 APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13,

France
38 California State University Fullerton, Fullerton, CA 92831, USA

39 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France
40 European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy

41 University of Florida, Gainesville, FL 32611, USA
42 INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy

43 INFN, Sezione di Roma, I-00185 Roma, Italy
44 Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France

45 Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
46 Montclair State University, Montclair, NJ 07043, USA

47 Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
48 Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea

49 Christopher Newport University, Newport News, VA 23606, USA
50 Università di Perugia, I-06123 Perugia, Italy

51 INFN, Sezione di Perugia, I-06123 Perugia, Italy
52 Syracuse University, Syracuse, NY 13244, USA
53 Université de Liège, B-4000 Liège, Belgium

54 University of Minnesota, Minneapolis, MN 55455, USA
55 Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy

56 INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
57 LIGO Hanford Observatory, Richland, WA 99352, USA

58 Caltech CaRT, Pasadena, CA 91125, USA
59 Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), E-08028 Barcelona, Spain

60 Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana,” Università di Salerno, I-84081 Baronissi, Salerno, Italy
61 SUPA, University of Glasgow, Glasgow G12 8QQ, UK

62 LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
63 Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary

64 Stanford University, Stanford, CA 94305, USA
65 Università di Pisa, I-56127 Pisa, Italy

66 Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
67 Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy

68 INFN, Sezione di Padova, I-35131 Padova, Italy
69 Montana State University, Bozeman, MT 59717, USA

70 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
71 OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia

72 INFN, Sezione di Genova, I-16146 Genova, Italy
73 RRCAT, Indore, Madhya Pradesh 452013, India

74 Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
75 SUPA, University of the West of Scotland, Paisley PA1 2BE, UK
76 Rochester Institute of Technology, Rochester, NY 14623, USA

77 Bar-Ilan University, Ramat Gan 5290002, Israel
78 Università degli Studi di Urbino “Carlo Bo,” I-61029 Urbino, Italy
79 INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy

80 Artemis, Université Côte d’Azur, Observatoire Côte d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France

4

The Astrophysical Journal, 893:100 (14pp), 2020 April 20 Hamburg et al.



81 OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
82 Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, I-84084 Fisciano, Salerno, Italy

83 INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
84 Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

85 Univ Rennes, CNRS, Institut FOTON—UMR6082, F-3500 Rennes, France
86 University of Oregon, Eugene, OR 97403, USA

87 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France
88 Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
89 Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
90 VU University Amsterdam, 1081 HV Amsterdam, The Netherlands

91 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam-Golm, Germany
92 University of Maryland, College Park, MD 20742, USA

93 School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
94 Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France

95 Università di Napoli “Federico II,” Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
96 Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy

97 RESCEU, University of Tokyo, Tokyo, 113-0033, Japan
98 Tsinghua University, Beijing 100084, People’s Republic of China

99 Texas Tech University, Lubbock, TX 79409, USA
100 Università di Roma Tor Vergata, I-00133 Roma, Italy

101 Missouri University of Science and Technology, Rolla, MO 65409, USA
102 Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain

103 Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” I-00184 Roma, Italy
104 National Tsing Hua University, Hsinchu City, 30013 Taiwan, People’s Republic of China

105 Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
106 University of Chicago, Chicago, IL 60637, USA

107 The Chinese University of Hong Kong, Shatin, NT, Hong Kong
108 Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy

109 Institut de Physique des 2 Infinis de Lyon (IP2I)—UMR 5822, Université de Lyon, Université Claude Bernard, CNRS, F-69622 Villeurbanne, France
110 Seoul National University, Seoul 08826, Republic of Korea
111 Pusan National University, Busan 46241, Republic of Korea

112 INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
113 OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia

114 Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
115 Université Libre de Bruxelles, Brussels 1050, Belgium

116 Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain
117 Columbia University, New York, NY 10027, USA

118 Cardiff University, Cardiff CF24 3AA, UK
119 University of Rhode Island, Kingston, RI 02881, USA

120 Bellevue College, Bellevue, WA 98007, USA
121 MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest 1117, Hungary

122 California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
123 Universität Hamburg, D-22761 Hamburg, Germany

124 Institute for Plasma Research, Bhat, Gandhinagar 382428, India
125 IGFAE, Campus Sur, Universidade de Santiago de Compostela, E-15782, Spain

126 The University of Sheffield, Sheffield S10 2TN, UK
127 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy

128 INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
129 Dipartimento di Ingegneria, Università del Sannio, I-82100 Benevento, Italy
130 Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy

131 INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
132 Università di Roma “La Sapienza,” I-00185 Roma, Italy
133 Università degli Studi di Sassari, I-07100 Sassari, Italy

134 INFN, Laboratori Nazionali del Sud, I-95125 Catania, Italy
135 University of Portsmouth, Portsmouth, PO1 3FX, UK

136 West Virginia University, Morgantown, WV 26506, USA
137 The Pennsylvania State University, University Park, PA 16802, USA

138 Physics and Astronomy Department, Stony Brook University, Stony Brook, NY 11794, USA
139 Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

140 Colorado State University, Fort Collins, CO 80523, USA
141 Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen, Hungary

142 CNR-SPIN, c/o Università di Salerno, I-84084 Fisciano, Salerno, Italy
143 Scuola di Ingegneria, Università della Basilicata, I-85100 Potenza, Italy

144 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
145 Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain

146 INFN Sezione di Torino, I-10125 Torino, Italy
147 Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

148 University of Szeged, Dóm tér 9, Szeged 6720, Hungary
149 Delta Institute for Theoretical Physics, Science Park 904, 1090 GL Amsterdam, The Netherlands

150 Lorentz Institute, Leiden University, P.O. Box 9506, Leiden 2300 RA, The Netherlands
151 GRAPPA, Anton Pannekoek Institute for Astronomy and Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam,

The Netherlands
152 Tata Institute of Fundamental Research, Mumbai 400005, India

153 INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy
154 University of Michigan, Ann Arbor, MI 48109, USA
155 American University, Washington, D.C. 20016, USA

5

The Astrophysical Journal, 893:100 (14pp), 2020 April 20 Hamburg et al.



