
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

Faculty Publications School of Renewable Natural Resources 

8-1-2023 

When can local bird detection radars best complement broad-When can local bird detection radars best complement broad-

scale early-warning forecasts of risk potential for bird–aircraft scale early-warning forecasts of risk potential for bird–aircraft 

strikes as part of an integrated approach to strike mitigation? strikes as part of an integrated approach to strike mitigation? 

Melanie R. Colón 
LSU Agricultural Center 

Ashley M. Long 
LSU Agricultural Center 

Follow this and additional works at: https://repository.lsu.edu/agrnr_pubs 

Recommended Citation Recommended Citation 
Colón, M., & Long, A. (2023). When can local bird detection radars best complement broad-scale early-
warning forecasts of risk potential for bird–aircraft strikes as part of an integrated approach to strike 
mitigation?. Ecography, 2023 (8) https://doi.org/10.1111/ecog.06772 

This Article is brought to you for free and open access by the School of Renewable Natural Resources at LSU 
Scholarly Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of 
LSU Scholarly Repository. For more information, please contact ir@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/agrnr_pubs
https://repository.lsu.edu/agrnr
https://repository.lsu.edu/agrnr_pubs?utm_source=repository.lsu.edu%2Fagrnr_pubs%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1111/ecog.06772
mailto:ir@lsu.edu


www.ecography.org

ECOGRAPHY

Ecography

Page 1 of 14

This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited.

Subject Editor: Miguel Araújo 
Editor-in-Chief: Miguel Araújo 
Accepted 21 March 2023

doi: 10.1111/ecog.06772

2023

1–15

2023: e06772

© 2023 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society 
Oikos

Worldwide, wildlife–aircraft strikes cost more than US$1.2 billion in aircraft damage 
and downtime and jeopardize the safety of aircrews, passengers, and animals. Radar 
has long been used to monitor flying animal movements and can be a useful tool for 
strike mitigation. In the USA, the Avian Hazard Advisory System (AHAS) is an early-
warning system that integrates data from next-generation weather radar (NEXRAD) 
weather surveillance radars (WSRs) with historic bird occurrence data to quantify 
avian activity and forecast the relative bird risk within a ~9.3-km radius of military and 
civilian airfields. Bird detection radars (BDRs) with both horizontal-surveillance and 
vertical-scanning components are also available for monitoring local avian activity at 
airports, but we have little information regarding the congruence of broad-scale warn-
ings and local avian activity where WSRs and BDRs overlap. We quantified trends 
in biological activity recorded at hourly intervals by a BDR at an airfield in Texas, 
USA, and in the most frequently assigned AHAS risk forecasts for that site during the 
same intervals. We then examined the strength of association between these datasets 
by season and time of day to determine when information from BDRs might best 
complement forecasts from the broad-scale AHAS system. We found a strong overall 
association between the datasets but weak or moderate agreement during daylight peri-
ods, when most strikes occur. NEXRAD WSRs see only limited bird activity near the 
Earth’s surface, where the majority of damaging strikes take place and, not surprisingly, 
AHAS warnings during our study were best predicted by the BDR at higher altitudes. 
Our results suggest BDRs might best complement early-warning systems, like AHAS, 
as part of integrated strike mitigation plans at airfields with large numbers of hazard-
ous birds flying at low altitudes during daylight hours, especially in late afternoon.

Keywords: Avian Hazard Advisory System (AHAS), bird–aircraft strike, bird 
detection radar (BDR), NEXRAD, Randolph Air Force Base
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Introduction

Worldwide, wildlife–aircraft strikes (hereafter strikes) cost 
more than US$1.2 billion each year in aircraft damage and 
downtime (Allan 2000, Allan and Orosz 2001, El-Sayed 
2019). Given the high speeds of aircraft operation, mortal-
ity is nearly certain for the wildlife involved (DeVault et al. 
2015), but human safety can also be compromised, with over 
250 casualties reported globally since 1988 (Richardson and 
West 2000, Cleary et al. 2006, Thorpe 2012, Dolbeer and 
Begier 2019). Birds are the most frequently struck taxa, and 
experts at the US Federal Aviation Administration and other 
government agencies expect the number of strikes to grow 
with the frequency of air travel and improvements to aircraft 
efficiency that make planes faster and quieter (Sodhi 2002, 
Dolbeer and Begier 2019). Additionally, many airports are 
located in urban and suburban environments where increas-
ing numbers of hazardous, synanthropic birds (e.g. vultures, 
geese, gulls, pigeons, doves; DeVault et al. 2011, 2018) fur-
ther contribute to the likelihood of collisions (Dolbeer and 
Eschenfelder 2003, Novaes and Cintra 2015, Bradbeer et al. 
2017, Colón and Long 2018).

