
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Doctoral Dissertations Graduate School 

2008 

Continuous reservoir model updating by ensemble Kalman filter Continuous reservoir model updating by ensemble Kalman filter 

on Grid computing architectures on Grid computing architectures 

Xin Li 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations 

 Part of the Petroleum Engineering Commons 

Recommended Citation Recommended Citation 
Li, Xin, "Continuous reservoir model updating by ensemble Kalman filter on Grid computing architectures" 
(2008). LSU Doctoral Dissertations. 585. 
https://repository.lsu.edu/gradschool_dissertations/585 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It 
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU 
Scholarly Repository. For more information, please contactgradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/245?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/585?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


CONTINUOUS RESERVOIR MODEL UPDATING BY ENSEMBLE KALMAN FILTER
ON GRID COMPUTING ARCHITECTURES

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

Craft & Hawkins Department of Petroleum Engineering

by
Xin Li

B.S. in Petroleum Engineering, Southwest Petroleum University, 1991
M.S., Southwest Petroleum University, 1994

December 2008



Acknowledgments

I would like to express my sincere gratitude to my professors, friends, and family for their

selfless support that made my PhD study an incredible achievement through an memorable

journey. I feel fortunate to have each single one of them in my life.

First, I appreciate Dr. Christopher D. White, who is the best advisor and mentor one

could ever have. He provided me a lot of brilliant ideas and helped me to dig deep insights in

research, invaluable guidance and providing me with generous financial support during the

past four years at LSU. I also appreciate his patience and encouragement during my difficult

moments.

My dissertation committee members have offered valuable instructions, critiques and sug-

gestions in the process of my PhD study, which are deeply appreciated. Dr. Gabrielle Allan

introduced me into the world of Grid computing and gave my research a lot of valuable

suggestions. Dr. Steven Sears taught me to bear the industrial applicability in mind when

developing a work flow. Dr. John R. Smith gave me suggestions and comments to my research.

I am grateful to all the PETE faculty members for offering high quality learning experience

and making the school a wonderful place to start a career in petroleum engineering.

I thank Dr. Lei Zhou, the research of the Center for Computation and Technology (CCT).

His creative work and original middleware code have greatly contributed to the UCoMS

project (Ubiquitous Computing and Monitoring System for Discovery and Management of

Energy Resources). I would like to extend my thanks to all the other members who have

worked for UCoMS: Dayong Huang (Grid data archive), Chongjie Zhang (Grid portal),

Promita Chakraborty, John Lewis, Archit Kulshrestha (Grid testbed), and Yaakoub El-

Khamra. I also thank the Grid testbeds provided by CCT. I extend thanks to the Department

of Energy and Louisiana Board of Regents for providing sponsorship (award No. DE-FG02-

04ER46136) that made this research possible.

ii



Licences for the ECLIPSETMBlack Oil Reservoir Simulator were provided by Schlum-

berger. I thank iReservoir.Inc for providing me internship opportunities from which I gained

deep insight to the application of reservoir simulation and automatic history matching meth-

ods. During my internship, Mr. James Gilman was a wonderful mentor who taught me a great

deal of practical knowledge of reservoir simulation.

My graduate study would not be as enjoyable without all my wonderful colleagues and

dear friends: Subhash Kalla, Bobby Kurniawan, Hong Tang, Feng Wang, and many others.

They provided encouragement and support throughout my graduate study. I would also like

to thank them all for the splendid shared moments.

I am thankful to my husband Shengkai Duan and my daughter Cindy Duan for their

unconditional love, and support over the years.

This work is dedicated to my parents, Shilun Li and Yongming Wu, for their guidance and

unconditional love.

iii



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Significance of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Closed Loop Management . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Model Updating Process . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 From Current to Emerging Methods: the Ensemble Kalman Filter . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Computation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 EnKF Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Gradient-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Ensemble Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 History Matching as a Minimization Problem . . . . . . . . . . . . . 11
1.3.4 Uncertainty Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Objectives and Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2: Grid Computing for Designed Simulation . . . . . . . . . . . . . . . . . . . . . 16
2.1 Grid Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 ResGrid Implementation . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 ResGrid Description . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Geostatistical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Design of Experiments (DOE) and Response Surface Model (RSM) . 27
2.2.3 Model Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Geostatistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 3: Background and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Flow Equations in Porous Media . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Terminology in Continuous Reservoir Model Updating by EnKF . . . . . . . 39
3.3 Background on the Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Ensemble Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Forecast Step for Reservoir Models . . . . . . . . . . . . . . . . . . . 48
3.3.3 Update Step for Reservoir Models . . . . . . . . . . . . . . . . . . . . 49
3.3.4 Implementation of EnKF . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Statistical Measures of the EnKF Performance . . . . . . . . . . . . . . . . . 52

iv



3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 4: Application of the Ensemble Kalman Filter to Continuous Model
Updating on Grid Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Description of Grid Computing for EnKF . . . . . . . . . . . . . . . . . . . . 55
4.2 2-D Waterflood Analysis Using the EnKF . . . . . . . . . . . . . . . . . . . 59

4.2.1 Behavior of the EnKF . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 5: Model Inversion of a 3-D Synthetic Case . . . . . . . . . . . . . . . . . . . . . . 66
5.1 Introduction to the PUNQ-S3 Model . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Model History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Observation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Production History Match Results . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Porosity Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 6: Exploration of Ensemble Kalman Filter Divergence . . . . . . . . . . . 82
6.1 Analysis of Errors as Function of Assimilation Frequency . . . . . . . . . . . 83
6.2 Analysis of Errors as Function of Inflation Factor . . . . . . . . . . . . . . . 88

6.2.1 Revisiting the Update Scheme of EnKF . . . . . . . . . . . . . . . . . 88
6.2.2 The Impact of Error Covariance on Filter Divergence . . . . . . . . . 90

6.3 Analysis of Errors as a Function of Localization . . . . . . . . . . . . . . . . 95
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 7: Data Assimilation in Strongly Nonlinear and Non-Gaussian Prob-
lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1 Example 1: One-Dimensional Buckley-Leverett Problem . . . . . . . . . . . . 100

7.1.1 Generation of the Initial Reservoir Model . . . . . . . . . . . . . . . . 100
7.1.2 Solving the Problem with Updated Saturations . . . . . . . . . . . . 102
7.1.3 Error Covariance Problem with the Iteration Method . . . . . . . . . 108

7.2 Ensemble Kalman Filter with Reparameterization . . . . . . . . . . . . . . . 109
7.2.1 State Vector Construction . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.2 EnKF Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 EnKF with Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4 Comparison of EnKF with Reparameterization and Truncation . . . . . . . . 117

7.4.1 Comparison of Model Parameter Estimates . . . . . . . . . . . . . . . 117
7.4.2 Comparison of Forecast Mismatches . . . . . . . . . . . . . . . . . . . 119
7.4.3 Consistency Check for the EnKF with Truncation . . . . . . . . . . . 121

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 8: Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.1 Improved Ensemble Selection Using Many Secondary Responses . . . . . . . 125
8.2 Ensemble-Based Closed-Loop Work Flow . . . . . . . . . . . . . . . . . . . . 127
8.3 Grid Computing Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

v



8.3.1 Reservoir Simulation Capabilities . . . . . . . . . . . . . . . . . . . . 130
8.3.2 Resource Pricing and Run Strategy . . . . . . . . . . . . . . . . . . . 131
8.3.3 Process Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4 EnKF Application Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.5 Variance Trade-Offs in the EnKF . . . . . . . . . . . . . . . . . . . . . . . . 133

Chapter 9: Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Appendix A. Geostatistical Studies Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix B. Build the Initial PUNQ-S3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Appendix C. Production Assimilation Data of PUNQ-S3 . . . . . . . . . . . . . . . . . . 157

Appendix D. Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

vi



List of Tables

2.1 Resource list example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Designed factors and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Simulation model parameters summary . . . . . . . . . . . . . . . . . . . . . 30

2.4 Box-Cox transformation result analysis for LUSIM . . . . . . . . . . . . . . . 30

2.5 Weighted Least Square result analysis for LUSIM . . . . . . . . . . . . . . . 31

2.6 Comparison between LUSIM and SGSIM . . . . . . . . . . . . . . . . . . . . 34

3.1 Summary of two-step procedure of the Kalman filter at measurement tk. . . 45

5.1 PUNQ-S3 model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 PUNQ-S3 well locations and perforated layers . . . . . . . . . . . . . . . . . 68

5.3 Standard deviations of the noises added to observed data. . . . . . . . . . . . 70

6.1 The final results for all the cases . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 t-test and F -test for σt between reparameterization and truncation . . . . . 118

A-1 t- and F-test of LUSIM and SGSIM for k̄ (maximum continuity) . . . . . . . 148

A-2 t- and F-test of LUSIM and SGSIM for NpD1 (maximum continuity). . . . . 148

A-3 t- and F-test of LUSIM and SGSIM for τBT (maximum continuity). . . . . . 149

A-4 t- and F-test of LUSIM and SGSIM for k̄ (minimum continuity). . . . . . . . 149

A-5 t- and F-test of LUSIM and SGSIM for NpD1 (minimum continuity) . . . . . 150

A-6 t- and F-test of LUSIM and SGSIM for τBT (minimum continuity). . . . . . 150

A-7 t- and F-test of LUSIM and HYBRID in maximum continuity direction . . . 151

A-8 t- and F-test of LUSIM and HYBRID in minimum continuity direction. . . . 151

A-9 t- and F-test of LUSIM and SPECSIM in maximum continuity direction. . . 152

A-10 t- and F-test of LUSIM and SPECSIM in minimum continuity direction . . . 152

B-1 Sedimentary facies with estimates for width and spacing for major flow units. 153

B-2 Sedimentary facies with estimates of proportion for major flow units. . . . . 154

vii



B-3 Well property data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B-4 Mean and variance of sedimentary facies. . . . . . . . . . . . . . . . . . . . . 155

B-5 Geostatistical data for all layers. . . . . . . . . . . . . . . . . . . . . . . . . . 156

C-1 The kinds and numbers of data available at different measurement times. . . 157

viii



List of Figures

1.1 Closed-loop work flow for real-time reservoir management (Jansen et al. 2005) 2

1.2 Trend of simulation model gridblock resolution for three decades. . . . . . . 4

2.1 ResGrid usage scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 UCoMS portal login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 UCoMS portal usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Reproduced variance models of SGSIM,LUSIM compared with given model . 32

2.5 Comparison of fractional flow between LUSIM and SGSIM . . . . . . . . . . 32

4.1 Workflow for Automatic history matching by EnKF on Grid . . . . . . . . . 57

4.2 The evolution of mean and variance contours of 400 realizations. . . . . . . . 62

4.3 ln k contours comparison among ensemble members, mean and reference. . . 63

4.4 Oil production rate forecast of P4 in 200 days . . . . . . . . . . . . . . . . . 64

5.1 Top of structure map for the PUNQ-S3 reservoir. . . . . . . . . . . . . . . . 68

5.2 Comparison with uncertainty estimate from PUNQS3 study. . . . . . . . . . 73

5.3 Porosity of a realization for layer 1 at different assimilation steps . . . . . . . 75

5.4 Porosity of a realization for layer 2 at different phases . . . . . . . . . . . . . 76

5.5 Porosity of a realization for layer 3 at different phases . . . . . . . . . . . . . 77

5.6 Porosity of a realization for layer 4 at different phases . . . . . . . . . . . . . 78

5.7 Porosity of a realization for layer 5 at different phases . . . . . . . . . . . . . 79

5.8 σt and σe for porosity estimates. . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Contour of ln k comparisons between truth and base case . . . . . . . . . . . 84

6.2 Production performance of P4 from “truth” model . . . . . . . . . . . . . . . 84

6.3 The P4 water cut forecast by updated model (Case I) . . . . . . . . . . . . . 86

6.4 Contour of ln k comparisons between reference and ensemble mean from Case II 86

6.5 Influence of assimilation frequency . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



6.6 Filter divergence analysis (Hamill and Whitabker 2001) . . . . . . . . . . . . 91

6.7 Impact of 1 percent inflation factor on the performance of the EnKF . . . . 94

6.8 Sensitivity of inflation factor to ensemble size . . . . . . . . . . . . . . . . . 95

6.9 Kalman gain computed from well P1 vs. distance at different assimilation time 96

6.10 Effects of localization on the performance of the EnKF . . . . . . . . . . . . 98

7.1 Mismatched water saturation profiles because of late EnKF assimilation. . . 103

7.2 Divergent reservoir properties after late EnKF assimilation timing. . . . . . . 104

7.3 First update by EnKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Water saturation histogram at gridblock 20 . . . . . . . . . . . . . . . . . . . 106

7.5 Water saturation contours after iteration at 65 days . . . . . . . . . . . . . . 107

7.6 The water saturation versus time at initial condition with red curve as referece112

7.7 Distribution of the water front arrival time at gridblock 20 . . . . . . . . . . 113

7.8 The water saturation versus time after EnKF with red curve as referece . . . 114

7.9 The water saturation versus time with red curve as truth . . . . . . . . . . . 115

7.10 Truncated water saturation profile. . . . . . . . . . . . . . . . . . . . . . . . 116

7.11 σts and σes of φ and ln k estimates from truncation and reparameterization. . 118

7.12 Relative error of φ and ln k between truncation and reparameterization. . . . 119

7.13 P4 water cut forecast comparisons between truncation and reparameterization 120

7.14 P4 water cut forecast σt comparison between truncation and reparameterization.121

7.15 P4 water cut forecast by the EnKF with truncation. . . . . . . . . . . . . . . 121

7.16 Distribution of water-in-place of the EnKF with truncation method . . . . . 123

7.17 Relative error of water-in-place between truncation and “truth” . . . . . . . 123

8.1 Work flow for closed-loop management on Grid. . . . . . . . . . . . . . . . . 128

B-1 ln k, ln kzvs. porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

x



Abstract

A reservoir engineering Grid computing toolkit, ResGrid and its extensions, were developed

and applied to designed reservoir simulation studies and continuous reservoir model updat-

ing. The toolkit provides reservoir engineers with high performance computing capacity to

complete their projects without requiring them to delve into Grid resource heterogeneity,

security certification, or network protocols.

Continuous and real-time reservoir model updating is an important component of closed-

loop model-based reservoir management. The method must rapidly and continuously update

reservoir models by assimilating production data, so that the performance predictions and the

associated uncertainty are up-to-date for optimization. The ensemble Kalman filter (EnKF),

a Bayesian approach for model updating, uses Monte Carlo statistics for fusing observation

data with forecasts from simulations to estimate a range of plausible models. The ensemble

of updated models can be used for uncertainty forecasting or optimization.

Grid environments aggregate geographically distributed, heterogeneous resources. Their

virtual architecture can handle many large parallel simulation runs, and is thus well suited to

solving model-based reservoir management problems. In the study, the ResGrid workflow

for Grid-based designed reservoir simulation and an adapted workflow provide tools for

building prior model ensembles, task farming and execution, extracting simulator output

results, implementing the EnKF, and using a web portal for invoking those scripts.

The ResGrid workflow is demonstrated for a geostatistical study of 3-D displacements

in heterogeneous reservoirs. A suite of 1920 simulations assesses the effects of geostatistical

methods and model parameters. Multiple runs are simultaneously executed using parallel

Grid computing. Flow response analyses indicate that efficient, widely-used sequential geo-

statistical simulation methods may overestimate flow response variability when compared to

more rigorous but computationally costly direct methods.

xi



Although the EnKF has attracted great interest in reservoir engineering, some aspects of

the EnKF remain poorly understood, and are explored in the dissertation. First, guidelines

are offered to select data assimilation intervals. Second, an adaptive covariance inflation

method is shown to be effective to stabilize the EnKF. Third, we show that simple trunca-

tion can correct negative effects of nonlinearity and non-Gaussianity as effectively as more

complex and expensive reparameterization methods.

xii



Chapter 1
Introduction

1.1 Significance of the Research

This research uses the UCoMS (Ubiquitous Computing and Monitoring System for Dis-

covery and Management of Energy Resources) grid for reservoir characterization, design of

experiments, and model inversion through continuous reservoir model updating.

1.1.1 Closed Loop Management

Closed-loop model-based reservoir management (Jansen et al. 2005; Figure 1.1) allows real-

time decisions to be made that maximize the production potential from a reservoir. These

decisions are based on the most current information available from the reservoir models.

Essential elements of closed-loop reservoir management are model-based optimisation and

data assimilation techniques (automatic history matching). In addition, techniques for model

reduction and uncertainty assessment may play a role. The closed-loop model-based reservoir

management, also called “smart fields”, “e-field” or “digital oil field” technology, it involves

the use of reservoir system models in a closed-loop fashion. This dissertation will focus on

data assimilation process. Data assimilation is the process that rapidly completes reservoir

model inversion and uncertainty estimation conditioned on the measured observations be-

cause accurate real-time model calibration may greatly improve predictions and optimization

results.

1.1.2 Model Updating Process

Conditioning static geophysical and geological data to sequential production observations to

infer more accurate actual estimates of poorly known reservoir model parameters (e.g., k and

φ for all gridblocks) is termed model updating. Model updating is an important component
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Figure 1.1: Closed-loop work flow for real-time reservoir management (Jansen et al. 2005)

of managing production policies according to the “closed-loop” concept. The term “model

updating” emphasizes the sequential nature of the process and implies its Bayesian roots.

Related terms for such processes include “history matching,” which emphasizes adjustments

to reconcile production measurements and model predictions; and “inversion,” which is a

more general mathematical term (commonly used in geophysics).

In oil and gas fields, increased use of permanent gauges or distributed downhole sensors

(such as optical fiber sensors and 4D seismic technology; Brown and Hartog 2002; Manin,

Charara, and Delhomme 2002; Haddad, Proano, and Patel 2004; Marschall and Sherlock

2002) for monitoring bottom-hole pressure, temperature, resistivity, flow rate measurement,

and flow controls has added impetus to the need for continuous model updating. This move

to greater instrumentation is sometimes referred to as using “smart” or “intelligent” well

technology (Addiego-Guevara, Jackson, and Giddins 2008). Geoscientists and engineers wish

to incorporate these data as soon as they are obtained so that the reservoir model is always

up to date, and more useful for decision making. Brouwer et al. (2001) combined the data

assimilation and optimization algorithms to decision making of a water flooding case. The
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increase in recovery obtained varied between 0-20 percent. The delay in breakthrough time

achieved by the routine varied from 7-168 percent.

However, the field application of true data assimilation is in its infancy, reservoir engi-

neers have commonly used trial-and-error to find model parameters to reduce the mismatch

between actual measurements and model simulation responses. The matching techniques

are usually ad-hoc and not focused on the balanced use of responses from various sources.

Efficient and reliable techniques for data assimilation are required.

1.1.3 From Current to Emerging Methods: the Ensemble Kalman
Filter

Although the history matching process has been more automated, a large programming and

computational effort is still required, either in objective function evaluation (nongradient-

based minimization methods), or in gradient computation (gradient-based minimization

methods). If gradient-based minimization methods are used, the adjoint method is the most

efficient way to compute the gradient of a defined objective function (Li, Reynolds, and

Oliver 2003). The adjoint system requires modifying the source code of the reservoir simu-

lator, which is time-consuming and sometimes is impossible when a commercial simulator

is used. Furthermore, if we choose a different simulator, the adjoint calculations must be

recoded as well. Finally, uncertainty estimation with gradient methods requires multiple

history matches.

Hence the heavy programming burden, high data-sampling frequency, noise in data, and

uncertainty forecasting requirement have motivated reservoir engineers to use the ensemble

Kalman filter (EnKF) in closed-loop reservoir management.

EnKF has gained popularity for reservoir monitoring and continuous model updating

because of its simple formulation, the ability to account for the possible model noise and

error, and the relative ease of implementation for any simulators. It requires no derivation of a

tangent linear operator (Tarantola 1997) or adjoint equations (and no integrations backward
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Figure 1.2: Trend of simulation model gridblock resolution for three decades (Fjerstad et al.
2005).

in time, as required by adjoints). This supports efficient uncertainty assessment and diverse

data integration. However, the EnKF still requires many runs — an ensemble — to provide

stable estimates of covariances.

1.2 Problem Statement

Two kinds of problems associated with EnKF are discussed in the following sections.

1.2.1 Computation Problems

Increases in model gridblock numbers is clearly linked with increasing availability of compu-

tation resources over the last 30 years (Figure 1.2). Early coarse models and limited numbers

of runs were based on large mainframes. Beginning in the late 80s, engineers could access

workstations, and began to use refined grid models, which were more representative of the

subsurface geological model. More recently, the evolution of workstations to clusters greatly

expanded capabilities. More computation resources and data storage spaces are needed for

simulation studies to overcome the limitations in problem size and memory, enabling geol-
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ogists and reservoir engineers to include the more realistic geologic and engineering details

needed for better production optimization. At present, the gridblocks of models used in the

oil and gas industry are around 105 − 106 and sometimes reach 107. Therefore, reservoir en-

gineers need a versatile tool to study reservoir performance and make real-time operational

decisions for their reservoir with low computation costs and less run time.

Grid computing technology assembles widely distributed, dynamic, and heterogeneous

resources into a virtual organization, and has been viewed as a promising platform for large-

scale scientific applications. It decomposes the computation problem, and then distributes its

components across a set of computational resources, each to run on the most suitable com-

puting equipment, database server, storage server, or other specialized device. In addition

to hardware, the grid encompasses software architectures for parallel computing, commu-

nications protocols, scheduling, security and policy mechanisms (Allen et al. 2005). Grid

computing is well suited for designed reservoir simulation studies and continuous model

updating with EnKF because the independent runs from designs or ensembles are easy to

distribute in grid environments which allows parallelism.

However, when multiple distributed computers are used to perform the task, the synchro-

nization of simulations for all ensemble members at data forecast steps affects computation

efficiency. Synchronization refers to the requirement that all ensemble member simulations

must run to the assimilation point in the same runtime to avoid wasted waiting time on the

processors. The diverse reservoir models have different runtimes, which can make synchro-

nization process difficult and increase the overhead time. Grid environments may impose

challenges such as multiple queue times and system shut-downs or reboots, further compli-

cating synchronization. In addition, data transfer on Grid imposes an additional burden for

network because of large data sets comprising models, Kalman gain and state vector. The

more complex reservoir geological models are, the greater the data transferring problem will

be.
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Many efforts in grid communities have focused on middleware research and development.

However, grid application-level tools are needed which can build higher-level functionalities

on top of core middleware services. It is useful to provide reservoir engineers with a grid-

enabled framework for reservoir simulation studies using experimental design and continuous

reservoir model updating.

1.2.2 EnKF Problems

Despite progress on the EnKF, ensemble forecasting is not yet used to its full potential

in reservoir management. The EnKF is still a relatively new endeavor and there are many

problems which need to be solved. First, “filter divergence” is one of potential problems

with the EnKF. It causes an increasing error in model parameter estimate as the EnKF is

used to sequentially assimilate observed measurements. Then, the EnKF becomes unstable

after a number of assimilation steps and leads to a useless forecasting ensemble. The possible

causes, effects and solutions of “divergent filters” phenomena have not been systematically

investigated before in continuous reservoir model updating application. Secondly, in the

presence of strong nonliearity and non-Gaussianities of state vectors, the EnKF can generate

nonphysical model variables which do not honor the future observations. Which method is

more efficient, keeps the simplicity of EnKF and is reasonably accurate to solve the problem,

EnKF with reparameterization or EnKF with truncation (which is more efficient but not

as well proven before?) The performance comparison between the two methods is the best

guide for reservoir engineers. Finally, it is important to seek ways to provide answers to one

critical question: what is the optimal frequency for the updating of reservoir models?

1.3 Literature Review

Automatic history matching (model inversion/continuous reservoir model updating) in reser-

voir simulation is an ill-posed problem with non-unique solutions, because of nonlinearity and

the large number of model parameters. The problem of reservoir characterization through
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automatic history matching has been extensively studied since the 1970s. Among existing

history matching algorithms, gradient-based methods and ensemble Kalman filters are two

important categories. In the following Sections 1.3.1 and 1.3.2, the development and current

research status of each algorithm are introduced.

1.3.1 Gradient-Based Methods

Adjoints (Chen et al. 1974) have been used for history match and applied to one-phase flow

problems. The method has been modified and improved for multiphase history matching

(Wasserman, Emanuel, and Seinfeld 1974; Watson et al. 1979; Lee and Seinfeld 1987; Zhang

and Reynolds 2002). These investigators used adjoint models to calculate the gradient of an

objective function with the least square error between calculated and observed data, then

applied first order gradient-based optimization algorithms to perform the minimization. This

is one of the most efficient methods available to solve the history matching problem.

Another gradient-based approach is the sensitivity coefficient method, in which gradients

of all observed data with respect to the model parameters (termed sensitivity coefficients)

are calculated. This can then be used to calculate the Hessian for use with more efficient

second order optimization algorithms such as the Gauss-Newton method. This approach was

proposed by Carter et al. (1974) for single-phase problems and later extended in a compu-

tationally efficient way for 3D problems by He, Reynolds, and Oliver (1996). Although this

approach is efficient, it cannot be used to calculate the sensitivity coefficients for multiphase

flow problems. A more general approach is the use of the gradient simulator to calculate

the sensitivity coefficients. Procedures of this type have been described by many authors

(Anterion, Karcher, and Eymard 1989; Bissel 1994; Landa and Horne 1997; Wu, Reynolds,

and Oliver 1999; Wu and Datta-Gupta 2002; Li, Reynolds, and Oliver 2003). Unfortunately,

this approach is complex and difficult for large-scale simulation problems as it is expensive

to compute sensitivity coefficients when the number of observed data or model parameters

exceeds a few hundred.
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1.3.2 Ensemble Kalman Filter

The Kalman filter was originally developed to continuously update the states of linear sys-

tems to honor the available noisy measurements (Jazwinski 1970). For highly nonlinear

models, the ensemble Kalman filter (EnKF) was introduced by Evensen (1994). EnKF uses

an ensemble of models from which parameter uncertainties (i.e., correlation between model

parameters and responses) can be directly computed. Interest in data assimilation methods

using ensembles of prediction models is growing in weather forecasting, oceanography, and

hydrology (Houtekamer and Mitchell 1998; Reichle, McLaughlin, and Entekhabi 2002; Mar-

gulis et al. 2002). Researchers are interested in characterizing more information about the

probability distribution of their dynamic system than can be revealed by a single assimilated

state estimate. In these applications, only dynamic state variables are updated. However, in

automatic history matching application, both static and dynamic parameters are simulta-

neously tuned to assimilate new measurements. In petroleum engineering, the method was

first applied to well flow modeling (Lorentzen et al. 2001). Navdal, Mannseth, and Vefring

(2002) used the EnKF to update the permeability in a near-well model. This approach was

later developed to update 2D three-phase reservoir models by continuously adjusting the

permeability, saturation and pressure fields at each assimilation step (Navdal et al. 2005).

In the last case, the assimilation step was at least once a month and when new wells started

production or wells were shut in. Gu and Oliver (2005, 2006) used EnKF to tune porosity,

permeability, pressure and saturation in a widely-studied reservoir test case, the PUNQ-S3

model. Furthermore, Brouwer et al. (2004) combine EnKF for continuous model updating

with an automated adjoint-based waterflood optimization to optimize waterflooding strat-

egy. Liu and Oliver (2005) applied EnKF to facies estimation in reservoir models. This is

a highly nonlinear problem where the distributions of petrophysical properties are multi-

modal. Results from their previous studies have shown that the EnKF can be efficient and

robust. Wen and Chen (2005a, 2005b) have added a conforming step to EnKF to ensure that
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the updated dynamic and static variables are always consistent. However, the conforming

EnKF fails to provide a correct estimates of porosity and permeability because of mismatches

between model parameters and state solution used to reinitialize the reservoir flow equations.

