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ABSTRACT 

Photocaged adenosine triphosphate (ATP) is one of the earliest examples of exerting spatial-

temporal control over the activity of a substrate.  The activity of ATP is blocked until near-

ultraviolet light exposure photocleaves the cage moiety.  Caged ATP has been used for a myriad 

of applications including kinetic studies of ATP-dependent enzymes.  Traditional caging of ATP 

occurs at the γ-phosphate, which has been found to competitively inhibit several enzymatic 

systems.  It was hypothesized that blocking access to the adenosine N6 position via cage 

molecule would prevent the initial enzyme-substrate binding event from occurring prior to 

photolysis, effectively minimizing competitive inhibition.  Utilizing a convertible nucleoside 

analog of ATP, this work synthesized, purified, and characterized a form of caged ATP which, 

by attaching the cage molecule to the nucleobase, did not inhibit the enzymatic activity of 

luciferase in vitro.  Characterization was accomplished via UV/Vis spectroscopy, high 

performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and mass 

spectrometry (MS).  Base-caged ATP was evaluated in a firefly luciferase enzymatic assay to 

determine the degree of bioactivity in the caged and photoactivated states and compared to the 

results of native (uncaged) ATP and γ-NPE-caged ATP.  Photolysis was conducted via 308 nm 

light from a transilluminator.  Base-caged ATP did not inhibit the enzymatic system and the 

convertible nucleoside synthesis approach offers significant advantages over other caging 

techniques.



 
 

CHAPTER 1 – BACKGROUND AND SIGNIFICANCE 

1.1  Objectives 

Base-caged adenosine triphosphate as a model system for photoactivatable siRNA.  

1. Synthesize base-caged ATP. 

2. Purify base-caged ATP through separation techniques. 

3. Characterize results through analytical chemistry. 

4. Demonstrate:  

A. Bio-inactive in base-caged form; 

B. Photolysis restores bioactivity; 

C. Confirm that base-caged form does not inhibit enzymatic systems.  

 

1.2  Introduction 

Developments in the field of tissue regeneration and engineering include advances in the 

use of biomaterials and stem cells, scaffolds, growth and differentiation factors, and biomimetic 

environments to achieve three-dimensional cell cultures (Takahashi, Ogasawara et al. 2007).  

Despite numerous improvements, much work remains to perfect clinically applicable growth of 

complex tissues.  One of the primary challenges in tissue growth arises from the lack of complex 

control techniques to direct pluripotent cell differentiation.   

A plausible method to enhance tissue repair and regeneration is by the modification and 

exploitation of the RNA interference (RNAi) mechanism to silence gene expression (Mack 2007; 

Casey, Blidner et al. 2009).  Spatial-temporal control is introduced when RNAi techniques are 

coupled with an external trigger through the utilization of photocaging.  Photocaging involves 

chemically modifying the molecule of interest with a photolabile compound that inhibits 
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bioactivity until released with a specific wavelength of light (Casey, Blidner et al. 2009).  As 

such, caged RNA oligonucleotides are inactive and do not participate in RNAi until exposed to 

light, which can be readily pinpointed with temporal and spatial precision. 

The primary aim of this work was to develop a precise photocaging process utilizing 

base-caged adenosine triphosphate (ATP) as a model system for the RNA nucleoside adenosine.   

 

1.3 RNA Interference 

The first element of directed tissue growth and regeneration stems from the discovery of 

RNA interference (RNAi).  RNAi plays a large role in determining the activity of genes by 

turning them on, off, up regulating, or down regulating their expression.  The manipulation of 

gene expression with RNA was revolutionized by the findings of Nobel laureates Fire and Mello, 

who were among the first to characterize and exploit RNAi through the use of small double-

stranded RNA molecules known as small interfering RNAs (siRNAs) (Fire, Xu et al. 1998).  

Subsequent studies have shown that cell differentiation and proliferation can be regulated via 

RNAi gene silencing (Chen, Mandel et al. 2006).  Transient inhibition with siRNAs would 

enable the finely tuned regulation of cell differentiation that is needed for the successful growth 

of musculoskeletal tissue in vitro (Rhim, Lowell et al. 2007).    

 

1.3.1 RNA Interference Mechanism 

RNA interference is a post-transcriptional gene regulation mechanism in eukaryotic 

organisms.  The aforementioned small interfering RNAs (siRNAs) comprise a class of dsRNA of 

20-25 nucleotides in length.  Native RNAs which participate in this pathway are single-stranded 
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RNA called microRNAs (miRNAs) of 21-25 nucleotides in length (He and Hannon 2004).  The 

expression of a specific gene is moderated by miRNAs or siRNAs which hybridize with a 

complementary strand of mRNA.  This hybridization silences the mRNA’s activity by repressing 

translation or cleaving the mRNA (He and Hannon 2004; Gregory, Chendrimada et al. 2005; 

Rhim, Lowell et al. 2007). 

Native miRNA genes contain one or more 60-120 nucleotide-long segments exhibiting 

sufficient reverse sequence complementarity to spontaneously form hairpin-loop structures 

(Hartwell, Hood et al. 2008).  The initial transcription product is known as primary miRNA (pri-

miRNA).  After transcription, the pri-miRNA is recognized by the nuclear enzyme Drosha, 

which crops the RNA at the base of the structure to remove the 5’ mG cap and the 3’ poly-A tail 

(Hartwell, Hood et al. 2008).  Drosha releases a 65-75-nt form called pre-miRNA which is 

transported to the cytoplasm by Exportin-5-mediated nuclear transport (Yi, Qin et al. 2003).  

Once in the cytoplasm of the cell, a ribonuclease (RNase-III) called Dicer recognizes the pre-

miRNA.  Dicer cuts the loop off the pre-miRNA to produce the mature 21-24 ribonucleotide 

miRNA and its complement miRNA* (He and Hannon 2004; Hartwell, Hood et al. 2008).  When 

long dsRNA molecules are found in the cytoplasm, Dicer also processes these into siRNA 

duplexes (He and Hannon 2004).  These duplexes are further processed by a ribonucleoprotein 

effector complex called the RNA-induced silencing complex (RISC) (Gregory, Chendrimada et 

al. 2005).  The RNase component of the RISC degrades the miRNA* and complementary siRNA 

strands (He and Hannon 2004; Winter, Jung et al. 2009), and the miRNA/siRNA-loaded RISC 

complex (miRISC/siRISC) becomes an active agent of RNA interference.  The formation of 

miRNA and siRNA silencing complexes are graphically shown in Figure 1. 



 

Figure 1 – Model for the biogenesis and post

siRNAs. 

Initial primary microRNA (pri-miRNA) transcripts
pre-miRNAs by Drosha.  Pre-miRNAs
processed into miRNA:miRNA* duplexes
into siRNA duplexes.  Only one strand of the miRNA:miRNA* duplex or th
assembled into the RNA-induced silencing complex (RISC). 
translationally represses or cleaves 
between the miRNA or siRNA and the target mRNA.  
Publishers Ltd: Nature Reviews Genetics
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Model for the biogenesis and post-transcriptional suppression by miRNAs and 

miRNA) transcripts are cleaved inside the nucleus 
miRNAs are transported to the cytoplasm by Exportin 5 and are 

processed into miRNA:miRNA* duplexes by Dicer.  Dicer also cleaves long dsRNA mole
Only one strand of the miRNA:miRNA* duplex or the siRNA duplex is 

nduced silencing complex (RISC).  The assembled RISC 
translationally represses or cleaves mRNAs depending on the degree of complementari
between the miRNA or siRNA and the target mRNA.  Reprinted by permission from Macmillan 

Nature Reviews Genetics 5, 522-531 (July 2004), copyright 2004.