Understanding bird movements can help minimize the 
potential for strikes, and radar has long been recognized as 
a tool that can be used to quantify the movements of birds 
and other volant animals (Eastwood 1967, Gauthreaux 
1970, Chapman et al. 2011, McCracken et al. 2021). Radars 
emit pulses of electromagnetic energy that travel away from 
a transmitter until the energy encounters aerial objects and 
an echo of the energy is reflected back to a receiver, provid-
ing information about the bearing, altitude, and speed of 
objects within a volume of space (Eastwood 1967, Kingsley 
and Quegan 1999, Stepanian et al. 2016). When tracking 
flying organisms (birds, bats, insects), radars may fail to rec-
ognize all individual targets, especially those that are small, 
low-flying, or far from the radar location (Beason et al. 2010, 
2013, Dokter et al. 2013, Gauthreaux and Schmidt 2013, 
Gerringer et al. 2015, May et al. 2017). Ground clutter 
(e.g. buildings, trees, hills, and vehicles) and volume clut-
ter (e.g. precipitation) can also confound detection when 
not accounted for (Beason et al. 2013). In addition, radar 
data rarely allow for species-level inference, which may be 
important in assessing the potential for damaging strikes. 
Nonetheless, radars can generally detect wildlife at greater 
altitudes and across larger distances than human observers, 
and they are relatively unaffected by time of day or weather 
conditions (Cooper et al. 1991, Burger 1997, Harmata et al. 
1999, Gerringer et al. 2015), potentially allowing for a more 
comprehensive picture of animal movements than may oth-
erwise be available for use in strike mitigation.

Weather surveillance radars (hereafter WSRs), though not 
specifically designed to detect biological targets, are regularly 
used to study animal movements (Shamoun-Baranes et al. 
2014, Stepanian et al. 2016, Bauer et al. 2017, Chilson et al. 
2017), and early-warning systems that take advantage of 
broad-scale WSR networks have been developed in the USA, 
Europe, and the Middle East to help flight planners, pilots, 

and aircrews minimize exposure to birds (Kelly et al. 1999, 
2000, Dekker et al. 2008, van Gasteren et al. 2019). One 
such system, the US Avian Hazard Advisory System (AHAS), 
integrates information on avian activity extracted from 
near-real time next-generation radar (NEXRAD) data with 
models that include landscape characteristics, atmospheric 
conditions, and historic locations of hazardous birds (i.e. 
large-bodied and flocking species typically associated with 
the most damaging strikes; Zakrajsek and Bissonette 2005, 
DeVault et al. 2011, 2018) to identify the relative bird risk 
(i.e. probability multiplied by severity) within an approxi-
mately 9.3-km radius of airfields as low, moderate, or severe 
(Kelly et al. 1999, 2000, AHAS 2017). The degree to which 
AHAS has been successful in reducing bird strikes in the USA 
is unclear. In fact, the US Air Force Safety Center reports 
a steady increase in the number of damaging strikes from 
2000 to 2019 (USAF 2022). However, Nilsson et al. (2021) 
recently found that the variation in bird strikes at three major 
US airports was highly correlated with the level of bird move-
ments recorded by NEXRAD WSRs, and air forces operating 
in parts of northwestern Europe with similar early-warning 
systems (e.g. FlySafe) experienced an average of 45% fewer 
damaging bird strikes per 10 000 h over a 10-year period 
compared to those operating in areas without such systems 
(van Gasteren et al. 2019).

An increasing number of airports are installing bird detec-
tion radars (hereafter BDRs) to help identify bird movements 
and reduce the potential for strikes (Brand et al. 2011, Ehasz 
2012, Shamoun-Baranes et al. 2017, Phillips et al. 2018). 
These small, mobile radars are specifically designed to detect 
bird-like targets and can track both individuals and flocks at 
lower altitudes than WSRs, allowing for improved situational 
awareness at local scales by identifying hazards within the air-
port environment (Gauthreaux and Belser 2003, Kelly 2005, 
Nohara et al. 2005, Beason et al. 2013, Gauthreaux et al. 
2018). Most BDRs can provide horizontal coverage extend-
ing several kilometers from an airfield and vertical coverage 
to at least 1000 m above ground level (AGL) (Beason et al. 
2013). BDRs operate within the much larger coverage pat-
terns of WSRs, and research suggests good levels of agree-
ment among BDRs and WSRs in tracking avian migration 
(Dokter et al. 2011, Nilsson et al. 2018, Liechti et al. 2019). 
However, we have limited data as to how avian activity 
recorded by BDRs corresponds to warnings issued by AHAS 
or other early-warning systems that integrate WSR data with 
other sources. This information could be useful in assessing 
periods when BDRs might be best utilized for bird avoid-
ance alongside broad-scale warnings as part of an integrated 
approach to mitigating strike potential.

Randolph Air Force Base (hereafter Randolph) is located 
along the North American Central Flyway, which is subject 
to some of the highest avian migration traffic in the USA 
(La Sorte et al. 2019, Lin et al. 2019). Randolph is also near 
(~19 km) Bracken Cave – the largest maternity roost of 
Mexican free-tailed bats Tadarida brasiliensis mexicana in the 
world (McCracken 2003) – and close to San Antonio, where 
the largest US population of white-winged doves (Zenaida 
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asiatica; George et al. 1994, Waggerman 2001) presents a 
considerable hazard to aircraft (Colón and Long 2018). In 
2015, Randolph installed a BDR to aid in strike mitigation. 
Herein, we quantified temporal variability in hourly aerial 
vertebrate activity recorded by that BDR over two years and 
in the most frequently assigned AHAS risk levels issued for 
Randolph during those intervals. We then examined the level 
of agreement between these datasets by time of year (i.e. sea-
son) and time of day, and discussed our findings in the con-
text of long-term strike patterns at the base. We expected a 
high level of congruence between the two datasets; however, 
we predicted the strength of association would be greatest 
during periods of intense activity when birds and bats fly at 
higher altitudes (e.g. nocturnal avian migration in spring and 
fall and bat foraging activity in summer).