To reduce uncertainty in estimation, Skjervheim et al. (2005) and Dong and Oliver (2005)

used the EnKF to assimilate seismic 4D data and production data to provide dense infor-

mation across whole field. A comparison of EnKF with Randomized Maximum Likelihood

(RML) within a Bayesian framework show both of them give a reasonable quantification of

the uncertainty in performance predictions (Gao, Zafari, and Reynolds 2006). Evensen et al.

(2007) used EnKF for model inversion of a North Sea reservoir and successfully adjusted

not only porosity and permeability, but also fluid contacts, vertical transmissivity multi-

pliers and fault transmissibility multipliers. Li and Reynolds (2007) presented the iterated

ensemble Kalman filter (IEnKF) update used when standard EnKF method fails to give an

adequate data match, which is an application of the Gauss-Newton method for approximating

a maximum likelihood estimate. First iterative EnKF (IEnKF(1)) requires an adjoint solu-

tion back to time zero which is identical to Randomized Maximum Likelihood (RML) using

LBFGS (limited memory Broyden-Fletcher-Gikdfarb-Shanno) to minimize the appropriate

objective functions (Zhang and Reynolds 2002; Gao, Zafari, and Reynolds 2006). In order to

save computational time, the third iterative EnKF (IEnKF(3)) is derived by only requiring

an adjoint solution from the current data assimilation time to the prior data assimilation

time. The difference of IEnKF(1) and IEnKF(3) are: IEnKF(1) matches all the observation

up to the current assimilation time but IEnKF(3) matches the observation measurements at

current assimilation step; IEnKF(1) requires far more computational time than the standard

EnKF method and IEnKF(3) is highly efficient iterative method; IEnKF(3) gives better

future performance predictions than standard EnKF but far less accurate than IEnKF(1).

In recent years, various methods have been proposed to combine the updated reservoir

model(s) with optimization control theory to determine optimal operating conditions to

maximize hydrocarbon production or net present value (NPV) for the remaining expected
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life of the reservoir. Brouwer et al. (2004) used an adjoint method for optimization and the

EnKF for model updating. Sarma et al. (2005) used an adjoint method for both the model

updating and the production optimization. Wang, Li, and Reynolds (2007) accomplished

closed-loop reservoir management with EnKF for data assimilation and three methods for

production optimization. They concluded that the steepest ascent method with gradients

provided by numerical perturbation gave better results than those with gradients provided

by either an ensemble or simultaneous perturbation stochastic approximation. Lorentzen

et al. (2006) directly adopted the EnKF method to optimize choke settings. They utilized

the sensitivity approximated by the ensemble but did not make the process clear and the

use of a preset upper limit might need more justification. Chen, Oliver, and Zhang (2008)

presented an ensemble-based optimization (EnOpt) method to improve direction searching

in the production optimization and maximize the expected net present value mean for an

ensemble instead of a single reservoir model.

Computational efficiency of the EnKF depends on ensemble size. Researchers try to im-

prove the efficiency of EnKF by improving initial sampling such that a small ensemble

size can provide as large an uncertainty space span as possible. Methods for sampling a

given random variable for efficient uncertainty propagation calculation are applied, such as

the polynomial chaos expansion or probabilistic collocation method (Xiu and Karniadaskis

2003). Sarma et al. (2005) evaluated such methods for optimal encapsulation of information

contained in an input random variables and output random flow variables. These methods

require the independent random variables; thus a methodology for representing a spatial

correlated random function by a series of independent random variables is required, e.g., a

Karhunen-Loveve (KL) expansion, which is a form of eigenvector expansion. A dimension-

reduced Kalman filter based on K-L decomposition was proposed by Zhang, Lu, and Chen

(2007). This type of operation can be inefficient for large systems because of the eigenvalue

and eigenvector calculations. Evensen (2004) has examined resampling of smaller number of
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ensemble members from the suite of realization sets; he reports a larger uncertainty space

than naive selection from the suite of realization sets.

1.3.3 History Matching as a Minimization Problem

In this section, the basic notation for the history matching problem in a Bayesian setting

is introduced. We discuss the computation of the maximum a posteriori (MAP) estimate

of reservoir variables and randomized maximum likelihood (RML). The uncertainty in the

future performance prediction assessed by the RML method is similar to that by EnKF

(Gao, Zafari, and Reynolds 2006); both aim to estimate distributions of models rather than

single, most-likely values.

The objective function to be minimized for model inversion problem is constructed to

integrate all available data. In the early stage of history matching (Jahns 1966; Jacquard

and Jain 1965; Chen et al. 1974), only dynamic data were integrated in history matching,

and the objective function was a weighted mismatch between observed production data,

dobs ∈ RNd , and predicted production data, g(m) ∈ RNd .

O(m) = [g(m)− dobs]
T

Wd[g(m)− dobs], (1.1)

In the equation, Wd is an Nd×Nd weighting matrix and Nd is the number of observations.

If Wd is the inverse covariance matrix of the measurement errors of the data integrated C−1
D ,

then CD quantifies observation errors, and minimization of objective function Eq. 1.1 yields

the maximum likelihood estimate of the model. In most model inversion cases, the number of

observations is less than the number of model parameters; these are termed underdetermined

problems.

The objective function O(m) with an added regularization term in Eq. 1.2, leads to

estimates for the property fields which should be unique (or at least less rank-deficient),

smoothly varying functions of position that have only the amount of variation necessary to

satisfy the measured data and the spatial correlation provided by the geostatistical data
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(Tarantola 1997).

O(m) = [g(m)− dobs]
T

Wd[g(m)− dobs] + [m−mprior]
T

Wm[m−mprior], (1.2)

where Wm is an Nm × Nm matrix, termed the model weighting matrix, mprior denotes

the prior estimate of model parameters, and Nm is the number of model parameters. Wd,

Wm and m0 are chosen by the information of measurement errors, spatial correlation of

model parameters and initial geophysical and geological information. Eq. 1.2 means that

the model parameters with the highest probability of being correct (given the current state

of information) are those models that are “close” to the prior model and that honor the

observation data.

Assuming the prior pdf (probability density function) for m is a multivariate Gaussian

random variable with mean mprior and covariance matrix CM , then Eq. 1.3 holds. The

conditional pdf (or the a posteriori pdf) for model m given observation dobs can be derived

using an application of Bayes theorem (Jackson 1979; Tarantola and Valette 1982),

πp(m) = a exp(−1

2
(m−mprior)

TC−1
M (m−mprior)), (1.3)

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
= c exp([−O(m)]), (1.4)

where c is the normalizing constant, and O(m) is the objective function given by,

O(m) =
1

2
[g(m)− dobs]

T

C−1
d [g(m)− dobs] +

1

2
[m−mprior]

T

C−1
M [m−mprior], (1.5)

For Monte Carlo methods, like EnKF, we need not estimate the value of c. The maximum a

posteriori (MAP) estimate, m∞ is obtained by minimizing the objective function given by

Eq. 1.5. In practice, minimizing the objective function once merely provides one realization

of reservoir field because of the nonlinearity and nonuniqueness of the reservoir simulation

equations (discussion of RML, next section). Moreover, the minimization process is very

demanding in both gradient and search direction computations.
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1.3.4 Uncertainty Assessment

It is difficult to sample the a posteriori pdf for nonlinear problems. The rejection algorithm

is theoretically correct, but it is impractical for the problems of conditioning a reservoir

model to production data (Liu, Betancourt, and Oliver 2001). Markov chain Monte Carlo

(MCMC) is another rigorous sampling method. Unfortunately, it appears to be too ineffi-

cient computationally for practical applications even with modifications designed to improve

its computational efficiency (Oliver, Luciane, and Reynolds 1997). Although it is possible

to get some measure of the uncertainty in model parameters by calculating of the a pos-

teriori covariance matrix (Oliver 1994; Tarantola 1997), the approach assumes that the a

posteriori pdf can be approximated by a Gaussian centered at the MAP estimate. However,

approximating the pdf by a Gaussian does not appear to provide a good basis for predicting

the uncertainty in performance predictions (Liu, Betancourt, and Oliver 2001).Although it is

possible to get some measure of the uncertainty in model parameters by calculating the a pos-

teriori covariance matrix (Oliver 1994; Tarantola 1997), the approach assumes that the pdf

can be approximated by a Gaussian centered at the MAP estimate. However, approximating

the a posteriori pdf by a Gaussian does not appear to provide a good basis for predicting

the uncertainty in performance predictions (Liu, Betancourt, and Oliver 2001). Oliver, He,

and Reynolds (1996) proposed using the randomized maximum likelihood (RML) method

to generate an approximate sampling of the a posteriori pdf. A conditional realization is

generated by minimizing the objective function given by

O(m) =
1

2
[g(m)− duc]

T

C−1
d [g(m)− duc] +

1

2
[m−muc]

T

C−1
M [m−muc], (1.6)

where muc is an unconditional realization defined by

muc = mprior + C
1/2
M zM , (1.7)

and duc is obtained by adding noise to the observed data,

duc = dobs + C
1/2
D zD, (1.8)
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zM and zd are Nm and Nd dimensional column vectors of independent traditional random

normal deviates and C
1/2
M and C

1/2
D denote the square root of CM and CD. If CD is diagonal,

generating the square root simply requires taking the square root of the diagonal elements;

for general CM , an LU-decomposition (e.g., Cholesky) is used to compute
√

CM , which may

be expensive (Oliver, He, and Reynolds 1996). For large scale problems, the unconditional

realizations muc may also be generated from the prior model by sequential Gaussian cosimu-

lation. A series of conditional realizations can be then generated by minimizing the objective

function Eq.1.6 with different realizations of muc and duc.

Liu, Betancourt, and Oliver (2001) compared the results obtained by different sampling

methods with a 1-D single phase test example. They generated sets of 5,000 realizations using

different sampling methods. The results show that the RML method produces distributions

of reservoir properties similar to MCMC (which is known to be correct in the limit of very

large samples).

1.4 Objectives and Research Scope

The main goal of this research is to develop grid-based software for designed reservoir simu-

lation studies and continuous reservoir updating with EnKF (in cooperation with researchers

from the Center for Computation Technology). Then use the software to explore the char-

acteristics and performance of EnKF. The focus is on the following parts:

1. To collaborate with computer science researchers to implement a designed reservoir

simulation studies work flow in high-performance Grid computing environments and

evaluate geostatistics algorithms with the software – ResGrid;

2. To develop the EnKF “plug-in” for the continuous reservoir model updating work flow

and solution extraction codes from simulation output. To implement the EnKF on

Grid by extending the ResGrid;
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3. To investigate the behavior and performance of the EnKF, especially focus on studies

on two potential problems of the EnKF: the reasons causing its failure to converge to

its solutions, the efficient way to solve the strongly nonlinear, non-Gaussian problem.

4. Explore the efficiency of grid computing for this application area.

There are nine chapters in this dissertation. Chapter 1 (this chapter) gives a brief re-

view of research objectives, a statement of problems and the relevant literature. Chapter

2 illustrates the grid computing module (ResGrid) development, its components and the

flow chart. An application of ResGrid to a geostatistical algorithm comparison project is

included in the chapter. Chapter 3 includes an introduction of terminologies used in contin-

uous reservoir model updating, background of Kalman filter, extended Kalman filter, and

ensemble Kalman filter. The differences between Kalman filter and its variant are explained.

Chapter 4 introduces the EnKF on Grid workflow adapted from ResGrid and a 2-D wa-

terflooding case study by using the workflow. The computational efficiency and applicability

of grid computing are also discussed in this part. In Chapter 5, we generate a prototype

workflow for the well known 3-D three-phase test case, PUNQ-S3, to better understand the

EnKF behaviors and limitations. The influence of assimilation frequency on the EnKF re-

sults and the causes and solutions for the instability of EnKF are investigated in Chapter

6. Chapter 7 discusses how to use EnKF with a reparameterization method to solve a non-

linear and non-Gaussian state vector problem. The complete comparisons between EnKF

with reparameterization and EnKF with simple truncation are demonstrated in this part. In

Chapter 8, some topics of particular interest about the EnKF on Grid are discussed. Finally,

the summary and conclusions of the study are summarized in Chapter 9.
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Chapter 2
Grid Computing for Designed Simulation

In this chapter, we begin by discussing the features of Grid computing environment in Section

2.1, emphasizing those features that enhance reliability and usability, and that contribute

to decreased computing costs via a future market in secure, distributed Grid computing.

A workflow for Grid-based reservoir simulation is then outlined. This workflow includes

middleware for model building and execution, and a web portal for invoking those scripts.

This project uses softwares such as the Condor and Globus Toolkit to build and manage

workflow, Grid Security Infrastructure, Gridsphere for portal creation and management.

The workflow is demonstrated for a geostatistical study of three-dimensional displacements

in heterogeneous reservoirs. A regularly gridded, 3-D and multiphase reservoir simulator is

used. A suite of 1,920 simulations assesses the effects of geostatistical methods and param-

eters. Much of the pre- and post-processing is automated in this workflow, which is based

on experimental design. Multiple runs are simultaneously executed using parallel Grid com-

puting. Grid services manage security, data acquisition, resource brokering and allocation,

flow response analysis, and visualization; the reservoir engineer is freed from micromanaging

these workflow components.

2.1 Grid Environment

Grid computing emerged in the mid 1990s with the goal of making computer power as easy to

access as an electric power grid (Foster and Kesselman 1999). Grid computing is a subset of

distributed computing, distinguished by its focus on large-scale resource sharing, innovative

applications, and high-performance orientation. Grid computing is sometimes confused with

cluster computing. The key difference is that a cluster is a single set of nodes sitting in

16



one location, while a Grid may be composed of many machines or clusters with diverse

architectures, in addition to other resources (e.g., networks and storage facilities):

Therefore Grid computing enables the virtualization of distributed computing

and data resources such as processing, network bandwidth and storage capacity

to create a single system image, granting users and applications seamless access

to improved IT capabilities. Just as an Internet user views a unified instance of

content via the Web, a Grid user essentially sees a single, large virtual computer.

—Foster and Kesselman (1999)

Moreover,

At its core, Grid computing is based on an open set of standards and proto-

cols e.g., Open Grid Services Architecture (OGSA) that enable communication

across heterogeneous, geographically dispersed environments. With Grid com-

puting, organizations can optimize computing and data resources, pool them for

large capacity workloads, share them across networks and enable collaboration.

—(IBM Redbooks 2008)

Grid computing technology is likely to play a significant role in future high-performance

computing environments. It may enable new classes of computation-intensive applications, as

the Internet fostered the development of new classes of information-oriented applications. In

computational Grids, today’s large-scale computing challenges, such as reservoir simulation,

could become routine, and reservoir engineers would be able to explore a new generation

of tools that use teraflop computers and petabyte storage systems interconnected by giga-

bit networks. Grid computing not only allows reservoir engineers to share files, but also

resources. That is it not only enhances communication, but also fosters full collaboration to-

ward common goals. Depending on the Grid that is used, these aggregated resources might

comprise the majority of the supercomputers in the state or region.
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Technologies such as Grid Security Infrastructure (GSI), Globus Toolkit, Condor-G, Grid-

Sphere, and Simple API for Grid Application (SAGA), were applied in this research.

GSI is a specification for secure and authenticatable communication in the Grid computing

environment (Foster and Kesselman 1998).

Globus Toolkit (Globus 2008) is an open-source toolkit for building Grids, which inte-

grates or implements GSI, remote resource allocation, data location service, informa-

tion infrastructure, etc (Foster and Kesselman 1999).

Condor-G provides a job submission queue system for Grid computing. GridSphere is an

open-source portal framework, which offers web-based user management, access control,

and data and execution integration via its portlet-based architecture (Frey et al. 2002).

SAGA is the standard means for Grid application programming abstraction (Goodale1

et al. 2006), which is now on the threshold of becoming an Open Grid Forum (OGF)

technical recommendation (early 2008).

SAGA has the following properties suitable for constructing a designed simulation

study work flow (SAGA 2008):

1. Simple: easy to use, install, administer and maintain.

2. Uniform: provides support for different application programming languages as

well as consistent semantics and style for different Grid functionality.

3. Scalable: Contains mechanisms for the same application (source) code to run on

a variety of systems ranging from laptops to high performance resources.

4. Generic: adds support for different Grid middleware, even concurrent ones.

5. Modular: provides a easily extendable framework.

2.1.1 ResGrid Implementation

The ResGrid development includes Grid portal and middleware.
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2.1.1.1 Grid Portal Design

The Grid portal acts as the entry point for reservoir engineers to access Grid resources. A

reservoir engineer can submit and manage simulation jobs and keep track of a large number

of data files through a user-friendly web page with no need to type in any command lines.

First, the portal manages security. A Grid Security Infrastructure certificate is retrieved

from a proxy to provide authentication to access Grid resources. Secondly, the portal provides

web pages to specify all the geological and engineering data for building flow models. Then

the user can submit an ensemble of simulation jobs and track the progress of computation and

view the simulation results via this ResGrid portal. GridSphere and GridPortlets are chosen

for the ResGrid portal because they can speed the process of developing and deploying an

application portal. GridSphere is a free, open-source portal framework developed by the

GridLab project, which focused on developing Grid application tools and middleware.

2.1.1.2 Grid Middleware Design

ResGrid (Lei et al. 2006) is implemented in four modules:

1. Resource Broker module manages Grid resources to share loads across a Grid. It

captures resource information and uses load balancing strategies to dispatch the sim-

ulation runs. Two resource attributes are considered: computational capability and

architecture. A matrix describes a computing resource, including CPU number, CPU

speed, CPU load averages, network bandwidth, memory size and local resource man-

agement system load. These features summarize the computational capability of a

resource. The architecture factor can be employed to decide which type of geostatistics

algorithms and reservoir simulators should be staged in to which resource. We can

see there are three resources available in Table 2.1. One is a 256-node Linux cluster

with PBS as LRMS (Local Resource Management System). The second one is a 16-

node Linux cluster with PBS as LRMS. The third one is a 14-node AIX machine with

loadleveler. Additionally, there is a work directory (WORK DIR) for each facility. It
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Table 2.1: Resource list example

CPU# OS HOSTNAME WORK DIR LRMS

256 LINUX eric.loni.org /home1/xli pbs

16 LINUX cangrid.louisiana.edu /home1/xli pbs

14 AIX pelican.cct.lsu.edu /home/xli loadleveler

is the home directory of the local account of a Grid user. The Stage In/Out module

uses the work directory to update the executable and reservoir models, and download

the results. In the current step of research, CPU number (NΠ) and CPU speed (SΠ) of

a resource are critical because both geological modeling and reservoir flow simulation

are sequential processes. The computational capability of a resource χi is measured as

follows:

χi = NΠ × SΠ ∀i ∈ {1, 2, . . . , Nhosts} (2.1)

where Nhosts is the number of possible sites to distribute to, and

χT =

Nhosts∑
i=1

χi (2.2)

where χT is the total computational capability of all possible sites. The load balancing

strategy dispatches certain number of simulations to a resource according to its com-

putational capability. The following equation computes the number of simulations Nsj

submitted to a resource j:

Nsj = Nst ×
χj∑Nhosts

k=1 χk

(2.3)

where χi and χk are the computational capability of the resource i and k; Nst is the

total number of simulation runs.
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2. Stage In/Out module deploys the model data and executables to remote resources,

retrieves the simulation output from the remote resources and GridFTP the results

back to users’ master machine. Before uploading the executables, the Stage In checks

the Resource Broker module to obtain the type of operating system on a remote re-

source. Then it chooses the correct executable codes for geostatistical algorithm and

simulator. After retrieving the load balancing results from the Resource Broker module,

the Stage In/Out module calculates how many and which simulation models should be

run on a particular remote resource. This module also accesses the work directory of

a user on a particular remote resource. After obtaining the required information, this

module transfers the datasets back to users’ master machine.

3. Invoking module handles remote executions. The module communicates with the

LRMS on a remote resource and submits simulations to the corresponding LRMS.

4. Status Monitoring module communicates with LRMS. There are two levels of

queues for status monitoring: the resource queue on submission master machines and

the LRMS job queue on each particular resource. Each resource which is running sim-

ulations has an entry in resource queue. On a particular resource, the job queue of

LRMS is checked periodically. When all the simulations dispatched to the resource

have been done; the corresponding resource entry in resource queue is removed. A user

can get the simulation status from the resource queue.

2.1.2 ResGrid Description

ResGrid provides an environment for reservoir simulation studies. Its interfaces specifies the

geostatistical or engineering parameter, invoke stochastic and flow model simulations across

the Grid, monitor the simulation processing, and analyze and visualize simulation results.

The architecture of ResGrid is illustrated in Figure 2.1. Typically, the steps in ResGrid

can be summarized as following:
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Figure 2.1: ResGrid usage scenario. All the operations on large-scale reservoir uncertainty
analysis are completed via the Grid portal, interacting with various Grid services and re-
sources.

1. Users log in the ResGrid portal and retrieve a GSI certificate from a proxy server.

The certificate authorizes the user to access Grid resources and implement secure data

transfer (Figures 2.2(a), 2.2(b)).

2. On the job description page, users specify the general information of simulation jobs,

the name and description of the job and check the template if users have saved data

in database before. The functionality of the template is to avoid tedious repetition by

using a previously saved template by users.

3. On the model geometry page, users fill in the model geometry information and choose

the stochastic simulation algorithm and numerical simulator.

4. On the spatial variability page, the geostatistical data used for the reservoir property

fields are specified by the users according to the core, log data and geological knowledge

(Figure 2.3(a)).
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5. On the well completion page, the numbers of wells, well types and well locations are

specified by users. The portal will automatically check if the well locations are reason-

able. If not, an error will highlight in red on the top of the page.

6. Before submission, all the information could be displayed again on one page when users

can double check the fill-in data (Figure 2.3(b)).

After the job submission, the Grid services can be summarized as following:

7. The first service is reservoir modeling. This triggers a data-archiving tool and generates

reservoir permeability and/or porosity fields by using the geostatistical parameters and

algorithms specified by the user in Steps 3 and 4.

8. The resource-brokering service captures the dynamic information from the information

service provided by the Grid, makes a decision on the appropriate resource for each

simulation run with the help of load balancing strategies.

9. The simulation jobs are distributed to available Grid resources and then the simulation

execution service invokes the simulation runs.

10. Once all the simulation runs have been completed, the useful information is automati-

cally extracted to calculate the simulation responses, and the statistical analysis service

is activated to analyze the simulation results.

11. The user views the results on the ResGrid portal which are generated by the visual-

ization service.

The workload of a reservoir engineer can be reduced by using ResGrid, because they only

interact with the Web-based Grid portal designed for reservoir study. The ResGrid services

take care of security, data acquisition, resource management, result analysis, and visualiza-

tion. It is not necessary for end users to manually manage these activities.
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(a) Welcome page for ResGrid Portal. After login, user information will be shown in
this page. At the configure group membership part, check the Gridportlets and UCoMS

(b) Grid security. A Grid Security Infrastructure certificate is retrieved from a proxy to
provide user authentication to access Grid resources.

Figure 2.2: UCoMS portal login
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(a) Variogram parameters levels and values

(b) Job submission. Before the users submit jobs or save the templates, they can check

for typos or other mistakes. Users click the submit/save button, the job will be submitted
to available resources or saved as template according to user’s requirement.

Figure 2.3: UCoMS portal usage
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2.1.2.1 Open Source Geostatistical Library and Reservoir Simulator

• The reservoir modeling software GSLIB, is an acronym for Geostatistical Software

LIBrary. This name was originally used for a collection of geostatistical programs

developed at Stanford University over the last 15 years. The code used in ResGrid is

Fortran 77 and can be downloaded freely from GSLIB: Geostatistical Software Library

2008.

• Reservoir Simulator UTCHEM (University of Texas Chemical Compositional Simula-

tor) is a three-dimensional, multiphase, multicomponent, compositional, variable tem-

perature, finite-difference numerical simulator. The Fortran 77 source code can be

compiled and run at a variety of Unix workstations, which can be downloaded from

UTCHEM 2008.

• SPECSIM and HYBRID - Both algorithms are in-house C and Fortran codes (devel-

oped as part of this dissertation by author).

2.2 Geostatistical Studies

This study compares and evaluates four different stochastic simulation algorithms. We iden-

tify and quantify how the geological factors influence the determination of effective properties

and production behaviors using different simulation methods. A range of variogram factors

are studied, using Design of Experimental (DOE), F -test,t-test and Response Surface Models

(RSM).

2.2.1 Motivations

Stochastic simulation creates reservoir property fields that match the available information

at the sparse wells and reproduce the pattern of spatial variability between wells described

by the variogram. Stochastic simulations can be categorized into direct (LU Decomposi-

tion Gaussian Simulation) and sequential approaches (Sequential Gaussian Simulation). LU

Decomposition Simulation (LUSIM) is rigorous but slow. Sequential Gaussian Simulation
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(SGSIM) is quicker but potentially inaccurate. We create a hybrid simulation (HYBRID)

to take the advantage of the best of the two approaches. Spectral simulation is fast because

it applies fast Fourier transforms instead of directly solving a kriging system at each simu-

lated node. Three flow responses are computed from the simulation results to find differences

among these simulation algorithms.

2.2.2 Design of Experiments (DOE) and Response Surface Model
(RSM)

Flow simulations are employed to assess the effects of four variogram parameters describing

permeability distributions on three flow responses in three directions. The parameters are

varied using a 32-run four-level four-factor orthogonal array (OA) design (Kalla and White

2007) for all permeability model sets. Five realizations are run at each design point to model

the stochastic permeability fields.

2.2.2.1 Factors Examined

Factors are input parameters that are varied during experimental design (White and Royer

2003). Four uncertain variogram factors are examined in this study (Willis and White 2000;

White et al. 2001). The range of four factors are listed in Table 2.2).

1. N, the variogram nugget effect is related to sources of variation that operate over

distances smaller than the shortest sampling interval. We assume the worst case of

nugget effect is three quarters, the best scenario is no nugget effect. Half and one

quarter are the medium cases.

2. R, the variogram range of 90 degree azimuth which is the major direction of continuity.

In this study, the experimental variogram is modeled by exponential expression. The

inferred variogram ranges for structure use quarter of structure length as the low case

and twice the structure length as the high case. Half the reservoir length and equal

to the length are the two middle cases. This is the x-direction for the flow-simulation

study.
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Table 2.2: Designed factors and scaling

Index Factor Name Symbol Units 0 1 2 3

1 Nugget effect N fraction 0.75 0.5 0.25 0

2 X range R m 160 320 640 1280

3 Anisotropy ratio A fraction 0.25 0.5 0.75 1

4 Z range Z m 2.5 5 10 20

3. A, the variogram geometric anisotropy ratio is the directional variogram which has the

same shape and sill but smaller range values compared with the range of maximum

continuity direction R. The low case considers the quarter of R, the high case is the

same as R.

4. Z, the vertical variogram range. The quarter of the thickness of structure is taken as

the low case. The thickness of structure is the high case in the study.