156 University of California, Berkeley, CA 94720, USA
157 Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

158 Directorate of Construction, Services & Estate Management, Mumbai 400094 India
159 University of Białystok, 15-424 Białystok, Poland

160 Kingʼs College London, University of London, London WC2R 2LS, UK
161 University of Southampton, Southampton SO17 1BJ, UK

162 University of Washington Bothell, Bothell, WA 98011, USA
163 Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
164 Ewha Womans University, Seoul 03760, Republic of Korea

165 Inje University Gimhae, South Gyeongsang 50834, Republic of Korea
166 National Institute for Mathematical Sciences, Daejeon 34047, Republic of Korea

167 Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
168 Bard College, 30 Campus Road, Annandale-On-Hudson, NY 12504, USA

169 Chennai Mathematical Institute, Chennai 603103, India
170 NCBJ, 05-400 Świerk-Otwock, Poland

171 Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
172 Cornell University, Ithaca, NY 14850, USA

173 Université de Montréal/Polytechnique, Montreal, Quebec H3T 1J4, Canada
174 Lagrange, Université Côte d’Azur, Observatoire Côte d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France

175 Hillsdale College, Hillsdale, MI 49242, USA
176 Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea

177 Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
178 NASA Marshall Space Flight Center, Huntsville, AL 35811, USA

179 University of Washington, Seattle, WA 98195, USA
180 Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, I-00146 Roma, Italy

181 INFN, Sezione di Roma Tre, I-00146 Roma, Italy
182 ESPCI, CNRS, F-75005 Paris, France

183 Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, 200092 Shanghai, People’s Republic of China
184 Southern University and A&M College, Baton Rouge, LA 70813, USA
185 Department of Physics, University of Texas, Austin, TX 78712, USA
186 Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

187 Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco
188 Indian Institute of Technology Madras, Chennai 600036, India

189 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
190 Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

191 IISER-Kolkata, Mohanpur, West Bengal 741252, India
192 Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

193 Kenyon College, Gambier, OH 43022, USA
194 Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA

195 Hobart and William Smith Colleges, Geneva, NY 14456, USA
196 Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK

197 OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia
198 Trinity University, San Antonio, TX 78212, USA

199 Dipartimento di Fisica, Università degli Studi di Torino, I-10125 Torino, Italy
200 Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India

201 INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy
202 Centro de Astrofísica e Gravitação (CENTRA), Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

203 Marquette University, 11420 W. Clybourn Street, Milwaukee, WI 53233, USA
204 Indian Institute of Technology Hyderabad, Sangareddy, Khandi, Telangana 502285, India

205 INAF, Osservatorio di Astrofisica e Scienza dello Spazio, I-40129 Bologna, Italy
206 International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil

207 Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
208 Andrews University, Berrien Springs, MI 49104, USA

209 Carleton College, Northfield, MN 55057, USA
210 Department of Physics, Utrecht University, 3584CC Utrecht, The Netherlands

211 Concordia University Wisconsin, 2800 N Lake Shore Drive, Mequon, WI 53097, USA
Received 2020 January 14; revised 2020 February 14; accepted 2020 February 24; published 2020 April 20

Abstract

We present results from offline searches of Fermi Gamma-ray Burst Monitor (GBM) data for gamma-ray transients
coincident with the compact binary coalescences observed by the gravitational-wave (GW) detectors Advanced
LIGO and Advanced Virgo during their first and second observing runs. In particular, we perform follow-up for
both confirmed events and low significance candidates reported in the LIGO/Virgo catalog GWTC-1. We search
for temporal coincidences between these GW signals and GBM-triggered gamma-ray bursts (GRBs). We also use
the GBM Untargeted and Targeted subthreshold searches to find coincident gamma-rays below the onboard
triggering threshold. This work implements a refined statistical approach by incorporating GW astrophysical
source probabilities and GBM visibilities of LIGO/Virgo sky localizations to search for cumulative signatures of
coincident subthreshold gamma-rays. All search methods recover the short gamma-ray burst GRB 170817A
occurring ∼1.7 s after the binary neutron-star merger GW170817. We also present results from a new search
seeking GBM counterparts to LIGO single-interferometer triggers. This search finds a candidate joint event, but

212 NASA Postdoctoral Fellow.
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given the nature of the GBM signal and localization, as well as the high joint false alarm rate of 1.1×10−6 Hz, we
do not consider it an astrophysical association. We find no additional coincidences.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Gravitational waves (678)