 

transcriptional suppression by miRNAs and 

inside the nucleus into 65-75-nt 
Exportin 5 and are 

long dsRNA molecules 
e siRNA duplex is 

assembled RISC 
complementarity 

Reprinted by permission from Macmillan 
pyright 2004. 
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RNA interference exhibits two forms of post-transcriptional control of gene expression, 

as seen in Figure 1.  The precise mode of RNAi depends on the degree of complementarity 

between the miRNA or siRNA and the target mRNA (He and Hannon 2004; Hartwell, Hood et 

al. 2008).  The first mode occurs when the miRISC/siRISC sequence hybridizes in a perfectly 

base-paired complex with the mRNA; the miRISC/siRISC then cleaves the mRNA (Esquela-

Kerscher and Slack 2006).  Because the products of cleavage are not protected by a 5’ mG cap or 

3’ poly-A tail, they degrade in the cytoplasm.  The miRISC/siRISCs are therefore recyclable 

catalysts and continue to bind to additional mRNA targets.  Small amounts of miRNA/siRNA 

can have a dramatic effect in down-regulating or silencing gene expression (Hartwell, Hood et al. 

2008). 

A translational blockage occurs when the miRISC/siRISC sequence forms an imperfect 

hybrid with the mRNA.  In this case, the mRNA remains intact and loads into ribosomes.  

However, the miRISC/siRISC represses the movement of the ribosomes, leading to the down-

regulation of translation (Hartwell, Hood et al. 2008).  

 

1.3.2 RNAi-promoted Cell Proliferation and Differentiation 

The involvement of miRNAs in the proliferation and differentiation of skeletal muscle 

was demonstrated by Chen et al.  Their findings presented evidence that the studied miRNAs 

acted as post-transcriptional repressors that controlled myogenesis, or the formation of skeletal 

muscle tissue (Chen, Mandel et al. 2006).  Specifically, miR-1 was found to induce the 

expression of myogenic markers in cells that were proliferated in the log-phase of growth.  These 

markers resulted in accelerated myogenic differentiation.  Another miRNA, miR-133, was found 

to promote myoblast proliferation.  The interplay between the proliferation and differentiation of 
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myoblasts, the precursors of skeletal muscle, plays a key role in the regenerative growth of 

skeletal muscle tissue. 

With the establishment of the involvement of miRNAs in muscle tissue growth, Rhim et 

al. found that the transient inhibition of miRNAs would enable the finely tuned regulation of cell 

differentiation that is needed for the successful growth of musculoskeletal tissue in vitro (Rhim, 

Lowell et al. 2007).   The approach to developing a control strategy for directed cell 

differentiation is therefore focused on delivering siRNAs to silence either mRNA or miRNA at 

varying times and spatial locations. 

A couple strategies to accomplish spatial and temporal control of RNA molecules have 

been employed in recent work, primarily based on the use of external triggers.  One method 

exerts remote electronic control over the hybridization of DNA molecules through inductive 

coupling a radio-frequency magnetic field to a metal nanocrystal antenna covalently linked to a 

DNA oligonucleotide (Hamad-Schifferli, Schwartz et al. 2002).  The external trigger technique 

investigated in this work utilizes chromophores to optically trigger biomolecular activity in a 

field known as photocage chemistry.   

 

1.4  Photochemistry and Cage Compounds 

1.4.1 Caging via Photochemistry 

In addition to the need for transient gene silencing for optimal proliferation and 

differentiation of myoblasts, flooding an organism with active siRNAs would be unsafe.  The 

downstream effects of widespread gene silencing that could occur in off-target tissues would 

have unpredictable results.  The chosen approach to achieve spatiotemporal control of siRNA 
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molecules is to utilize a photolabile protecting group known as a “cage” (Givens, Kotala et al. 

2005).   

Caging specifically describes the attachment of a photolytic chromophore for the prompt 

release of a biologically active substrate (Kaplan, Forbush et al. 1978).  By covalently alkylating 

an isolated nucleic acid with a photolabile cage, the bioactivity of the nucleic acid is blocked.  

Upon exposure to the appropriate wavelength of light (Figure 2), the caging group photocleaves 

and restores the nucleic acid to its original bioactive state (Casey, Blidner et al. 2009), thus 

enabling a system of control over the location and timing of the siRNA activity.  Finer control is 

achieved by varying the location, intensity, and duration of the light pulse delivered to uncage 

the molecule of interest (Givens, Kotala et al. 2005).  No further photoactivation occurs in the 

absence of light, so the delivery of light in a step function technique will allow for the controlled 

activation of nucleic acids, only activating a portion of the siRNAs at a time (Casey, Blidner et 

al. 2009).   

 

Figure 2 – Caged siRNA 

Caged siRNA is biologically inactive until UV light exposure cleaves the cage moieties, enabling 

initiation of gene silencing (Casey, Blidner et al. 2009). 

Photocaging offers advantages for the delivery of siRNAs by allowing the dispersal of 

the biologically inert siRNAs with minimized risk of initiating gene silencing in off-target 

tissues.  Caged siRNAs could conceivably be introduced intravenously for activation in a 

specific location of interest.  Therefore, the photocaged siRNAs offer a major advantage over 

conventional delivery methods of gene silencing (Givens, Weber et al. 1998).  However, the 
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photocaging process is not always perfect; small amounts of “leak,” or bioactivity in the non-

photolyzed state, could lead to gene silencing in unintended tissues and have an effect on study 

results (Casey, Blidner et al. 2009). 

Caged nucleic acids were first demonstrated in vitro and in vivo for photoinduced control 

of gene expression in 1999 (Monroe, McQuain et al. 1999).  Two classifications of caged nucleic 

acid molecules have emerged: those that were caged using a random method termed “statistical 

caging” (Mayer and Heckel 2006), and more recent site specific approaches to photocage 

predetermined sites on knockdown oligonucleotides (Casey, Blidner et al. 2009).  Statistical 

caging, also known as bulk caging, uses a batch-style reaction to attach the cage molecule to the 

phosphate backbone using diazo attachment chemistry (Walker, Reid et al. 1988; Monroe, 

McQuain et al. 1999; Casey, Blidner et al. 2009).  Limitations of this method include significant 

leak activity (Shah, Rangarajan et al. 2005) and evidence of a 2′-hydroxyl attack at the 

phosphotriester backbone (Breslow and Xu 1993).  Further in-depth review of caged nucleic 

acids is offered by Casey et al. (Casey, Blidner et al. 2009). 

 

1.4.2 Cage Compounds 

A variety of cage compounds have been studied since 2-nitrobenzyl was used to cage 

ATP (Kaplan, Forbush et al. 1978).  Success as a cage compound requires ease of synthesis of 

the effector-cage complex and efficiency of photochemical release of the effector (Givens, 

Kotala et al. 2005).  Based on these criteria, only four categories of cage compounds are 

currently considered robust enough for use: (1) 2-nitrobenzyl (2-NB), (2) benzoin, (3) p-

hydroxyphenacyl, and (4) arylmethyl derivatives including the benzyl and coumaryl 
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chromophores (Givens, Kotala et al. 2005).  The chemical structures of several photocaging 

groups are shown in Figure 3.   

 

Figure 3 – Common cage compounds for use with siRNAs 

X = substrate, NB = nitrobenzyl, DMNB = dimethoxy-nitrobenzyl, NPP = nitrophenylpropyl, 

NPE = nitrophenylethyl, DMNPE = dimethoxy-nitrophenylethyl, NPOM = 6-

nitropiperonyloxymethyl, pHP = p-hydroxyphenacyl (Casey, Blidner et al. 2009). 