2.2.2.2 Reservoir Permeability Fields

The heterogeneity of permeability fields are modeled by unconditional simulations. The log-

arithm permeability (ln k) has a Gaussian histogram with mean and variance of 5.5 and 1,

respectively. The variogram is an exponential model with principal directions of continuity

at 90 degrees and 180 degrees.

2.2.2.3 Flow Responses

Responses are the results of the flow model. The responses used in the study are (Li and

White 2003):

28



1. Upscaled permeability k̄ is defined as the ratio of flow rate to pressure draw-down

computed from simulation results.

2. Breakthrough time τBT is a dimensionless time in pore volumes. It is the total tracer

injection volume when the outlet tracer concentration exceeds 1 percent. The dimen-

sionless time is:

τ(t) =

∫ t

0
qrc(t

′)dt′

Vp

(2.4)

where t is the time, q is the volumetric flow rate at reservoir conditions, Vp is the total

pore volume. If t = tBT is the time when the outlet tracer concentration first reaches

1 percent of the injected concentration, τ = τBT .

3. Sweep efficiency NpD1 is the fraction of the initial tracer free water recovered after one

pore volume of injection:

NpD1 =

∫ 1

0

(1− c(τ))dτ (2.5)

where c(τ) is outlet tracer concentration. The post-processing part of ResGrid can auto-

matically extract the responses from simulation output and calculate the responses required

by users.

2.2.2.4 Flow Model Description

The simulated displacement process is ideal tracer flow. There is no buoyancy, capillary

pressure, relative permeability, or viscosity contrast effects (Calhoun and Tittle 1968). A

tracer displacement is used as the model process because it is quick to simulate. In addition,

tracer flow isolates the heterogeneity of permeability, fewer factors influence responses, and

truncation errors can be reduced for fully miscible systems.

2.2.2.5 Response Surface Model.

Based on 1,920 simulation runs, which are calculated by 3×4×32×5 (where 3 is the number

of well patterns, 4 is number of geostatistical algorithms, 32 is the simulation number by OA

design and 5 is the number of realizations for each factor combination), the least squares
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Table 2.3: Simulation model parameters summary

Model parameter Value Units

xyz grid size 64× 64× 3
Total blocks 12,288
Active blocks 12,288
Block size 10× 10× 5 ft
Porosity 19%
Pore volume 1,167,360 ft3

Initial pressure 14.7 psi
Well patterns horizontal injector and producer quarter nine-spot

Table 2.4: Box-Cox transformation result analysis for LUSIM

response upscaled permeability breakthrough time sweep efficiency

before after before after before after

R2 0.7679 0.7771 0.6725 0.6821 0.7451 0.7735

R2
adj 0.7523 0.7621 0.6506 0.6608 0.7280 0.7583

method builds a first order polynomial response surface model. The R2 and R2
adj are low

for linear regressions. The regression models do not fit the responses well. The Box-Cox

transformation and weighted least squares (WLS) have been used to improve the regression

(Tables 2.4 and 2.5 ). The results show that the transformations and WLS did not produced

a significant improvement to the regression results. The regression models fit responses from

2D flow much better than that of 3D. The reason could be that the injector and producer are

horizontal wells penetrated in the second layer in the 3D model, which may cause nonuniform

and erratic flow. Therefore, direct comparisons between each combination are made in the

following section.
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Table 2.5: Weighted Least Square result analysis for LUSIM

response upscaled permeability breakthrough time sweep efficiency

before after before after before after

R2 0.7679 0.9132 0.6725 0.6684 0.7451 0.7735

R2
adj 0.7523 0.9074 0.6506 0.6460 0.7280 0.7583

2.2.3 Model Discrimination

The reproduced model statistics are used to compare LUSIM and SGSIM models. The vari-

ance curve comparison of the two models for five realizations with same variogram (R= 320

m; A= 1; Z= 10 m; N= 0.25) is shown in Figure 2.4. Ergodic fluctuations exist for both

models. But variances fluctuate become more seriously if sequential simulation is used. The

reproduced variances of LUSIM are closer to model variance. The variance of SGSIM is

higher than that of LUSIM. The 5 realizations of SGSIM model have quicker breakthrough

and slower tracer concentration build-up in fractional flow than the LUSIM model (Figure

2.5). More flow sweeps the high permeable parts and by-pass the low permeability area.

These features appear to exert a strong influence on flow behavior.

2.2.4 Geostatistical Analysis

Flow simulations of the geostatistical models are analyzed using analysis of variance. Stan-

dard t- and F -statistics assess whether flow responses of LUSIM models are different from

the other simulation methods at each combination. All responses are computed for mean

flow along the directions of maximum (y) and minimum (x) continuity.
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Figure 2.4: Reproduced variance models of SGSIM,LUSIM compared with given model

Figure 2.5: Comparison of fractional flow between LUSIM and SGSIM
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Upscaled permeability (k̄). The SGSIM mean differs from the LUSIM (reference) mean,

especially when the z-range is short (Table A-1). The differences between LUSIM and SGSIM

means are 5 to 20 percent when the z-range is small. F -tests indicate that SGSIM signifi-

cantly overstates response variability, especially for high nugget, short range and anisotropic

scenarios; the variance ratio is as high as 200. Thus, there are significant errors for SGSIM

models.

Breakthrough time (τBT ). The breakthrough time response t-tests show significant dif-

ferences (Table A-3). In the maximum continuity direction, SGSIM predicts (mean) break-

through 5 to 26 percent earlier than LUSIM (Table A-3). In the minimum continuity direc-

tion, the error is from 16 to 36 percent. The F -test shows that the difference in the maximum

continuity direction is significant, with the variances differing from 6 to 41 percent.

Sweep efficiency (NpD1). The t-test results between LUSIM and SGSIM are significantly

different, but the mean difference is modest compared with the other responses (Table A-2

and A-5). The F -tests indicate no difference in variance estimates (Table A-2).

HYBRID method is different from the LUSIM method at 95 percent confidence level in

Table A-7 and A-8. It seems that the conditional data from LUSIM does not have enough

constraints on the sequential Gaussian method.

Table A-9 and A-10 shows the spectral method could not be distinguished from the LUSIM

method at 95% confidence level.

2.3 Discussion

Our work focuses on creating an integrated, secure, and easy-to-use problem-solving en-

vironment for reservoir simulation study across a Grid. This chapter described ResGrid

application: a Grid portal, data management and execution management.
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Table 2.6: Grand average of mean difference and variance ratio of responses between LUSIM
and SGSIM

Response direction upscaled sweep breakthrough
permeability efficiency time

(RSG −RLU)/RLU
x 11.3 3.8 -14.1
y 13.3 4.8 -22.3

σSG/σLU
x 29.3 2.2 7.8
y 17.9 9.5 5.4

1. A GridSphere-based Grid portal provides an ubiquitous, friendly, and secure inter-

face for reservoir engineers. Reservoir engineers can easily submit and manage their

simulation jobs without addressing the Grid complexity underneath.

2. The essential part of ResGrid is a data management tool, which has been imple-

mented on top of the GAT. With this tool, a reservoir engineer can archive and search

simulation datasets conveniently.

3. In order to conduct execution management, a task farming framework has been de-

veloped. The resource brokering module captures Grid resource information and uses

load balancing strategies to dispatch reservoir simulations on Grid resources. The invo-

cation module is used to invoke reservoir simulation runs combined with geostatistics

algorithms across a Grid.

ResGrid can be applied to designed simulation studies to enumerate influential factors

and discriminate models, and yield response and sensitivity estimates over the range of all

factors. Factor lists and automate permeability construction, simulation data deck assem-

bly, execution, and summary tabulation. The automatic workflow was applied to simulate,

analyze and discriminate some frequently used geostatistical algorithms. Standard t- and F -

test results show that when the reservoir is heterogeneous, the upscaled permeability, sweep
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efficiency and breakthrough time of the LUSIM model are significantly different from the

SGSIM. The overestimate of permeability by SGSIM has more influence on breakthrough

time and upscaled permeability. The response differences between LUSIM and SPECSIM are

small. Improvement with the HYBRID method is not significant. The positions and num-

ber of samples to condition the sequential Gaussian simulation may affect the performance

of HYBRID. Future work should focus on monitoring and steering capabilities at runtime

during the execution of a given simulation run, checking job status and terminate the job if

an error occurs and applying ResGrid to other simulation areas, such as automatic history

matching with ensemble Kalman filter.
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Chapter 3
Background and Terminology

Using EnKF, an ensemble of reservoir models that is tuned to the most current observations

of production data is always available. Thus, the estimations of reservoir model parameters,

and their associated uncertainty, as well as the forecasts are always up-to-date.

The chapter explains the basics of the EnKF method for continuous model updating and

introduces the equations for the time evolution of the error covariance matrix. Section 3.1

introduces the governing equation system used to describe multiphase flow in porous media.

In Section 3.2, the terminology commonly used in model inversion is reviewed. Section 3.3

briefly outlines the Kalman filter (KF) originally proposed by Kalman (1960). In Section

3.3.3 and 3.3.4 the basic introduction is given to the ensemble Kalman filter proposed by

Evensen (1994) and its implementation. The last section will introduce the frequently used

statistical measurements for performance of EnKF.

3.1 Flow Equations in Porous Media

In reservoir simulation, the flow equations governing the multiphase flow in porous media

are obtained by combining forms of Darcy’s Law and the equation of mass conservation.

The general equations for multiphase flow with “black oil” assumptions (the gas component

dissolves in the oileic phase, but the aqueous phase is pure brine and the vapor phase is pure

gas):

C1∇ · [λo(∇po − γo∇z)] =
1

C2

∂

∂t
[
φSo

Bo

] + q̃o (3.1)

C1∇ · [λw(∇pw − γw∇z)] =
1

C2

∂

∂t
[
φSw

Bw

] + q̃w (3.2)

C1∇ · [Rsλo(∇po − γo∇z) + λg(∇pg − γg∇z)] =
1

C2

∂

∂t
[φ(

Rs

Bo

So +
Sg

Bg

)] + Rsqo + q̃g (3.3)
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where transmissibilities λl are defined as

λl =
krlk

µlBl

(3.4)

Eqs. 3.1 to 3.3 contain six dependent variables, Three additional relationships are needed to

complete the multiphase flow description:

So + Sw + Sg = 1 (3.5)

Pcow = po − pw = f(Sw, Sg) (3.6)

Pcgo = pg − po = f(Sw, Sg) (3.7)

where the subscripts o, w, and g stand for oleic, water, and gas phases, respectively; C1 =

1.127×10−3 and C2 = 5.615 when oil field units are used; the unit of oil and water formation

factor (Bo and Bw) is RB/STB; the gas formation factor is RB/scf; Rso is the solution gas-

oil ratio with units of scf/STB; the viscosity µm is in unit of cp; γm = ρmg
144gc

is the specific

density; D is the vertical distance from a datum level in ft; qm is the source/sink term, q̃o

and q̃w are in units of stb
rb·day

; q̃g is in units of scf
cf·day

; for production, q̃m < 0, for injection,

q̃m > 0; the pressure is in units of psi; Pcow is the capillary pressure assuming the water is

the wetting phase in the presence of oil and water; Pcgo the capillary pressure assuming the

oil is the wetting phase in the presence of oil and gas; the saturation S` is dimensionless

and varies between 0 and 1; porosity φ ∈ [0, 1] is the fraction of pore space in the reservoir

rock; ~K is the diagonal permeability tensor ~K =


kx 0 0

0 ky 0

0 0 kz

, the nonzero entries are the

absolute permeability of the reservoir rock along x, y, and z directions; the permeability has

the dimension of [L2] and for oil field units is md; krl is the relative permeability and a

function of saturation; and ∇· is a gradient operator, for Cartesian coordinate system,

∇ =


∂
∂x

∂
∂y

∂
∂z
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.

The above flow conservation equations are subject to the following assumptions (White

2007).

1. In a black oil model, the water and oil components may occur in their respective

phases (aqueous and oleic) only, whereas the gas component may occur in the vapor

or the oleic phases. Some extended black-oil models include gas soluble in the aqueous

phase; volatile oil models allow the oil component to dissolve in the vapor phase; some

extensions allow other possibilities such as water in the vapor phase.

2. Mass conservation only, no energy or momentum conservation (although momentum

conservation is implicit in Darcy’s law(Hubbert (1969, Bear (1988)).

3. The diffusive flux is neglected. Only advection is modeled because mainly the immis-

cible “field” is simulated in the study.

In Chapter 7, the 1-D two-phase water flood equation is derived by assuming incompressible

flow, and the velocity and densities are constant. In that case, the oil equation 3.1 can be

written:

uT
∂fo

∂x
+ φ

∂So

∂t
= 0 (3.8)

where uT is the total velocity, uw + uo in two-phase flow. fo can be calculated by rock-fluid

properties. This is the classic Buckley-Leverett problem using a hyperbolic equation(Lake

1989). With initial and boundary conditions, the PDEs become a well-defined Initial Bound-

ary Value problem. Usually, the reservoir is discretized into many gridblocks. In each grid-

block, the three governing equations are still valid, but much simplified because porosity,

permeability, viscosity, and B` are assumed to be constant within the grid at each iterative

step. Along with methods to linearize the equations (e.g., Newton’s method; Aziz and Settari

1979), this allows algebraic solution of the system of coupled equations for all components

and blocks. The solution provides insight into porous fluid distribution in the subsurface.

The program conducting this computation process is the reservoir simulator. In this study,
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the simulator is based on finite difference methods. More detailed literature on reservoir

simulation can be found in Aziz and Settari (1979).

3.2 Terminology in Continuous Reservoir Model Up-

dating by EnKF

The most commonly used terms in history matching are summarized below.

1. Model parameters: these variables are uncertain and do not change with time. There-

fore, they are referred to as static model variables. They include rock properties,

such as porosity and permeability; transmissivities for faults and vertical permeability;

and rock-fluid properties, e.g. endpoint of relative permeability. For sequential data

assimilation methods like EnKF, estimates of these properties change as data are in-

tegrated, but porosity and permeability are understood to be constant in fact if not

in the algorithm. The continuous model updating is always begun by defining a set of

first-guess parameters mf ∈ <n, which is spatial mean, and their assumed stochastic

error m′ ∈ <n, with mean equal to zero and known covariance CMM ∈ <n×n. This can

be shown in the following equation

m = mf + m′ (3.9)

2. Model solutions: these variables are solutions from the simulator, and vary with time;

they define the dynamics of the system. In contrast to static model variables, they are

called dynamic model variables. The uncertainty in these variables comes from the

uncertainty of model parameters and from mathematical modeling errors (which are

not addressed here). However, we assume the relationships between model parameters

and model solutions are deterministic — the solution is stochastic only because the

model parameters are. Model solutions could be phase pressures, saturations of all

fluid phases or solution gas-oil ratio Rs. These variables are solutions of systems of

differential (or finite difference) equations in Section 3.1. If the reservoir model is
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valid, and the model parameters are given, then the model solutions can be computed

with initial conditions that are considered certain in this dissertation. However, other

investigators have considered initialization uncertainty in inverse models. For example,

Evensen (2007) identified initial uncertainties in the water saturation distribution, e.g.,

fluid contacts such as water oil contact (zWO) and gas oil contact (zGO);

3. Observation responses: these are observable quantities directly related to the model

solutions and indirectly to the model parameters. For oil and gas reservoirs, these

data could include surface flow rates, well bottom-hole pressure, well tubing head

pressure, water cut (or water oil ratio), gas oil ratio, amplitude of seismic reflection,

and other production, petrophysical and geophysical measurements over the reservoir

life. Crucially, observed responses always have some errors or noises associated with

them, and many data assimilation methods, including EnKF, require that the errors

be specified.

The reservoir model parameter estimation problem with EnKF can be formulated as

...how to find the joint pdf of the model parameters and model solutions, given

a set of measurement and a dynamical model with known uncertainty.

— Evensen (2007),

which is vastly different from the traditional model inversion method (op cit.)

...how to find the parameters resulting in a model solution which is “closest” to

a set of measurements.

—Evensen (2007),

In reservoir history matching application, m is used to denote the model parameters,

f(m) is denoted as the model solutions, and model solutions are the function of model

parameters, and g(m) is used to denote the forecast of observations.

The observed responses are given by dobs,

dobs = g(mtrue) + ε (3.10)
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where ε is the measurement noise. It is usually assumed that ε is unbiased and Gaussian,

ε ∼ N(0, CD), i.e., E[ε] = 0 and E[εεT] = CD. CD is the measurement error covariance

matrix. It is a diagonal matrix if the measurement errors are uncorrelated with each other,

which is assumed in this study.

In the Kalman filter literature, the

state vector for a dynamic system is composed of any set of quantities sufficient

to completely describe the unforced motion of the system. Given the state vector

at a particular point in time and a governing equation from that point in time

forward, the state at any other time can be computed.

—Gelb (1979),

A joint state vector of a system can be defined as followed:

y =


m

f(m)

g(m)

 (3.11)

where y denotes the (augmented) state vector. It consists of model parameters, model so-

lutions and observation responses. The poorly known parameters are concatenated with the

model solutions because they are updated simultaneously in the EnKF. Now we have a com-

bined parameter and state estimation problem. Using the true state vector, the relationship

between the observed response and the true, error-free observations is

dobs = Hytrue + ε, (3.12)

where H is an operator matrix or row vector (depending on the number of observations).

The expected value of the observation can be calculated by applying H to the joint state

vector y (Eq. 3.11), which is equivalent to applying the possibly nonlinear function h to

independent variable x. H allows applying ensemble filters in the joint state space. H is a

trivial matrix whose elements are only ones and zeros. It is

H = [0|I], (3.13)
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In practice, the construction of H is not necessary, while it is a way of writing column and

row selections algebraically; this can be done more efficiently with simple operations in actual

computer implementations.

3.3 Background on the Kalman Filter

The Kalman filter (KF), which introduces an equation for the time evolution of the error

covariance matrix, was originally proposed by Kalman (1960), The Kalman filter has been

used for state estimation of linear systems that evolve with time from noisy measurement,

which is a widely used sequential data assimilation method for the purpose of obtaining a

least squares estimation of the state of the system (Maybeck 1979). At each assimilation,

there are actually two steps: a forecast step and an update step. In the following, tk is

the current time step. The forecast step evolves the state vector to the next measurement

time.

If a discrete linear system can be modeled as Eq. 3.14

ytrue
k = Ψk−1y

true
k−1 + ωk−1, (3.14)

The evolution of the state vector is

yp
k = Ψk−1y

u
k−1, (3.15)

where k and k−1 are time step indices for measurement time tk and tk−1, respectively, when

measured data are available; yk is the state vector at time step k; the superscript p represents

prior, meaning that the values are direct output of the dynamic system before updating (Eq.

3.15); u represents updated, meaning that the values are after observed response assimilation;

Ψk−1 is the state transition matrix that transits the state vector from time tk−1 to tk with

dimensions equal to n×n; ωk−1 is the unbiased Gaussian model error with covariance matrix

Qk−1, i.e. E[ωk−1] = 0 and E[ωk−1ω
T
k−1] = Qk−1.

The estimate of the state vector yu
k−1 is conditioned to measurements up to time tk−1.

Thus, yp
k is also regarded as conditional to observed responses up to time tk−1. The collec-
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tion of measurements up to time tk−1 is denoted by Dobs,k−1. The measurement errors are

independent in time.

Dobs,k−1 = {dobs,i|1 ≤ i ≤ k − 1}, (3.16)

Assume that the prior of yp
k is Gaussian distribution. Then

p(yp
k|Dobs,k−1) ∼ N(yp

k, C
p
Y,k), (3.17)

where yp
k is computed by Eq. 3.15; and Cp

Y,k is prior covariance matrix associated with the

prior estimate. It is explicitly computed by propagating an assumed initial covariance matrix

of the state vector at time 0, Cu
Y,0, through time,

Cp
Y,k = Ψk−1C

u
Y,k−1Ψ

T
k−1 + Qk−1, (3.18)

where Cu
Y,k−1 is the posterior covariance matrix after data are assimilated at time tk−1. Cp

Y,k

is associated with yp
k, which is,

Cp
Y,k = E[ep

k(e
p
k)

T] = E[(ytrue
k − yp

k)(y
true
k − yp

k)
T], (3.19)

Now ep
k is the mismatch between true state and the state propagated from tk−1. At the

update step, with the new observation responses assimilated, dobs,k, the best estimate of y

at each step of data assimilation is

yu
k = yp

k + Kk(dobs,k −Hky
p
k), (3.20)

dobs,k−Hky
p
k is termed the measurement innovation or the residual. Kk is the Kalman gain

matrix; it can be obtained by minimizing the error covariance matrix associated with yu
k .

Kk = Cp
Y,kH

T
k (HkC

p
Y,kH

T
k + CD,k)

−1

=
Cp

Y,kH
T
k

HkC
p
Y,kH

T
k + CD,k

(3.21)

where CD,k is the measurement noise covariance at time tk, CD,k = E[εkε
T
k ], and εk is the

noise of measurement dobs,k. Qk−1 is the process noise covariance associated with model at
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tk−1, Qk−1 = E[ωk−1ω
T
k−1]. ωk−1 is model errors, because the model is assumed to contain

errors, e.g., due to neglected physics and numerical approximations (i.e. truncation error

and numerical dispersion). Cp
Y,k is the error covariance matrix associated with yp

k and ytrue
k ,

Cp
Y,k = E[ep

k(e
p
k)

T]. Qk−1 is included in Cp
Y,k.

Looking at Eq. 3.21, we see that as the measurement error covariance CD,k approaches

zero, the denominator of the gain Kk becomes small, then the Kk increases, it weights the

residual more heavily.

On the other hand, as the a priori estimate error covariance Cp
Y,k approaches zero, the

gain Kk weights the residual less heavily. Specifically,

lim
CY,k→0

Kk = 0 (3.22)

Another way of thinking about the weighting by Kk is that as the measurement error covari-

ance CD,k approaches zero, the actual measurement dobs,k is trusted more and more, while

the predicted measurement Hky
p
k is trusted less and less. On the other hand, as the a priori

estimate error covariance Cp
Y,k approaches zero the actual measurement dobs,k is trusted less

and less, while the predicted measurement Hky
p
k is trusted more and more. The state vector

remains unchanged.

The posterior of the composite vector yk is

p(yu
k |Dobs,k) ∼ N(yu

k , Cu
Y,k), (3.23)

After assimilating the observed responses, the error covariance matrix Cu
Y,k associated with

yu
k is

Cu
Y,k = (I −KkHk)C

p
Y,k(I −HT

k KT
k ) + KkRKT

k

= Cp
Y,k −KkHkC

p
Y,k −Cp

Y,kH
T
k KT

k + Kk(HCp
Y,kH

T
k + R)KT

k

= (I −KkHk)C
p
Y,k,

(3.24)

The term (I−KkHk) ensures and implies that the covariance should (for stable and nonzero

Kk) decrease as more observed responses are integrated.
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The two steps illustrated above at one measurement time are summarized in Table 3.1.

With the generation of the state vector at the initial time 0 (the initial state vector is

generated by sampling from a multivariate Gaussian distribution with the prior information

about its mean and covariance matrix, Cu
Y,0), the recursive process of the Kalman filter can

be initiated. The two-step procedure is repeated until the last data are assimilated. The

Table 3.1: Summary of two-step procedure of the Kalman filter at measurement tk.

1.Evolve the state vector and Eq. 3.15 yp
k = Ψk−1y

u
k−1

covariance matrix forward in time Eq. 3.18 Cp
Y,k = Ψk−1C

u
Y,k−1Ψ

T
k−1 + Qk−1

2.Update the state vector and its Eq. 3.20 yu
k = yp

k + Kk(dobs,k −Hky
p
k)

covariance matrix using the new data Eq. 3.24 Cu
Y,k = (I −KkHk)C

p
Y,k

solution that the Kalman filter offers is based on maximizing the posterior PDF of the state

vector within the context of Bayesian statistics. It is equivalent to minimizing the variances of

the posterior covariance matrix in Eq. 3.24 with the assumption that the following variables

are Gaussian (Maybeck 1979):

• model errors, ωk−1

• measurement errors, εk

• estimate of state vector at the initial time 0

In addition to the Gaussian assumptions, the model and measurement errors are assumed

to be unbiased and white. Whiteness implies that the noises are not correlated with time.

The textbook definition of white noise is

A white random sequence xn, n = 1, 2, ... is a Markov sequence for which

p(xk | xl) = p(xk) (k > l) (3.25)

That is, all the xk’s are mutually independent. As a result, knowing the realization

of xl in no way helps in predicting what xk will be. A white sequence is totally
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random or completely unpredictable. If the xk’s are all normally distributed, the

xk sequence is called a white Gaussian random sequence. The fact is that

noise due to the superposition of a large number of small, independent, random

effects is always Gaussian distribution because of central limit theorem. The

importance and usefulness of white Gaussian sequences stems from the fact.

— Jazwinski (1970),

If the dynamic model Eq. 3.14 is linear and the estimation of the initial state vector is

Gaussian distribution, both the a prior and a posterior (Eqs. 3.17 and 3.23) pdfs would be

Gaussian. But non-Gaussian variables violate assumptions of the Kalman filter and cause

filter failure. For Gaussian variables, the mean and covariance (second order moments) are

sufficient to describe a distribution. Higher moments are required for non-Gaussian distribu-

tions. In that case, estimates from the Kalman filter may not be optimal. Furthermore, when

dealing with large and nonlinear systems, the propagation of the error covariance matrix by

system dynamic is the main bottleneck for the Kalman filter method, imposing an unaccept-

able computation burden. The extended Kalman filter (EKF) proposed by Evensen (2003)

uses the ideas of the Kalman filter to nonlinear systems based on first order linearizations

and a closure assumption. The closure assumption is that only the first and second moments

have been preserved. However, when nonlinearities are severe or the model size becomes

large, the EKF is not an optimal estimator. In addition, if the initial estimate of the state

is wrong, or if the process is modeled incorrectly, the filter may quickly diverge, owing to

its linearization. Another problem with the extended Kalman filter is that the estimated co-

variance matrix tends to underestimate the true covariance matrix and therefore risks “filter

divergence” without the addition of “stabilizing noise”.

For large scale non-linear systems, a more promising approach is the ensemble Kalman

filter. It is essentially a Monte Carlo approach, using an ensemble of model realizations to

evaluate necessary statistics.
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3.3.1 Ensemble Kalman Filter

Most problems in reservoir engineering are nonlinear and involve many variables, often two

or more variables per simulator gridblock (in a black oil model with uncertain k and φ, 2

model parameters and 3 dynamic variables for a total of 5 unknowns per gridblock). Thus,

the ensemble Kalman Filter for nonlinear systems (Evensen 1994) has received a lot of

attentions. EnKF is a Monte Carlo method in which an ensemble of reservoir models is used

for continuous model updating and reservoir monitoring. The correlation between reservoir

responses (e.g., pressure and phase saturation) and model parameters (e.g., permeability

and porosity) can be estimated from the ensemble.

The basic method of the EnKF is similar to the linear Kalman filter. It consists of the

forecast step and the assimilation step. The forecast step is to advance the state vectors

from the previous time step to the next time step, using any available solution method

(for reservoir engineering, typically a finite difference simulator). At the time step where

observations are available, the forecast pauses and the data are assimilated to update the

state vectors. The following paragraphs introduce the EnKF using reservoir characterization

terminology.