1. Introduction

Simultaneous observations of the same source in gravita-
tional waves (GWs) and gamma-rays probe some of the most
cataclysmic events in the universe and create rich opportunities
to study fundamental physics, cosmology, and high energy
astrophysics. This was demonstrated by the joint observations
(Abbott et al. 2017d) of the binary neutron-star (BNS)
coalescence GW170817 (Abbott et al. 2019b, 2017e) and the
short gamma-ray burst GRB 170817A (Goldstein et al. 2017;
Savchenko et al. 2017). These observations led to constraints
on the speed of gravity (Abbott et al. 2017a), an independent
measure of the Hubble constant (Abbott et al. 2019a, 2017b;
Hotokezaka et al. 2019), evidence for heavy element produc-
tion via r-process nucleosynthesis in a kilonova (e.g., Chornock
et al. 2017; Cowperthwaite et al. 2017; Kasen et al. 2017;
Tanvir et al. 2017; Watson et al. 2019), and more. Motivated
by the wealth of science gained from multimessenger
observations such as these, we seek to increase the number
of joint GW/gamma-ray detections by performing coordinated
analysis of candidates from Advanced LIGO (Aasi et al. 2015),
Advanced Virgo (Acernese et al. 2015), and the Fermi Gamma-
ray Burst Monitor (GBM; Meegan et al. 2009).

The first LIGO/Virgo science observing run (O1) ran from
2015 September to 2016 January, during which GBM
performed online analyses of GW candidates from compact
binary coalescence (CBC) searches. For GBM offline analysis
(Burns et al. 2019), trigger selection was conservative, treating
all CBC candidates with a false alarm rate (FAR) of less than
10−5 Hz (about 1/day) as equally plausible for follow-up. The
CBC candidates were used to search for coincidences with
GBM-triggered GRBs and subthreshold short GRBs from the
offline Untargeted Search (M. S. Briggs et al. 2020, in
preparation). CBC event times were also used to seed more
sensitive follow-up with the Targeted Search (Blackburn et al.
2015) of GBM data. No unambiguous coincidences were found
between the GBM and LIGO/Virgo candidates. The most
significant event found in the GBM follow-up search was
associated with the first observed binary black hole (BBH)
coalescence, GW150914 (Abbott et al. 2016b). However the
GBM candidate, GW150914-GBM, could not be unambigu-
ously claimed as an electromagnetic counterpart due to its
extremely weak signal and poor localization (Connaughton
et al. 2016; Greiner et al. 2016; Connaughton et al. 2018).

For the second observing run (O2), running from 2016
November to 2017 August, the GBM Targeted Search was
improved (Goldstein et al. 2016) and run autonomously, in
low latency, again following up CBC triggers with
FAR<10−5 Hz. The most interesting multimessenger event
from O2 was the association between GW170817 and GRB
170817A. The Targeted Search proved redundant in this
case, as the GRB produced a trigger on board Fermi.213

However, had the source been ∼10Mpc farther from Earth, it
would not have triggered the detectors on board GBM and
would have only been detectable with subthreshold searches

(Abbott et al. 2017d; Goldstein et al. 2017), while still being
well within the LIGO/Virgo detection horizon (Abbott et al.
2017e).
In this work, we perform an offline follow-up of all CBC

triggers published in the first LIGO/Virgo gravitational-wave
transient catalog (GWTC-1; Abbott et al. 2019c). Our search
methods are akin to LIGO/Virgo searches for GWs coincident
with GRBs (Abbott et al. 2017c, 2019d). In addition to seeking
coincidences to individual GW events, we search on a
statistical basis, looking for any cumulative effects that
subthreshold gamma-ray counterparts might have on the
resulting follow-up distribution. We improve upon the GBM
analysis of O1 triggers in Burns et al. (2019), in that the joint
association calculation no longer treats all CBC candidates
equally. Instead, the analysis accounts for the astrophysical
nature of the CBC candidates as well as their potential visibility
with respect to GBM. This is done by incorporating the
probability that each CBC candidate originated from an
astrophysical rather than terrestrial source and also considering
the fraction of LIGO/Virgo localization probability that was
observable to GBM at GW trigger time. Finally, we augment
GBM follow-up of GW events by also reporting results from a
new search method (Stachie et al. 2020) that seeks gamma-rays
coincident with LIGO single-interferometer triggers.
This paper is organized as follows. In Section 2, we describe

the sample of gravitational-wave candidates and the GBM
searches used to follow-up this sample. Section 3 summarizes
the results of these searches, including the search for
coincidences with single-interferometer triggers, and discusses
the probability of association between the GW and gamma-ray
candidate events. In Section 4, we conclude and discuss future
prospects for GBM follow-up of GWs.