 

The best characterized and most widely utilized cage molecules come from the 2-nitrobenzyl 

group and its derivatives (Casey, Blidner et al. 2009).  More in-depth reviews of cage 

compounds are offered by Givens and Casey (Givens, Kotala et al. 2005; Casey, Blidner et al. 

2009). 

For this work, 2-nitrobenzyl was selected due to its robust properties as a cage molecule 

and its ease of attachment in synthesis reactions.  In addition, 2-nitrobenzyl groups exhibit 
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reliably high photorelease efficiencies due to the irreversible photoredox mechanism shown in 

Figure 4 (Givens, Kotala et al. 2005). 

 

Figure 4 – General mechanism for 2-nitrobenzyl photorelease of a substrate. 

X = substrate. Rate constants are: kST = single-triplet crossing; kH = hydrogen abstraction; kcyc = 

cyclization to the isoxazole; kH2O = direct hydrolysis to the isoxazole; kfrag = fragmentation of the 

isoxazole; khemi = hemiacetal or ketal hydrolysis. Intermediate states are labeled a, b, and c. 

Adapted from (Givens, Kotala et al. 2005). 

 

1.4.3 Convertible Nucleoside Approach 

One method to obtain photolabile protecting groups on the nucleobase is the post-

synthesis substitution of the oligonucleotide.  A group led by Verdine developed a method for 

incorporating reactive nucleotide analogs with protecting groups stable under the conditions of 

RNA solid-phase synthesis, but able to undergo substitution for post-synthetic placement of the 

cage compound.  They named their technique “the convertible nucleoside approach” (Ferentz 

and Verdine 1992; Ferentz, Keating et al. 1993).  This method offers an advantage over the site-



11 
 

specific modified phosphoramidite approach in which the 2′-hydroxyl of RNA is caged (Chaulk 

and MacMillan 2007).  Although the caged adenosine phosphoramidite is easily incorporated 

into short oligonucleotides by automated synthesis, the protected adenosine requires an extensive 

synthesis procedure (Chaulk and MacMillan 2007; Casey, Blidner et al. 2009).  In contrast, the 

photoprotecting synthesis through the convertible nucleoside approach is much simpler and 

requires fewer reagents.  The cage compound conversion reaction requires a primary amine that 

is nucleophilic in order to undergo nucleophilic aromatic substitution, shown in Figure 5 

(Allerson, Chen et al. 1997). 

 

 

Figure 5 – Amine Substitution of Adenosine Nucleoside 

Generalization of the reaction to alkylate convertible adenosine nucleosides using aminolysis or 
nucleophilic aromatic substitution. X = leaving group, R = cage group. (Allerson, Chen et al. 
1997). 

Using this convertible nucleoside method, Verdine’s group successfully demonstrated the 

conversion of a modified adenosine molecule using benzylamine, shown in Figure 6 (Allerson, 

Chen et al. 1997).  This generated a modification which attached benzylamine to the N6 position 

of adenosine.  From this synthesis reaction, Blinder developed a similar synthesis procedure to 

attach the 2-nitrobenzylamine (NB-NH2) cage molecule to the N6 position of adenosine, 

discussed in Section 2.3.1. 
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Figure 6 – Convertible Adenosine Reaction

The future implications of this work, together with the convertible nucleoside approach, 

will allow for the site-specific photocaging of RNA oligonucleotides.  RNA oligos can be

Figure 7 – Convertible adenosine incorporation into RNA oligo

manufactured with a DNA/RNA synthesizer, and the identified adenosine nucleosides can be 

substituted for a convertible nucleoside.  Synthesis techniques would then be applied to the oligo 

to modify the convertible nucleoside into a photocaged adenosine (
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The future implications of this work, together with the convertible nucleoside approach, 

specific photocaging of RNA oligonucleotides.  RNA oligos can be
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manufactured with a DNA/RNA synthesizer, and the identified adenosine nucleosides can be 

substituted for a convertible nucleoside.  Synthesis techniques would then be applied to the oligo 

convertible nucleoside into a photocaged adenosine (Figure 7). 

N

 

The future implications of this work, together with the convertible nucleoside approach, 

specific photocaging of RNA oligonucleotides.  RNA oligos can be 

 

manufactured with a DNA/RNA synthesizer, and the identified adenosine nucleosides can be 

substituted for a convertible nucleoside.  Synthesis techniques would then be applied to the oligo 
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1.5 ATP as a Model System for RNA 

Adenosine triphosphate (ATP) is widely recognized for its central role in intracellular 

energy transfer due to its involvement in cellular control mechanisms and metabolic processes 

(Knowles 1980).  Caged ATP provides an excellent model for testing caging synthesis protocols.  

Historically, caged ATP was one of the first examples of the application of photochemistry to 

exert control over the biological activity of a substrate (Kaplan, Forbush et al. 1978; Blidner 

2007).  In the first study by Kaplan, 2-nitrobenzyl and 1-(2-nitrophenyl)ethyl groups were 

attached to the gamma phosphate of ATP to control the activity of a Na:K ATPase ion pump 

(Kaplan, Forbush et al. 1978).  Since then, caged ATP has been used for a myriad of 

applications, especially for kinetic studies of ATP-dependent enzymatic studies including the 

Na,K-ATPase pump (Kaplan, Forbush et al. 1978; Forbush 1984; Geibel, Barth et al. 2000), 

transport by the mitochondrial ADP/ATP carrier (AAC) (Broustovetsky, Bamberg et al. 1997; 

Gropp, Brustovetsky et al. 1999), kinesin (Higuchi, Muto et al. 1997), and myosin/actomyosin 

(Thirlwell, Corrie et al. 1994).  Many of these applications utilize the nitrobenzyl cage group 

with γNPE caged ATP (Kaplan, Forbush et al. 1978; Forbush 1984; Broustovetsky, Bamberg et 

al. 1997; Higuchi, Muto et al. 1997; Gropp, Brustovetsky et al. 1999).  Other studies have used 

other cage molecules, such as DMB-caged ATP (Thirlwell, Corrie et al. 1994) and pHP-caged 

ATP (Geibel, Barth et al. 2000). 



 

Figure 8 – Structures of (a) chain

In addition to the ubiquitous application of ATP in enzymatic assays, ATP can be used as 

a model for the adenosine nucleotide in RNA due to the inherent similarity of structure, shown in 

Figure 8.  This structural similarity will allow similar synthesis techniques to be conducted on 

ATP analogs and adenosine convertible nucleosides.
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In addition to the ubiquitous application of ATP in enzymatic assays, ATP can be used as 

a model for the adenosine nucleotide in RNA due to the inherent similarity of structure, shown in 

.  This structural similarity will allow similar synthesis techniques to be conducted on 

ATP analogs and adenosine convertible nucleosides. 