If forward modeling is achieved using a reservoir simulator, the state vector typically

includes model parameters such as porosity φ, log permeability ln k; and state variables such

as pressure p`, and saturations S` at each reservoir simulation gridblock. Besides the model

parameters and solutions, the state vector also includes the reservoir response output from

the reservoir simulator, such as well bottom-hole pressure, water cut or water oil ratio and

gas oil ratio. Thus, the state vector of a typical two-phase reservoir can be written as the
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following joint state vector:

y =



φ

ln k

p

Sw

pwf

qo

...



(j, k) (3.26)

where j is the ensemble member index and k is the time step index. If the number of

gridblocks is Nm and the number of computed responses is Nd, the dimension of yk is

4 × Nm + Nd (for this particular choice of model parameters and state variables). When

k = 0, the initial pressure vector p0 and saturation Sw0, are initial conditions of the reservoir.

In current EnKF applications, the initialization is not considered as uncertain, though they

might be uncertain in actual reservoir (Evensen 2007). Similarly, the uncertainties of initial

pressure and phase saturation can be taken into consideration the same as model parameters.

3.3.2 Forecast Step for Reservoir Models

The forecast step is used to evolve the state vector forward in time between two consecutive

measurement times to get the state solutions. The dynamic system model in a mathematical

form should be

yp
j,k = Ψ(yu

j,k−1) (j = 1, 2, . . . , Ne), (3.27)

where j is the ensemble member index and Ne is the number of ensemble members, using u to

denote updated and p to denote predicted. Ψ is the porous media partial differential equations

introduced in Section 3.1. Note that only model solutions, i.e., pressure and saturations, and

the computed responses change between k− 1 and k. The static variables, i.e., porosity and

permeability, or other reservoir properties remain unchanged during the same time interval,
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that is mp
j,k = mu

j,k−1. They are however adjusted as well as the dynamic variables during

the assimilation step.

Simulators are used to model flow in porous media. In this research, the following simula-

tors are used:

1. Academic simulator, UTCHEM (UTCHEM 2008)

2. Commercial simulator, Eclipse (ECLIPSE 100 2008)

In EnKF, the evolution of all ensemble members may take considerable time, especially

reservoir models with complex permeability heterogeneity. However, because of the inde-

pendence of the ensemble models at the forecast step, the evolution of multiple models can

proceed simultaneously using parallel computing, such as Grid computing.

3.3.3 Update Step for Reservoir Models

At time step k, some measurement data are obtained and the state vectors are updated using

their prior values from the forecast step and Kalman gain matrix, Ke,k.

yu
j,k = yp

j,k + KY,e,k(dobs,k −Hky
p
j,k) (j = 1, 2, . . . , Ne), (3.28)

The subscript e indicates that the items are calculated from the ensemble. In contrast to the

Kalman filter, KY,e,k is computed from the ensemble members using the following equation,

KY,e,k = Cp
Y,e,kH

T
k (HkC

p
Y,e,kH

T
k + CD,k)

−1, (3.29)

In the Kalman filter, the prior error covariance matrix Cp
Y,k is always calculated explicitly

by time evolution equation Eq. 3.18, posing a significant computation burden for large or

nonlinear problems. But in the ensemble Kalman filter, the prior covariance matrix Cp
Y,e,k

is estimated from ensemble members by the statistics in Eq. 3.30.

Cp
Y,e,k =

1

Ne − 1

Ne∑
j=1

(yp
k,j − ȳp

k)(y
p
k,j − ȳp

k)
T, (3.30)
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where ȳp
k is the averaged variables in the state vector and is computed by

ȳp
k =

1

Ne

Ne∑
j=1

yj,k, (3.31)

Note that Ne−1 instead of Ne is used in Eq. 3.30 to ensure the estimate is unbiased. Although

the preliminary loop is a good starting point, it is not a practical algorithm because of the

matrix computation expense. In Eq. 3.30 (for our choice of two model parameter and two

state solution), the dimension of Cp
Y,e,k is (4×Nm +Nd)× (4×Nm +Nd). To explicitly form

and store this matrix requires too much work, which makes the loop impractical even for a

medium size problem. Therefore, to avoid the explicit computation of Cp
Y,e,k, Eq. 3.30 can

be rewritten as

Cp
Y,e,k =

1

Ne − 1
∆Y p

k (∆Y p
k )T, (3.32)

where ∆Y p
k consists of Ne column vectors, each of which is the difference between an ensemble

state vector and the averaged state vector. Applying Eq. 3.32 to Eq. 3.29, the Kalman gain

matrix has the new form:

KY,e,k =
1

Ne − 1
∆Y p

k (∆Y p
k )THT

k

(
Hk

1

Ne − 1
∆Y p

k (∆Y p
k )THT

k + CD,k

)−1

=
1

Ne − 1
∆Y p

k (Hk∆Y p
k )T

(
1

Ne − 1
Hk∆Y p

k (Hk∆Y p
k )T + CD,k

)−1

,

(3.33)

If we define

A = Hk∆Y p
k , (3.34)

Then Eq. 3.33 becomes

KY,e,k =
1

Ne − 1
∆Y p

k AT

(
1

Ne − 1
AAT + CD,k

)−1

, (3.35)

In practice, it is not necessary to compute an approximation of the covariance matrix, because

only the product of Cp
Y,e,kH

T
k is required to compute the weight matrix (Eq. 3.33). The

covariance matrix can have fairly large dimensions to Ny,k × Ny,k, whereas Cp
Y,e,kH

T
k has

reduced dimensions, Ny,k ×Nd,k. Ny,k is the length of state vector and Nd,k is the number of

observed responses.
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3.3.4 Implementation of EnKF

Hk is the joint covariance forward observation operator. The expected value of an observation

can be calculated by applying Hk to the state vector y, which is equivalent to applying the

possible nonlinear operator g to independent variables x. Since Hk is the operator matrix

used to extract entries corresponding to data, Hk∆Y p
k does not involve matrix computation.

In addition, only ∆Y p
k needs to be formed and stored. Since the dimension of ∆Y p

k is

(4×Nm + Nd)×Ne, this approach is more efficient than computing Cp
Y,e,k. Thus, a feasible

EnKF algorithm is formed,

a) Input the ensemble state vectors into the reservoir simulator and advance them in time.

If it is the first time step, all the vectors are filled with initial values.

b) At the time step k when the observations are available, stop advancing and fill the state

vectors with the k − 1 step model parameters and the k time step model solutions.

c) Compute the averaged state vector using,

ȳp
k =

1

Ne

Ne∑
j=1

yp
k,j, (3.36)

d) Form the difference matrix ∆Y p
k and take entries from ∆Y p

k using Hk, which is Hk∆Y p
k .

e) Compute the Kalman gain matrix using Eq. 3.33.

f) Update the ensemble state vectors using Eq. 3.28.

g) If the current time step is the final step, then STOP. Otherwise, go back to Step a).

There are three numbers related to the dimension of the matrices: Ny, Nd, and Ne. For

reservoir models, Ny could easily exceed 106 for field-scale problems. Nd is the number of

observed responses available at one measurement time, usually the number of production

rate measurements of wells (order 101–102). Ne is the number of ensemble members which

is determined according to estimation reliability, the complexity of the flow model, and

computational resources. Usually for serial work flow, the number is O(100). In the Grid

computing environment, the number could be O(1000). The evolution of the state vectors

dominates the computational cost in the EnKF. The total computation time of serial work
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flow equals to the simulation run time for all ensemble members plus overhead time involved

in matrix calculation at the update steps. In Grid environment, the simulation run time can

be greatly shortened by distributed computing. But the queue time and time cost for data

transferring through the network also need to be considered.

3.4 Statistical Measures of the EnKF Performance

The spread about the truth case (σ2
t ) is a standard criterion used to measure the difference

between the estimate mean and the true state vector for synthetic case in Eq. 3.37, or more

directly using model parameters in Eq. 3.38:

σ2
t =

1

Ne − 1

Ne∑
j=1

(yi,j − ytrue
i )C−1

Y,e,k(yi,j − ytrue
i )T (i = 1, 2, . . . , Nm) (3.37)

σ2
t =

1

Ne − 1

Ne∑
j=1

(mi,j −mtrue
i )C−1

M,e,k(mi,j −mtrue
i )T (i = 1, 2, . . . , Nm) (3.38)

where Nm is the number of the gridblocks of the model; ytrue
i,j and mtrue

i,j is the truth of

state vector and reservoir properties, respectively. And yi,j and mi,j is the state vector and

model parameters of ensemble members, respectively. As pointed by others (Zafari 2007), it

is difficult to define metrics to provide a reliable characterization of uncertainty in the model

parameters. σ2
t is a measure of the accuracy of the ensemble mean.

But with ensemble models, we can calculate the spread of the samples at each gridblock:

σ2
e =

1

Ne − 1

Ne∑
j=1

(mi,j − m̄i)C
−1
M,e,k(mi,j − m̄i) (i = 1, 2, . . . , Nm) (3.39)

which is representative of the estimated uncertainty of the ensemble. If the EnKF estimate

of uncertainty is correct, the σ2
t and ensemble spread σ2

e should be almost identical. The

observation error represents the mismatch between computed observation from simulation

and measurement,

σ2
d =

1

Ne − 1

Ne∑
j=1

(dobs − g(m))C−1
d (dobs − g(m)) (3.40)
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3.5 Discussion

From the introduction of the Kalman filter, it is obvious the there are two problems when KF

is used for data assimilation in high dimensional and nonlinear system. The first is related to

storage and computational issues. If the reservoir has Nm unknowns in the state vector, then

the error covariance matrix Cp
Y,k has N2

m unknowns. The evolution of the error covariance

matrix in time requires cost of 2Nm model integrations. Thus, KF and EKF can only be

applied to fairly low-dimensional models. The second issue is related to the use of the EKF

with nonlinear models, which requires a linearization when evolving the error covariance

to new time step. This linearization leads to a poor error covariance evolution and unstable

error covariance grows for some strongly nonlinear models. This may be resolved using higher

order closure schemes. But the method is not practical for high dimensional model, since the

fourth order moment requires storage of N4
m elements.

In the EnKF approach, the difficulties that prevented the adjoint and sensitivity methods

from being widely applied are minimized. First, the EnKF is applicable to problems with

frequent data acquisition based on its Bayesian formulation. Second, because it is derivative-

free, it does not depend on the specific reservoir simulator because adjoint or sensitivity does

not need to be computed explicitly. It only requires output from the simulator, such as pres-

sure, phase saturation and production data. Coding for the EnKF algorithm can be adapted

to any reservoir simulator on a “plug-in” basis (Gu and Oliver 2005). Third, EnKF reduces

a nonlinear minimization problem in a huge parameter space involving the minimization of

an objective function with multiple local minima to a statistical minimization problem in

the ensemble space. Thus, by searching for the mean rather than the (many) mode(s) of

the posterior pdf, the method avoids getting trapped in local minima (Evensen et al. 2007).

Finally, the ensemble Kalman filter (EnKF) method takes one simulation run per reservoir

model realization and each one is independent with each others. Therefore, the simulations

of the reservoir models in the ensemble are ideal for distributing to supercomputing environ-
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ments or Grid computing. There are far fewer runs than other methods, such as randomized

maximum likelihood, and it samples more efficiently than most MCMC methods do (Gao,

Zafari, and Reynolds 2006).
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Chapter 4
Application of the Ensemble Kalman Filter to
Continuous Model Updating on Grid
Environment

Real-time Model updating by EnKF is processing-intensive because it requires simulation

of many reservoir models. In addition, large datasets (comprising model, state vector and

Kalman gain) must be transferred from member-specific simulation processors to the Kalman

gain processor, and then back to the member processor at each assimilation step. Between

assimilations, the simulation runs of the ensemble members are independent, and therefore

they can be distributed to Grid resources.

These features motivate a distributed computing solution across multiple machines to in-

crease throughput. However, because the Kalman gain computation requires synchronization

of all ensemble members at each assimilation step (Evensen 2003), the EnKF is constrained

by the slowest simulation (caused by slower processors or more difficult flow modeling). More-

over, some ensemble member results may be lost because of algorithmic or hardware failure

on distributed clusters. This requires a work flow which can reduce time spent waiting on

synchronization or rerunning failed simulations i.e., overhead (Lei and Allen 2007). Section

4.1 introduced the EnKF on Grid work flow adapted from ResGrid. Section 4.2 is a 2-D

water flood example to validate the distributed EnKF.

4.1 Description of Grid Computing for EnKF

The simulation management for EnKF is based on previous work on a Grid computing based

task-farming toolkit, ResGrid (Lei et al. 2006), introduced in Chapter 2. ResGrid com-

bines elements of experimental design, response surface models, uncertainty and sensitivity

analysis. The workflow has been adapted to the EnKF. In addition, the ResGrid portal
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provides a web-based entry point for reservoir engineers to access the Grid, concealing many

complexities and technical details of job scheduling and resource management from end users.

Dynamic Assignment and Task Container (DA-TC) concepts are used to shorten queue

time when synchronizing ensemble members at the assimilation points; the goal is to avoid

reëntering at the back of the queue at each forecast step. Task containers are queued on

remote clusters as normal jobs. Any cluster may host multiple containers, depending on

resources and the load balancing strategy (Lei and Allen 2007). DA-TC dynamically assigns

tasks to task containers as containers obtain cluster resources. Once a container has been

allocated resources, it persists as a job and therefore retains the resources until all simulations

for all members assigned to the container are completed. Thus, all simulation runs assigned

to a container have only one queue wait, and dynamic task assignment allows containers with

high-performance resources to execute more tasks. With many members and simulations per

container, this reduces total queue time. The workflow of EnKF on Grid is illusrated in the

following Figure 4.1. The essential characteristics of the workflow are:

1. Use model parameter sampler to sample the initial ensemble members.

2. Distribute the ensemble metadata over Grid resources (so called “task farming”).

3. Build flow models with ensemble metadata and flow model parameters in parallel.

4. At time k when the new sensor data are recorded, distribute the flow model to remote

resources. In this step, the simulation jobs are submitted to DA-TC containers which

are pre-submitted to Grid resources according to resources status and loading balance

strategies.

5. Advance the simulations from tk−1 to tk.

6. After all machines finish the tasks, the Stage Out module transmits the new state

vectors from each machine (or ensemble member) to the Kalman gain processor and the

Kalman gain is computed by integrating observation data from sensors and observation

error models.

7. Task farming the ensemble Kalman gain to member processors.
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Figure 4.1: Workflow for Automatic history matching by EnKF on Grid

8. Update the state vectors of ensemble, then EnKF convergence check to ensure the

updated state vectors are within the physical boundaries.

(a) If the convergence check is true, go on to the next step.

(b) If the convergence check is false, then truncate the nonphysical value or use repa-

rameterization method (Chen, Oliver, and Zhang 2007).

9. Update the ensemble models.

10. Wait for new observation data from sensor.

The data transfer load of GridFTP (main function of Stage Out Module) and resources are

balanced in the work flow design to improve the computational efficiency. According to the

complexity of simulation models, two designs are implemented for Step 8. One is suitable for

small- to medium-scale reservoir simulation cases (gridblocks in the magnitude of O(105)).

Taking the following case as an example, the state vector plus the simulation data deck for one
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ensemble member is about 300 KB (30 MB for 100 realizations) and UTCHEM executive file

size is about 2.6 MB. It takes trivial seconds of transfer time for high-bandwidth networks.

We can neglect the cost for data transfer and persue the flexible job submission to containers

based on load strategy to save more time. Therefore, after GridFTP brings the state vectors

back from distributed machines in Step 6, all the history files there are deleted. Both the

model update and convergence check are complete at Kalman gain processor. In the next

forecast step, the updated models (including updated state vectors) are distributed to remote

resources.

For larger, more complex reservoir models, the total transfer data may reach 10 GB and the

costs of data transportation at network must be taken into consideration. In Step 7, GridFTP

only brings the model solutions at ensemble processors to the Kalman gain processor. The

Kalman gain is then calculated and transferred back to Grid resources, both the update step

and convergence check will take place at member processors based on locally-stored state

vectors.

The total computation time includes the simulation time for all ensemble models, plus

time for Kalman gain calculation at the update steps, plus queue waiting time (from job

submission to execution) at Grid resources and transfer time. The following example study

has 400 ensemble members. Assimilation occurs every 10 days up to 160 days in the case

study. If there are nonphysical values generated for updated water saturation (e.g., Sw /∈

[0, 1]) or other state variables in the assimilation step, the non-physical values are truncated

after the assimilation. There are 400 members×32 assimilations, or 12,800 member updates.

Average processor time per simulation by UTCHEM is 10 minutes; the total time for

simulation of the ensemble is about 2, 133 hrs (88 days) using 1 processor. In our case, all

the simulations are submitted to 256, 15, or 14 processor clusters (running a mix of Linux and

AIX). We use 5 to 10 containers depending on cluster size; each container uses 1 processor.

Using 10 containers for 256 processor machines, 5 containers for 15 and 14 processor clusters,

the execution time is ∼ 106 hours. Assuming the queue waiting time is 5 hours for each

58



forecast step, the total time for this EnKF processing is 106+5×3 (number of machines) =

121 hours using the DA-TC mechanism because there is only one wait for each cluster. The

total time will increase to 100 + 5× 32 (assimilation times) = 260 hours if DA-TC were not

used and the queue reëntered for each forecast step. The queue waiting time depends on the

Grid cluster status, and may range from minutes to days. If the production history is quite

long, the cumulated queue time will increase and reduce or even eliminate the advantages of

Grid computing.

4.2 2-D Waterflood Analysis Using the EnKF

The EnKF workflow is applied to a 2D waterflooding reservoir model updating using injection

and production rates. The goal is to explore the characteristics of EnKF and sensitivity of

EnKF to various factors. A 2D geostatistical permeability field is used. The model size is 16×

16×1 blocks with gridblock dimensions of 60×60×10 ft. The simulation area is 960×960×

10 ft. The initial realizations are generated by unconditional LU decomposition simulation

(Goovaerts 1997). The log permeability is assumed to follow Gaussian distribution. The

mean and variance of ln k are 5.5 and 1 respectively, and it is assumed to be second-order

stationary with a exponential covariance function, which is defined as

Cln k(h) = σ2
ln k(exp[−|hx|

ax

− |hy|
ay

]), (4.1)

The variogram is exponential where h = (hx, hy)
T is the vector and ax and ay are ranges of

10 and 5 gridblocks (600 and 300 ft) in the directions of 45 and 135 degrees (relative to x).

Four hundred and one realizations are generated and one realization is randomly chosen as

the “truth” for comparison with EnKF results.

The simulation is a five-spot well pattern which is initially at uniform, irreducible 20

percent water saturation. The injector (in the center) has constant bottom-hole pressure of

4,500 psi. Four producers (at each of the corners) have bottom hole pressure constraints

of 1,500 psi. Quadratic relative permeability curves are used with 0.2 residual saturation
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for oil. Compressibility and capillary pressure are neglected. Measurement error is assumed

to be 5 percent for oil and water production rates before water breakthrough, 8 percent

for water production rates after water breakthrough at producers. The noises are mutually

uncorrelated and therefore the error covariance of matrix CD,k of the observations is diagonal

(but not constant). The measurement errors are simplified here but in the real oil and gas

field, the measurement errors of oil production rate and water cut may be correlated with

each other because they are measured in the same separator. The EnKF system can handle

more complicated cases and is not limited to the simplification like this.

If the covariance matrix is not diagonal, a singular value decomposition (SVD) can be

performed on CD,k (Zafari 2007). The prior joint state ensembles can be projected onto the

singular vectors and the assimilation can proceed using this new basis, in which C ′
D,k, the

observation covariance matrix, is diagonal. Upon completion of the assimilation computa-

tion, the updated state vectors can be projected back to the original state space. Sequential

assimilation observations can have general (correlated) Gaussian distributions by the ap-

plication of SVD. The method is useful in the case, for example, the oil production rate is

correlated to the water cut. Here, we assume the observation errors are uncorrelated spatially

and temporally.

In the example, the state vector has 3 × 256 elements plus 9 observations: The adjusted

model parameter is ln k; the model solutions are pressure and saturation of gridblocks; the

observation part includes the simulated oil and water cuts of producers (4 producers × 2

observations = 8 measured data) and injection rate of the injector (the 9th datum). The

“true” observations are read from the simulation using the reference ln k (Figure 4.3(a)).

In this model, the total simulation time is 160 days (1.24 pv, 1 pv = 1 pore volume,

Vp =
∑Nm

i=1 (∆x∆y∆zφ)i). The assimilation step is ten days (∼ 0.08 pv). The porosity is 20

percent throughout the model. Because the same mathematical model is used for reference

production forecast and ensemble forward forecast step, the model errors, such as truncation

error, are not considered in this EnKF study.
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4.2.1 Behavior of the EnKF

The ensemble mean and variance of the initial 400 realizations, and the estimated mean

of ln k fields at 0.18 pv and 0.70 pv for assimilation steps are plotted in Figure 4.2. Fig-

ure 4.2(a) shows a constant mean for every gridblock because of second-order stationarity,

but the individual ensemble member, including the prior geostatistical data of the reser-

voir characterization, has the different reservoir property. Figure 4.2(b) shows the initial

fluctuation of ln k at each gridblock. The 0.18 pv assimilations (Figs. 4.2(c)) indicate that

the ensemble mean ln k gradually includes the major features of reference distribution, and

reduces the ensemble variability among ensemble members (Figs. 4.2(d)).

Prior to assimilation the ensemble variance is as high as 1.29 at the initial time (Fig-

ure 4.2(b)). The variance decreases dramatically (Fig. 4.2(d)), especially along the main flow

direction between injector (I1) and producers (P1 and P4). This is because the flow rate is

higher in the main flow direction, which leads in large changes in pressure and saturation,

therefore, more information is involved in the observations around the main flow direction

and hence a quick reduction of the estimation variance. Later in the simulations (Fig. 4.2(f)),

the water has a breakthrough at all wells except P2, the ensemble variance is low throughout

the reservoir, but still the flow portions between the injector and producers have less variance

than the far-removed part with less information from wells. After the 0.70 pv assimilation,

the ensemble mean shows the filter divergence characteristics: the ln k values are out of range

and different maximum continuity direction from the truth.

The ln k fields of two randomly selected individual members after assimilation at τ = 0.70

are compared with truth and ensemble mean (Fig. 4.3). Although they obey the geostatisti-

cal data, the properties are significantly different from truth initially. After the production

data assimilations, these two fields become fairly similar with each other and ensemble mean,

while the updated permeability distributions are not “close” to the reference permeability,

whether one considers the mean or particular ensemble members. The inversion is most
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(a) Ensemble mean of the initial realizations (b) Ensemble variance of the initial realizations

(c) Ensemble mean, τ=0.18 assimilation (d) Ensemble variance, τ=0.18 assimilation

(e) Ensemble mean, τ=0.70 assimilation (f) Ensemble variance, τ=0.70 assimilation

Figure 4.2: The evolution of mean and variance contours of 400 realizations, τ=0.18 and 0.7
assimilations.
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(a) ln k reference field (b) ln k, ensemble mean, τ=0.7 assimilation

(c) ln k, member No.150, τ= 0.7 assimilation (d) ln k, member No. 350, τ=0.7 assimilation

Figure 4.3: ln k contours comparison among ensemble members, ensemble mean and refer-
ence.
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(c) τ=0.7 pv assimilation

Figure 4.4: Oil production rate forecast of P4 in 200 days (red is reference).
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accurate where fluxes are high (e.g., along the streamlines connecting the injector to pro-

ducers). The uncertainties are reflected among realizations, especially at locations where the

heterogeneity features are less informed by flow between wells.

Fig. 4.4 indicates the prediction of well performance improved after more update steps.

However, after the 0.7 pv assimilation step, the forecast ensemble shows the divergent trend.

4.3 Discussion

In this chapter, EnKF is applied to continuously update reservoir models by assimilating

injection and production observations from wells. EnKF provides updated estimates of model

parameters and their uncertainty. We used the EnKF to estimate and predict transient 2-

phase flow in heterogeneous reservoir and analyze the predictability of assimilated models

with a synthetic 2D examples by EnKF on Grid workflow.

1. Reservoir model updating and performance forecasting can be obtained relatively

quickly by efficiently using a distributed EnKF on Grid environments.

2. The estimation of model parameters improved with integrating more observation data.

The inverted permeability distributions are close to the reference permeability, whether

one consider the mean or particular ensemble members. The inversion is most accurate

where fluxes are high (e.g., along the streamlines connecting the injector to producers).

The uncertainties are reflected among realizations, especially at the part where flow

does not sweep through.

3. The forecast mismatch indicates the predictability of model improved after several

update steps. However, after some time, the forecast ensemble diverges, e.g., the 0.7

pv assimilation in the example. The topic will be discussed in Chapter 6.
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Chapter 5
Model Inversion of a 3-D Synthetic Case

In Chapter 4, we have shown a 2-D synthetic water flood example. In this chapter, a serial

work flow was built on a single processor linux machine as a prototype to better understand

the behavior of EnKF. A much bigger and more realistic 3-D reservoir model, PUNQS3,

shows that the work flow is effective and robust.

5.1 Introduction to the PUNQ-S3 Model

The model history, geological setting, model properties and production are introduced in

this section.

5.1.1 Model History

PUNQ-S3 is a synthetic reservoir engineering model based on a field operated by Elf Ex-

ploration and Production. The PUNQ project is a joint effort of 10 European companies,

universities, and research centers supported by the European Union to compare methods for

quantifying uncertainty assessment in history matching. PUNQ is an acronym for Production

forecasting with UNcertainty Quantification.

A detailed description of the PUNQ-S3 reservoir simulation model can be found in Floris

et al. (2001) or Barker, Cuypers, and Holden (2001). All the data are also available on the

website of Department of Earth Science and Engineering of Imperial College (PUNQ-S3

Model for Quantifying Uncertainty in Production Forecast 2008).

5.1.2 Model Properties

The top depth of PUNQ-S3 reservoir is 2340 m. The dip angle is about 1.5 degree. It is

bounded by a fault to the east and south and with a fairly strong aquifer on the north and
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Table 5.1: PUNQ-S3 model summary

Parameter Value Units

xyz grid size 19× 28× 5

Total blocks 2,660

Active blocks 1,761

Block size 180× 180× 3.7 meter

Gas-oil contact 2395 meter

west. Because of the strength of the aquifer, no injection wells are drilled. There is a small

gas cap in the reservoir top. Model dimensions are summarized in Table 5.1.

Six producers are denote as black dots in Figure 5.1. They are located near the initial

gas-oil contact, their position and perforated layers are listed in Table 5.2. Positions for five

extra infill wells (X1-X5) are denoted as white dots in the figure, but we shall not discuss

any results with the infill wells. The detailed information of porosity and permeability fields

generation with geostatistical techniques is addressed in Appendix B.