Study area

Randolph (29.53°N, 98.27°W) is a 1168-ha military train-
ing facility in Universal City, Texas (232 m a.s.l.), located 
approximately 30 km southwest of NEXRAD station KEWX 
(29.70°N, 98.03°W; Fig. 1). To facilitate high-volume pilot 
training at the base, two parallel runways flank an improved 
area (e.g. buildings, landscaping) to the east and west (Fig. 1). 
There is an oak–grass savanna with water catchments to 

the north of the improved area and an 18-hole turfgrass 
golf course and ephemeral ponds to the south. Along with 
anthropogenic and hydrologic landscape features beyond the 
base perimeter (i.e. suburban areas to the north and west, 
agricultural fields to the south and east, and three nearby 
creeks), these areas provide foraging and roosting opportuni-
ties that may encourage bird or bat movements across the 
base (Fig. 1). The climate is humid and subtropical with an 
average of ~73 cm of precipitation annually and an average 
annual temperature of ~21°C (NOAA 2018). Over a 25-year 
period (1990–2014), aircraft collisions with wildlife (mostly 
birds) at Randolph resulted in > US$10 million in damages 
(Colón and Long 2018). White-winged doves and other 
columbids accounted for 25% and 73% of strikes and strike 
costs, respectively, for which species identification was pos-
sible (Colón and Long 2018).

Material and methods

Bird detection radar (BDR)

DeTect, Inc. (Panama City, FL) installed a MerlinTM Aircraft 
Birdstrike Avoidance Radar system near the eastern runway 
at Randolph in November 2015 (Fig. 1). The self-contained 
system uses simultaneously operating horizontal-surveillance 
(HSR) and vertical-scanning radars (VSR) to detect biologi-
cal targets, and accompanying software enables users to track 
targets in near-real time.

The HSR was a solid-state Doppler radar that emitted a 
30-kW, fan-shaped, S-band beam (10 cm wavelength, 26° 
beam width) at a 7° tilt angle during 360° rotations at a speed 
of 24 revolutions/min, and the VSR emitted a 25-kW, fan-
shaped, X-band beam (3-cm wavelength). Algorithms within 
the software identified and tracked targets across sequential 
radar scans and quantified track frequency as well as direc-
tion (HSR) and altitude (VSR). The HSR beam at Randolph 
recorded tracks in the X–Y plane up to a maximum altitude 
of 2570 m AGL within a 7.4-km radius surrounding the 
radar unit (Fig. 2). The VSR scanned a vertical slice of the 
atmosphere providing altitude information from 91 m below 
the unit (where topography permitted) up to 1554 m AGL. 
The probability of detection likely declined with increas-
ing distance to the unit, especially for small targets, so the 
maximum detection ranges for the HSR and VSR likely only 
applied to large birds (e.g. ducks, wading birds, raptors) or 
flocks (Dokter et al. 2013, May et al. 2017, Phillips et al. 
2018). Operational settings (e.g. clutter mapping and sup-
pression algorithms) minimized the characterization of 
insects, ground clutter, and other interference as targets, 
though these factors may still have interfered with detection 
to a limited extent, especially for the X-band radar, which is 
more sensitive to contamination by insects and precipitation 
(Bruderer 1997).

We obtained archived target data (i.e. track counts) 
recorded at hourly intervals by the HSR and VSR at 
Randolph over a two-year period from 1 December 2015 

Figure 1. Bird detection radar (BDR; star) at Randolph Air Force 
Base in Bexar County, Texas, USA, with white circle depicting the 
detection area of the horizontal-surveillance radar (HSR) (7.4-km 
radius) located near the eastern runway. Background imagery 
(NAIP 2016) shows suburban development to the north and west 
of the base and agriculture to the south and east. Inset shows Bexar 
County (gray) within the 230-km detection radius (black circle) of 
the KEWX weather surveillance radar (WSR) located at New 
Braunfels Regional Airport in Guadalupe County, Texas.
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through 30 November 2017 from the 12th Flying Training 
Wing Safety Office. The VSR data were provided as track 
counts within ~30-m altitude bins that were standardized by 
volume coverage, allowing for comparison among bins. We 
excluded intervals from each dataset in which rain occurred 
for > 30 min or there were no tracks recorded. It is pos-
sible in the latter case for there to have been intervals during 
which no targets passed through the radar beam, but long-
term patterns suggested that scenario was unlikely. As such, 
we assumed the data gaps reflected periods of radar error 
or maintenance. Among the remaining intervals were those 
during which the radar recorded for < 60 min. We included 
these intervals in analyses if the total recording time was  
≥ 30 min, but we used interpolated track counts for the 
entire interval (60 min) assuming a homogenous distribu-
tion of tracks throughout the interval. Mean recording time 
during such intervals was 58 min for both the HSR (± 1.5 
SD, range 31–59 min) and VSR (± 1.9 SD, range 30–59 
min). We retained 15 871 and 16 231 intervals from the 
HSR and VSR datasets, respectively, within which track 
interpolation accounted for ~1% (7756 min of 952 260) 
and < 1% (4635 min of 973 860) of the total minutes possi-
ble. Given our large sample sizes, we assumed interval exclu-
sion and limited interpolation would have minimal effects 
on our analyses.