Phosphate Caged ATP 

Traditional caging of ATP has been achieved via the alkylation of the gamma phosphate.  

phosphate caged ATP does inhibit kinase activity, protein-ATP binding has been 

reported to occur regardless of the cage status.  This interference of caged ATP in an enzymatic 

identified by Forbush with the discovery that ATP, caged at the 

ATPase with a greater affinity than uncaged ATP (Forbush 1984)

unphotolyzed caged ATP to occupy the catalytic sites of the Na+ pumps prior to the pho

flash.  Forbush found that most of the free ATP is produced in solution while only about 2% of 

the bound caged ATP converted to ATP (Forbush 1984).  Consequently, ATP caged at

phosphate competitively inhibits the Na+:K+-ATPase pump. 
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The competitive inhibition of ATP binding by NPE γ-phosphate caged ATP was further 

observed in other enzymatic systems.  Thirlwell et al. found evidence indicative of inhibition in 

the relaxation of muscle fibers with actomyosin ATPase (Thirlwell, Corrie et al. 1994).  Caged 

ATP was also found to inhibit ATP-driven sliding of kinesin and microtubules in motility assays 

(Higuchi, Muto et al. 1997).  Competition between caged and free ATP in mitochondrial 

ADP/ATP carrier protein studies indicated that the caged form had stronger affinity with the 

protein binding site than native ATP (Broustovetsky, Bamberg et al. 1997).  The competitive 

inhibition is not limited to the 2-NB and NPE cage molecules in the γ-phosphate caged ATP; the 

Na+:K+-ATPase also undergoes competition with p-hydroxyphenacyl (pHP)-caged ATP (Geibel, 

Barth et al. 2000).  Since many of these enzymatic systems are specific to adenosine 

triphosphate, this work strives to cage the adenine nucleobase in order to determine if 

competitive inhibition is lessened, while still blocking the bioactivity of ATP.  Caging the 

adenine nucleobase at the N6 position, using the convertible alkylation schemes discussed in 

Section 1.3.3, may provide spatial-temporal control over the biological activity of ATP without 

engaging in the competitive inhibition of free ATP.  Although recent work has resulted in 

advances in nucleobase caging of oligonucleotides (Hobartner and Silverman 2005), synthesis of 

base-caged ATP had not been investigated until recently (Blidner 2007). 

1.5.2 Enzymatic Binding of ATP and Base-Caged ATP Hypothesis 

For this work, a luciferin/luciferase ATP reporter assay was selected as the in vitro 

system for studying caged ATP due to its well-characterized linear response and inherent 

hydrolysis of ATP.  Additionally, luminescence produced by the assay allows for the 

quantification of native ATP, caged ATP, and photolyzed ATP species.   
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Support for caging the N6 position of ATP comes from literature describing the molecular 

binding of ATP to proteins and enzymes.  For example, firefly luciferase has a long history of 

biochemistry and kinetic studies, including the determination of the ATP binding site.  As long 

ago as 1970, Lee, Denburg, and McElroy found the 6-amino group of adenine to be critical for 

the adenylate intermediate binding required to produce the luciferase luminescence (Lee, 

Denburg et al. 1970).  They also found that the energetic contributions to ATP-luciferase binding 

come from the adenine ring and the α phosphate group.  These findings implicate the N6 ATP 

group as a key player in ATP-luciferase binding.   

Twenty-six years later, firefly luciferase was the first enzyme of its class to be 

crystallographically characterized, further elucidating the structures of the adenylate-forming 

enzyme superfamily (Conti, Franks et al. 1996).  The crystal structure supported the theory that 

luciferase correctly positions and stabilizes binding of ATP for catalyzing adenylate formation, 

beginning the cascade to produce luminescence.  A more recent study used the Protein Data 

Bank to mine for molecular recognition of the adenine moiety of ATP by proteins (Mao, Wang 

et al. 2004).  They found that nearly 59% of adenylate-protein complexes involve the N1 and N6 

atoms of the adenine base via the formation of dual hydrogen bonds, and hydrogen bond 

formation was even higher (85%) for the N6 position overall. 

Based on the review of ATP binding in literature, we hypothesize that blocking access to 

the 6-amino group via cage molecule will prevent the initial enzyme-substrate binding event 

from occurring prior to photolysis, effectively minimizing competitive inhibition.  This 

hypothesis is depicted schematically in Figure 9. 



 

Figure 9 – N
6
 caged ATP (BC-ATP) Hypothesis

A. Schematic representation of ATP hydrolysis by luciferin/luciferase: the enzyme nucleotide 

binding domain (NBD) binds ATP at the adenosine.  B. Following hydrolysis, the enzyme 

releases AMP and pyrophosphate.  C. Enzyme binds 

is blocked by the cage molecule. D. Location of cage molecule attachment on proposed base

caged ATP.  E. Hypothesis: attachment of cage molecule to N

NBD of enzyme, therefore preventing competitive inhibition.

The ATP binding site of the enzyme 

(NBD), but it is alternatively referred to as the adenylate binding site.
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ATP) Hypothesis 

presentation of ATP hydrolysis by luciferin/luciferase: the enzyme nucleotide 

binding domain (NBD) binds ATP at the adenosine.  B. Following hydrolysis, the enzyme 

releases AMP and pyrophosphate.  C. Enzyme binds γNPE-ATP at the adenosine, but hydrolysis 

s blocked by the cage molecule. D. Location of cage molecule attachment on proposed base

caged ATP.  E. Hypothesis: attachment of cage molecule to N6 of adenosine prevents binding to 

NBD of enzyme, therefore preventing competitive inhibition. 

of the enzyme is designated here as the nucleotide binding domain 

(NBD), but it is alternatively referred to as the adenylate binding site. 

 

presentation of ATP hydrolysis by luciferin/luciferase: the enzyme nucleotide 

binding domain (NBD) binds ATP at the adenosine.  B. Following hydrolysis, the enzyme 

ATP at the adenosine, but hydrolysis 

s blocked by the cage molecule. D. Location of cage molecule attachment on proposed base-

of adenosine prevents binding to 

is designated here as the nucleotide binding domain 
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CHAPTER 2 – EXPERIMENTAL DESIGN 

2.1  Previous Work 

Investigation of base-caged ATP was previously conducted by Rick Blidner as part of his 

dissertation research in the Biological & Agricultural Engineering Department at Louisiana State 

University (Blidner 2007).  The continuance of his work is prompted by the promising results 

indicated by a luciferase ATP assay (Table 1), in which enzyme activity (measured as 

luminescence) was documented prior to and following photoexposure using ATP, 1-(2-

nitrophenyl)ethyl (NPE) γ-phosphate caged ATP, and 2-nitrobenzylamine (NB-NH2) base-caged 

ATP (Blidner unpublished data).  The base-caged ATP products were synthesized using the 

modified nucleoside technique mentioned in Section 1.4.3.  Both caged ATP analogues 

demonstrated photoactivation, and NB-NH2 base-caged ATP exhibited greater caging efficacy 

than NPE γ-phosphate-caged ATP as seen by the incomplete suppression of bioactivity while 

caged, or leak activity, of γ-phosphate NPE caged ATP.  The crude base-caged ATP products 

could be tested without purification because the unreacted 6-chloropurine riboside triphosphate 

(CPR-TP) has negligible activity in the luciferase reporter assay.  The results in Table 1 used a 

final ATP concentration of 10 µM, within the predetermined linear range of the assay, as 

described in more detail in Section 2.3.5 (Blidner 2007). 

Table 1 – Luciferase ATP assay with caged effectors 

Sample   

Before UVA 
light exposure 

(RLU) 
After UVA light 
exposure (RLU) 

ATP [10 µM] 7852 ± 438 N/A 

γNPE-caged ATP [10 µM] 295 ± 13 5623 ± 394 

Base-caged ATP [10 µM] * 1 ± 1.3 4958 ± 266 

Unreacted CPR-TP [10 µM] 6 ± 10.9 N/A 

*Crude, unpurified product (Blidner unpublished work) 
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The caged ATP species were co-incubated with free ATP (10 µM final concentrations, 50 

µL) to evaluate competitive inhibition.  The percentages of ATP activity of the co-incubations, 

relative to an ATP standard plus buffer that was run in parallel, are shown in Table 2.  The γ-

phosphate caged ATP reduced the observed luminescent signal, indicating competitive 

inhibition. Conversely, no statistical difference could be drawn between the free ATP standard 

and the co-incubation of ATP with base-caged ATP (Blidner 2007). 