5.2 Observation Data

The revealed true reservoir simulation model at the PUNQ web page was taken and run

on the simulator to provide the true production data of 16.5 years; this will serve as our

“truth” case. Only production data from the first 8 years are used to calibrate an ensemble

of geological models. The final corrected models are used to predict recovery for the next 8.5

years of production for a given specified scheme. The prediction of the total oil production at

the end of 16.5 years is compared with the results obtained by Barker, Cuypers, and Holden

(2001). The production history of six production wells are summarized as follows,
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Figure 5.1: Top of structure map for the PUNQ-S3 reservoir. The units on the x, y, and
“Tops” scale are in meters

Table 5.2: PUNQ-S3 well locations and perforated layers

Well name Location: (x, y) Perforated layers

PRO-1 (10, 22) 4, 5

PRO-4 (9, 17) 4, 5

PRO-5 (17, 11) 3, 4

PRO-11 (11, 24) 3, 4

PRO-12 (15, 12) 4, 5

PRO-15 (17, 22) 4
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(1) an extended well testing period during the first year (four different flow rates, each

lasting three months)

(2) a shut-in period for the following three years

(3) a 12-year production period with fixed oil production rate, 150 sm3/day

(4) each well is shut in two weeks for testing each year in production period

PRO-4 has water breakthrough during the 7th year because it is close to the strong aquifer

in the west. PRO-1 and PRO-4 start to produce free gas during the 4th and 5th years,

respectively. Within the 16.5 year production period, each well has a target oil rate of 150

sm3/day and a minimum bottom-hole flowing pressure 120 bar (1bar = 14.5 psi); if the

maximum gas-oil ratio is greater than 200 sm3/sm3, the oil production rate is cut back by a

factor of 0.75.

Bottom-hole pressure, gas-oil ratio, water cut and oil production rate are used as the

assimilation data. Although the target oil production rate is identical for all reservoir models,

the actual oil production rates vary because wells in some models are unable to attain the

target rate 150 sm3/sm3, which may change the well to the bottom-hole pressure constraint

120 bar. The “predicted” bottom-hole pressure is set equal to the minimum bottom-hole

pressure and thus no longer represents a prediction based on the corrected model by EnKF.

This diminishes the reliability of the EnKF (and other inversion methods), and can cause

errors (“filter divergence”), which is discussed in Chapter 6. The problem can be solved by

applying an additional assimilation with the oil production rate (with a small measurement

error). If a model changes to bottom-hole pressure constraint, the assimilation with a small

error allows the filter to bring the rate data back to the historic production rate.
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The state vector is in the following form,

y =[φ1, . . . , φN , ln k1, . . . , ln kN , ln kz,1, . . . , ln kz,N ,

p1, . . . , pN , Sw,1, . . . , Sw,N , Sg,1, . . . , Sg,N ,

d1, . . . , dNd
]T

(5.1)

where φ is porosity; ln k and ln kz are horizontal and vertical permeability, respectively; p

is pressure; Sw and Sg are water and gas saturation; d are observed data; N is the number

of active cells, N = 1, 761; Nd is the number of observation data, maximum Nd = 24 in the

study.

In regions in which oil is under-saturated, gas saturation (Sg) is not a valid state solution

and solution gas-oil ratio (Rs) should be used as the state vector. However, the difference

between bubble point and reservoir pressure of the PUNQ-S3 model is small and the use of

Sg as a state solution did not result in a significant problem. In this application, the initial

pressure and phase saturation distributions are not treated as random variables. All the

ensemble models use the same initial pressures and saturations.

The kinds and amount of observed data available at different times vary in Table C-1 at

Appendix C. During the history matching period of the first 8 years (0–2,936 days), the

Gaussian standard noises used for observation data perturbation are presented in Table 5.3:

Table 5.3: Standard deviations of the noises added to data computed from the true reservoir
simulation model. (b.t. stands for breakthrough)

Data STD of noise
Shut-in pressure 1 bar
Flowing pressure 3 bar

Gas-oil ratio before gas b.t. 10%
Gas-oil ratio after gas b.t. 25%

Water cut 1%
Oil production rate 10−4 sm3/day
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5.3 Production History Match Results

The performance forecasts of six producers by corrected models during the history matching

and prediction phases have been improved compared with the initial models. In summary,

(1) Well oil production rate: After EnKF correction, most wells can produce at the specified

well production target rate. Even in the prediction phase, most of the corrected models

can produce at the desired rate while some models change to 120 bar bottom-hole

pressure constraint (e.g., PRO-4). The results indicate that the assimilation of oil

production rate with small measurement error effectively addresses changes in well

constraints.

(2) Well bottom-hole pressure: The matched results in the history match phase are “close”

to the truth, and the spread in the models in the prediction phase (which reflects

uncertainty) is reduced significantly compared with the initial models. The standard

deviations of flowing pressure for initial models range from 20 to 50 bar. In some initial

models, PRO-11 and PRO-15 change to bottom-hole constraint within history match

phase because of the poor rock property estimate. After the EnKF correction, the

standard deviations of corrected models range from 1 to 2 bar, which is comparable

to the measurement error 3 bar for flow pressure. The only exception is PRO-12. The

updated models underestimate the pressure draw-downs in the forecast phase.

(3) Well gas-oil ratio: The comparison shows substantial improvement in the gas-oil ratio

match. Some of the initial models produce much more free gas than the true model

does in most of wells, whereas the corrected models have their gas-oil ratio distributed

close to the truth. In history match phase, the largest error of gas-oil ratio is from

PRO-4, that is, 16 percent of 120 sm3/sm3 (“truth”), which is less than the assumed

measurement error (25 percent) . Note during the first year of extended well testing,

some of the initial models have gas-oil ratios as high as 400 sm3/sm3, even without

any gas-oil ratio data assimilated during that time. However, the bottom-hole pressure
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assimilation brings the high values down to 150 sm3/sm3. For well PRO-11, the free

gas production is corrected during the history matching phase, however, shortly after

the history matching phase is ended, the gas-oil ratio goes up again in the prediction

phase.

(4) Well water cut: In history match phase, there are no water breakthough occur in any

wells. Therefore the prior error is less than assumed measurement error 1 percent.

There is no water production for PRO-1 during the 16.5 years, whereas some of the

initial and corrected models predict water breakthroughs within the prediction period.

However, the water breakthrough time predicted by the corrected models is delayed

compared to the initial models. The initial models do not give correct timing for the

water breakthrough but after data assimilation, the timing is captured better for PRO-

11. The updated model does not provide a good prediction for water cut at PRO-12.

For this case, we are interested in comparing the variability of the cumulative oil production

after 16.5 years from the ensemble of final corrected models using EnKF to the results from

the initial model. The variance decreases after the EnKF corrections. The mean of corrected

models is (practically) equal to the true production value (3.872×106 sm3) and with standard

deviation of 71,365 sm3; this gives a coefficient of variation (= σ/µ) of 0.018 compared to 0.3

before assimilation. This is a vast improvement — the P90 to P10 range has gone down by a

factor of 96 percent which corresponds to 3.872×106 sm3. The ensemble mean and standard

deviation of cumulative oil recovery from the corrected model using EnKF are compared

with other history matching methods in Figure 5.2. The accuracy of the EnKF is similar

to a particular implementation of Markov chain Monte Carlo (MCMC) and better than the

pilot point (PP) method, important sampling (IS1 and IS2) and genetic algorithm (GA1 and

GA2). summarized by Barker, Cuypers, and Holden 2001).
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Figure 5.2: Comparison with uncertainty estimate from PUNQS3 study. Mean and STD of
the cumulative oil recovery prediction from corrected models by EnKF, and results sum-
marized by Barker et. al (2001). The horizontal line crossing the entire plot denotes the
computed total oil production value from the true reservoir simulation model.

5.4 Porosity Estimates

Figures 5.3 to 5.7 plot the porosity estimates of the five layers at the 0, 4th (274 days),

11th (2008 days), and 20th (2936 days) assimilation steps. From these figures, we have some

general observations:

Layer 1. The gas cap is situated at layer 1. No well is perforated in this layer because

free gas production might influence the ultimate recovery. In layer 1, there are two

channels in the truth. One is in the middle and another is on the upper right corner.

Actually, there are no obvious channel sands in the initial realization. After the 274

days assimilation, the estimates resolved the middle channel sand. Because no well

is perforated in layer 1, and only PRO-5 at layer 3 is perforated at the closest region

(Figure 5.3(c)), it is difficult to change the porosity at the upper right corner by EnKF.

Therefore the uncertainty of porosity is not reduced much at those far-removed parts.

The middle channel sand “disappears” after the 2936 days estimate, as the property

estimate diverges from the “truth” (Figure 5.3(e)).
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Layer 2. Because the facies of this layer is lagoonal shale, no well produces the layer. The

initial realization is different from the true model. After the 274 days, the high porosity

area emerges at the low bottom (Figure 5.4(c)). The porosity field has few changes from

274 to 2008 days.

Layer 3. There are three channel sands in this layer. PRO-5 and PRO-11, in the north and

south, respectively, are perforated this layer. The EnKF captures the middle channel

sand after assimilation at 274 days (Figure 5.5(c)). The lower bottom channel sand

is difficult to recover because it is close to the fault in the south, the flow is slight

compared with the strong aquifer in the west.

Layer 4. All six producers are drilled and perforated the layer. The porosity of sand chan-

nel is greater than 20 percent. The initial realization conditioned to the well data has

more than 50 percent of channel sands. However, the geological description shows only

30 percent of the volume of the whole layer is channel sand. Therefore, the initial

realization is not reasonable and cannot be used to forecast the future performance.

Compared with layer 2, the porosity of layer 4 captures more reservoir characteris-

tics. The uncertainty reduction of porosity in the layer is significant whereas the filter

divergence is the most obvious among other layers after the last assimilation step.

Layer 5 There are two channel sands that are very close to each other in the truth and three

producers produce this layer. With data assimilation, the features of the true porosity

field are able to be recovered gradually, the alternating low and high porosity streaks in

this layer; but the changes become smaller after 274 days assimilation (Figure 5.7(c)).

The final result shows that the channel sands are reasonably near the “truth” case

position after 2936 days (Figure 5.7(e)).

The production data are less sensitive to the rock properties in layer 3 than in layer 4

and 5 because more production data are available in those layers. The correction of model
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(a) True model (b) Initial (c) 274 days

(d) 2008 days (e) 2936 days

Figure 5.3: Porosity of a realization for layer 1 at different assimilation steps

parameters in layers 1, 3 and 5 is greater than in layers 2 and 4 because the correlation

lengths (variogram range) in layers 1, 3 and 5 are nearly twice as long as those in layers 2

and 4. Longer correlation length means that if a location is sensitive to a model parameter

in one grid block, then it is also sensitive to model parameters in grid blocks in a larger area

around that grid block. In this study, we found that the completely wrong information on

the statistical anisotropy (i.e., azimuth) may generate a nonphysical state vector, especially

porosity in the initial assimilation steps and has a long-lasting effect on the spatial pattern of

the inferred rock properties and may be corrected with more observations in space. Figure

5.8 plots the σt and σe of the porosity estimates. The σt of porosity decreases initially, then

increases at 2938 days. The spread of ensemble estimates decreases monotonically.
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(a) True model (b) Initial (c) 274 days

(d) 2008 days (e) 2936 days

Figure 5.4: Porosity of a realization for layer 2 at different phases
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(a) True model (b) Initial (c) 274 days

(d) 2008 days (e) 2936 days

Figure 5.5: Porosity of a realization for layer 3 at different phases
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(a) True model (b) Initial (c) 274 days

(d) 2008 days (e) 2936 days

Figure 5.6: Porosity of a realization for layer 4 at different phases
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(a) True model (b) Initial (c) 274 days

(d) 2008 days (e) 2936 days

Figure 5.7: Porosity of a realization for layer 5 at different phases

79



Figure 5.8: σt and σe for porosity estimates.

5.5 Discussion

The prototype work flow demonstrated the successful application of EnKF to a 3-D, 3-phase

model with complex geology — a more realistic model inversion — problem on a single

processor Linux machine. There are 20 analysis steps, assimilating 265 observed production

data. It is efficient and robust, taking two days to finish the history match and forecast

phases. The prototype work flow will be applied to a geological models screening method to

choose essentially diverse yet manageably small prior ensembles to improve the efficiency of

EnKF in the future work.

The estimate of the model parameters improves after assimilating with dynamic observa-

tions. In this case, the estimate captures the main characteristics of the reservoir after the

first 4 or 5 assimilation steps. More generally, this will depend on the flow characteristics,

the well locations, and the measurement types (e.g., rate data used in the case).

The prior geologic knowledge of the reservoir, mainly the statistical data, plays an impor-

tant role in data assimilation. The spatial continuity has a large influence on the structure

of error covariance matrix in Kalman gain calculation. The large correlation between the
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greatly separated grid points produce spurious covariances (which will be addressed with

localization in Section 6.3).
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Chapter 6
Exploration of Ensemble Kalman Filter
Divergence

As discussed in Chapter 4, the grid-based distributed EnKF has a number of desirable

properties:

(i) The work flow renders the EnKF computationally feasible by using parallel and Grid

computing. It is an efficient tool useful for reservoir engineers in assimilating large

numbers of observations and large ensembles.

(ii) The work flow is flexible, and can be adapted easily to an in-house simulator Cactus

BlackOil, which is designed to scale thousands of processors.

(iii) The work flow can be extended to the “closed-loop” reservoir management process,

perhaps using ensemble optimization method (Chen, Oliver, and Zhang 2008).

Despite the appeal of the distributed EnKF approach as a history matching technique, and

its efficiency in the grid environment, there is much to be learned before it will gain wide use

in the industry. In this chapter, the impact of “filter divergence” on the EnKF is investigated.

“Filter divergence” causes an increasing error in reservoir property estimates as the EnKF

is used to sequentially assimilate observed responses. This indicates a potential problem

with the EnKF becoming unstable after a number of assimilation steps. In Section 6.1, we

investigate the relationship between assimilation frequency and filter divergence. Then, in

Section 6.2, the continuously reduced error covariance (or “ensemble collapse”) that causes

filter divergence is discussed. Next, inflation of the error covariance is used to stabilize the

EnKF. Several topics, such as how much inflation is needed, its dependence on model and

ensemble sizes are discussed. Finally, in Section 6.3, the performance of localized EnKF is

compared with the traditional EnKF correction.
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6.1 Analysis of Errors as Function of Assimilation Fre-

quency

In situ permanent sensors provide continuous observations from near the completion inter-

vals of wells. Frequent assimilation of these large datasets poses a significant computational

burden. How should engineers choose the most appropriate assimilation frequency? Here

we examine the effect of refining some of the measurements in time as a simple scheme in

dealing with high assimilation frequency, or skipping some of the measurements in time as

a consequence of low assimilation frequency which some flow information may be missed.

In principle, the updates should resolve the time scales of the model dynamics; otherwise,

the estimate may diverge from the true state between each model update. This is analo-

gous to how the simulator “chops” the time step when the iterations can not converge to

a solution, especially when dealing with strongly nonlinear systems. Unfortunately, the re-

quired assimilation frequency is case-dependent, as shown in the following. It appears that

reservoir engineers have to depend on experience and trial-and-error to determine the most

appropriate assimilation timing. Nevertheless, it is in general true that assimilation is needed

whenever significant flow behavior changes occur, such as water breakthrough, sharp changes

of water cut, adding new wells in the reservoir system, well shut-in or well converting from

producer to injector. Fortunately, the significant changes that drive the assimilation interval

are the changes in the observations (which are shared by all ensemble members) rather than

individual member behavior. Thus, an experienced engineer can formulate an assimilation

schedule based on these observations; automation and detailed guidelines are desirable but

beyond the scope of this work.

The 2-D water flood example in Chapter 4 is chosen for the assimilation frequency study.

First, the assimilation step is chosen as every 0.1 pv (about 10 days), which is termed

base case. After 0.7 pv measurements are assimilated, the ln k contour of the ensemble

mean (Figure 6.1(b)) demonstrates geological characteristics differing from the reference
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(a) ln k reference contour (b) Divergent ln k for ensemble mean after large assimi-

lation step (base case)

Figure 6.1: Contour of ln k comparisons between truth and base case

Figure 6.2: Production performance of P4 from “truth” model

(Figure 6.1(a)) and the values of ln k are out of range. The EnKF functions as a least

squares linear regression and when the measured data between each model update change

significantly, traditional EnKF update can cause problems because of its linear assumption.

The true production performance of P4, which is located at the right upper corner in a high

permeability zone, is shown at Figure 6.2. Water breakthrough occurs in P4 after 0.25 pv

injection and the water cut reaches 55 percent after 0.32 pv injection. The water cut changes
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almost 50 percent within time period of 0.08 pv, which is less than the assimilation step

0.1 pv. After one or two assimilation steps, the overcorrected estimate of reservoir properties

begins to diverge from the true state. The increasing errors from the forecast steps accelerate

the overcorrections. Finally, the oil production rate forecast of P4 (black line) deviates from

the reference (red line) as shown in Figure 4.4(c). The EnKF process fails.

Now use a higher assimilation frequency, each 0.05 pv, which is termed Case I: the predicted

performance of the updated models by EnKF improves significantly. As shown in Figure

6.3, the water cut predictions of P4 (the updated models) at different measurement times

(black line) closely matches the corresponding observed value (red line) as more observed

responses are assimilated. The P90 to P10 range has gone down by a factor of 80 percent

which corresponds to 90 % difference from Figures 6.3(a) to 6.3(b). We obtain more accurate

and less uncertain results as more features of the reservoir have been attained from the

well data. The match of P90, P10 and mean of ensemble forecast match the truth from the

0.35 pv assimilation step. The permeability at the region between injector I1 and producer

P4 is important for matching production performance of P4. The similarity between the

ensemble mean and “truth” is shown in Figure 6.4. The ensemble forecasts indicate that

the permeability features were captured by the early assimilation steps (less than 0.12 pv).

Therefore, the 0.05 pv better resolves reservoir dynamics than 0.1 pv interval (in this case).

Alternative assimilation frequencies were considered to further examine this behavior. Case

II assumes using every 0.05 pv as an assimilation step similar to Case I, but the assimilation

frequency is increased to every 0.01 pv (1 day) once water breakthrough occurs in any

producers until production from the well stabilizes. Then assimilations repeat every 0.05 pv

until water breakthrough on another well occurs. There are 38 assimilations in total, which

is denoted as 0.01 and 0.05 pv combination. The Case III assumes the assimilation step is

taken every 0.01 pv (1 day). There are 121 assimilation steps in total.

The σt of ln k for the three cases are drawn as a function of injected pore volume in Figure

6.5. The final results for all the cases are shown in Table 6.1. The σt of Case III, with every

85



(a) Initial model forecast for P4 (b) 0.12 pv assimilation (c) 0.35 pv assimilation

(d) 0.64 pv assimilation (e) 0.94 pv assimilation (f) 1.24 pv assimilation

Figure 6.3: The P4 water cut forecast by updated model (Case I). The red line denotes the
truth. P90 is denoted by green square line. Ensemble mean is brown in diamond line and P10

is blue delta line.

(a) ln k reference contour (b) ln k contour for ensemble mean, every 0.05 pv assim-
ilation (Case I)

Figure 6.4: Contour of ln k comparisons between reference and ensemble mean from Case II

86



Table 6.1: The final results for all the cases

Case Assimilation interval Assimilation times σt

Base 0.1 pv 7 1.232

I 0.05 pv 21 0.830

II 0.05 and 0.01 pv combination 39 0.824

III 0.01 pv 121 0.963

Figure 6.5: Influence of assimilation frequency

0.01 pv assimilation frequency, is divergent at 0.8 pv. This may be caused by continuously

reduced error covariance and stochastic errors from too many assimilation steps. The reason

will be discussed in Section 6.2. Case II with combined assimilation frequency has some

improvement from the Case I but the improvement is not significant. This may be because

such closely spaced observations are redundant. It appears that early observations give the
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largest contribution to the reduction in the σt. In this case the transient flow at the early time

observations provide more information than the observations from a steady state flow. Under

actual condition, production data might be observed at different frequency and permanent

sensors could acquire data at very high frequencies. Too frequent updates leads to many

restarts and slows down the system. In addition, the updates may introduce numerical or

stochastic errors into the system, which may be larger than and therefore mask the benefits

of the (possibly redundant) measurements. Because production data may be correlated, and

no useful information can be absorbed when the selected points are too closely spaced in

time.

6.2 Analysis of Errors as Function of Inflation Factor

The error covariance statistics control EnKF behavior, because the EnKF uses covariance

of ensemble to approximate the pdf of model parameters, solutions and observed response

(instead of evolving it in time, as it was for the KF (Jazwinski 1970) and EKF (Evensen

2003).

6.2.1 Revisiting the Update Scheme of EnKF

To better understand the reason for filter divergence, it is useful to first revisit the analysis

scheme of the EnKF. The modified analysis step of the EnKF consists of update applied to

each of ensemble members:

yu
j,k = yp

j,k + KY,e,k(dobs,k −Hky
p
j,k) j ∈ {1 . . . , Ne} (6.1)

Recall that H is a projection of the model state onto the measurement space, that is,

Hky
p
j,k simply extracts the predictions dp

j from the state vector, so the term in parentheses,

dp
j,k ≡ (dobs − Hky

p
j,k), is the vector of mismatches of production data of model j to the

observations. EnKF updates each ensemble members with the same measurement. That is,

the model parameter mj,k for the ensemble j ∈ {1 . . . Ne} is updated proportional to its
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mismatch ∆mj,k = KY,e,k(dobs,k − dp
j,k) using the same value from the Kalman gain matrix.

This is the linearization approximation inherent in the EnKF: the gain estimates the average,

linear proportionality between mismatches and parameter values. The mean and standard

deviation of ensembles are corrected by the same Kalman gain in the following equations,

ȳu
k = ȳp

k + KY,e,k(dobs,k −Hkȳ
p
k) (6.2)

(σ2
k)

u = (σ2
k)

p + KY,e,kHk(σ
2
k)

p (6.3)

The EnKF uses an ensemble of model states to represent the posterior pdf. The formula-

tions show that the EnKF is searching for the mean in the ensemble space. With wisely chosen

initial realizations, the initial ensemble should represent most of variance of the true param-

eter solution. From Eq. 6.2, it is clear that the EnKF update neglects any non-Gaunssian

contribution in the predicted pdf, when the update increments are computed, since these

only take into account the covariances. The error covariance of the analyzed ensemble can

be reduced to:

Cu
Y,e,k = E[(yu

j,k − ȳu
k )2] + O(N−1/2

e )

= E[(yj,k − ȳk) + KY,e,k(dobs,k − d̄obs,k −Hyj,k + Hȳk)
2] + O(N−1/2

e )

= E[(yk − ȳj,k)
2] + E[KY,e,k(dobs,k − d̄obs,k)

2] + E[KY,e,k(Hyj,k −Hȳk)
2]

+ O(N−1/2
e )

= (I −KY,e,kH)Cp
Y,e,k(I −KY,e,kH)T + KY,e,kεk + O(N−1/2

e )

(6.4)

Compared to the analyzed error covariance of the Kalman filter, the error covariance of

the forecasted ensemble mean consists of the ensemble covariance, the measurement error

εk and sampling error of Monte Carlo method which is O(N
−1/2
e ). The error covariance of

the updated ensemble mean will tend to reduce too much because all ensemble members

are updated with the same measurements. Therefore, the EnKF’s model forecast covariance

is easily underestimated by its implementation. Eq. 6.4 also implies that the inappropriate

measurement errors εk and sampling errors can also introduce stochastic errors in error
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covariance. For example, a spurious relation caused by sampling errors for filter divergence

has been reported by Gu (2006). The porosity and permeability estimates move away from the

“truth” in a 1-D example when water first reached the producer. Filter divergence problems

also occur in her 2-D and 3-D examples. One reason the filter divergence occurs earlier in her

EnKF implementation is the sampling errors caused by a rather small ensemble size of 40.

Large ensemble sizes and improved sampling methods improve convergence of the EnKF. In

the following section, we focus on methods to stabilize the error covariances of the EnKF.

6.2.2 The Impact of Error Covariance on Filter Divergence

Much of the problem is a consequence of using the ensemble to estimate the ensemble co-

variance matrix in the EnKF. The EnKF may diverge due to errors in covariance estimates.

These errors are examined using a simple two-variable cases, in which we make an observation

(with error) of a ln k at x, and examine the effects on the posterior at x and y as the depen-

dence on the covariance estimate (Fig. 6.6). The x -axis is the prior distribution of ln k (black

thick line) at one gridblock close to a well where the observation responses are obtained.

The y-axis is the prior pdf (black thick line) of ln k at a far-removed gridblock from the well.

Because the two locations are widely separated, they are a priori uncorrelated, and this is

reflected in the widely dispersed prior covariance (Fig. 6.6(a)). After the EnKF update, the

prior pdf of ln k at x is tuned toward the observation only to an extent consistent with the

Kalman gain to get the posterior Gaussian distribution (gray thick line). If the pdf of ln k at

x is estimated correctly, the variance of ln k at x decreases compared with that of the prior

distribution. Because the covariance of ln k at x and y is zero, the posterior distribution of

ln k at y is unchanged. But if the prior variance of the ln k distribution is underestimated,

the measurement is ignored in the Kalman gain and the posterior unavoidably looks like the

prior (Figure 6.6(b)). During subsequent assimilation steps, the variance-deficient ensemble

thus further underestimates the model errors, disregarding even more the influence of the

90



(a) True variance of ln k (b) Underestimated variance of ln k

(c) Underestimated variance of ln k

Figure 6.6: Filter divergence analysis (Hamill and Whitabker 2001)
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new observations. This problem can progressively worsen, resulting in a useless ensemble of

forecasts.

Filter divergence can occur as a result of a wrongly estimated covariance relationship (Fig.

6.6(c)). Similar to Figure 6.6(b), it is assumed that the “flow information” (e.g., pressure

transients after rate changes) does not propagate rapidly across large distances in the reser-

voir, and that observations tend to be most related to model parameters in their vicinity.

However, if the magnitude of covariance between a well and this location is overestimated

because of the poorly known geological information, the pdf of the far-removed location will

be artificially correlated, and therefore “corrected,” even if there is no flow information there.

This can make the a posterior pdf at those areas biased and/or reduce variance; that is, the

posterior distribution has insufficient probability at the location near to true state. This may

lead to filter divergence.

Many authors have suggested approaches to lessen or prevent the trend toward this kind

of filter divergence. Houtekamer and Mitchell (1998) proposed a “double EnKF”. They used

parallel ensemble data assimilation cycles in which the error covariance estimated by one

ensemble is used to calculate the Kalman gain for the other. This procedure compensates for

the biases associated with nonlinearity in the error covariance and helps prevent the assimi-

lation process toward smaller and smaller prior error covariances. Anderson (2007) proposed

the “Hierarchical ensemble Kalman filter”, in which an ensemble of ensemble filters is used

to lessen the effects of spurious correlations among an observation and model parameters.

Anderson shows that even small numbers of groups appear to lead to good estimates of

sampling error in ensembles. But computation costs are an important considerations in the

application of these methods; hierarchical models require more simulation runs to ensure

enough members in each of the subensembles.

One simple approach to filter divergence is to add some (white) noise to the prior distribu-

tion to “broaden” distribution and enhance the impact of observations in the Kalman gain

calculations, which is termed “inflation” (Jazwinski 1970). Hence, in the following discussion,
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we examine the behavior of EnKF with an inflation of the covariance, and investigate the

sensitivity of inflation factor to ensemble size. From the discussion in Section 6.1, to mitigate

the influence of assimilation frequency and ensure the piecewise linearity of each assimilation

step, Case II (with a combination of 0.01 and 0.05 pv assimilation frequencies) is used in the

following studies.