2. Method

2.1. Gravitational-wave Trigger Selection

The Advanced LIGO (Aasi et al. 2015) and Virgo (Acernese
et al. 2015) observatories are kilometer-scale Michelson laser
interferometers designed to detect GWs. Multiple search
pipelines are used to detect CBC events in strain data, with
each pipeline making different assumptions about the signals
and the detector noise and using different technical solutions to
maximize detection efficiency. We focus on events generated
by two pipelines: PyCBC (Usman et al. 2016) and GstLAL
(Messick et al. 2017). Both rely on accurate physical models of
the gravitational waveform radiated by a CBC event and use
the models to perform matched filtering on strain data. The
process of matched filtering produces a signal-to-noise ratio
(S/N) over a large number of templates covering the CBC
parameter space. The extent of the parameter space chosen for
O2 and the method used to construct the template bank are
described for PyCBC and GstLAL in Dal Canton & Harry
(2017) and Mukherjee et al. (2018), respectively. Once the S/N
has been calculated over all templates, S/N-peaks above a
certain threshold are recorded as single-detector CBC triggers.
Non-Gaussian and nonstationary detector noise fRequently213 https://gcn.gsfc.nasa.gov/other/524666471.fermi
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produces nonastrophysical triggers with large S/N, hence the
pipelines employ a variety of techniques to veto or down-rank
such triggers. The surviving triggers are used in a coincidence
analysis, and each pair of triggers occurring within the
maximum GW travel time between detectors produces a
coincident trigger. The coincident trigger is assigned a ranking
statistic that takes into account (i) S/N in the GW detectors, (ii)
signal-based vetoes indicating the compatibility of the wave-
form with a CBC signal, and (iii) the probability of the
observed combination of S/N, time delay, and phase difference
at the different detectors to be produced by an astrophysical
signal (e.g., Nitz et al. 2017). The final step is mapping the
coincident rank to a statistical significance, which in the case of
CBC pipelines is reported via two different quantities: the FAR
of the search at the time of the trigger and the probability that
the trigger has an astrophysical origin (pastro; Kapadia et al.
2020). pastro is estimated using our current understanding of the
population of real signals weighed against the distribution of
background (false signals) due to GW detector noise
fluctuations.

We perform GBM follow-up of all 25 CBC triggers reported
in the LIGO/Virgo catalog GWTC-1 (Abbott et al. 2019c).
This catalog utilized state-of-the-art configurations of PyCBC
and GstLAL, as well as the best data-quality selection of the
LIGO and Virgo strain data available, for a full reanalysis of
O1 and O2. Listed in Table 1, the catalog triggers were
required to pass an initial threshold of FAR 3.86×10−7 Hz
(about 1/30 days) in at least one pipeline. Triggers passing this

FAR threshold and additionally having pastro greater than 50%
are denoted with “GW” in the event name. In the follow-up
analyses, the GBM searches are guided by the CBC trigger
times. To assess GBM coverage of the LIGO/Virgo triggers,
the public HEALPix (Górski et al. 2005) sky localization maps
accompanying GWTC-1 are taken for the high pastro detections
(LIGO Scientific & Virgo Collaboration 2019). We generate
BAYESTAR skymaps (Singer & Price 2016) for all remaining
triggers which had corresponding GBM data. BAYESTAR
skymaps rely on the mass and spin parameters reported by
the searches and do not marginalize over them, as is done
instead for high pastro detections via full parameter estimation
(Veitch et al. 2015; Abbott et al. 2016a). Nevertheless, they
allow approximations of GBM observing coverages at much
lower computational costs. Finally, for each CBC trigger, the
maximum pastro is used between the GstLAL and PyCBC
pipelines (Abbott et al. 2019c, Table IV).

2.2. Fermi-GBM Searches

GBM is a survey instrument on board the Fermi Gamma-ray
Space Telescope and is comprised of 14 scintillation detectors
that span an energy range of 8 keV–40MeV (Meegan et al.
2009). Twelve of the detectors are made of thallium-doped
sodium iodide (NaI) crystals and are oriented in such a manner
as to cover the entire sky unocculted by the Earth (∼70%). The
two other detectors are bismuth germanate (BGO) crystals
positioned on opposite sides of the spacecraft. Triggering
algorithms running on the satellite search data on multiple
timescales and energy ranges for coherent, statistically
significant (usually 4σ) excesses in at least 2 NaI detectors
(Bhat et al. 2016; von Kienlin et al. 2020). Localization is
performed by combining the detector responses with a set of
three template photon spectra representing spectrally hard,
normal, and soft GRBs to generate expected photon counts
from points evenly spaced across a 1° grid of the sky
(Connaughton et al. 2015). The expected count rates are
compared to the observed rates, and a χ2 minimization process
identifies the most likely direction, with localization accuracy
on the order of degrees. GBM continuously takes data except
during passage through the South Atlantic Anomaly (SAA)
when the detectors are turned off due to high particle flux,
yielding an uptime of approximately 85%.
GBM has developed increased sensitivity to weak, short

GRBs by means of two offline searches: the Untargeted
Search214 (M. S. Briggs et al. 2020, in preparation) and the
Targeted Search (Blackburn et al. 2015; Goldstein et al. 2016).
These searches seek transient signals that do not exceed the
high threshold set by the onboard triggering algorithms, and in
this work, they are employed to find subthreshold gamma-rays
coincident with the GW triggers in our search sample.
Additional details on these searches follow.