Table 2 – % of RLU from ATP co-incubated with caged effectors 

Sample 2-nitrobenzyl 

ATP alone [10 µM] 100.0% ± 32.0% 

ATP [10 µM] + γNPE-caged ATP [10 µM] † 23.0% ± 9.0% 

ATP [10 µM] + base-caged ATP [10 µM]  ‡ 128.1% ± 12.6% 

Symbol † denotes statistical difference between caged-ATP and ATP standard  

Symbol ‡ denotes statistical difference between γ-phosphate and base caged ATP  

(Student's t-test p < 0.05) (Blidner unpublished work) 

 

The results in Table 1 and Table 2 provided support for continuing this work to obtain 

purified products for characterization and publishable data. 

 

2.2  Experimental Design 

This project sought to develop a precise photocaging synthesis process, utilizing base-

caged ATP as a model system for caged RNA.  As mentioned above, preliminary data suggested 

that base-caged ATP does exhibit the desired characteristics of bioactivity.  However, this data 

was obtained from crude products without purification or structural characterization.  Key issues 

with the previous protocol included the formation of a triethylammonium salt during the caging 

synthesis, which proved difficult to remove from the product mixture.  Another significant 

challenge in the prior work was the purification of the caged ATP in order to accurately 
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characterize the results.  Various separation procedures through column chromatography and 

HPLC were utilized to effectively purify the base-caged ATP.  Finally, purified base-caged ATP 

was utilized to demonstrate caging efficacy and comparative competitive inhibition behavior in a 

luciferase reporter assay. The experimental design is shown graphically in Figure 10. 

 

Figure 10 – Project Overview 

 

2.3 Materials and Methods 

2.3.1  Base-caged ATP Synthesis 

2-nitrobenzylamine (NB-NH2), triethylamine (TEA), and 6-chloropurine riboside (CPR) 

were purchased from Sigma Aldrich (St. Louis, MO).  6-Chloropurine riboside-5’-triphosphate 

(CPR-TP) was purchased from Trilink Biotechnologies (San Diego, CA).  TEA is utilized in this 

organic synthesis as a base, because the nucleophilic aromatic substitution reaction leads to the 

production of hydrogen chloride (Paquette 2009).  The HCl combines with TEA to form 

triethylammonium chloride, and therefore allows the reaction to proceed to completion upon 

removal of the hydrogen chloride. 
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The reaction mixture for synthesizing base-caged ATP was first prepared by dissolving 

NB-NH2 (0.040 g) in methanol (150-400 µL) by heating to 60˚C in a water bath.  Triethylamine 

(50 µL) was added to the reaction mixture, along with CPR-TP (1 µmole).  Once combined, the 

reaction mixture was rocked and incubated at 50˚C for 24 hours in a water bath shaker.  The 

reaction scheme is shown in Figure 11.   

 

Figure 11 – Synthesis Scheme for Base-Caged ATP 

Nitrobenzylamine is dissolved in methanol, and then CPR-TP and triethylamine are added to the 

reaction mixture.  The mixture is rocked and incubated at 50°C for 24 to 28 hours to produce 

base-caged ATP. 

 

2.3.2  Extraction and Purification 

Upon completion of the synthesis, excess NB-NH2 was separated from the other reaction 

substituents via liquid-liquid extraction.  Dichloromethane (DCM) (MW = 84.93 g/mol, 100 µL) 

and deionized water (100 µL) were added to the solution and mixed by shaking. The solution 

was briefly centrifuged, and the aqueous layer was collected.  The extraction was repeated twice 

more with 100 µL of DCM.  If chemical analysis indicated that NB-NH2 remained in the aqueous 

layer, the liquid-liquid extraction was repeated. 

Sodium bicarbonate was then added to the reaction mixture to dissociate the 

triethylammonium chloride and allow for its removal from the reaction mixture as 
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triethylammonium bicarbonate (TEAB).  The resulting sodium bicarbonate mixture was dried in 

vacuo, re-suspended in methanol and processed via silica gel column chromatography.  The 

sodium bicarbonate was retained by the column and allowed for the separation of base-caged 

ATP from salt contaminants.  Samples were stored at 4˚C and protected from light. 

2.3.3  Photolysis 

Caged compounds are commonly activated by short, intense exposures to wavelengths of 

light in the UVA range (315–400 nm) (Forman, Dietrich et al. 2007).  Commonly, electron-

donating ring substitutions on cage compounds result in a hyperchromatic absorbance shift, or an 

increase in energy absorbance.  This allows photolysis to occur at longer wavelengths that are 

less damaging to cells or other biological systems (Casey, Blidner et al. 2009).  

For this work, photolysis was conducted via transilluminator (TFM-20, UVP Inc., 

Upland, CA).  The transilluminator was used to photolyze BC-ATP and γ-NPE caged ATP 

samples in 200 µL thin walled PCR Eppendorf tubes at a UVB wavelength of 308 nm with an 

irradiance of 6.5 mW/cm2 (Blidner 2007).  The total light delivered was 60 J/cm2.  For these in 

vitro experiments, negligible photoeffects of 308 nm exposure were observed, though 

 
Figure 12 – Photolysis Scheme 
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this wavelength would have damaging photoeffects in vivo (Forman, Dietrich et al. 2007).  The 

photolysis scheme is represented in Figure 12.   

The quantum yield of the radiation-induced photolysis is the number of caged ATP that 

photolyze to become free ATP molecules per photon absorbed by the system: Φ = # reactant 

molecules decomposed / # photons absorbed.  The quantum yield of base-caged ATP was 

determined enzymatically (see Section 2.3.5) by stepping through several time points in 

photolyzing the caged ATP.  Both base-caged ATP and γNPE-caged ATP were photolyzed in 

this method to determine which caging strategy had the most efficient photolysis. 

2.3.4  Characterization  

2.3.4.1 UV/Vis Spectrophotometry 

Throughout the project, several spectroscopy techniques were used to determine the 

compositions of samples and evaluate the synthesis and purification of base-caged ATP.  

Spectrophotometry has been widely used to characterize the absorbance spectra of caged 

nucleotides and their photoproducts (Walker, Reid et al. 1988).  Spectrophotometry of the 

products and reactants was conducted in the visible and UV range using the Spectronic 

GENESYS 6 UV-Visible Spectrophotometer (Thermo Scientific) and the spectrophotometer 

built into the HPLC (Dionex).   

2.3.4.2  HPLC 

The processed base-caged ATP was analyzed via reverse-phase HPLC (Dionex) on a C18 

column at a flow rate of 0.4 mL/min with the solvent conditions shown in Figure 13. 
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Figure 13 – HPLC reverse phase solvent conditions. 

 A-0.1% trifluoroacetic acid (TFA) in diH2O and B-0.1% trifluoroacetic acid (TFA) in 

acetonitrile. 

 

2.3.4.3  Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy was conducted using 1H (proton) 

signals.  The solvent for analysis was 100% deuterium oxide (D2O).  Samples were dissolved in 

600 µL D2O and transferred to the NMR tubes.  The NMR spectroscopy was conducted using the 

Bruker AV-400 in the LSU Chemistry Department NMR facility. 

2.3.4.4  Mass Spectrometry 

Products purified through HPLC and column chromatography were analyzed through 

electrospray ionization mass spectrometry (ESI-MS) to verify their molecular weights. ESI-MS 

(negative ion mode) was conducted externally through the LSU Chemistry Department’s Agilent 

6210 spectrometer.  
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2.3.5  Enzymatic Demonstration 

Base-caged ATP was evaluated in an enzymatic assay to determine the degree of 

bioactivity in the caged and photoactivated states.  As discussed in Section 2.2, it was important 

to study the inhibited bioactivity of ATP in base-caged form, the efficacy of photolysis in the 

restoration of bioactivity, and competitive inhibition of base-caged ATP relative to the known 

inhibitory moieties in enzymatic systems.  Both base-caged ATP and γNPE-caged ATP were co-

incubated with native ATP, and the experiments were run in parallel to determine the properties 

of competitive inhibition.   