A single bird or bat passing through a radar beam more 
than once can register as multiple targets, and multiple 
tightly grouped individuals can present a single signature 
(Richardson 1978), such that the number of tracks recorded 
per interval represents an index of activity that reflects both 
target abundance and movement (Coates et al. 2011). 
Because the system cannot distinguish birds from bats, we 
referred to the number of tracks included in each interval as 
the biological activity index (BAI), similar to the avian activ-
ity index referred to by Coates et al. (2011).

Avian Hazard Advisory System (AHAS)

The NEXRAD network comprises 160 continuously oper-
ated, high-resolution S-band Doppler WSRs (i.e. model 
WSR-88D; 10-cm wavelength) distributed across the USA 
and a few overseas locations. The system has two basic modes: 
the clear air mode, which operates when there is little to no 
precipitation, and the precipitation mode, which scans at a 
faster rate to track active weather. The two modes sample the 
atmosphere using various volume coverage patterns (VCPs) 
wherein the WSR performs 360° rotational scans at pre-
determined tilt angles (0.5–19.5°) and pulse repetition fre-
quencies (318–1300 Hz) every 4.5–10 min, depending on 
the VCP selected (https://weather.gov/jetstreatm/vcp_max). 
During scans, the WSRs detect both biological (i.e. flying 
animals) and non-biological (e.g. weather, smoke, chaff) tar-
gets within a 230-km radius (Gauthreaux and Belser 1998, 
Weber et al. 2005, Kunz et al. 2007).

For near-real time bird activity alerts, the AHAS uses a 
suppression algorithm to automatically filter out non-bio-
logical targets from NEXRAD Level II data products, which 
include base meteorological data (i.e. reflectivity, mean radial 
velocity, spectrum width) and dual polarization variables (i.e. 
differential reflectivity, correlation coefficient, differential 
phase). The suppression model uses the first four tilt angles 
for the reflectivity data and the lowest tilt angle for all other 
measures (R. White, DeTect, Inc., unpubl.). AHAS inter-
prets the filtered data using the US Bird Avoidance Model 
(BAM) (Lovell 1997, Lovell and Dolbeer 1999) and neural 
networks to forecast the bird risk as low, moderate, or severe 
within each sampling frame (Kelly et al. 2000, AHAS 2017). 
When NEXRAD data are unavailable, AHAS bases risk on 
whichever is greater between the soaring bird model and the 
BAM (Kelly 2005, Szafrański et al. 2022). Beyond 24 h from 
the last soaring bird model update, AHAS assigns risk solely 
based on the BAM (R. White, unpubl.). The soaring bird 
model updates output every 12 h given the latest upper air 
weather data and known spatiotemporal information regard-
ing turkey vultures Cathartes aura, black vultures Caragyps 
atratus, red-tailed hawks Buteo jamaicensis, bald eagles 
Haliaeetus leucocephalus, and golden eagles Aquila chrysaetos 
(R. White, DeTect, Inc., unpubl.).

When using NEXRAD inputs, AHAS multiplies sever-
ity, according to the level of energy reflected back to the 
receiver, by the probability of a strike, estimated as the per-
centage of area filled with biological activity (AHAS 2017, 

Figure 2. Idealized coverage areas of the horizontal-surveillance radar 
(HSR) and weather surveillance radar (WSR) described in this study 
assuming standard atmosphere. The WSR beam coverage (gray) is 
shown as a function of distance from the radar (i.e. range; calculated 
using Dokter et al. 2019). The bird detection radar (BDR) was 
located 30 km (dashed line) from the WSR with a maximum detec-
tion radius of 7.4 km, as indicated by the solid rectangle. The dotted 
lines identify a beam height of 152 m, below which most damaging 
bird–aircraft strikes occur (Dolbeer 2006), and the distance from the 
WSR at which there is little to no coverage at those altitudes.
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Szafrański et al. 2022). AHAS classifies risk as low, moderate, 
or severe given products of ≤ 300, 301–4000, and > 4000, 
respectively, such that moderate- and severe-risk assignments 
are up to 708 and 38 647 times riskier than low-risk assign-
ments (AHAS 2017). The suppression algorithm used by 
AHAS to filter out non-biological targets does not account 
for insects. However, insect returns rarely, if ever, contrib-
ute to moderate or severe warnings (R. White, DeTect, Inc., 
unpubl.).

We acquired AHAS risk assignments for Randolph from 
DeTect Inc. for the period corresponding to that recorded by 
the BDR. AHAS determined 95% of the near-real time risk 
assignments for our study area during the survey period using 
NEXRAD data, 3% according to the soaring bird model, 
and < 2% with the BAM alone. Because AHAS updates risk 
assignments every 6–10 min with new NEXRAD inputs, the 
data were not directly comparable with the hourly BAIs in 
the archived BDR datasets. As such, we classified AHAS risk 
for each hourly interval using the most frequently assigned 
(i.e. mode) AHAS risk level for that hour. When there was 
a tie for the most frequently assigned level, we classified the 
interval by the most severe of the tied levels. Collapsing 
AHAS data in this way resulted in 17 099 intervals with risk 
assignments for use in analyses.