2.2.1. Untargeted Search

The Untargeted Search is a blind search of continuous time-
tagged event (CTTE) data, running automatically upon receipt
of data from the Fermispacecraft and using no information
from GW searches. The search improves upon the onboard
triggering algorithms by utilizing additional energy ranges and
timescales, as well as a more sophisticated background-fitting

Table 1
Gravitational-wave Triggers from Abbott et al. (2019c)

LIGO/Virgo GBM

GW Event UTC Date UTC Time pastro Coverage
GW150914 2015 Sep 14 09:50:45.4 1 66.7%
151008 2015 Oct 8 14:09:17.5 0.27 100%
151012.2 2015 Oct 12 06:30:45.2 0.023 58.4%
GW151012 2015 Oct 12 09:54:43.4 1 66.1%
151116 2015 Nov 16 22:41:48.7 =0.5 72.6%
GW151226 2015 Dec 26 03:38:53.6 1 78.8%
161202 2016 Dec 2 03:53:44.9 0.034 L
161217 2016 Dec 17 07:16:24.4 0.018 L
GW170104 2017 Jan 4 10:11:58.6 1 90.3%
170208 2017 Feb 8 10:39:25.8 0.02 97.8%
170219 2017 Feb 19 14:04:09.0 0.02 5.1%
170405 2017 Apr 5 11:04:52.7 0.004 L
170412 2017 Apr 12 15:56:39.0 0.06 67.2%
170423 2017 Apr 23 12:10:45.0 0.086 45.2%
GW170608 2017 Jun 8 02:01:16.5 1 73.0%
170616 2017 Jun 16 19:47:20.8 =0.5 66.2%
170630 2017 Jun 30 16:17:07.8 0.02 8.2%
170705 2017 Jul 5 08:45:16.3 0.012 26.3%
170720 2017 Jul 20 22:44:31.8 0.0097 48.2%
GW170729 2017 Jul 29 18:56:29.3 0.98 88.9%
GW170809 2017 Aug 9 08:28:21.8 1 73.9%
GW170814 2017 Aug 14 10:30:43.5 1 73.6%
GW170817 2017 Aug 17 12:41:04.4 1 100%
GW170818 2017 Aug 18 02:25:09.1 1 100%
GW170823 2017 Aug 23 13:13:58.5 1 L

Note. The pastro values shown here are the maximum values reported between
the GstLAL and PyCBC pipelines. The percentage of the LIGO/Virgo
localization probability that was visible to GBM at trigger time is also given.
Triggers with unspecified coverage are due to GBM passage through the South
Atlantic Anomaly when all detectors are turned off.

214 https://gcn.gsfc.nasa.gov/fermi_gbm_subthresh_archive.html

8

The Astrophysical Journal, 893:100 (14pp), 2020 April 20 Hamburg et al.

https://gcn.gsfc.nasa.gov/fermi_gbm_subthresh_archive.html


model. Candidate events are required to have excess counts
greater than 2.5σ relative to background in one detector and at
least 1.25σ in a second detector. Significant candidates are
autonomously distributed via the Gamma-ray Coordinates
Network along with HEALPix skymaps to facilitate joint
detections with other instruments (see, e.g., Zhang et al. 2017).
Further details on the Untargeted Search and an analysis of its
candidates will be published in a forthcoming article.

2.2.2. Targeted Search

The Targeted Search was designed for multimessenger
follow-up, requiring an input time and/or HEALPix skymap to
seed a sensitive search of CTTE data. When seeking counter-
parts to GWs, the Targeted Search analyzes a 60 s window
centered on the input GW time and searches timescales
increasing by powers of 2 from 64 ms to 8.192 s, while phasing
time bins by a factor of 4. Data from all 14 detectors are
processed coherently to achieve a greater sensitivity to weak
signals than when analyzing one detector at a time, as
performed by the onboard flight software and the Untargeted
Search. Three model spectra, described in Goldstein et al.
(2016), are folded through the detector responses to produce
templates of expected counts which are then compared to the
observed distribution of counts in each energy channel of each
detector. The comparison is performed via a log-likelihood
ratio (Λ), testing the alternative hypothesis of the presence of a
signal with a similar spectrum versus the null hypothesis of
only background noise. Treating Λ as our detection statistic, the
model spectrum resulting in the highest Λ is selected as the
preferred spectrum, and this procedure is repeated for each bin
of data in the search (see Blackburn et al. 2015 for the detailed
calculation of Λ). Bins contaminated by phosphorescent noise
events are removed, and overlapping bins are merged to
produce only the most significant bin. After this filtering, all
remaining bins are retained as candidate events for our analysis.
The different spectral templates tend to identify different types
of sources in the GBM background, and such types may have
very different rates of occurrence. To preserve sensitivity to
these different sources, the bins are separated by best-fit
spectral template, and event significance (i.e., FAR) is
measured against background from the same template.

The Targeted Search was made more sensitive in preparation
for O2 by improving the background estimation, revising the
spectral template for hard GRBs, and implementing additional
automated filters (Goldstein et al. 2016). In particular, a Λ
prefilter was applied. The Λ calculation demands an initial
estimation of the signal amplitude (effectively, the photon
fluence in the time bin over 50–300keV) that maximizes the
likelihood of the hypothesis that a signal exists. The prefilter
excludes time bins with initial guesses of Λ<5 from the full
numerical optimization, increasing the speed of this computa-
tionally expensive task by up to a factor of 5. Bins with Λ<5
have been verified to lie well within the GBM background, thus
excluding them does not affect the sensitivity of the search.
This updated version of the Targeted Search was used to
analyze both the O1 and O2 triggers in our sample. Further
improvements have been made for online analysis of CBC
triggers during Advanced LIGO and Advanced Virgoʼs third
observing run (Goldstein et al. 2019), but were not used in
this work.