Before the first observation is assimilated, the deviations from the ensemble mean are

inflated by γ ≥ 1.0 (typically, γ ≤ 1.10):

yp
j,k = γ(yp

j,k − ȳp
k) + ȳp

k (j = 1, 2, . . . , Ne) (6.5)

where k is the time step, yj,k is the state vector and γ is an inflation factor.

As noted in Section 3.4, the goal of assimilation is to produce a random sample of the

conditional probability distribution that is consistent with the “truth” while minimizing σt

of the ensemble from the truth case. The effects of inflation are examined for an uninflated

case (Case II, earlier) and an EnKF with an inflation of variance γ = 1.01 (Fig. 6.7).

During the first several steps, σt of the traditional EnKF and EnKF with an inflation factor

are similar. However, the traditional EnKF diverges from the “truth” at 1.24 pv injection.

In contrast, the EnKF with inflation keeps converging after more assimilation steps. The

standard error of ensemble σe of the two methods drop steadily with data assimilation. The

differences between traditional EnKF and EnKF with inflation keeps increasing with time.

While the empirical constant inflation factor 1.01 broadens the prior distribution artificially,

the divergence problem appears to be avoided and the implied prior distribution tends to

be better preserved, as appropriate. However, larger γ may result in a filtering where the

observations are given too much weight and do not yield the best unbiased estimate of state

variables; therefore, γ must be chosen with care.

It is likely that 1 percent is not an optimal factor for different ensemble sizes. In general,

the only viable method for choosing the best γ is trial and error. A search of covariance

inflation values is made until a minimum value of σt for the ensemble mean is found for
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Figure 6.7: The σt of the ensemble without inflation (triangle), and the σt of the ensemble
with inflation (square), the σe with inflation (diamond), the σe without inflation (circle).

synthetic case which the “truth” is known. It is computationally expensive to do trial-and-

error for a range of inflation factors to find the relationship between inflation factor and

ensemble size. Different inflation factors versus ensemble sizes are tried for Case II using

high performance grid computing (Figure 6.8). The optimal inflation factor is a function of

ensemble size and errors can be decreased by choosing suitable inflation factor. For the 100

ensemble member, 1 or 2 percent seems optimal, and for the 400 ensemble members , a 0.25

-1.0 percent inflation factor produces the minimum σt. Note that 1 percent inflation factor

is nearly optimal for all ensembles. Results are only reported for this case. Tuning a filter for

a real reservoir is complicated by the limited number of observations, the lack of geological

knowledge of the reservoir, and the presence of systematic model errors. In order to get

the best estimation by filtering techniques, trial-and-error for a suitable inflation factors is

needed before EnKF process.
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Figure 6.8: Sensitivity of inflation factor to ensemble size. The σt of the 100 ensemble mem-
bers and 400 ensemble members are shown as square dash line and diamond dash dot line,
respectively

6.3 Analysis of Errors as a Function of Localization

In order to investigate the relationship between the error covariance and distance during the

EnKF update, the 2nd columns of Kalman gain matrices (777×9) during the first to seventh

assimilation steps are drawn versus distance (Figures 6.9(a) to 6.9(d)). y-axix reflects the

weight computed from oil production rates of P1, x-axix is the distance between the grid-

blocks and P1. At the first assimilation step (Figure 6.9(a)), the distance that measurements

appear to affect model parameters is about 600 ft, which matches the direction of maximum

continuity in variogram. But in the second and third assimilation steps (Figures 6.9(b) and

6.9(c)), the scattered spots show that almost all the gridblocks have either positive or nega-

tive values. Intuitively, observations should not so strongly affect reservoir models parameters

(e.g., grid block permeabilities) that are so far away. This can cause divergence because of

misestimation of the covariance (or Kalman gain), as noted previously. Many of the observa-
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(a) After first assimilation (b) After second assimilation

(c) After third assimilation (d) After seventh assimilation

Figure 6.9: Kalman gain computed from well P1 vs. distance at different assimilation time

tions are expected to be physically unrelated to a particular state variable because they are

observations of physically remote quantities. However, some of these observations may be

highly correlated with the state variable purely by chance and these spurious correlations will

have affect the updated ensemble. The effects of spuriously correlated remote observations

can overwhelm more relevant observations.

The finite ensemble size causes the estimated correlations to be noisy. To filter out the error

covariance correlation associated with remote observation. The covariance between state

variables and observation in the joint state space are multiplied by a correlation function. The

correlation function, called Schur product, is a fifth-order piecewise rational function derived

by Gaspari and Cohn (1999). In meteorology, it is widely accepted that geopotential-height

forecast error correlations should be set to zero beyond distances of a few thousand kilometers

in the troposphere. The Schur product method is implemented by multiplication of the

sample covariances between the observations and state variable by the distance-dependent
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factor. It is similar to the inflation factor used in Section 6.2, but the multiplier is a Schur

product, ρo, which is a compactly supported correlation matrix in Eq. 6.6 which parameterize

smoothness for the random field and reduce the computational burden.

Cp
Y,e,k = ρo[

1

Ne − 1

Ne∑
j=1

(yp
k,j − ȳp

k)(y
p
k,j − ȳp

k)
T], (6.6)

We substitute Eq. 6.6 into the Kalman gain equation

KY,e,k =
1

Ne − 1
ρo(∆yp

kA
T)

(
1

Ne − 1
ρoAAT + CD,k

)−1

, (6.7)

If we define

A = Hk∆yp
k, (6.8)

The function ρo depends upon the observation location; it is a maximum of 1.0 at the

observation location and typically decreases monotonically to zero at some finite distance

from the observation. It is a relatively broad function. The fifth-order function proposed by

Gaspari and Cohn (1999) is defined as the following Eq. 6.9. It is important to note that the

ρ is nonzero only for separation distances less than twice the value of a, which is the critical

distance.:

ρo(a, b) =
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(6.9)

Where a is defined as a critical distance, which is assumed to be twice the range of variogram.

b is the distance between the gridblock and the observation locations.

The effect of Schur product is evaluated with the difficult case of a small ensemble size. For

the experiment, the Case II is used: observation is combined every 0.01 and 0.05 pv; there are

40 ensemble members. The critical distance is equal to the range 600 ft, which is the critical

distance a. An examination of the σt of EnKF with and without Schur product (Figure 6.10)

clearly shows the benefits of using correlation function. If the small ensemble size is chosen,
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Figure 6.10: Effects of localization on the performance of the EnKF. The σt of the ensemble
without localization (triangle), and the σt of the ensemble with localization (square), the
standard error of ensemble σe with localization (diamond), the standard error of ensemble
σe without inflation (circle).

the filter divergence problem can not be avoided. The effect of localization is to increase the

effective number of ensemble members. It filters out the small correlations associated with

remote observations and the correlation is smooth and monotonically decreasing, produces

smooth updating steps.

6.4 Discussion

In this chapter, a 2-D, two phases water flood reservoir model is continuously updated by

using EnKF. We examine the case to understand how errors covariances vary with assim-

ilation frequency, ensemble sizes and observation locations. The two main reasons for the

instability of filter are the error covariance is systematically underestimated and overesti-

mated. “Underestimate” means that the magnitude of variances were reduced as more data

were assimilated. “Overestimate” means the observations are in a distance-dependent man-
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ner that the noise (the error) of that observations is larger than the signal (magnitude of the

covariance).

We investigate the covariance inflation method by multiplying the ensemble covariance

by a uniform covariance inflation factor to compensate for the usual bias of the EnKF to

underestimate the analysis uncertainty. For the problem discussed above, the filter remains

stable. However, covariance inflation assumes that the model error grows proportional to the

error covariance, otherwise the method may cause data assimilation problem. Therefore, a

more accurate result could have been obtained if a more complicated inflation approaches is

used, e.g., a location-dependent inflation factor could solve some of the problem. We leave

more exploration of tuning the EnKF dynamically for future work.

The effect of localization is to increase the effective number of ensemble members. With

localization, corrections dependent on the observation location, introducing extra degree of

freedom. As the number of ensemble member increases and as the noise in the estimate of

weak distance correlation diminishes. The major obstacle must be surmounted in order to

apply the localization method widely is the uncertain geological information, e.g., critical

distance and the major continuity direction, which is needed to tuning the elements in Schur

product. Given a certain ensemble size, an appropriate critical distance can be specified.
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Chapter 7
Data Assimilation in Strongly Nonlinear and
Non-Gaussian Problems

In this chapter, a synthetic problem is selected and analyzed to investigate one primary

concern with the application of the traditional EnKF: is it possible to update state variables

whose distribution is non-Gaussian? The synthetic problem is a one-dimensional, two-phase

Buckley-Leverett problem (a hyperbolic partial differential equation). In order to alleviate the

influence from nonphysical updated state variables, Chen, Oliver, and Zhang (2007) presented

an EnKF with reparameterization to attain a more realistic water saturation distribution.

However, this method increases computation and data storage requirements. In the following,

a simple truncation of nonphysicasl state variables is presented as an alternative to EnKF

with reparameterization. The comparison between the two methods is discussed in Section

7.4.

7.1 Example 1: One-Dimensional Buckley-Leverett Prob-

lem

For nonlinear or non-Gaussian problems, the EnKF can generate posterior ensembles with

nonphysical state variables. For example, in water displacing oil simulations, water satura-

tions may take large values behind the water flooding front (Swc < Sw < 1−Sor −Swc), and

small values ahead of the front (Sw ≈ Swc). The distribution of water saturation in gridblocks

of the ensemble near the water front is usually bimodal and is not well represented by the

mean and variance of a nearly Gaussian distribution.

7.1.1 Generation of the Initial Reservoir Model

The synthetic case is a one-dimensional 32-gridblock reservoir model. The model contains one

injector I1 at grid 1 to inject water and one producer P1 at grid 32 to produce oil and water.
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One hundred reservoir models with varying porosity and permeability are generated using

LU Decomposition simulation (Goovaerts 1997). The porosity is normally distributed with

a mean of 0.2 and a standard deviation of 0.04. The permeability is log-normally distributed

with a mean of 5.5 (k is in md; 1 md = 0.9896∗10−12 m2) and the standard deviation of ln k

is 0.5. The two variables have a cross-correlation coefficient of 0.5. The range of the porosity

is 18 gridblocks and the variogram model is exponential.

The initial covariance function for porosity in the one-dimensional grid system is

Cφ(i1, i2) = σ2
φ exp(−3(i1 − i2)

a1

), (7.1)

where a1 is the range of variogram, i1 and i2 denote two locations in space. The initial

covariance function for ln k is

Cln k(i1, i2) = σ2
ln k exp(−3(i1 − i2)

a1

), (7.2)

and the initial cross-covariance function for porosity and ln k is

Cφ,ln k(i1, i2) = ρσφσlnk exp(−3(i1 − i2)

a1

), (7.3)

A “true” porosity field is created by unconditional LU Decomposition (Goovaerts 1997)

the same as the ensemble members. The procedure for the property model construction is

(i) Construct the covariance matrix C of 32× 32,

C(i1, i2) = exp(−3(i1 − i2)

a1

), (7.4)

where we assume the ln k and φ covariances are equal, then Cln k = Cφ and Lln k = Lφ.

Therefore in the following equations, both are simplified to C and L.

(ii) Decompose it using the Cholesky decomposition

C = LLT, (7.5)

where L is the “square root” of the covariance matrix C with Cholesky decomposition.
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(iii) Generate the porosity fields

φ = µφ + σφLZ1, (7.6)

where µφ is the prior mean of porosity; and Z1 is a vector of uncorrelated random

normal deviates, Z1 ∈ N(0, 1).

(iv) Generate the permeability field.

lnk = µln k + σln kL(ρZ1 +
√

1− ρ2Z2), (7.7)

where µln k is the prior mean of ln k; Z2 is a vector of uncorrelated random normal

deviate, Z2 ∈ N(0, 1); Z1 and Z2 are uncorrelated.

The well constraints used are: bottom-hole pressure for the injector is 4500 psi and 1500

psig for producer. A synthetic, true production record is generated by using the “true”

porosity and permeability with initial pressure of 4500 psi, water saturation of 20 percent and

perturbed Gaussian noise. The data to be assimilated are water injection rate, oil production

rate and the water saturation at grid 21 (an “observation” well). Measurement errors for rate

observation are assumed to be Gaussian with mean 0 and standard deviation of 3 percent

magnitude of production or injection rate. Usually the error distributions of field observations

are poorly known. According to a literature survey, Oglesby (2006) concluded that the current

conventional well testing accuracy for determining the flow rates for high water cut wells can

range from ±3 percent to ±50 percent. In order to simplify the study, a 3 percent standard

error is used when the water cut of producer is less than 20 percent, a 8 percent standard

error is used after the water cut of producer is greater than 20 percent.

7.1.2 Solving the Problem with Updated Saturations

The initial assimilation steps should capture most spatial variation features with reduced

uncertainty around and between well areas. The following example indicates the importance

of assimilating early transient flow data to gain fast recognition of reservoir heterogeneity.
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(a) Water saturations before EnKF and water break-

through in truth.

(b) Updated water saturations after EnKF.

Figure 7.1: Mismatched water saturation profiles because of late EnKF assimilation. Late
EnKF assimilation means that the first assimilation is taken when water breakthrough occurs
in measurement. Truth denoted by the red curve.

In this case, the first assimilation step (Figure 7.1(a)) begins after water has broken through

the producer in the “true” reservoir. Because the initial guess of ensemble properties are

generated randomly, some ensemble members with high porosity and permeability have water

productions before the first EnKF correction (Figure 7.1(a)), while others have no water

breakthrough because of inaccurate property estimates. However (Fig. 7.1(b)), the updated

water saturations of all ensemble members (black lines) fail to match the “true” saturation

profile (red line). The filter is divergent after several assimilation steps, the updated porosity

and permeability differ greatly from truth in Figure 7.2.

Another EnKF failure is observed when insufficient observation data constraints are pro-

vided. In this case, assimilation begins at 0.38 pv when the water front does not reach the

observation well at the 21st gridblock. The updated porosities of the ensemble are divergent

from the “truth” (Figure 7.2(b)). The reason for EnKF failure is the water saturation at

gridblock 21 remains at 0.2 for five consecutive assimilation steps. Only the inlet and outlet

injection and production rates provide useful flow information to infer average properties

of the reservoir and no information between the injector and producer. The properties (es-
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(a) Initial porosity of ensemble member. (b) EnKF corrections fails to match the true porosity

property.

(c) Initial logarithm permeability of ensemble member. (d) EnKF correction fails to match the true logarithm
permeability property

Figure 7.2: Divergent reservoir properties after late EnKF assimilation timing. Truth denoted
by the red curve.
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(a) Water saturation before EnKF (b) Water saturation after EnKF

Figure 7.3: First update by EnKF. Water saturation profiles at 65 days with truth denoted
by the red curve.

pecially porosity) of the flooded area affects the position of the water front. More detailed

information of gridblock property at water flooding area comes from the 21st gridblock water

saturation. Therefore, the first assimilation time should be when the water front reaches the

21st gridblock as observed in the “true” case — this observation would be available in an

analogous field case. Prior to the first ensemble Kalman filter correction at 65 days, the

variation of water front is considerable, the range is between the 12th and 32nd gridblocks

(Figure 7.3). The “true” water front has reached observation well at 21st gridblock.

Based on this analysis, 65 days is the first assimilation time when the water front arrives

at the observation well. We can see that prior to the first application of correction, the

fastest models have water breakthrough, while the slowest model only reaches gridblock 11.

The water saturations of ensembles are homogeneously spread around the “truth”. After the

first EnKF correction, Figure 7.3(b) shows that the saturation difference between ensemble

members becomes smaller. However, water saturation profiles do not always decrease mono-

tonically from the injector to the producer and nonphsical values occur Sw 6∈ [Swc, 1− Sor].

The reason is that the distribution of water saturations is non-Gaussian and bimodal (Figure

7.4), whereas the EnKF assumes Gaussian distributions for state vectors.
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Figure 7.4: Water saturation histogram at gridblock 20

Gu and Oliver (2006) have applied three methods to resolve the problem: (1) use of nor-

mal score transform to the saturation front location as a state vector; (2) use of location of

saturation front, instead of saturation as the state vector; and (3) iterating the update. Un-

fortunately, after the normal score transform, the water saturation still oscillates between its

high and low value. Besides, this method is not straightforward for two- or three-dimensional

problems. The second method is not applicable to two- and three-dimensions either. Other

alternative approaches, such as logarithms and power transformations, are not be able to

fully transform the bimodal distribution of water saturation to normal distribution. There-

fore, these approaches are not suitable for solve our problem. The third method is used

whenever the saturation is detected outside the range ([0.2,0.8] in this case), or does not

monotonically decrease [Sw(x + `∆x) ≥ Sw(x), ` ≥ 1]. The simulator will rerun the previous

assimilation interval to attain the current time step dynamic variables (pressure and satura-

tion) again but using the updated model parameters (porosity and permeability) obtained

at the current assimilation. After the forecast step, the state vectors and the observations

are used to apply EnKF correction again. The iteration continues until the corrected satu-

ration profiles satisfy the physical boundary or the iteration exceeds a preset maximum (3

times in the study because of computation costs). Figure 7.5(a) displays the simulated water

saturation profiles at first iteration with updated model parameters during the first mea-
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(a) Water saturation before EnKF (b) Water saturation after EnKF

Figure 7.5: Water saturation contours after iteration at 65 days with truth denoted by the
red curve.

surement is available. Comparing with Figure 7.3(a), the saturation profiles are improved

with smaller differences among ensemble members because of EnKF correction. After the

second correction by the EnKF, the saturation profiles becomes as shown in Figure 7.5(b).

Unlike Figure 7.3, the results have improved but some of the saturation values are out of

physical boundary or do not monotonically decrease from the injector to producer. The non-

physical saturation values can occur from an EnKF update step if there is a wide range of

model parameters and bimodal parameter vectors in the ensemble. One problem of iteration

is the computational burden. Another problem with iteration is the observation data are

assimilated more than once, the error covariances of state vector become too small during

the iteration procedure which tends to incorrectly reduce predicted uncertainties of reservoir

properties and may result in filter divergence. In the following section, we show that Zafari

(2007) has proved mathematically that the iteration is not correct to be applied to resolve

non-Gaussian and nonlinear problems by using a set of linear relationship. The iteration may

lead to inconsistency for the EnKF.
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7.1.3 Error Covariance Problem with the Iteration Method

Zafari (2007) indicated the inconsistency of the confirming EnKF (Wen and Chen 2005a) by

using a set of linear relationships. The same method is used here to prove the error covariance

problem caused by the iteration. In the EnKF, to avoid the explicit computation of Cp
Y,e,k,

substitute Cp
Y,e,k = 1

Ne−1
∆Y p

k (∆Y p
k )T in Kalman gain, then the update state vector by EnKF

can be rewritten in terms of matrix of ensembles as,

Y u = Y p +
∆Y p∆DT

Ne − 1
(
∆D∆DT

Ne − 1
+ CD)−1(Dobs −HY )

= Y p
(
I +

∆DT

Ne − 1
[
∆D∆DT

Ne − 1
+ CD])−1(Dobs −D)

)
− Ȳ pδD

= Y p(I + δ(D))− Ȳ pδD

(7.8)

where D = Hk∆Y p and

δD =
∆DT

Ne − 1
[
∆D∆DT

Ne − 1
+ CD]−1(Dobs −D) (7.9)

Note that model parameters, model solutions and computed responses are all updated using

the same coefficient matrix, (I + δ(D)) and the constant vector, Ȳ pδD. Eq. 7.8 indicates

the updating coefficient is only a function of the matrix D. Suppose we have the following

linear relationships between model solution P , data D and model parameter M ,

P k+1 = FkM
k + AkP

k + αkĪ (7.10)

Dk+1 = GkM
k + BkP

k + βkĪ, (7.11)

where Fk, Ak, Gk and Bk are matrices and αk and βk are known vectors. k is the time step,

P k+1 and Dk+1 are state solutions and data at time step k + 1, which is the assimilation

time. Dk+1 is given as a function of M k and P k+1, or a function of M k and P k but the

coefficient matrices would be different. The following equations are the same equations but

using form of matrix of ensembles, where Ī is an Ne-dimensional row vector with each entry

equal to 1. When there are data at (k + 1)th, from Eq. 7.10, if the standard EnKF is used
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to update the model parameters,

P k+1,u = P k+1(I + δ(Dk+1))

= FkM
k(I + δ(Dk+1)) + AkP

k(I + δ(Dk+1)) + αkĪ

(7.12)

But if the iterative step is taken, the equation becomes,

P k+1,r = FkM
k(I + δ(Dk+1)) + AkP

k + αkĪ (7.13)

Now we continue assimilation of data for one more time. For the case that we rerun the time

step in iteration would become,

P k+1,r,u = FkM
k(I + δ(Dk+1))(I + δ(D′k+1)) + Ak(FkM

k(I + δ(Dk+1))

+ AkP
k + αkĪ)(I + δ(D′(k+1))) + αkĪ

(7.14)

Eq. 7.12 and 7.14 are not the same, as can be seen in the second term on right hand side of Eq.

7.14, the current updated model parameters has been used for last time step. Moreover, the

δ(D′(k+1)) is different from δ(Dk+1). The inconsistency of the current updated parameters

used in the last forecast step might cause problems. Thus, the iteration method does not

appear to be feasible to solve the nonlinear and/or non-Gaussian problem.

7.2 Ensemble Kalman Filter with Reparameterization

In the forecasting step of EnKF, simulation is able to propagate the full probability distri-

bution of the model, while at the updating step, the EnKF relies on the ensemble mean and

variance. The Gaussian assumption makes the updating step easy to implement but may

result in errors when this assumption is violated. The non-Gaussian probability distribution

of the model state vector most likely comes from the nonlinearity of the dynamic model. A

normally distributed initial state could become strongly non-Gaussian after evolving it with

the nonlinear model.

There are some methods available to solve the problem caused by nonlinear models without

the Gaussian assumption. Miller, Carter, and Blue (1999) constructed the pdf function for
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the model evolution and calculated the conditional density in terms of the analytical function

according to the maximum-likelihood analysis. Their method is less limiting than the EnKF

since the assumption of Gaussianity is not required. But it is computationally demanding

when applied to large scale problems.

7.2.1 State Vector Construction

In this section, EnKF with reparameterization is applied for a one-dimensional Buckley-

Levertt waterflooding problem. The objective is to obtain better performance of EnKF

through improving the Gaussian distribution of the model solutions, mainly water saturation.

The EnKF with reparameterization method evolves from the fact that the water saturation

distribution away from the water front is approximately Gaussian, whereas the distribution

in the water front region is bimodal. Thus, the reparameterization needs to be done only

for the front area where the gridblock water saturation distribution is non-Gaussian. The

water front arrival time is correlated to the reservoir properties, especially porosity. And it

is well modeled by a Gaussian distribution. Since the water front arrival time is defined for

gridlocks, there are some additional steps compared with traditional EnKF updating with

more computational burdens and storage requirements.

As mentioned previously, the reparameterization approach uses water front arrival time but

saturation as the state vector in the water front domain. Thus, the new state vector consists

of porosity (φ), logarithm permeability (ln k), and pressure (p) at every gridblock, water

front arrival time (T ) at the gridblocks within the water front area, and water saturations

(Sw) in the remaining gridblocks:

y ={φ1, . . . , φN , ln k1, . . . , ln kN , p1, . . . , pN , Sw,1, . . . , Sw,N1−1,

TN1 , . . . , TN2 , Sw,N2+1, . . . , Sw,N}
(7.15)

where N1 and N2 are the starting and the ending gridblocks of the front area, respectively;

N is number of gridblocks. The workflow of EnKF with reparameterization is different from
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traditional EnKF. Some steps of the distributed EnKF work flow calls for some changes.

The modified steps are summarized as followed:

(i) After all the state vectors are transferred from ensemble machines to the Kalman gain

master processor, the water saturations of all ensemble members are searched through

for the water front domain, which is the start and end gridblocks of water front among

all ensemble members (denoted by N1 and N2) in 1-D problem. The water front arrival

time is defined as the time when the water saturation reaches 0.40 at a certain gridblock.

For example, in Figure 7.3(a), N1 and N2 are 11 and 32 respectively.

(ii) In order to obtain the water arrival time of all ensemble members for each grid block

in the water front area, simulation beyond the current assimilation time is needed to

obtain the saturation vs. time relationship (called time window) for each gridblock in

front area. One more task farming is needed to accomplish the extra simulations for

water front arrival time information.

(iii) The time window for each ensemble member is extracted from the simulation output

and GridFTPed back from distributed machines to Kalman gain processor for Kalman

gain computation (Eq. 7.15).

(iv) The time window array is saved in the Kalman gain processor. After EnKF correction,

the updated water front arrival time would be transformed back to saturation by the

stored time window.

Figure 7.6 shows the time windows for gridblocks 2, 6, 20 and 32. Gridblocks 2 and 6 (Figure

7.6(a) and 7.6(b)) are behind the water front domain and water saturation is used in the

state vector for assimilating data at 65 days. Realizations of the front arrival time at the

gridblocks 20 and 32 can be read through the time window by drawing a horizontal line at

saturation 0.4 in Figures 7.6(c) and 7.6(d). It is obvious that the distribution of water front

arrival time in Figure 7.7 is more Gaussian than water saturation distribution in Figure 7.4.
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(a) 2nd Grid block (b) 6th Grid block

(c) 20th Grid block (d) 32nd Grid block

Figure 7.6: The water saturation versus time at initial condition with red curve as referece
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Figure 7.7: Distribution of the water front arrival time at gridblock 20 (Compared with
bimodal distribution of water saturation at Figure 7.4

7.2.2 EnKF Assimilation

To obtain the updated saturation ensemble, the EnKF with reparameterization needs an

extra step, since water front arrival times are included in the state vector and updated for

the water front area. Figure 7.8 is the time window after an assimilation. The time windows

remain unchanged if Figure 7.6(a) is compared with Figure 7.8(a), and Figure 7.6(b) is com-

pared with Figure 7.8(b) because the saturations of the two gridblocks are updated instead

of arrival times. Figures 7.8(c) and 7.8(d) show less fluctuation and get closer to the truth

compared with Figures 7.6(c) and 7.6(d). Then the saturations of the water front area at the

current assimilation time for each member can be interpolated from the newly updated water

breakthrough curve in Figure 7.8(c) and Figure 7.8(d). The assimilation steps for EnKF with

reparameterization and the traditional EnKF are the same. The updated saturation profiles

from the traditional EnKF are shown in Figure 7.9(c). The fluctuation is substantial and

many updated saturation values are beyond the physical bounds. Figure 7.9(b) is the result

of EnKF with reparameterization. An improved match is noted as the ensemble members are

getting closer to the truth. The advantage of EnKF with reparameterization is the improved

water saturation estimate to honor future observation. But the extra computation effort for
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(a) 2nd Grid block (b) 6th Grid block

(c) 20th Grid block (d) 32nd Grid block

Figure 7.8: The water saturation versus time after EnKF with red curve as referece
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(a) Before EnKF (b) After EnKF with reparameterization

(c) After traditional EnKF

Figure 7.9: The water saturation versus time with red curve as truth
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Figure 7.10: Truncated water saturation profile.

simulation, data transfer by the network and storage requirement make it difficult to apply

for dealing with a 2-D or 3-D reservoir model. Next, an alternative EnKF with nonphysical

values truncation, is discussed and compared with EnKF with reparameterization.