An ENLITEN® ATP Assay System (Promega, Madison, WI) was utilized to 

quantitatively detect the biological activity of photolyzed base-caged ATP and analyze 

competitive inhibition in comparison.  Native ATP and γ-NPE ATP were utilized for positive 

controls.  rLuciferase/Luciferin (rL/L) reagent was reconstituted according to the manufacturer’s 

instructions.  The assay was conducted via Wallac 1420 Multilabel Counter (PerkinElmer, 

Waltham, MA) in the LSU AgCenter Biotechnology Laboratory (ABL).  The Wallac dispenser 

unit provided automated rL/L addition to the samples on a 96-well white opaque plate, and 

luminescence was measured in RLUs (relative luminescence unit). 

ATP is required for the oxidation of luciferin, which produces luminescence when ATP is 

hydrolyzed.  In the range of 10-8 to 10-6 M ATP, luminescence of the luciferase assay increases 

linearly with ATP concentration (Geibel, Barth et al. 2000).  ATP concentrations within this 

range were determined through luminescence measurements.  The standard curve for the 

luciferase assay was established for each run with the luminometer due to the significant 

variance in luminescence according to temperature and time of storage.  The volume of the ATP 
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standard was small in order for the reaction to favor the forward direction and give accurate RLU 

output (Lundin 2000).  As a standard, 5 µL of ATP solutions (10-6, 10-7, 10-8 M ATP in purified 

water) were mixed with 60 µL of ATP-free water, 10 µL aliquots of luciferase assay solution 

were automatically injected by the plate reader, and the luminescence was determined (Geibel, 

Barth et al. 2000).  The light emission due to the ATP standard was used to calculate the ratio 

between RLU and ATP concentration.  To verify base-caged ATP concentration as determined 

by UV/Visible spectrophotometry measurement, 5 µL of the photolyzed base-caged ATP sample 

solution was mixed with the same ATP-free water and luciferase assay solution volumes, and the 

luminescence was determined.   

The co-incubation experiments required a different protocol using the luminometer.  The 

initial protocol evaluating the competitive inhibition of native ATP by caged ATP species 

utilized the protocol above, with 5 µL sample volumes, 60 µL of ATP-free water to ensure 

coverage of the well, 10 µL aliquots of luciferase assay solution were automatically injected into 

the programmed wells, and after shaking for 1 second, the luminescence readings were taken.  

After optimization for maximum competitive inhibition of native ATP luminescence by γ-NPE 

ATP, 7.5 µL of ATP standards were used with 7.5 µL of ATP-free water, and the co-incubations 

were set up using 7.5 µL of caged ATP plus 7.5 µL of native ATP, 100 uM initial 

concentrations.  The luciferin/luciferase solution was diluted to 1:100 and the injection volume 

was increased to 60 µL, for a final concentration of 10 uM of each species.  Once the 

luciferin/luciferase solution was injected, the plate was shaken for 3 seconds and the 

luminescence readings were taken. 



 

CHAPTER 3 – RESULTS

3.1 Characterization 

3.1.1   UV/Vis Spectrophotometry

Initial characterization of BC

direct mass spectrometry of the purified product.  Base

spectrum that is not only distinct from the primary reactants CPR

also very similar to γ-NPE ATP (

correlates to native ATP.  Notably, photolyzed BC

maximum at 259 nm, while the peak for caged BC

Figure 14 – UV/Visible absorbance spectra.  

A.  Spectra of native ATP, initial reactant CPR

NPE caged ATP, and photolyzed 

CPR-TP, NB-NH2, TEA – and final product BC

with native ATP.  D. Comparison of photolyzed species spectra with native ATP.
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RESULTS 

UV/Vis Spectrophotometry 

Initial characterization of BC-ATP was based on UV/Visible spectrophotometry and 

direct mass spectrometry of the purified product.  Base-caged ATP has a UV/visible absorbance 

spectrum that is not only distinct from the primary reactants CPR-TP, NB-NH2, and TEA, but is 

NPE ATP (Figure 14).  The photolyzed BC-ATP spectrum closely 

correlates to native ATP.  Notably, photolyzed BC-ATP and native ATP share a local absorbance 

ile the peak for caged BC-ATP is red shifted to 268 nm.  

UV/Visible absorbance spectra.   

A.  Spectra of native ATP, initial reactant CPR-TP, base-caged ATP, photolyzed BC

NPE caged ATP, and photolyzed γ-NPE ATP.  B. Comparison of reaction materials spectra 

and final product BC-ATP.  C. Comparison of caged species spectra 

with native ATP.  D. Comparison of photolyzed species spectra with native ATP.

ible spectrophotometry and 

caged ATP has a UV/visible absorbance 

, and TEA, but is 

ATP spectrum closely 

ATP and native ATP share a local absorbance 

ATP is red shifted to 268 nm.   

 

caged ATP, photolyzed BC-ATP, γ-

TP.  B. Comparison of reaction materials spectra – 

ATP.  C. Comparison of caged species spectra 

with native ATP.  D. Comparison of photolyzed species spectra with native ATP. 
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The concentration of BC-ATP was determined indirectly by UV/visible absorbance 

spectral data.  A standard absorbance curve was developed using the known mass, volume, and 

structure of γ-NPE ATP, from which the concentration of BC-ATP was extrapolated.  The 

extrapolated concentration was then confirmed with luciferase luminescence data that was 

statistically equivalent for photolyzed BC-ATP and γ-NPE ATP receiving the same irradiance.  

The absorbance peaks for the associated molecules are shown in Table 3. 

Table 3 – UV/Vis Absorbance Peaks 

Molecule Absorbance Peak (nm) 

Native ATP 258 – 260 a 

CPR-TP 262 b 

Base-caged ATP 260 – 265 

γNPE caged ATP 259 – 261 a 

NB-NH2 220, 260 

Absorbance peaks provided by a Sigma-Aldrich, b TriLink BioTechnologies. 

3.1.2 Mass Spectrometry 

Mass spectral analysis using negative ion mode MS-ESI was successful in identifying the 

target base-caged ATP.  The mass spectrometry results yielded an exact mass m/z of 641.02, 

corresponding to the elemental composition of C17H21N6O15P3 within 0.01 ppm (theoretical m/z 

641.03).  Also seen in the mass spectrum were values corresponding to base-caged adenosine 

diphosphate (m/z 561.05).  In both caged and photolyzed base-caged ATP sample, native ATP 

was identified at m/z = 505.98, indicating photolysis occurred despite protecting BC-ATP from 

light.  These molecular structures and their exact masses are shown in Figure 15, and the mass 

spectrum of base-caged ATP is shown in Figure 16. 

 



 

 

Figure 15 – Exact Masses for A. Base

Native ATP 

 

Figure 16 – Mass Spectrum of BC

diphosphate, C. native ATP. 

The electrospray ionization conditions applied to base

analysis can lead to the uncaging of the molecule.  In addition, 

hydrolyzed to base-caged adenosine diphosphate

necessarily reflect an impure product, but rather the conditions of the analysis.
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Exact Masses for A. Base-caged ATP, B. Base-caged adenosine diphosphate, C. 