3. Results

Here we present the results of our searches for gamma-ray
counterparts to the GW triggers in our sample. To quantify event
significance, each resulting search distribution is compared to that
of background. The background used in the following sections is
composed of randomly selected times during which both LIGO
detectors were in observing mode during O1 and O2. The ratio of
random background between O1 and O2 is also roughly
proportional to the LIGO/Virgo livetimes during O1 and O2.
The same Targeted Search input parameters used for the search
sample were used for the background, resulting in ∼10 (20)ks of
background during O1 (O2), yielding a minimum FAR of
∼1×10−5 (∼5×10−6)Hz for Targeted Search analysis.
Finally, the background times were chosen independently with
respect to GBM and therefore include GBM trigger times.

3.1. GBM Trigger and Untargeted Search Results

As done in Burns et al. (2019), we first examine the time
offsets between the search sample of CBC triggers and both
GRBs detected by the GBM onboard flight software and
subthreshold short GRB candidates from the Untargeted
Search. This method is similar to the RAVEN analysis used
by LIGO/Virgo (Urban 2016). The Untargeted Search sample
consists of all 187 candidates published during O1 and O2 via
GCN, as described in the previous section. Combining these
with the triggered GRBs, we obtained a total of 474 GRBs. The
temporal offsets between the 25 GW events and the GBM
GRBs were then determined, and the smallest offset for each
GW candidate was taken. The search sample offsets are
compared to those arising from random coincidences by
finding the shortest temporal offsets between the background
times and the GW trigger times. Both positive and negative
offsets were allowed for search sample and background, but a
maximum offset was not enforced. GW triggers occurring
during Fermi passage through SAA were included, limiting the
minimum time offsets for some GBM events; however, the
same treatment for the search was used for background.
The cumulative distribution for this search is presented in

Figure 1. The search sample including GW170817 is shown

Figure 1. Cumulative distribution for the minimal time offsets between the 25
CBC triggers and GRBs found by either the GBM onboard triggering
algorithms or the Untargeted Search. The background offset distribution is
shown in black. The search sample including GW170817 is depicted by the
solid gold line, and the search excluding GW170817 is shown by the dashed
brown line.
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with the solid gold line, while the distribution without
GW170817 is displayed by the dashed brown line. Confidence
regions were obtained empirically by Monte Carlo sampling of
the background offset distribution with sample size equal to
that of the search sample and finding the desired percentiles.
The most significant deviation of the search distribution from
that of random background is caused by GRB 170817A, found
∼1.7 s after GW170817. Omitting GW170817, the shortest
time interval between a CBC trigger from our sample and a
GBM event is approximately 1000 s. On-axis prompt emission
from a short GRB is not expected at such large time delays
after a BNS merger (Vedrenne & Atteia 2009; Zhang 2019),
though larger delays may be allowed for off-axis emission
(e.g., Salafia et al. 2018). Hence, with this first search we find
no evidence for GW/gamma-ray associations apart from
GW170817/GRB 170817A.

3.2. Targeted Search Results

The Targeted Search was used to search for subthreshold
gamma-ray signals around 21 events from the CBC search
sample. GBM data were not collected around triggers 161202,
161217, 170405, and GW170823 due to passage through the
SAA; therefore, these events were excluded from this search.
For those remaining, the GBM coverage of the LIGO/Virgo
localizations (see Table 1) was obtained. No LIGO/Virgo
skymap was fully occulted by the Earth, and GBM observed

between ∼5% and 100% of the localization probability with an
average observing fraction of 67.0%.
The Targeted Search follow-up distributions for O1 triggers

and O2 triggers are shown as functions of Λ in Figures 2 and 3,
respectively. The background distributions were constructed by
running the Targeted Search over the randomly selected times
described above with the same parameters used for the search
sample. As described in the previous section, confidence
intervals for the search samples were produced by Monte Carlo
sampling the background Λ distributions with the same sample
size as the search sample. The distributions are separated into
three categories according to the best-fitting spectral template,
due to the different backgrounds affecting the three templates.
Also, because of the time-variable nature of the background in
each template, we obtain event significance by comparing the
follow-up of O1 triggers to GBM background taken during O1
and O2 follow-up to O2 background.
For both O1 and O2, the search distributions lie largely

within the 90% confidence region of the median for all spectral
templates. The O1 follow-up (Figure 2) does not show any
significant outliers in the sample distributions. The transient
GW150914-GBM is found with a FAR of 8.7×10−4 Hz in
the hard template distribution, where the FAR is the cumulative
event rate of the background at the same Λ, and lies just within
50% confidence. The most significant event in the O2 follow-
up (Figure 3) can be seen in the normal template distribution
and is GRB 170817A, found with a FAR of 2.0×10−5 Hz.
The spectrally soft tail of GRB 170817A is also the most

Figure 2. O1 cumulative event rate distributions of the GBM background (black dashed lines) and search samples (solid gold line) for the GBM Targeted Search as a
function of the log-likelihood ratio. Distributions are separated according to best-fitting spectral template. The transient GW150914-GBM is marked by a gold star in
the hard template distribution.
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significant foreground event in the O2 soft template distribu-
tion, with a FAR of 4.1×10−4 Hz, but is within the 50%
confidence region. No other significant candidates are found.