Statistical analyses

We classified each hourly interval according to temporal 
factors thought to influence bird and bat activity. We first 
grouped intervals according to meteorological seasons (i.e. 
spring: March–May, summer: June–August, fall: September–
November, winter: December–February), which relate to the 
annual temperature cycle (Trenberth 1983), then classified 
each interval by light period based on daily sunrise and sunset 
times. We characterized intervals as diurnal if they occurred 
between sunrise and sunset and nocturnal if they occurred 
between sunset and sunrise. Following Coates et al. (2011), 
we further divided each diurnal and nocturnal period into 
three equal parts and classified each interval as occurring dur-
ing the early, middle (mid), or late portions of the day or 
night. We assigned hourly intervals to light periods according 
to the class that best reflected the entire interval (i.e. great-
est total minutes). For example, we considered the 6:00 to 
6:59 interval to be an early diurnal period if sunrise occurred 
during the first half of the hour and a late nocturnal period 
if sunrise occurred in the second half of the hour. The BDR 
recorded, and we analyzed and presented, all information 
according to Central Standard Time without adjusting for 
daylight savings.

We calculated mean (± SD, range) BAI in the HSR data-
set and the total number of intervals identified in each AHAS 
risk class by season and time of day. We then used analysis 
of variance (ANOVA) and multinomial logistic regression 
models to examine temporal patterns (i.e. season, time of 
day, and their interaction) in BAI and AHAS risk, respec-
tively. We chose multinomial over ordinal logistic regression 
because our data violated the assumption of proportional 

odds (Brant 1990). Given our large sample sizes, we consid-
ered tests significant at p ≤ 0.001 (Huberty 1987). We fol-
lowed significant models with Tukey’s tests as appropriate and  
reported p-values for non-significant pairwise comparisons 
where relevant. We calculated partial eta-squared to estimate 
the effect sizes of each predictor in our ANOVA model and 
used a random forest approach with unbiased classification 
trees based on conditional inference to determine variable 
importance (VI) in our regression model (Hothorn et al. 
2006, Janitza et al. 2016). The former considers the effects 
of each predictor on the dependent variable while statistically 
controlling for the effects of other predictors in the model 
(Cohen 1973). The latter accounts for bias resulting from 
differences in the number of levels among categorical vari-
ables (van der Laan 2006, Strobl et al. 2007, Boulesteix et al. 
2012); it does not assign an importance value to interaction 
terms. To simplify interpretation, we standardized VI values, 
assigning the most important variable a relative importance 
of 100% (Oppel et al. 2009). We calculated McFadden’s 
pseudo-R2 (McFadden 1973) as a measure of overall fit for 
our regression model and predicted the probability of each 
AHAS risk class according to season and time of day.

We then used ANOVA models with eta-squared to exam-
ine the strength of association between HSR-derived BAI and 
AHAS risk level overall and within each season by time-of-
day combination (e.g. winter × early day). When assessing 
model significance, we applied a Holm–Bonferroni correc-
tion with α = 0.001 to account for potential growth in the 
familywise error rate due to multiple comparisons (n = 24; 
Holm 1979, Olejnik et al. 1997). We considered eta-squared 
equal to 0.01 to represent a weak association, 0.10 a moder-
ate association, and 0.25 a strong association (Vacha-Haase 
and Thompson 2004). To account for positive skewness in 
the data, we used the square root of BAI as the dependent 
variable in all ANOVA models.

Excluding BAIs from altitudes below the radar unit, we 
found total BAI across altitude bins in the VSR dataset to be 
moderately correlated with BAI in the HSR dataset (r = 0.45, 
p ≤ 0.001, n = 15 394; Fig. 3). Given this relationship, we 
did not combine data from the altitudinal bins to statisti-
cally examine overall temporal trends in the VSR dataset. 
However, we summarized mean BAI by altitude and explored 
at which altitudes BAI best predicted AHAS risk assign-
ments. For these analyses, we combined track counts from 
the 30-m altitude bins ≥ 0 m AGL in the VSR dataset to 
create 152-m bins. To capture as much variation as possible, 
we combined bins using a moving window approach across 
the 30-m bins such that the aggregated bins had overlapping 
coverage areas (e.g. 0–152, 30–182, 60–212 m AGL, and so 
on). We created separate multinomial regression models for 
each aggregated altitudinal bin, then ranked models for each 
period (season × time of day) according to Akaike’s informa-
tion criterion (AICc; Burnham and Anderson 2002). We con-
sidered all models with ΔAICc < 2.0 to be equally plausible 
and presented all plausible models in a comparative season by 
time-of-day graph. We calculated classification accuracy for 
all altitude models.
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We conducted all analyses using the open-source statisti-
cal program R ver. 3.6.1 (www.r-project.org). We used the 
‘sjstats’ package (Lüdecke 2019) in R to calculate eta-squared 
and partial eta-squared and the ‘MBESS’ package to calcu-
late 95% confidence intervals for eta-squared (Kelley 2017). 
We used the ‘nnet’ package to perform multinomial logistic 
regression (Ripley and Venables 2016) and the ‘party’ pack-
age to calculate variable importance (Hothorn et al. 2019).

Results

Temporal patterns in biological activity measured by the 
horizontal-surveillance radar (HSR)

The BAI recorded by the HSR varied strongly by season 
(F3,15847 = 2892.4, p ≤ 0.001, hp

2  = 0.35; Fig. 4) and, to a 
lesser extent, by time of day (F5,15847 = 126.1, p ≤ 0.001, 
hp

2  = 0.04, Fig. 4). Mean BAI was 10 to 11% greater in 
spring and summer (p = 0.19) than in fall and 77 to 96% 
greater in all seasons compared to winter (Fig. 4). Mean BAI 
was significantly greater during early-night periods and signif-
icantly lower during mid-day periods compared to all others 
(Fig. 4). Mean BAI was similar during early-day, late-day, and 
mid-night periods (p ≥ 0.76; Fig. 4). A significant interactive 
term in our ANOVA model indicated that, in addition to the 
main effects, BAI recorded during each light period varied 
according to season (F15,15847 = 212.2, p ≤ 0.001, hp

2  = 0.17; 
Fig. 4). BAI was greatest during early- and late-day periods 
in winter (p = 1.00; Fig. 4), in mid-night periods in spring 
and fall, and from late day throughout the night in summer  
(p ≥ 0.47; Fig. 4).