Mass Spectrum of BC-ATP:  A. Base-caged ATP, B. base-caged adenosine 

The electrospray ionization conditions applied to base-caged ATP during mass spectral 

analysis can lead to the uncaging of the molecule.  In addition, some of the caged products wer

caged adenosine diphosphate under the ESI conditions.  These results do not 

necessarily reflect an impure product, but rather the conditions of the analysis. 

 

caged adenosine diphosphate, C. 

 

caged adenosine 

caged ATP during mass spectral 

some of the caged products were 

These results do not 



 

3.1.3  HPLC 

Chromatographic analysis via HPLC revealed that the elution time 

ATP more closely followed NB-NH

signal for BC-ATP occurred at about 11 minutes, while native ATP eluted from the column at 

about 5 minutes.  The chromatograms demonstrate the shift in polarity of the

Figure 17 – HPLC Chromatogram of Native ATP, BC

308nm. 

native ATP due to the addition of the nitrobenzylamine cage molecule.

caged and flashed BC-ATP chromatograms revealed important trends.  

the absence of the native ATP pea

peak that closely follows the native ATP peak at about 4.6 minutes.  
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Chromatographic analysis via HPLC revealed that the elution time of the base

NH2 rather than native ATP, shown in Figure 17

ATP occurred at about 11 minutes, while native ATP eluted from the column at 

The chromatograms demonstrate the shift in polarity of the caged 

 
HPLC Chromatogram of Native ATP, BC-ATP, and NB-NH2 at 260nm and 

due to the addition of the nitrobenzylamine cage molecule.  Closer inspection of the 

ATP chromatograms revealed important trends.  Figure 18

the absence of the native ATP peak for base-caged ATP, while the photolyzed BC

peak that closely follows the native ATP peak at about 4.6 minutes.   

of the base-caged 

17.  The primary 

ATP occurred at about 11 minutes, while native ATP eluted from the column at 

caged ATP from 

at 260nm and 

Closer inspection of the 

18 clearly shows 

caged ATP, while the photolyzed BC-ATP has the 
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Figure 18 – HPLC Chromatogram of BC-ATP (caged and flashed) and Native ATP at 

260nm 

The chromatogram for the 308nm detector is shown in Figure 19.  Here, the flashed BC-

ATP closely follows the native ATP signal.  During the course of the HPLC analyses, it was 

discovered that the native ATP peak integration actually decreased with increased photolyzation 

time.  This was detected by studying the elution peak integration trends shown in Figure 20. 

 
Figure 19 – HPLC Chromatogram of BC-ATP (caged and flashed) and Native ATP at 

308nm 
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Figure 20 – HPLC Peak Integrations at 260nm 

The elution peak integration trends show that increased photolyzation time led to the 

possible degradation of base-caged ATP into an adenosine product.  The identity of the 

adenosine product was confirmed by liquid chromatography–mass spectrometry (LC-MS) 

conducted under the same HPLC conditions, shown in Figure 21 and Figure 22. 

 

Figure 21 – LC-MS Chromatogram Highlighting Free Adenosine 
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Figure 22 – LC-MS Chromatogram Highlighting Caged Adenosine 

Although LC-MS was conducted on a slightly different reaction product, the overlapping 

elution time highly suggests that either free adenosine or caged adenosine elute from the flashed 

BC-ATP column at 16.6 minutes.  Therefore, referring back to Figure 20, it is likely that the 

continued photolysis of base-caged ATP at a wavelength of 308nm led to the degradation and 

loss of phosphate groups.  Shorter photolysis time and a longer, lower energy wavelength UV 

light may resolve this degradation issue in the future. 

3.1.4  Nuclear Magnetic Resonance Spectroscopy 

To provide further evidence of the proposed BC-ATP structure we sought to analyze it by 

NMR spectroscopy.  Purification of the sample was unable to fully separate triethylamine from 

the base-caged ATP despite many attempts to separate the two species (Figure 23).  However,  



 

Figure 23 – 
1
H NMR Spectrum for BC

The spectrum is dominated by triethylammonium salt in the sample.
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H NMR Spectrum for BC-ATP triethylammonium salt. 

The spectrum is dominated by triethylammonium salt in the sample. 
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ATP analogues are often supplied as triethylammonium salts, so this association is not expected 

to have a significant impact on biological performance (Google search “atp triethylammonium 

salt”).  Additionally, triethylamine has been utilized in caged ATP synthesis since the beginning 

of its existence (Kaplan, Forbush et al. 1978). 

Although the N6 proton of adenosine would structurally appear to be a good indicator of 

cage status for base-caged ATP, its signal is too difficult to predict or identify on the NMR 

spectrum.  Instead, the -CH2 protons on the carbon between the nitrobenzyl group and ATP were  

 
Figure 25 – 

1
H NMR Spectrum of BC-ATP in D2O. 

Inspection of the spectrum reveals the expected base-caged ATP signals.  Most notable is the 

strong signal at approximately 4.5 which closely corresponds to the expected signal from the -

CH2 protons at carbon 11.  
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used as markers to evaluate the sample compositions as shown by the predicted NMR spectra 

shown in Figure 24.  This proton location is designated “H11” in Figure 25.   

Analysis of the “zoomed-in” NMR spectrum of base-caged ATP (Figure 25) reveals the 

signal pattern that closely corresponds to the expected proton shifts in Figure 24.  Most notable 

is the strong signal at approximately 4.5 which closely corresponds to the expected signal from 

the -CH2 protons.  The ribose, purine, and benzyl protons are also distinct and exhibit the 

expected shifts.  Native ATP and the photolysis product 2-nitrosobenzaldehyde are not 

detectable in the sample as determined by the lack of signals at 6.99 and 10.36 ppm, respectively.   

 

3.2  Enzymatic Demonstration – Luciferase Assay 

The recombinant firefly luciferase assay was utilized initially to validate the 

quantification of base-caged ATP, and then to evaluate its biological activity performance prior 

to and following photolysis.  Due to the inherent variability of the luciferase assay, all data are 

normalized according to ATP standards run with each experiment as per supplier specifications.  

As shown in Figure 26, base-caged ATP demonstrated caged and photolyzed luminescence that 

is comparable to γ-NPE ATP.  However, caged BC-ATP showed a 3.11% level of leak that could 

be attributed to processing without buffer solution.  This is a statistically significant difference 

from the leak exhibited by γ-NPE ATP (P < 0.001).  It is also important to note that the BC-ATP 

precursor reactant CPR-TP has negligible luminescence, indicating that the initial ATP analog 

compound has no biological activity. 

Both caged and photolyzed samples of BC-ATP and γ-NPE ATP were co-incubated with 

native ATP to evaluate the competitive inhibition of luminescence activity of native ATP by the  
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Luciferase Reporter Assay for
ATP Species (10 uM)
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Figure 26 – Luciferase Reporter Assay for Caged vs Flashed ATP 

Normalized relative luminescence units (RLUs) comparison of BC-ATP, γ-NPE ATP and CPR-

TP.  Caged BC-ATP shows a 3.11% leak.  Photolyzed BC-ATP and γ-NPE ATP show 

statistically equivalent luminescence.  CPR-TP exhibits negligible luminescence.  
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Figure 27 – Evaluation of Competitive Inhibition with Co-incubations of Caged ATP and 

Native ATP. 

All species 10 µM final concentrations.  Native ATP was competitively inhibited by γ-NPE 

caged-ATP by 22% (or 78% luminescence).  No inhibition was observed for the co-incubation of 

native ATP with base-caged ATP.   
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caged molecules.  First, the luciferase assay was optimized using native ATP and γ-NPE caged-

ATP co-incubations to establish the conditions under which competitive inhibition was greatest.  