3.3. Targeted Search Joint Analysis

The FARs discussed in the previous section measure the
significance of GBM transients with respect to the Targeted
Search background only, regardless of the GW observations.
Here we characterize the significance of coincidences between
the GW events and the gamma-ray signals from the Targeted
Search. In our previous works (e.g., Connaughton et al. 2016;
Burns et al. 2019), this was done by ranking gamma-ray
candidates by the Targeted Search FAR and the relative time
offsets between the candidates and the GW triggers. We build
upon these analyses by also considering (i) the probability that
the GW signal is astrophysical in origin and (ii) the fraction of
the LIGO/Virgo sky localization visible to GBM at the GW
event time. Therefore, we rank gamma-ray candidates found by
the Targeted Search with a statistic R defined as

∣ ∣
( )=

´
D ´

R
p p

t FAR
, 1astro visible

GBM

where Δt is the time offset between the GW trigger and the
gamma-ray event and pvisible is the fraction of the LIGO/Virgo
localization probability observable to GBM. A minimum offset
of 64 ms was set to match the time binning of the data. GW
triggers 151116 and 170616 were given the lowest pastro of the

sample (i.e., 0.004) in light of the upper limits reported in
GWTC-1 (see Table 1). Background events are ranked using
the same statistic R. As background events have no corresp-
onding LIGO/Virgo information, skymaps and pastro values
from the GW search sample were randomly assigned to each
background event, and the fraction of GBM visibility was
calculated at the background time using the randomly selected
skymap.
The ranking statistic of the search sample is mapped to a p-

value, defined as the number of more highly ranked back-
ground events divided by the total number of background
events, or pi=N(R>Ri)/N, where N is the number of
gamma-ray events in the background and i is the index of an
event in the search sample. Again, search sample events from
O1 and O2 are compared to background from O1 and O2,
respectively. The cumulative distributions of the combined O1
and O2 p-values are shown in Figure 4, with and without
GW170817 follow-up. The dashed black lines follow a uniform
distribution, representing the null hypothesis that the search
sample is consistent with that of background. The confidence
regions for the p-value distribution were generated by random
sampling of the background uniform distribution with sample
size equal to the search sample size.
For the search including GW170817 follow-up, excesses of

greater than 3 σare observed due to contributions from GRB
170817A. The main emission peak of GRB 170817A has a
higher ranking than any other event in the background, making

Figure 3. O2 cumulative event rate distributions of the GBM background (black dashed lines) and search samples (solid gold line) for the GBM Targeted Search as a
function of the log-likelihood ratio. Distributions are separated according to the best-fitting spectral template. Both the main peak and soft thermal tail of GRB
170817A, the short gamma-ray burst counterpart to GW170817, are indicated by gold stars in the normal and soft template distributions, respectively.
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its p-value an upper limit. Removing all Targeted Search
candidates associated with GW170817, excesses greater than
2σ are still observed. Contributing to this near the tail of the
distribution is GW150914-GBM, which is found with a p-value
of ∼1.8×10−3. Of the remaining candidates (located around
p-value=1.0×10−1), the detector lightcurves, spectral
information, and localizations have been manually inspected.
Real signals have consistent signal in detectors viewing
approximately the same portion of the sky and are likely be
found on multiple timescales by the Targeted Search. Short
GRB-like signals typically display most of their emission
above 50keV. However, softer events with localizations
consistent the Sun or the Galactic plane are likely to be solar
flares or galactic sources rather than GRBs. All inspected
events were judged to be either inconsistent with real short
GRB-like signals or too weak in GBM data to constrain any
properties. Therefore we judge this excess likely unrelated to
the CBCs in the search sample. Some of the excess may be due
to real but unrelated gamma-ray signals, and future observa-
tions can be used to either exclude or strengthen this feature.

We do not find evidence here to report any associations other
than GW170817 and GRB 170817A.

3.4. Targeted Search Follow-up of Single Interferometer
Triggers

During O1 and O2, a single LIGO interferometer taking
science observing-mode data covered 33.4% and 29.5% of the
respective livetimes. CBC events occurring during these times
can still be detected (Callister et al. 2017; Sachdev et al. 2019),
albeit with a reduced significance due to the lack of coincidence
with a second detector. The lack of a second detector can be
somewhat mitigated by searching for a coincident gamma-ray
transient (Nitz et al. 2019) as the physical connection between
GWs and GRBs has been established for at least BNS mergers.
This idea is roughly illustrated by the narrative of GW170817,
which was initially a single-interferometer trigger due to the
presence of a glitch in the LIGO Livingston detector (Abbott
et al. 2017e; Pankow et al. 2018), but was nonetheless found to
be time-coincident with GRB 170817A.
The method for searching for GBM counterparts to single-