Temporal patterns in broad-scale AHAS risk 
classifications

Based on AHAS risk assignments, we classified 21, 53, 
and 26% of intervals as low, moderate, and severe risk, 
respectively (Fig. 4). Both season ( c6

2  = 919.9, p ≤ 0.001, 

VI = 75%) and time of day ( c10
2  = 1160.0, p ≤ 0.001, 

VI = 100%) influenced the level of risk for each interval, 
with low-risk intervals occurring in winter 6 to 33 times 
more often than in other seasons and in early diurnal peri-
ods up to three times more often than during other light 
periods (Fig. 4). Severe-risk intervals were up to four times 
more frequent in fall compared to other seasons, and up to 
seven times more frequent during early nocturnal periods 
than other times of day (Fig. 4). Post hoc tests indicated 
that all pairwise seasonal and time of day contrasts were sig-
nificantly different at α = 0.001. As with BAI derived from 
the HSR, we found a significant interactive effect of sea-
son and time of day on risk level in addition to the main 
effects ( c30

2  = 844.36, p ≤ 0.001, pseudo-R2 = 0.29; Fig. 4). 
Regardless of time of day, the predicted probability of a low-
risk assignment was greater, and the predicted probability of 
a severe-risk assignment lower, in winter relative to other sea-
sons (Table 1). During the rest of the year, moderate risk was 
generally more likely during diurnal periods and severe risk 
more likely during nocturnal periods; though the probability 
of severe risk declined over time during nocturnal periods in 
spring and fall (Fig. 4, Table 1).

Relationships of local biological activity to broad-
scale risk classifications

We found a strong association overall between AHAS risk 
level and BAI recorded by the HSR (F2,14727 = 4789.0,  
p ≤ 0.001, η2 = 0.39). Congruence between the datasets was 
generally stronger at night than during the day and increased 
over time from early to late nocturnal periods, except in 
winter when association strength decreased with time at 
night (Fig. 5). Despite a similar nocturnal trend, agreement 
between AHAS risk potential level and BAI was lower on 
summer nights relative to spring and fall nights (Fig. 5). 
There was strong agreement during early diurnal periods in 
fall, but agreement was otherwise weak or moderate during 
daylight periods in all other seasons (Fig. 5).

Figure 3. Trends in biological activity (i.e. track counts) as measured by the horizontal-surveillance (HSR) and vertical-scanning (VSR) 
radars at Randolph Air Force Base in Bexar County, Texas, USA, from 1 December 2015 to 30 November 2017. Dashed lines represent 
seasonal breaks.
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Temporal patterns in biological activity measured by 
the vertical-scanning radar (VSR) and relationship to 
broad-scale risk classification by altitude

Overall, mean BAI in the VSR dataset was greatest within 
the altitude bin spanning 213 to 366 m AGL (Fig. 6), but 
there was considerable seasonal and diurnal variability. BAI 
within the 457 to 609 m AGL bin best predicted AHAS risk 

level overall during the study period (66% accuracy; Fig. 7). 
Within this altitude bin, the predicted probability of moder-
ate risk was greater than that for low risk, and both declined 
with increasing BAI (Fig. 7). The predicted probability of 
severe risk increased with BAI and reached 100% at ~1000 
tracks (Fig. 7). When accounting for season and time of day, 
with the exception of mid-day periods, lower altitudes gen-
erally characterized AHAS risk assignments in winter better 

Figure 4. Biological activity index (BAI) (i.e. track counts/hour) recorded by the at Randolph Air Force Base by season and hour from 1 
December 2015 to 30 November 2017 and most frequently assigned Avian Hazard Advisory System (AHAS) risk class per hour for the 
same location. Dashed lines separate light phases indicated as early, mid-, and late day (ED, MD, and LD) and early, mid-, and late night 
(EN, MN, and LN). Dashed lines bisect bars for intervals represented by multiple light phases, depending on day of year.
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relative to other seasons, and higher altitudes were typically 
more characteristic of AHAS assignments in summer (Fig. 8). 
However, there was considerable temporal variation in the 
classification accuracy of the best-fit models, with the lowest 
accuracy during mid-night periods in fall (55%) and the high-
est accuracy during mid-day periods in summer (95%; Fig. 8).