7.3 EnKF with Truncation

EnKF with reparameterization loses the simplicity and efficiency of traditional EnKF be-

cause of the extra computation, data transfer and storage burden. To avoid the problem,

when the updating step generates unreasonable values for time dependent state solutions,

simple truncation of nonphysical values to physical ones not only honors the observations,

but also make the work flow simpler to implement. The distribution of water saturation is

always nonlinear and/or non-Gaussian and easily has nonphysical values after updating. If

an updated saturation is below connate, then replace it by connate water saturation as in

Figure 7.10 (similarly, S ′w = min(1− Sor, Sw)).
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7.4 Comparison of EnKF with Reparameterization and

Truncation

In the following section, the two methods are compared using the 1-D waterflooding case.

Whereas 1-D water flooding is like a streamline problem, the water front is generally smoother

in 2-D or 3-D due to additional dispersion in higher dimensions. Therefore, a 1-D problem

is the most difficult test for non-Gaussianity and nonlinearity using the EnKF.

The “truth” case takes 65 days (0.281 pv) to reach gridblock 21 where the observation

well is and breaks through the producer in 104 days (0.44 pv). The first assimilation is taken

at 65 days when the water front reaches the observation well. The perturbed observation

data are assimilated every two days. The assimilation stops after water breakthrough for

EnKF with the reparameterization method. After the water breakthrough, the distribution

of water saturation is no longer strongly non-linear and/or non Gaussian. Therefore, the

total assimilation steps for EnKF with reparameterization and truncation are 20 and 29,

respectively.

7.4.1 Comparison of Model Parameter Estimates

The error relative to the “truth” (σt) and standard error of ensemble (σe) for permeability

and porosity estimates for the two methods are presented in Figures 7.11(a) and 7.11(b).

After the first assimilation, both σt and σe decrease dramatically from their initial values.

That means the objective function has gone down from 2.4 to 1.1 for permeability and

from 0.164 to 0.086 for porosity. Compared with true porosity and permeability, σt of the

EnKF with reparameterization demonstrates better match than truncation. However, the

t-tests between the EnKF with reparameterization and with truncation are not significantly

different statistically in Table 7.1. The F -tests indicate no difference in variance estimates.

The maximum relative error of σt for porosity and ln k (Fig. 7.12) is 16 percent and 0.12

percent, respectively.
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(a) Porosity results

(b) Permeability results

Figure 7.11: σts and σes of porosity and logarithm permeability estimates from truncation
and reparameterization

Table 7.1: t-test and F -test for σt between the EnKF with reparameterization and with
truncation
.

Statistical test p-value

t− test 0.6924

F− test 8.82E-06
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(a) Porosity results (b) Permeability results

Figure 7.12: Relative error of the porosity and logarithm permeability estimates between the
EnKF with truncation and EnKF with reparameterization.

7.4.2 Comparison of Forecast Mismatches

A concern with EnKF is that the permeability and porosity fields update with time as more

data are assimilated. It seems somewhat likely that the final permeability and porosity fields

resulting from 200 days assimilation would no longer honor the observation data at earlier

times. The comparison of the “truth” (red line) with the simulated values of the observations

(black lines ) from the 0.45 pv injection (water breakthrough) assimilated ensemble are taken

back to time 0 and rerun (Figures 7.13(a) and 7.13(b)). The forecast results of the two

methods are presented in terms of a “P10” and “P90” uncertainty band (Figure 7.13(c)). The

lowest water cut (circle line) represents the ninth lowest value predicted with one hundred

ensemble of reparameterization method, same as the “P10” of truncation method (upper-

triangle line). The square line and lower-triangle line denote the “P90” of truncation and

reparameterization method, respectively. The uncertainties of the truncation method is a

little bit larger than the reparamterization. “Truth” is not within the band of “P10-P90”.

To quantitatively compare the forecast results of the two method, the σts are calculated

based on forecasting on “truth” (Figure 7.14). The errors occur at water breakthrough time

for both methods and the magnitudes of σt are similar. Then, we continue the assimilations

to 0.56 pv injection using traditional EnKF to update the reparamterization model and

truncation models. After the two models are rerun, they match the “truth” closely (Figure
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(a) Forecast by the EnKF with reparameterization (b) Forecast by the EnKF with truncation

(c) Forecast P10 and P90 comparison between the EnKF with reparameteriza-
tion

Figure 7.13: P4 water cut forecast comparisons between truncation and reparameterization,
0.45 pv injection assimilation
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Figure 7.14: P4 water cut forecast σt comparison between the EnKF with truncation and
reparameterization.

(a) Forecast comparison between the EnKF with
reparamterization

(b) Forecast comparison between the EnKF with trun-
cation

Figure 7.15: P4 water cut forecast by the EnKF with truncation, assimilation 0.56 pore
volume injection.

7.15) and fewer difference after more flow information has been integrated. There is no large

difference on the model parameter estimates by the two methods.

7.4.3 Consistency Check for the EnKF with Truncation

In traditional history matching, only the permeability and porosity fields would be updated

by an optimization method. The pressure and saturation fields that are consistent with

the permeability and porosity fields would be computed by running the reservoir simulator.

In the EnKF method, the permeability, porosity, pressure, and saturation are all updated
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simultaneously at updated steps. Then a linearized approximation to the simulator is used

to make a prediction of the saturation and pressure changes that should result from the

porosity and permeability changes.

It is not clear, however, that material balance is honored after the truncation of non-

physical water saturation. In order to check the global material balance error, we computed

the total water-in-place (
∑Nm

i=1 ViφiSw,i) for the ensemble for the first assimilation step and

0.45 pv assimlation: (1) comparing saturations and porosity before the truncation, and (2)

comparing with the “true” water-in-place. If the differences in the computed water-in-place

values, for each ensemble member, for the two comparisons are small, it implies that the trun-

cations are valid and that the material balance is generally honored in truncation method.

In the first assimilation step, the mean of water-in-place distribution for 100 ensemble mem-

bers before truncation is around 12.78×104 bbl. After the truncation of non-physical water

saturations, the mean of water-in-place distribution is 12.94×104 bbl. The relative error is

approximately 1.3 percent. The 0.54 pv assimilation, the distributions of water-in-place be-

fore and after truncation are the same. In this case, the truncation method seems to honor

the material balance. The mass conservation is kept by EnKF with truncation method. Note

the increased relative errors between the updated model from the first assimilation step (Fig-

ure 7.17(a)) to 0.54 pv assimilation (Figure 7.17(b)). The mean value goes up from 4.15 to

5.23 percent. The relative errors of some models have reached 11 percent. The EnKF reduces

a nonlinear minimization problem in a huge parameter space, involving the minimization of

an objective function with multiple local minima, to a statistical minimization problem in

the ensemble space. Thus, by searching for the mean rather than the mode of the posterior

pdf. Pore volume is indeed uncertain, and we are adjusting it. We would do the same with

a traditional gradient approach. The difference here as that the gradient method uses the

PDE only to evolve, and the EnKF uses covariances as well. Thus, whereas 11 percent would

be a huge error for a simulator, it is probably acceptable for the EnKF.
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(a) Initial models (b) The first assimilation

(c) 0.54 pv assimilation

Figure 7.16: Distribution of water-in-place of the EnKF with truncation method

(a) The first assimilation (b) 0.54 pv assimilation

Figure 7.17: Relative error of water-in-place between truncation and “truth”
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7.5 Discussion

When the distribution of the state vector, i.e., saturation, is not normally distributed, non-

physical values may be generated by the EnKF. The problem cannot be resolved by EnKF

with iteration because the reduced error covariance often results in a filter divergence prob-

lem.

EnKF with reparameterization can reduce the non-Gaussian effects in the presence of the

sharp water front as illustrated by the one-dimensional example. EnKF with reparameteri-

zation better adjusts the water saturations compared with the traditional EnKF, as a result

of the strongly non-Gaussian distribution of water saturation around the front area. Since

the EnKF is a sequential method, the improved estimate of the state variables improves the

ability to assimilate future observations for EnKF with reparameterization.

EnKF with reparameterization has a high demand for computation time and storage space,

which hinders its application (especially in 2 or 3 dimensions). The large amount of time

needed for time window data transfer poses a challenge for the grid environment. From this

research, we found that model parameter estimates of a simple EnKF with truncation are

similar to EnKF with reparameterization. Therefore, the EnKF with reparameterization can

be used for the initial assimilation steps when the nonlinear and non-Gaussian conditions

are strong. The EnKF with truncation can also be used to continue the process (even if one

chooses reparameterization for earlier steps).
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Chapter 8
Discussions

This chapter gathers several topics of particular interest, highlighting the theoretical and

practical aspects of the EnKF in a Grid environment and pointing out remaining challenges.

In Section 8.1, a proposed sampling method to efficiently select representative ensemble in

small size is introduced. Section 8.2 provides some thoughts about extending distributed

EnKF to ensemble-based closed-loop work flow. Resource pricing and run strategy at a

Grid environment is discussed in Section 8.3. Some suggestions about the distributed EnKF

improvement are introduced in the section. The last section is the discussion of optimal

EnKF process based on work done in Chapter 6 and 7.

8.1 Improved Ensemble Selection Using Many Secondary

Responses

EnKF, as a stochastic inversion methods, provides multiple reservoir models and forecasts,

and integrates production and geologic data. The geologic knowledge encapsulated in the

prior ensemble of reservoir models determines the diversity of the posterior ensemble. Be-

cause the error covariance is estimated by Monte Carlo methods in traditional EnKF, the

estimation might suffer from the spurious correlation when the size of the ensemble is small.

We propose a method to choose essentially diverse yet manageably small prior ensembles to

improve the efficiency of EnKF.

To make prior ensembles manageably small, a subsample is commonly drawn using a

univariate ranking of an easy-to-estimate secondary flow model response. The secondary re-

sponse should correlate with full-physics responses such as cumulative oil recovery. However,

there are two complications. First, the rank depends on the analyzed response; for exam-

ple, using recovery efficiency and breakthrough time will give different ranks. Second, model
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rank may depend on engineering factors such as well spacing or completion geometry.These

complications are addressed by embracing the full joint, multivariate distribution of many

secondary responses. The secondary responses are chosen to reflect important reservoir char-

acteristics such as connectivity, pore volume, anisotropy, and conductivity; and to reduce

dependence on specific development scenarios. Models that are diverse in these secondary

responses should be diverse in the full-physics responses to be simulated later. To create

the prior ensemble, we choose realizations from this multivariate secondary response (M2R)

space and use a quasirandom method to ensure the sample is both diverse and representative.

It seems reasonable to use single-phase tracer simulations for screening; the secondary

responses include injectivity, Lorenz coefficients, and residence time statistics. Although the

screening simulation simplifies the physics and operational constraints, tracer simulations

include full geomodels. Various injector-producer pairs sample geomodel heterogeneity and

anisotropy. This provides hundreds of secondary responses to describe the geomodels. Prin-

cipal component analysis reduces secondary response dimensionality and diagonalizes the

response covariance matrix, which simplifies sampling. Then, low-discrepency quasi-Monte

Carlo Hammersley sequences samples the secondary response principal component space

using a nearest neighbor approach.

This work is being pursued currently , but is not included in this dissertation. In the

ongoing work, the multivariate secondary response (M2R) method for full simulations, a

naive random sample and two different univariate random samples are used to select 100

realizations from a suite of 1000 geomodels separately. These 100-member ensembles (M2R,

two univariate, and one naive) are used as prior ensembles for a waterflood EnKF inversion,

and convergence of each ensemble to the reference model is evaluated. The comparison

shows that M2R provides a larger uncertainty space to avoid filter divergence and improves

inversion performance because of more careful sampling of the prior, geomodel space.
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8.2 Ensemble-Based Closed-Loop Work Flow

“Closed-loop reservoir management” is focused on the development of concepts and algo-

rithms to improve ultimate oil recovery though the use of measurement and control. It con-

sists of two parts: geological model updating and production optimization. The main sources

of inspiration are data assimilation techniques and optimization. Chen, Oliver, and Zhang

(2008) combines the EnKF for continuous model updating with ensemble-based optimiza-

tion method (EnOpt) to form a real-time closed-loop reservoir management. The sensitivities

needed in the data assimilation and production optimization are approximated from the en-

semble in a straightforward manner without the need for adjoint computation. Therefore the

EnOpt can be extended based on our distributed EnKF work flow (Figure 8.1). Following

the work of Chen, Oliver, and Zhang (2008), the ensemble-based closed-loop optimization

using the EnOpt starts from Step 10.

Step 10a Initialize EnOpt step. When ` = 1 (the first iteration), generate initial control

variables x1 and initial ensemble of control variables x1,j, (j = 1, 2, . . . , Ne). x repre-

sents the vector of control variables that contains all the well constraints at different

control steps, x = [x1, x2, x3, . . . , xNx ]. x1,j, (j = 1, 2, . . . , Ne) are realizations of con-

trol variables used to approximate CxG
T
` , where Cx is the prior covariance of control

variables x, G` is the sensitivity of objective function to the control variables evaluated

at the `th iteration.

(i) If k = 1, x1,j are generated in two steps. First, a mean control of all wells is

sampled from a uniform distribution with the upper and lower limits equal to

the maximum and minimum possible well constraints for each realization of each

well. Second, a temporally correlated Gaussian random field (GRF) with zero

mean is generated for each realization and added to the mean control. Set x1 =

1/Ne

∑Ne

j=1 x1,j.
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Figure 8.1: Work flow for closed-loop management on Grid.
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(ii) if k 6= 1, x1 is set equal to x. then a GRF is generated for each realization of each

well and added to x to form x1,j.

Step 10b Start the EnOpt loop. If ` 6= 1, a GRF is generated for each realization of each

well and added to the control variable x`.

Step 11 & 12 Task farming and run the simulations from the current time step to the end

of field life.

Step 13 Use the simulation results to calculate the optimized objective function, e.g., Net

present value for water flood problem.

g(x, y) =
Nt∑
i=1

voQoi(x, y)− vwQwi(x, y)

(1 + rτ )ti/τ
(8.1)

where i is the time step; Nt is the total number of time steps; rτ is the discount rate

in terms of time span τ and ti is the accumulative time since the start of production.

vo and vw are the price of oil and the cost of water disposal, respectively. Qoi and Qwi

are the total oil and water production over time step ∆ti. y is the reservoir properties.

Step 14 Compute the cross covariance Cx,g(x) using

Cx,g(x) ≈
1

Ne − 1

Ne∑
j=1

(x`,j − x̄`) (g(x`,j, yj)− ḡ(x`, y)) (8.2)

where x̄ = 1
Ne

∑Ne

j=1 x`,j and ḡ(x`, y) = 1
Ne

∑Ne

j=1 g(x`,j, yj)

Step 15 Compute the updated control variables x`+1 using

x`+1 =
1

α
CxCx,g(x) + x` (8.3)

where α is the tuning parameter for ascent step size.

Step 16 & 17 Task farming and run the simulations with the new x`+1.

Step 18 Calculate the objective function with the simulation results.
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Step 19 If g(x`+1) > g(x`), overwrite x` by x`+1 and ` = ` + 1; otherwise increase the step

size α` and go to step 15.

Step 20 Check if the iteration tolerance and the increases of the tuning parameter α` is

greater than two, then set x = x` and iteration stops. Otherwise, go back to Step 10b.

8.3 Grid Computing Issues

The utilization of Grid computing in industrial research projects has been limited because of

issues, i.e., application softwares, financial cost and data security. In the following sections,

we discuss how to enhance reliability and usability of Grid computing environment to make

a contribute to decreased computing costs via a future market in secure, distributed Grid

computing.

8.3.1 Reservoir Simulation Capabilities

From our experience, one of the issues restricting widespread utilization of the ResGrid is

the limited set of suitable simulators amenable to Grid environments. The current used open

source simulator (UTCHEM) is easy to compile and suitable to different architect. However,

the simulation is time consuming by using UTCHEM even solving a small problem because its

sparse linear solver does not optimized to shorten the computation time. As we know, solving

linear equations account for eighty percent of computation time for simulator. Therefore the

future work is to involve massively parallel reservoir simulators into the distributed EnKF

work flow. Cactus BlackOil is an implicit-pressure, explicit saturation simulator with two

hydrocarbon components, a water component, and 3 phases; it exploits mature, widely used

toolkits for utilities and parallelization (Cactus) and a linear solver (PETSc). Cactus also

provides notification methods (e.g., SMS to mobile phones), extensive I/O (e.g., streaming

HDF5), and mechanisms for parameter steering. Continued work on larger problems will

focus on coupling the EnKF and using more processors, such as solving one million gridblocks
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model inversion problem; this work is aided by TeraGrid (30,000 SU) and LONI (50,000 SU)

supercomputing allocations (White et al. 2008).

8.3.2 Resource Pricing and Run Strategy

Another issue is how the Grid computing can expand the end users’ computation resources

with the intention of minimizing financial expenditure. A common criticism of Grid com-

puting is that, with the falling prices of commodity hardware, one could purchase servers

and clusters to obtain an equivalent amount of processing power. As large corporations pur-

chase machines that sit mainly idle, using computational Grid at minimal cost makes good

business sense assuming the infrastructure complexity can be solved. Indeed, the corporate

user greatly benefits in this scenario. Economical models help researchers manage and evalu-

ate resource allocations to user communities. It supports Deadline and Budget Constrained

(DBC; Buyya et al. 2002) scheduling algorithms for executing task-farming applications on

large scale distributed systems depending on their cost, power, and availability and users

quality of service requirements.

(i) Optimize for Time: This strategy produces results as early as possible, but before a

deadline and within a budget limit.

(ii) Optimize for Cost: This strategy produces results by deadline, but reduces cost within

a budget limit.

In these scheduling processes, the resource broker employed the economical market model

for establishing a service access price. It used grid resource trading services for establishing

connection with the Grid Trader (which is a trader sever decides access costs based on

resource-owner defined charging algorithms/policies and interacts with accounting system

for recording usage details and billing as per negotiation.) running on resource providers

machines and obtained service prices accordingly. The broker architecture is generic enough

to use any protocols used in real world market for negotiating access to resources and choosing
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appropriate ones. The access price varies from one consumer to another and from time to

time, as defined by the resource owners. Depending on the deadline and the specified budget,

the broker develops a plan for assigning jobs to resources. While doing so it does dynamic

load profiling to learn the ability of resources to execute jobs.

8.3.3 Process Monitoring

One improvement of ResGrid should focus on troubleshooting and monitoring in a Grid

environment, which can also be more complicated relative to a heterogeneous cluster or

large server environment. Dealing with varying operating systems, different and frequently

changing patch levels, and the impact of security updates potentially resulting in network

misconfigurations can be difficult to diagnose and resolve for the Grid administrator. There

are several aspects to monitoring that are important to consider. It is imperative to monitor

the availability and status of the various compute nodes. Monitoring also includes the ability

of the user to see the status of their job, view its progress and potentially even peek at the

output as it is being generated. This is a capability that users are accustomed to the cluster

environments, but it becomes much more difficult when the remote machine is an unknown

entity, potentially running a different operating system and even cases where the user does

not have login privileges. Grids can be notorious for having machines drop out or jobs never

returning. Our suggestion is to use Message Passing Interface (MPI) or other software with

enhanced error handling function can provide more extensive diagnostic information, such

as the ability to distinguish calculation- related issues (e.g., timeout, convergence problems)

from infrastructure- related issues (e.g. machines getting turned off, disks filling up, machine

owner putting the job to sleep). There are two primary approaches to this type of fault

tolerance, one is to run multiple replicas of each process simultaneously and the other is to

resubmit processes when they fail. They result in increased performance for the Grid. This,

in turn, results in more compute capacity for the Grid users without any increased cost.
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8.4 EnKF Application Suggestions

Chapter 7 and 6 address two problems essential to the mechanics of the EnKF. After the

closer investigation and testing, some suggestions of the EnKF usage can be summarized.

Although there are a number of errors permeating the EnKF, such as naturally inaccuracies

in the prior sample covariance, measurement error or other approximations, which can cause

the filter divergence, it is not difficult to achieve the successful updating process if measures

have been taken. If the prior sampling has the best spread of model parameter space and the

measurement errors are correct, then “covariance inflation factor” is a simple and efficient

remedy to overcome filter divergence although it is an empirical method. Optimal magnitude

of the inflation is function of the ensemble size; but the 1% inflation factor is nearly optimal

for different ensemble sizes.

The research explore into the distance-dependent filtering of covariance estimates gener-

ated by a finite ensemble by Schur product. Some more work is needed to understand why

such filtering may be beneficial, how much improvement may be expected from filtering, how

this may change with the size of the ensemble, how to choose the correct critical distance

and how to involve the anisotropy. An understanding of the dual effects of localization and

inflation is another interesting topic. Therefore, it is too earlier to provide some suggestions

for localization method now.

The simple EnKF with truncation works as well as reparameterization. More cautious

steps would be: the EnKF with reparameterization can be used for the initial assimilation

steps when the nonlinear and non-Gaussian conditions are strong. The EnKF with truncation

can also be used to continue the process.

8.5 Variance Trade-Offs in the EnKF

It is known that increasing the number of model parameters has involved more detailed

geological models in model inversion. It has two effects in history matching: it makes the
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problem more rank-deficient because of increased unknowns and the variance in the model

parameters, m. However, it invariably decreases the model mismatch d − g(m) in history

match phase and more precisely matches the observation data.Thus, the modelers must

confront a choice: (a) improve fit and decrease bias with a large parameter space, or (b)

sacrifice fit but improve parameter estimation — and usually prediction reliability – by using

a smaller parameter space. This is the classic bias-variance tradeoff (Hastie, Tibshirani, and

Friedman 2003, p. 37).

To chose the most appropriate number of model parameters, a model selection method

must distinguish between competing choices. The goal of model selection is to balance the

quality of fit to observational data and model parameters against the complexity, or predic-

tiveness, of the model achieving fit. The Bayesian Information Criterion (BIC) is one of the

criteria based on Bayesian statistics (Liddle 2007; Burnham and Anderson 2005).

The BIC was introduced as the following equation,

IB,µ = −Nd ln

(
Sobs,err

Nd

)
−Nm ln

(
Sm,err

Nm

)
+ Nm ln(Nd) (8.4)

where Sobs,err =
∑Nd

i=1 (g(mi)− dobs)
2, Sm,err =

∑Nm

i=1(mi − m̄i)
2, where µ ∈ {1 . . . Ne} is an

ensemble member, and all terms on the right of this equation refer to a particular member.

As Nm increases, the Sobs,err decreases because of improved fit, but the Sm,err will increase by

more parameters, therefore the IB,µ does not increase significantly compared with less model

parameter scenario. Especially if the observation data are limited, there is not sufficient flow

information. The rank-deficient problem caused by increased degree of freedom may generate

bias estimation for models with large Nm.
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Chapter 9
Summary and Conclusions

In this dissertation, ResGrid and its extended version were developed with the help from

researchers at CCT (Center for Computation and Technology) as the toolkits for designed

reservoir simulation studies and real-time reservoir monitoring with measurement data from

permanent down-hole sensors.

9.1 Summary

ResGrid was applied to simulate, analyze and discriminate the most frequently used geo-

statistical algorithms, i.e., LUSIM and SGSIM. The suite of 1,920 simulations shows that

the overestimate of permeability by SGSIM has significant effect on flow responses, e.g.,

breakthrough time and upscaled permeability.

The distributed EnKF work flow is applied to “synthetic” 1-D and 2-D, two-phase, water

flood examples. A prototype, one linux processor EnKF work flow is used for a “semisyn-

thetic” field model, PUNQS3, a 3-D, three-phase case. The results show that the work flow

can successfully track the measurement data and tune the porosity and permeability, and

as more measurements are assimilated, the forecasts are improved. Moreover, many charac-

teristics of EnKF are especially desirable for continuous model updating. It preserves the

underlying geology, and estimates the uncertainty in rock properties and distribution of flu-

ids, which is essential for updating development plans. The continuous updating ensures that

the predictions and optimizations always start from a solution that matches the observed

production data. However, although new measurements are added continuously, the error

in the estimated porosity and permeability increases late in time. Sometimes, the estimated

errors of rock properties increase because of the incorrect assimilation frequency. The rea-

sons for these phenomena were investigated and discussed. The remedy methods, such as
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prior covariance inflation, Schur product and selection of suitable assimilation frequency are

investigated. We have focused on another problem where EnKF encounters a difficulty, that

is, the inability sample the posterior pdf correctly in non-Gaussian, multimodal problems.

A reparameterization and simple truncation methods are applied to solve the problem. The

estimated errors of permeability from the two methods are compared, and the simpler and

more efficient truncation method is found to be adequate in the test case.

9.2 Conclusions

Specific conclusions from the research are summarized as following:

(i) The developed EnKF on Grid software is computationally robust and efficient. Because

EnKF repeats the model propagations a large number of times, the software consid-

erably alleviate the engineering tasks. It is a general and portable tool that can be

widely applied because of its desirable attributes. For example, it is user-friendly, any

reservoir engineers who have reservoir simulation experiences but few exposure of data

assimilation and grid computing knowledge can use the toolkit without much training;

easily couple with any open-source simulators.

(ii) One notable difference that appears when comparing the EnKF with other Kalman

filter implementations is the way covariance is computed. The EnKF computes covari-

ances directly from the ensemble when they are required, not evolving with time using

functions. Therefore the sequential algorithm only uses fairly small matrices at any

particular time, so that the memory requirement is fairly modest.

(iii) Although the EnKF has many advantages and flexible abilities compared with other

traditional history matching methods, it provides incorrect characterization of model

parameters when filter divergence occurs. This is a potential problem for EnKF and

needs attention. Many possible reasons are interwoven and make the problem compli-

cated.
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• An empirical inflation factor to avoid collapse of the ensemble members around the

ensemble mean efficiently diminishes one source of filter divergence. We found that

the optimal magnitude of the inflation is a function of ensemble size; the smaller

the size of the ensemble, the larger the inflation. Another issue with covariance

inflation is that a single inflation factor may not be optimal over all parts of model

all the time. This issue deserves more exploration.

• We demonstrate a Schur product of the ensemble covariance with a correlation

function with local support can provide a notable benefit to EnKF process for

reservoir simulation, as well as for the meteorology problems for which it has al-

ready been applied. In our study, the inversion is improved when the noise (the

error) in a covariance estimate is smaller than the signal (the true magnitude of

the covariance) for a small ensemble size. However, more research on the relation-

ships between the correlation function with ensemble size, observation type, and

observation density are required.

• The dual effects of Schur product and inflation on the covariance can be un-

derstood: the inflation increase the variance but Schur product tends to generate

sparseness of variance. The two methods seem not conflict with each other, but the

combined effects require further investigation. It is important to find the source

of error and explore which methods are most suitable and effective to treat it,

improving on the current, regrettably ad hoc approaches.

(iv) In general, new features of heterogeneity in the reservoir model can be revealed with

reduced uncertainty by assimilating more production data, resulting in more accurate

predictions. However, if the available production data are the same type of data and

from the same wells for a long time, the value of production data is diminishing with

time resulting in less updating at later times. The early observations give the largest

contribution to the reduction in estimate error. In most cases, the transient flow at
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the early time observations provide more information than the observations from a

steady state flow. It appears that the early assimilation frequency should be higher

than at later times. We demonstrated that the need for small assimilation steps at any

assimilation step when the dynamics of reservoir system have significant changes. In

general, it appears that selection of assimilation intervals can be improved or automated

by

• more carefully analyzing redundancy (or correlation) of observations,

• recognizing significant events in the observed data (such as breakthroughs), and

• monitoring the standard error of ensemble (σe) or the Ensemble gain (Kk) to

detect problems and take appropriate action.