interferometer triggers differs from those presented in the
previous sections. We start from PyCBC single-interferometer
triggers having a reweighted S/N (Usman et al. 2016) higher
than 8, yielding a sample of 1621 (1126 for O2 and 495 for
O1) triggers. The search for gamma-ray counterparts is then
performed using the Targeted Search. We only consider possible
associations between PyCBC candidates and the most significant
GBM candidates found within the corresponding ±30 s search
windows. Thus, we obtain pairs of GW candidates and gamma-
ray candidates and compute a joint statistical significance. This
statistic is calculated by taking into account (i) the time offset, (ii)
the reweighted S/N of the GW trigger, (iii) the Targeted Search
Λ, and (iv) the overlap between the GW and gamma-ray sky
localizations defined in Ashton et al. (2018). Further details on
the statistical method will be given in Stachie et al. (2020).
Although we find no highly significant associations, a close
inspection of the data around the 80 candidates with the highest
significance (i.e., lowest FAR) was performed. For these
candidates, LIGO detector characterization was performed using
standard tools like Omicron scans, Omega scans, and Used
Percentage Veto (Isogai et al. 2010; Abbott et al. 2016c, 2018).
Sixty-four candidates in temporal proximity with known types of
instrumental transients, blip glitches (Abbott et al. 2016c; Cabero
et al. 2019), nonstationary noise visible in spectrograms, and
scattered light were rejected. There were 12 other triggers
disfavored because parameter estimation (Veitch & Vec-
chio 2010) either showed evidence of a glitch (i.e., the existence
of bimodality in posterior probability for different CBC
parameters) or returned a low (<5) log10 Bayes factor. The
Bayes factor compares the hypothesis of the presence of signal in
the data to the hypothesis of the presence of Gaussian noise, with
a low Bayes factor indicating the data contain little evidence of a
signal. Three candidates were also eliminated due to noticeably
poor background fits in the low-energy channels of the GBM
detectors, which often cause inflated Λ values.
A single L1 surviving coincident association remained with

no obvious reason for rejection. However, the derived FAR,
based on coincidences between noises in LIGO and noises in
GBM (Stachie et al. 2020), is relatively high at 1.1×10−6 Hz.
The implied low significance is mainly due to the soft spectrum
of the GBM candidate. The GBM candidate has a localization
consistent with the galactic plane and is likely produced by

Figure 4. Cumulative distribution of the Targeted Search p-values. The dashed
black lines represent the expected background distribution. Top: follow-up
search sample including GW170817. The main emission episode of GRB
170817A is found with higher ranking than any other candidate within the
background distribution. Its p-value is therefore marked as an upper limit
(black triangle) at greater than 3σ deviation from the background p-value
distribution. Bottom: follow-up search sample without GW170817.
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Scorpius X-1, as a strong occultation step caused by this
Galactic X-ray source was observed close in time to the trigger.
Finally, the parameter estimation of the LIGO signal indicates
masses of >100Me for the two components of the binary. As
of yet, there are no confirmed observations of such binary
mergers (Abbott et al. 2019e), which suggests that these
systems, if they exist, are not common.

4. Summary and Future Directions

We have used LIGO/Virgo and Fermi-GBM data and
multiple algorithms to search for gamma-ray transients
associated with high and low significance CBC events reported
in the first gravitational-wave transient catalog, GWTC-1.
The GBM subthreshold searches for gamma-ray candidates
employed improved algorithms to conduct more sensitive
searches than those used in online follow-up during O1 and O2.
All searches identified the coincidence between the short
gamma-ray burst GRB 170817A and the BNS coalescence
signal GW170817. We found no additional coincident detec-
tions between CBC triggers and GBM triggers or Untargeted
Search candidates. The GBM Targeted Search found the main
emission peak and the long, soft tail of GRB 170817A with
FARs of 2.0×10−5 Hz and 4.1×10−4 Hz, respectively, and
the p-value of the joint association was found to deviate from
the background distribution at greater than 3σ. The gamma-ray
transient GW150914-GBM was also found with a FAR of
8.7×10−4 Hz, but was not a significant candidate on its own,
lying just within the 50% confidence region of the hard spectral
template. Future multimessenger observations will be neces-
sary to establish any astrophysical connection between gamma-
ray emission and BBH mergers (see, e.g., Veres et al. 2019).
No other short GRB candidates were found in association with
the CBC triggers.

In this work, the joint analysis was improved compared to
that performed in Burns et al. (2019). In addition to the
temporal offset and the Targeted Search FAR, we also
considered the significance of the LIGO/Virgo trigger and
the GBM visibility of the LIGO/Virgo sky localization.
However, this analysis can be further refined. By including
all candidates reported in GWTC-1, we implicitly assumed that
BBH, BNS, and NSBH (i.e., neutron star-black hole) mergers
are equally likely to produce gamma-ray emission, and sought
counterparts to these mergers using a wide parameter space of
different timescales, energy ranges, and spectral templates. The
broad nature of this search was motivated by the fact that, with
only one confirmed coincidence, the observational properties of
joint GW/GRB events are still largely unknown. Improving
our search to target short GRB-like signals and filter transients
from sources unrelated to CBCs, such as particle and galactic
flares, may increase sensitivity to coincident, subthreshold short
GRBs. Improvements in GBM search pipelines (Goldstein et al.
2019) and formal methodology (e.g., Ashton et al. 2018) are
being undertaken for joint LIGO/Virgo and GBM analysis of
CBC triggers from O3.

Finally, a new search for GBM coincidences with LIGO
single-interferometer triggers was also conducted. The most
interesting resulting candidate is unlikely to be an astrophysical
association because of its high FAR. Additionally, the gamma-
ray signal was likely caused by flaring activity from a source
near the Galactic plane and parameter estimation of the LIGO
signal suggests source masses inconsistent with a neutron-star

coalescence. For future observing runs (Abbott et al. 2019f),
the single-interferometer search methods will be improved. The
introduction of several types of follow-up methods will be one
of the modifications introduced during these subsequent runs.
This will result in an improved FAR distribution, as future
observations will assess associations between a specific
category of CBC candidates (BNS, NSBH, or BBH) and
GBM candidates defined by their duration and spectral
hardness.
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