Discussion

Several researchers have evaluated the performance of mobile 
radars (e.g. BDRs) to track birds near airports (Gerringer et al. 
2015, Phillips et al. 2018). Few, however, have examined the 
relationship between avian activity recorded by a BDR and the 
probability of strikes. Notably, Coates et al. (2011) quantified 
avian activity using the horizontal-surveillance component 
(HSR) of a BDR at Beale Air Force Base and found that the 
probability of strikes increased with avian activity near the air-
field. Similarly, Nilsson et al. (2021) demonstrated that esti-
mates of migration intensity derived from weather surveillance 
radar (WSR) data could be used to reliably predict the likeli-
hood of strikes at three airports in the northeastern USA (but 
see Dipilla 2021). Though some have examined the correspon-
dence between BDRs and WSRs in tracking animals in flight 
(particularly the vertical-scanning component [VSR]; Buhler 
and Diehl 2009, Nilsson et al. 2018, Liechti et al. 2019), this 
is the first paper to explore relationships between early-warning Ta
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Figure 5. Strength of association (η2 with 95% confidence intervals) 
for analysis of variance models examining the relationship of the 
most frequently assigned Avian Hazard Advisory System (AHAS) 
risk class per hour and biological activity index (BAI) (i.e. track 
counts/hour) recorded by the horizontal-surveillance component of 
a bird detection radar (BDR). Dashed lines (η2 = 0.01, 0.10, 0.25) 
and gray text indicate strength of association thresholds.
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forecasts of bird risk, derived from WSR data and other 
sources, and biological activity recorded by both components 
of a BDR, and to relate this information to strike patterns.

Like Coates et al. (2011), we found temporal variability 
in biological activity recorded by the HSR at Randolph, with 
diel patterns dependent on season. Activity at Randolph was 
greatest during the mid-night periods in spring and fall, and 
there was strong agreement between avian activity and AHAS 
bird risk warnings during these periods, with the probabil-
ity of a severe warning considerably greater than that of low 
or moderate warnings. These results were expected and cor-
respond well with known nocturnal bird migration activity, 
which typically begins within the first few hours after sun-
set and reaches peak intensity during the mid-night hours 
before trailing off until shortly after sunrise (Lowery 1951, 
Hassler et al. 1963, Gauthreaux 1971, Fortin et al. 1999, 
Dinevich et al. 2003). During migration, the number of 
strikes per aircraft movement is greater at night than during 
the day, especially at higher altitudes (i.e. > 152 m AGL; 
Dolbeer 2006). At Randolph, most flight operations (99%) 
take place between 7:00 and 18:00 (JLUS 2015), and noc-
turnal strikes are rare (8%; Colón and Long 2018). In the 
1960s, however, Randolph operated many nighttime flying 
missions that exposed pilots and aircraft to migratory birds, 
with peaks in strike frequency from August to October and 
then again in April (Pruess 2002).

Randolph is located in close proximity to Bracken Cave, 
where historic Mexican free-tailed bat populations have been 

estimated in the tens of millions (Davis et al. 1962, Wahl 
1993, Betke et al. 2008). Of the nocturnal strikes observed 
at Randolph in the 1960s, many were later identified as bat 
strikes, especially in summer (Pruess 2002). Mexican free-
tailed bats are most active during the early night period in 
summer (Lee and McCracken 2001, Reichard et al. 2009), 
when they emerge from caves in densely packed streams 
until reaching several hundreds of meters above the ground 
and dispersing into smaller groups (Horn and Kunz 2008). 
During our study period, biological activity recorded by the 
HSR on summer nights likely corresponded with bat activity.

The WSRs informing the AHAS are regularly used in bat 
research (Horn and Kunz 2008, Frick et al. 2012, Stepanian 
and Wainwright 2018, Stepanian et al. 2019), and evidence 
suggests bat presence can affect NEXRAD-derived AHAS 
risk assignments (AHAS 2022). The predicted probability of 
a severe AHAS warning was high on summer nights, particu-
larly during the early-night period. Yet, the strength of asso-
ciation between the AHAS and HSR datasets was weak to 
moderate on summer nights. The weaker association during 
the early night period in summer likely reflects the distance 
between Randolph and Bracken Cave (19 km), which is 
beyond the detection radius of the HSR but within the cov-
erage of the WSR. Increasing nocturnal agreement between 
the datasets over time at night may indicate greater detection 
by the HSR of bats foraging closer to the base after dispersal. 
However, bats are not included in the US BAM (Lovell 1997, 
Lovell and Dolbeer 1999) or the soaring bird model, and 
WSRs are likely to miss low-flying bats, where most dam-
aging bat strikes at Randolph have occurred (i.e. < 300 m  

Figure 6. Distribution of mean biological activity (i.e. track counts/
hour) as a function of 152-m altitude bins (depicted by midpoints) 
recorded by the vertical-scanning radar. Dashed lines identify the alti-
tudes below which most wildlife–aircraft strikes (i.e. 1067 m above 
ground level (AGL) and the majority of strikes resulting in substantial 
damage (i.e. 152 m AGL) occur according to Dolbeer (2006).

Figure 7. Predicted probability of the most frequently assigned Avian 
Hazard Advisory System (AHAS) risk class per hour given biological 
activity index (BAI) within the altitude bin spanning 457 to 610 m 
above ground level recorded by the vertical-scanning radar.
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AGL; Pruess 2002), potentially contributing to the discon-
nect between the datasets we observed on summer nights.