(v) The Gaussian assumption of EnKF is critical. The EnKF using the full nonlinear fore-

cast model and Monte Carlo sampling in the forecast step simplifies both the algorithm

and makes it more robust. However, simplification causes the EnKF to misadjust the

models if the dynamics of a flow system become sufficiently nonlinear and the distri-

bution of model responses is non-Gaussian. A more general approach is required.

• Although the EnKF with reparameterization outperforms the traditional EnKF in

time-dependent variable updating, it is not suitable for grid environment because

of the large amount of time window data transfer load for network and difficult

implementation in more than one dimension.

• Model parameter estimated by the simple, easy and efficient EnKF with trunca-

tion are similar to EnKF with reparameterization.

• The EnKF with reparameterization can be used selectively, only at significant

flow changes at early measurement times. This would yield significant gains in

efficiency.

(vi) It appears a relatively large ensemble size is required to span the space of model

solutions and avoid the filter suffer the spurious correlation. Therefore, the variability
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of initial ensemble is critical for successful EnKF process because EnKF is a best linear

unbiased estimation only if the neighborhood of the truth is adequately sampled. More

studies are needed, such as multivariate secondary response (M2R) method, which can

be used to choose essentially diverse yet manageably small prior ensembles to improve

the efficiency of EnKF.

(vii) The loss of some ensemble members because of shut-in/reboot of some systems appears

not to hurt the results much, especially after several steps of assimilation. After that,

the modal parameters become stable.

9.3 Future Work

The future work should focus on two points. One is the development work on computation

efficiency and functional versatility of the work flow. Another is to solve the large model

inversion problem to integrate the EnKF and optimization together. More detailed are as

following,

(i) To build up the distributed EnKF work flow by using Cactus BlackOil as simula-

tor to improve computational efficiency based on its robust parallel functionality and

advanced linear solver.

(ii) Continued work on larger problems should focus on coupling the EnKF and using more

processors, such as solving one million gridblocks model continuous updating problem;

this work may use TeraGrid (30,000 SU) and LONI (50,000 SU) supercomputing allo-

cations (White et al. 2008).

(iii) To keep the work flow for the continuously updated geological model remains un-

changed. To develop the ensemble-based closed-loop optimization using the EnOpt (or

other ensemble-based optimization methods) to extend the workflow to closed-loop

reservoir management work flow.
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Appendix A. Geostatistical Studies Tables

Table A-1: Parametric t-test and F-test of LUSIM and SGSIM model differences of upscaled
permeability in maximum continuity direction (* significant at 95% level of confidence)

combination t-test relative Mean F-test std. ratio
0-0-1-0 0.000* -16 0.000* 61
0-0-2-1 0.000* -13 0.003* 45
0-1-0-3 0.000* -22 0.003* 42
0-1-2-0 0.000* -18 0.004* 38
0-2-1-2 0.000* -12 0.064* 8
0-2-3-3 0.002* -11 0.407 2
0-3-0-2 0.000* -16 0.036* 12
0-3-2-1 0.001* -13 0.224 4
1-0-2-2 0.002* -12 0.034* 12
1-0-3-3 0.000* -12 0.627 2
1-1-1-2 0.012* -9 0.015* 18
1-1-1-3 0.016* -9 0.733 1
1-2-0-1 0.002* -8 0.063 8
1-2-2-0 0.009* -14 0.069 8

Table A-2: Parametric t-test and F-test of LUSIM and SGSIM model differences of sweep
efficiency in maximum continuity direction

combination t-test relative Mean F-test std. ratio
0-0-1-0 0.000* 8 0.018* 17
0-0-2-1 0.000* 7 0.005* 33
0-1-0-3 0.000* 9 0.051 9
0-1-2-0 0.000* 7 0.109 6
0-2-1-2 0.030* 4 0.006* 29
0-2-3-3 0.139 2 0.296 0
0-3-0-2 0.000* 6 0.984 1
0-3-2-1 0.002* 6 0.172 5
1-0-2-2 0.007* 4 0.329 3
1-0-3-3 0.051 4 0.873 1
1-1-1-2 0.068 3 0.014* 20
1-1-1-3 0.421 0 0.45 0
1-2-0-1 0.003* 4 0.246 4
1-2-2-0 0.193 2 0.72 1
1-3-0-0 0.014* 6 0.028* 13
1-3-3-1 0.496 0 0.723 1
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Table A-3: Parametric t-test and F-test of LUSIM and SGSIM model differences of break-
through time in maximum continuity direction.

combination t-test relative Mean F-test std. ratio
0-0-1-0 0.000* 32 0.024* 14
0-0-2-1 0.000* 27 0.113 6
0-1-0-3 0.000* 37 0.598 2
0-1-2-0 0.000* 29 0.487 2
0-2-1-2 0.403 7 0.8 1
0-2-3-3 0.134 8 0.386 0
0-3-0-2 0.001* 32 0.231 0
0-3-2-1 0.000* 27 0.495 0
1-0-2-2 0.006* 19 0.409 2
1-0-3-3 0.011* 17 0.652 1
1-1-1-2 0.054 16 0.004* 37
1-1-1-3 0.171 13 0.358 0
1-2-0-1 0.003* 29 0.077 8
1-2-2-0 0.392 13 0.546 2
1-3-0-0 0.048* 29 0.152 5
1-3-3-1 -0.591 6 0.672 2

Table A-4: Parametric t-test and F-test of LUSIM and SGSIM model differences of upscaled
permeability in minimum continuity direction.

combination t-test relative Mean F-test std. ratio
0-0-1-0 0.007* -10 0.000* 121
0-0-2-1 0.000* -9 0.022* 15
0-1-0-3 0.004* -17 0.000* 200
0-1-2-0 0.001* -15 0.004* 36
0-2-1-2 0.001* -12 0.168 5
0-2-3-3 0.001* -10 0.777 1
0-3-0-2 0.001* -14 0.084 7
0-3-2-1 0.001* -11 0.127 0
1-0-2-2 0.007* -10 0.040* 11
1-0-3-3 0.000* -10 0.697 2
1-1-1-2 0.060 -7 0.032* 12
1-1-1-3 0.000* -17 0.960 1
1-2-0-1 0.171* -5 0.386 3
1-2-2-0 0.032* -11 0.010* 23
1-3-0-0 0.042* -11 0.465 2
1-3-3-1 0.631 -2 0.672 2
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Table A-5: Parametric t-test and F-test of LUSIM and SGSIM model differences of sweep
efficiency in minimum continuity direction

combination t-test relative Mean F-test std. ratio
0-0-1-0 0.000* 5 0.003* 2
0-0-2-1 0.010* 5 0.024* 3
0-1-0-3 0.006* 5 0.048* 5
0-1-2-0 0.004* 5 0.141 1
0-2-1-2 0.006* 5 0.094 2
0-2-3-3 0.315 2 0.080 0
0-3-0-2 0.004* 6 0.015* 6
0-3-2-1 0.008* 5 0.505 1
1-0-2-2 0.011* 3 0.130 2
1-0-3-3 0.015* 2 0.217 4
1-1-1-2 0.238 3 0.422 1
1-1-1-3 0.138 3 0.363 1
1-2-0-1 0.044* 2 0.939 1
1-2-2-0 0.434 1 0.228 1
1-3-0-0 0.022* 6 0.177 2
1-3-3-1 0.109 -4 0.062 0

Table A-6: Parametric t-test and F-test of LUSIM and SGSIM model differences of break-
through time in minimum continuity direction.

combination t-test relative Mean F-test std. ratio
0-0-1-0 0.000* 15 0.000* 41
0-0-2-1 0.002* 17 0.002* 15
0-1-0-3 0.010* 16 0.010* 10
0-1-2-0 0.002* 22 0.002* 5
0-2-1-2 0.007* 20 0.007* 7
0-2-3-3 0.410 5 0.410 0
0-3-0-2 0.003* 21 0.003* 18
0-3-2-1 0.020* 19 0.020* 0
1-0-2-2 0.000* 15 0.000* 5
1-0-3-3 0.085 9 0.085 4
1-1-1-2 0.188 12 0.188 2
1-1-1-3 0.051 17 0.051 0
1-2-0-1 0.115 7 0.115 1
1-2-2-0 0.702 -2 0.702 4
1-3-0-0 0.031* 18 0.031* 4
1-3-3-1 0.852 -2 0.852 0
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Table A-7: Parametric t-test and F-test of LUSIM and HYBRID model differences in maxi-
mum continuity direction

upscaled permeability sweep efficiency breakthrough time
combination t-test F-test t-test F-test t-test F-test

0-0-1-0 0.0010* 0.0003* 0.0133 0.0001* 0.0019* 0.1387
0-0-2-1 0.0003* 0.0025* 0.0281 0.0100* 0.0130 0.1925
0-1-0-3 0.0007* 0.0001* 0.0143 0.0407 0.0002* 0.4793
0-1-2-0 0.0001* 0.0029* 0.0063* 0.9461 0.0014* 0.8537
0-2-1-2 0.0005* 0.0355 0.0005* 0.2733 0.0018* 0.1859
0-2-3-3 0.0003* 0.2543 0.0540 0.2737 0.2700 0.5445
0-3-0-2 0.0005* 0.0254 0.0018* 0.0119 0.0012* 0.0032
0-3-2-1 0.0000* 0.0705 0.0515 0.1384 0.0021* 0.9387
1-0-2-2 0.0074* 0.0086* 0.0019* 0.0219 0.0038* 0.6731
1-0-3-3 0.0000* 0.8818 0.0004* 0.0394 0.1244 0.3258
1-1-1-2 0.0044* 0.0155 0.0138 0.2268 0.2005 0.8562
1-1-1-3 0.0001* 0.4783 0.0103 0.4426 0.0010* 0.2609
1-2-0-1 0.0150 0.2307 0.0003* 0.1757 0.4073 0.1973
1-2-2-0 0.0061* 0.0048* 0.0064* 0.0534 0.1753 0.6342
1-3-0-0 0.0154 0.3304 0.0159 0.1531 0.1291 0.9645
1-3-3-1 0.0777 0.3726 0.0039* 0.8771 0.3899 0.0797

Table A-8: Parametric t-test and F-test of LUSIM and HYBRID model differences in mini-
mum continuity direction.

upscaled permeability sweep efficiency breakthrough time
combination t-test F-test t-test F-test t-test F-test

0-0-1-0 0.0010* 0.0003* 0.0133 0.0001* 0.0019* 0.1387
0-0-2-1 0.0003* 0.0025* 0.0281 0.0100* 0.0130 0.1925
0-1-0-3 0.0007* 0.0001* 0.0143 0.0407 0.0002* 0.4793
0-1-2-0 0.0001* 0.0029* 0.0063* 0.9461 0.0014* 0.8537
0-2-1-2 0.0005* 0.0355 0.0005* 0.2733 0.0018* 0.1859
0-2-3-3 0.0003* 0.2543 0.0540 0.2737 0.2700 0.5445
0-3-0-2 0.0005* 0.0254 0.0018* 0.0119 0.0012* 0.0032
0-3-2-1 0.0000* 0.0705 0.0515 0.1384 0.0021* 0.9387
1-0-2-2 0.0074* 0.0086* 0.0019* 0.0219 0.0038* 0.6731
1-0-3-3 0.0000* 0.8818 0.0004* 0.0394 0.1244 0.3258
1-1-1-2 0.0044* 0.0155 0.0138 0.2268 0.2005 0.8562
1-1-1-3 0.0001* 0.4783 0.0103 0.4426 0.0010* 0.2609
1-2-0-1 0.0150 0.2307 0.0003* 0.1757 0.4073 0.1973
1-2-2-0 0.0061* 0.0048* 0.0064* 0.0534 0.1753 0.6342
1-3-0-0 0.0154 0.3304 0.0159 0.1531 0.1291 0.9645
1-3-3-1 0.0777 0.3726 0.0039* 0.8771 0.3899 0.0797
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Table A-9: Parametric t-test and F-test of LUSIM and SPECSIM model differences in max-
imum continuity direction.

upscaled permeability sweep efficiency breakthrough time
combination t-test F-test t-test F-test t-test F-test

0-0-1-0 0.0023* 0.0008* 0.0000* 0.0143 0.0007* 0.0081
0-0-2-1 0.0000* 0.0335 0.0005* 0.0044* 0.0000* 0.3224
0-1-0-3 0.0000* 0.0009* 0.0000* 0.0746 0.0009* 0.2803
0-1-2-0 0.0005* 0.0007* 0.0006* 0.0939 0.0011* 0.5525
0-2-1-2 0.0018* 0.0396 0.0037* 0.0064* 0.2449 0.6276
0-2-3-3 0.0025* 0.6590 0.2326 0.4607 0.4293 0.6590
0-3-0-2 0.0003* 0.0106 0.0001* 0.8025 0.0014* 0.1531
0-3-2-1 0.0019* 0.1023 0.0030* 0.1460 0.0026* 0.7430
1-0-2-2 0.0020* 0.0155 0.0013* 0.3186 0.0020* 0.3379
1-0-3-3 0.0033* 0.1582 0.0070* 0.8253 0.0041* 0.9983
1-1-1-2 0.1224 0.0067* 0.1013 0.0154 0.1487 0.0027
1-1-1-3 0.1099 0.3188 0.4060 0.4551 0.4844 0.3711
1-2-0-1 0.0032* 0.0325 0.0078* 0.1883 0.0026* 0.0547
1-2-2-0 0.0089* 0.1421 0.2701 0.6669 0.3980 0.4017
1-3-0-0 0.0042* 0.0825 0.0023* 0.0231 0.1459 0.0984
1-3-3-1 0.4942 0.7166 0.4027 0.7310 0.2968 0.5504

Table A-10: Parametric t-test and F-test of LUSIM and SPECSIM model differences in
minimum continuity direction.

upscaled permeability sweep efficiency breakthrough time
combination t-test F-test t-test F-test t-test F-test

0-0-1-0 0.0014* 0.2837 0.0169 0.5412 0.3103 0.9786
0-0-2-1 0.2274 0.5754 0.0143 0.3343 0.2674 0.8123
0-1-0-3 0.0000* 0.2403 0.0099 0.2750 0.1811 0.8819
0-1-2-0 0.0561 0.4792 0.0282 0.9653 0.2596 0.8254
0-2-1-2 0.0849 0.3728 0.1065 0.3583 0.0081 0.6232
0-2-3-3 0.1515 0.6101 0.0137 0.3682 0.1388 0.9392
0-3-0-2 0.1826 0.7671 0.0270 0.4652 0.3338 0.7714
0-3-2-1 0.1824 0.6953 0.1013 0.7202 0.3455 0.9128
1-0-2-2 0.0085* 0.6857 0.0034 0.2145 0.1942 0.9821
1-0-3-3 0.0014* 0.8154 0.0013 0.0657 0.0886 0.9504
1-1-1-2 0.1626 0.7435 0.0429 0.6214 0.2511 0.9799
1-1-1-3 0.1974 0.7630 0.2641 0.8440 0.3704 0.8916
1-2-0-1 0.1956 0.7592 0.1220 0.4265 0.3634 0.9124
1-2-2-0 0.3176 0.9571 0.3175 0.8801 0.3472 0.9118
1-3-0-0 0.2635 0.9720 0.1178 0.9040 0.1168 0.9318
1-3-3-1 0.2020 0.9295 0.0851 0.7836 0.1995 0.8781
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Appendix B. Build the Initial PUNQ-S3
Models
The initial models are constructed from well data combined with geological description from
the PUNQ web page. The geological information is summarized as followed: Layers 1, 3, and

Table B-1: Sedimentary facies with estimates for width and spacing for major flow units of
each layer.

Layer Facies W Spacing

1 Channel Fill 800 m 2-5 km

2 Lagoonal Shale - -

3 Channel Fill 1,000m 2-5 km

4 Mouthbar 500-5,000m 10 km

5 Channel Fill 2,000m 4-10 km

5 have two different facies, channel sand (facies 1) and shale (facies 2). From the geological
information in Table B-1, the proportions of different facies at each layer are calculated by
width and spacing ratios. For example, the width of channels in layer 3 is about 1,000 meters
with 3,000 meters spacing between the centerlines of two channels. Therefore, the channel
sand (facies 1) accounts for p1 = 1, 000/3, 000 = 0.33, the proportion of shale is p2 = 0.67 in
Table B-2. Layers 1, 3, and 5 consist of two different facies, channel sand (facies 1) and shale
(facies 2) have the same ratio as shown in Table B-2. A third facies (mouthbar) is present
in layer 4 but not present in any other layers so the fraction of width occupied by facies 3 in
layers 1, 2, 3 and 5 is given by p3 = 0. These fractions will be used as the probability that a
particular facies occupies a particular gridblock of a layer.

In layers 1, 3 and 5, the principle direction of anisotropy was given as 110 to 170 degrees
southeast which is equivalent to -20 ∼ -80 degrees measured from the x-axis. Actually, -60,-45
and -30 degrees are used as the principle direction of channels for layers 1, 3 and 5. The well
data at Table B-3 are generated by adding Gaussian noises with standard deviation equal
to 15 percent of their true values.

The porosity of channel sand is greater than 20 percent. If a well data for porosity at
a point in layers 1, 2, 3 or 5 corresponds to a porosity value greater than 20 percent, the
measured porosity was assumed to correspond to channel sand. Averaging all such values
gives the mean values of porosity for channel sand. The variance of porosity can be estimated
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Table B-2: Sedimentary facies with estimates of proportion for major flow units.

Well Facies p1 p2 p3 Principle Dir

layer 1 Channel sand & shale 0.32 0.68 0 -60

layer 2 Lagoonal Shale 0 1.0 0 -60

layer 3 Channel sand & shale 0.33 0.67 0 -45

layer 4 Mouthbar 0 0.69 0.31 60

layer 5 Channel sand & shale 0.33 0.67 0 -30

Table B-3: Well property data

Well PRO-1 PRO-4 PRO-5 PRO-11 PRO-12 PRO-15
layer 1-φ 0.0825 0.2298 0.2412 0.0807 0.0832 0.2535
layer 1-ln k 3.6743 6.514 6.085 4.0519 3.5502 5.5903
layer 1-ln kz 2.2059 2.2298 6.1176 3.7693 3.0413 6.1981
layer 2-φ 0.0631 0.0684 0.0716 0.0867 0.0954 0.1044
layer 2-ln k 3.2129 3.0137 2.5084 2.7883 4.2405 3.8122
layer 2-ln kz 1.2633 0.9875 1.0094 1.8578 3.4015 2.4284
layer 3-φ 0.1219 0.0995 0.2382 0.2887 0.0799 0.1521
layer 3-ln k 4.6476 3.8683 5.7408 6.2875 4.2277 4.778
layer 3-ln kz 2.55 3.3104 5.4433 5.5541 3.2929 4.6214
layer 4-φ 0.1618 0.1504 0.166 0.1599 0.1484 0.1994
layer 4-ln k 5.5268 6.533 4.8816 4.9159 5.6424 6.1363
layer 4-ln kz 4.3646 3.6502 4.168 3.1715 3.5704 3.8065
layer 5-φ 0.2383 0.1625 0.0987 0.1271 0.2909 0.2418
layer 5-ln k 5.4004 6.1618 3.0654 4.8846 6.0195 7.3068
layer 5-ln kz 5.6233 5.9546 2.5284 2.9698 5.5591 6.0218
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ln(k) = 25.14φ + 1.4397
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Figure B-1: ln k, ln kzvs. porosity

directly. The porosity of mouthbar sand is greater than 15 percent. Repeat this process for
the mouthbar and shale to obtain the mean and standard deviation of porosity. The means
and standard deviations of ln k and ln kz are computed by the same method. In Table B-
5, we generated mean value of porosity based on the relative width of the layer that are
occupied by each facies (Eq. B-2). The means of porosity, ln k and ln kz of each layer j can

Table B-4: Mean and variance of sedimentary facies.

Facies µφ σφ µln k σln k µln kz σln kz

Channel Sand 0.2528 0.0238 6.118 0.603 5.536 0.77
Shale 0.0986 0.0289 3.905 0.93 2.758 1.28
Mouthbar 0.1643 0.0185 5.606 0.656 3.789 0.43

be calculated using the following equations:

φ̄j = p1,jφ̄f,1 + p2,jφ̄f,2 + p3,jφ̄f,3 (B-1)

ln kj = p1,jln kf,1 + p2,jln kf,2 + p3,jln kf,3 (B-2)

ln kzj = p1,jln kzf,1 + p2,jln kzf,2 + p3,jln kzf,3 (B-3)

Porosity and permeability are strongly and positively correlated , with ρφ,ln k = 0.8 for ln k
versus φ (Fig. B-1). Table B-5 gives the statistics information needed to build the initial
model. Layers 1, 3 and 5 have similar geostatistical properties. The following steps were
taken to generate the PUNQ-S3 initial model:
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Table B-5: Geostatistical data for all layers.

layers Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
µφ 0.15 0.0986 0.15 0.11 0.15
σφ 0.10 0.0289 0.10 0.06 0.10

φmax 0.324 0.185 0.324 0.220 0.324
φmin 0.012 0.012 0.012 0.012 0.012
µln(k) 4.61 3.91 4.64 4.42 4.63
σln(k) 2.62 0.73 2.51 1.52 2.51

ln(k)max 7.927 6.695 7.927 7.574 7.927
ln(k)min 1.115 1.115 1.115 1.115 1.115
µln(kz) 3.65 2.76 3.68 3.07 3.67
µln(kz) 2.29 0.63 2.20 1.33 2.20

ln(kz)max 7.85 6.60 7.846 5.079 7.846
ln(kz)min -1.08 -1.08 -1.082 -1.082 -1.082

r1 800 - 1000 2750 2000
r2 5040 2520 5040 4125 5040
α -60 -60 -45 60 -30

(i) Sequential Gaussian Simulate for porosity conditioned to well data which have noises
added.

(ii) Cosimulate horizontal permeability based on the porosity field and well permeability
with added noise.

(iii) Cosimulate vertical permeability based on the horizontal permeability field and condi-
tioned to well horizontal permeability with added noise.

(iv) Transform all fields to squeeze the tails to acceptable physical values.

Squeezing is done using the following exponential transformation,

xnew = xmaxup + (xlimup − xmaxup) exp(− x− xlimup

xmaxup − xlimup

) for x > xlimup (B-4)

and similarly for x < xlimlow.
However, when a multivariate Gaussian model is used, the porosity and permeability field

generated with the estimated geostatistical parameters listed in Table B-5 yield unrealisti-
cally high or low values (e.g., negative porosities) because of the very large variances. We
truncate such value by specifying upper and lower bounds for the rock property fields. The
upper bounds and lower bounds of φ, ln k and ln kz for each facies are set equal to their
means plus or minus 3 times their standard deviations. The lower bounds of φ, ln k and ln kz

for all layers are determined by the lower bounds of shale facies estimated by this procedure.
In layers 1, 3 and 5, the upper bounds of ln k and ln kz are determined by channel sand facies.
In layers 2 and 4, upper bounds are determined by shale and mouthbar facies, respectively.
The estimated upper and lower bounds, denoted by subscripts of max and min, respectively,
are listed in Table B-5.
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Appendix C. Production Assimilation Data of
PUNQ-S3
The kinds and numbers of observation data available at different times varies as listed in
Table C-1. Shut-in pressures are marked in parentheses. Unmarked pressures are flowing
pressures. The data consist of:

(i) Shut-in bottom-hole pressure (BHP) for each well with after 1, 4, 5, 6, 7, and 8 years
of production.

(ii) Flowing BHPs for each well after 1 day and 3, 6, and 9 months, and immediately before
the shut-in period after 5, 6, 7, and 8 years of production.

(iii) Gas-oil ratios (GOR) after 4.5, 5, 5.5, 6.5, and 7.5 years for each well, and after 5, 6,
7, and 8 years for the remaining wells.

(iv) Water cut after 7, 7.5, and 8 years for the one well that experienced water breakthrough,
and after 8 years for the other wells.

The water cut and GOR measurements coinciding with the shut-in periods are taken imme-
diately before shut-in.

Table C-1: The kinds and numbers of data available at different measurement times.

index days bottom-hole gas-oil ratio water oil production
pressure ratio cut rate

1 1.01 6 - - 6
2 91 6 - - 6
3 182 6 - - 6
4 274 6 - - 6
5 366 6(shut-in) - - 6
6 1461 6(shut-in) - - 6
7 1642 - 6 - 6
8 1826 6 6 - 6
9 1840 6(shut-in) - - 6
10 1841 - 6 - 6
11 2008 - 6 - 6
12 2192 6 6 - 6
13 2206 6(shut-in) - - 6
14 2373 - 6 - 6
15 2557 6 6 - 6
16 2571 6(shut-in) - - 6
17 2572 - - 1 6
18 2738 - 6 - 6
19 2922 6 6 6 6
20 2936 6(shut-in) - - 6

Total - 84 54 7 120
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Appendix D. Nomenclature
Symbol Description

a range or critical distance
b distance between grid block and observation location
CD covariance matrix of measurement errors
CM covariance matrix of model parameters
Cx prior covariance of control variables
CY covariance matrix of state vector
D matrix of data
d data vector
E[.] expected value
f(.) model solutions by model forward
g(.) observation forecast by model forward
G` sensitivity of objective function
H operator matrix or row vector
I unit matrix
K Kalman gain
k̄ upscaled permeability
L “square root” of the covariance matrix C with Cholesky decom-

position
ln k logarithm permeability
M matrix of model parameters
m vector of model parameters
N number of active cells
Nd number of data
Ne number of ensemble
Nm number of realization
Nt total number of time steps
NpD1 fraction of the initial tracer free water recovered after 1 pore

volume of injection
O(.) objective function
p pressure
p(.) probability density function (PDF)
q̃ mass depletion per unit volume per unit time,

positive for production, negative for injection
Q covariance matrix
Qoi and Qwi total oil and water production
rτ discount rate
Rs solution gas-oil ratio
Sw water saturation
Swc connate water saturation
Sg gas saturation
T water front arrival time
uT total velocity, uw + un in two-phase flow
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Symbol Description

x vector of control variables
Y matrix of ensembles
y vector of state vector
ȳ mean of vector of state variables
Zj random vector

Greek

δ(.) updating coefficient matrix
ε measurement error
γm phase specific density
ω model error vector
Ψ state transient matrix
φ porosity
σ2 variance
σe standard error of ensemble
σt error between estimate mean and the true state vector for syn-

thetic case
τ dimensionless breakthrough time

Subscripts

j ensemble member index
k time index, absolute permeability
l,m phases
o oleic
obs observed
prior prior distribution
uc unconditional realization
v vapor
w water
x x direction
y y direction

Superscripts

t or true truth
p predicted or prior
T transpose
u updated
-1 inverse

Abbreviations
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Symbol Description

1-D one dimensional
2-D two dimensional
3-D three dimensional
BHP Bottomhole pressure
KL Karhunen-Loveve
GOR gas-oil ratio
LBFGS limited memory Broyden-Fletcher-Gikdfarb-Shanno
MCMC Markov chain Monte Carlo
RML Randomized Maximum Likelihood
WCT water cut
WOR water oil ratio
PDE partial differential equation(s)

Miscellaneous

` iteration
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