Because most aircraft activity occurs during the day, the 
total number of strikes is greater during daylight hours, with 
the most damaging strikes occurring at altitudes < 152 m 
AGL (Dolbeer 2006, Dolbeer et al. 2022). At Randolph, the 
correlation of AHAS risk with biological activity recorded by 
the HSR was weak to moderate during the day, except on 
early fall mornings. Though most migratory birds travel at 
night (Newton 2008, Horton et al. 2019), many of the most 
hazardous species to aircraft (Dolbeer et al. 2000, Zakrajsek 
and Bissonette 2005, DeVault et al. 2018, Pfeiffer et al. 
2018) migrate during daylight hours (e.g. turkey vulture 
[Eisenmann 1963, Mandel et al. 2008], red-tailed hawk 
[Mathisen and Mathisen 1968]). From 1990 to 2021, diur-
nal raptors, including vultures, accounted for 12% of all 
strikes with civilian aircraft in the USA and 24% of damaging 
strikes, resulting in 16 casualties, 91 injuries, 14 destroyed 
aircraft, and > US$186M in damage (Dolbeer et al. 2022). 
Kerlinger and Gauthreaux (1985) used a BDR to observe 
raptors during spring migration along the Texas coast. They 
noted birds flying at low altitudes (< 100 m) early in the 
morning before thermals developed (~900–1000), with the 
majority (76%) flying at altitudes from 300 to 600 m AGL 

for the remainder of the day, during periods when most rap-
tor strikes occur (Blackwell and Wright 2006).

Despite large numbers of raptors and other diurnal 
migrants traveling through Texas and the Central Flyway (La 
Sorte et al. 2019, Lin et al. 2019, Córdoba et al. 2020), the 
probability of a moderate AHAS risk warning was consider-
ably higher than that for other warning levels in all diurnal 
periods in all seasons, except winter. The US BAM and the 
AHAS were developed to inform military aircraft operating 
at low altitudes, but moderate risk warnings issued during 
most periods may not be especially helpful for flight planners, 
pilots, or ground crews in mitigating the potential for day-
time strikes. Kerlinger and Gauthreaux (1985) suggested that 
an HSR may be particularly effective for monitoring raptors 
during the early morning hours when migration altitudes are 
lower. The same is also likely true for monitoring local move-
ments of most birds, which primarily occur within a few 
hundred meters above the ground (Shamoun-Baranes et al. 
2006, Larsen and Guillemette 2007, Avery et al. 2011). At 
Randolph, raptor strikes comprise a small percentage of the 
total number of strikes and the number of damaging strikes 
relative to other taxa, and the HSR may be helpful in moni-
toring species like white-winged doves, which represent a 
more substantial hazard to aircraft at the base (Colón and 
Long 2018).

Most damaging strikes take place within the airport 
environment (< 152 m AGL), often on takeoff or landing 
(Dolbeer 2006), but the low-altitude bins of our VSR dataset 
were rarely the best predictors of AHAS warnings. There was 
overlap in the low-altitude coverage of the BDR at Randolph 
and the nearest WSR but, because of tilt angles and distance, 
WSRs cannot detect wildlife at the lowest altitudes, and 
the weaker agreement we observed between the HSR and 
AHAS datasets during the day likely resulted, at least in part, 
from risk assignments that did not incorporate the diurnal 
activity of birds flying between foraging, roosting, and nest-
ing locations at altitudes below the WSR beam (Shamoun-
Baranes et al. 2006, 2017). Outside the airport environment 
(i.e. > 152 m AGL), the rate of damaging strikes may be 
increasing with numbers of hazardous birds (e.g. Canada 
geese Branta canadiensis; Dolbeer and Eschenfelder 2003, 
Dolbeer 2011, Dolbeer et al. 2014), especially in spring and 
fall (Dolbeer et al. 2016). To mitigate strike potential at these 
higher altitudes, Dolbeer (2006) recommended using radar to 
monitor bird movement activity from 152 to 1067 m AGL. 
At Randolph, the VSR indicated that most local biological 
activity occurred within the altitude bin spanning 213 to 366 
m AGL, and AHAS risk classifications were best predicted by 
biological activity recorded within the altitude bin from 457 
to 609 m AGL, with limited predictability above that range.

In the early tests, AHAS accurately predicted large migra-
tory movements of waterfowl, allowing the US Air Force to 
adjust their flying activities to minimize the risk of strike 
(Kelly et al. 1999). Similarly, our findings suggest that AHAS 
likely predicts the risk of encountering nocturnally migrat-
ing birds in spring and summer accurately, particularly out-
side the airport environment. However, as most strikes occur 

Figure 8. Altitude bins at which biological activity indices recorded 
by the vertical-scanning component of a bird detection radar (BDR) 
best predicted the most frequently assigned Avian Hazard Advisory 
System (AHAS) risk class. Solid points indicate midpoints of the 
152-m bins identified by the best-fit models, and lines extend to 
minimum and maximum altitudes of those bins. Multiple points 
for a given period indicate more than one best-fit model and values 
above each line identify the mean percent classification accuracy of 
best-fit models. The dashed line identifies the altitudes below which 
the majority of strikes resulting in substantial damage (i.e. 152 m 
above ground level) occur according to Dolbeer (2006).
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during daylight hours, with most damaging strikes occurring 
below 152 m AGL, AHAS warnings may offer little guidance 
during the times and in the locations that are of greatest con-
cern, and BDR data may offer a useful tool to complement 
AHAS in mitigating strikes. BDRs may be especially valuable 
at airfields located more than 90 km from a WSR or in parts 
of central and western USA, where distance to or elevation of 
WSR sites greatly limits low-altitude coverage (Westrick et al. 
1999, Maddox et al. 2002, Chilson et al. 2012). The ability 
of BDRs to track flying animals in real time may also provide 
added value to airfields operating nighttime flights, where 
large numbers of bats and migratory birds occupy low-level 
airspace (Kelly et al. 2007).
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