The resulting protocol with 10 µM final concentrations was outlined in Section 2.3.5.  The 

maximum repeatable competitive inhibition of native ATP by caged γ-NPE ATP was 78% 

luminescence, or 22% inhibition of native ATP in solution, seen in Figure 27.  The co-

incubation of native ATP with base-caged ATP shows some leak luminescence, but no 

competitive inhibition.  The flashed co-incubations for BC-ATP and γ-NPE ATP were 

statistically equivalent (data not shown). 
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CHAPTER 4 – DISCUSSION 

In summary, we have characterized a novel form of photocaged ATP by attaching the 

cage molecule to the N6 position of adenosine, and we have demonstrated that it exhibits activity 

as a photocaged substrate.  First, the base-caged ATP shows 3.11% luminescence activity in the 

uninduced form and, upon exposure to 308 nm radiation, the biological activity of ATP is 

restored to a level of luminescence statistically equivalent to that of photolyzed γ-NPE ATP. 

Secondly, the utilization of base-caged ATP results in significant improvement in 

competitive inhibition with native ATP in powering an enzymatic system.  The chief problem of 

competitive inhibition by the standard γ-NPE ATP in a variety of enzymatic studies, as discussed 

in Section 1.5.1, may be largely resolved with base-caged ATP.  While γ-NPE ATP in solution 

with native ATP results in an average of 22% inhibition, base-caged ATP exhibits no such 

competitive inhibition.  Further research into the kinetics of base-caged ATP- and photolyzed 

BC-ATP-binding to an enzymatic molecule is required before an exact comparison can be made 

to the examples of competitive inhibition seen in literature (Forbush 1984; Sleep, Herrmann et al. 

1994; Thirlwell, Corrie et al. 1994; Thirlwell, Sleep et al. 1995; Broustovetsky, Bamberg et al. 

1997; Higuchi, Muto et al. 1997).  These studies characterized the competitive inhibition seen 

Table 4 – Inhibitor Dissociation Constants for γγγγ-NPE ATP 

Investigator System Ki 

Thirlwell et al. 1994 actomyosin ATPase 1-2mM 

Sleep et al. 1994 myofibrils and actomyosin 
subfragment 1 

1.6-1.8mM 

Higuchi et al. 1997 kinesin and microtubules 1.5 mM 

Broustovetsky et al. 1997 mitochondrial ADP/ATP 
carrier (AAC) 

5 µM 
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with γ-NPE ATP by determining Ki, the dissociation constant for the inhibitor.  The inhibitor 

dissociation constants for studies utilizing γ-NPE ATP are shown in Table 4. 

In addition to the synthesis and characterization of this novel photocaged ATP species, 

the enzymatic results support the hypothesis that alkylating the N6 position of ATP with the cage 

molecule prevents the enzyme-substrate binding from occurring prior to photolysis.  Since firefly 

luciferase and numerous ATP-dependent enzymes require access to the N6 position for 

nucleotide recognition and binding, base-caged ATP effectively blocks the N6 amino proton 

from participating in hydrogen-bond binding.  The hydrogen-bond obstruction is achieved in two 

modes: not only is one of the protons removed in the synthesis of base-caged ATP, reducing the 

availability of protons by 50%, but the cage molecule also introduces steric hindrance to prevent 

enzyme binding to the remaining N6 proton.  By physically blocking the binding of base-caged 

ATP to the enzyme, competitive inhibition is eliminated. 
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CHAPTER 5 – CONCLUSION 

5.1 Conclusion 

The synthesis of base-caged ATP yielded a product which was purified and then fully 

characterized and confirmed by a combination of analytical chemistry techniques.  By caging 

ATP at the N6 position of adenosine, biological activity is first prevented in the uninduced form, 

and exposure to 308 nm radiation induces the biological activity of ATP, suggesting that a 

photocaged form of ATP has indeed been synthesized.  In addition, competitive inhibition has 

been minimized in the luciferase assay in comparison to γ-NPE ATP.  This novel version of 

caged ATP should allow for kinetic studies of ATP-dependent enzymatic systems without the 

complication of competitive inhibition shown by γ-NPE ATP. 

 

5.2 Implications for Future Work  

Beyond kinetic enzymatic studies, base-caged ATP has broad implications for its use in 

exerting spatial-temporal control over a substrate.  The protocol for synthesizing base-caged 

ATP can now be applied to achieve a base-caged oligonucleotide using the convertible 

nucleoside approach (Allerson, Chen et al. 1997).  This method initially site-specifically 

incorporates into RNA synthesis a nucleoside analog with a leaving group on the nucleobase.  

The full length RNA is treated with a nucleophile to displace the leaving group and yield the 

desired nucleoside with an exocyclically tethered alkylamine, the photolabile cage molecule 

(Allerson, Chen et al. 1997).  By using the convertible nucleoside method, CPR-TP would be 

incorporated into the oligonucleotide in the positions where caged adenosine is desired, and then 

the RNA would be treated with 2-nitrobenzylamine to form the caged oligonucleotide.  Sites for 
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photocaging could then be experimentally optimized in order to determine the minimal number 

of cage molecules to prevent leak (incomplete suppression of bioactivity while caged) while 

maximizing quantum yield.  The quantum yield, or relationship between the required light 

energy and the number of bound cage compounds, would then need to be determined for the 

caged oligonucleotide.  Once this technique is successful, site-specific base-caged 

oligonucleotides will be readily available to utilize in such systems as RNA interference with a 

base-caged small interfering RNA.  A base-caged siRNA would be particularly beneficial in 

achieving complex tissue cultures requiring spatio-temporally directed gene knockdown. 

More advanced studies would apply base-caged siRNA technology to cellular and in vivo 

model systems.  One possible study would utilize a cellular model of musculoskeletal 

differentiation whereby microRNAs are blocked at certain locations and times with 

photoactivatable oligonucleotides, achieving spatial and temporal control in directed tissue 

development in vitro.  Similarly, caged siRNAs could conceivably be introduced intravenously 

for activation in a specific tissue such as an open wound where musculoskeletal cell growth 

would be directed by a UV light application programmed for optimized healing.  This approach 

could also be used to complement cancer therapies by knocking down various oncogenes and 

other gene markers associated with poor prognosis. 
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APPENDIX A - BASE-CAGED ATP SYNTHESIS PROTOCOL 

 

BC-ATP Reaction 

1. Dissolve 0.04 g NBNH2 in 150-400 uL methanol in a reaction tube.  Heat using hot plate 

if needed. 

2. Add 50 uL triethylamine (TEA).   

3. Add 16.6 uL of 10mM (1.67 umole) CPR-TP. 

4. Rock and incubate overnight (24-28 hours) at 50˚ C.   

5. Evaporate MeOH (BP = 64.7 ˚C) 

6. Refrigerate until the next step. 

 

Liquid-liquid Extraction – Conduct in a darkened fume hood 

1. Pipette into 1.5 mL microcentrifuge tube: 100 uL DI water and 100 uL dichloromethane 

(DCM). 

2. Pipette caged ATP reaction mixture into the centrifuge tube. 

3. Close the tube and shake. 

• Aqueous layer: base-caged ATP, translucent and clear 

• Organic layer: nitrobenzylamine, orange 

4. Centrifuge for 3-5 minutes.  Extract aqueous layer. 

5. Complete three rounds of L/L extraction, adding 50 uL DCM to the aqueous layer from 

the previous extraction. 

6. If the aqueous layer is still reddish in color, complete additional L/L extractions until the 

aqueous layer is clear. 

 

Column Chromatography Purification – Conduct in a darkened room 

1. Add sodium bicarbonate to remove triethyl ammonium salt. 

2. Rotovap to dryness (high vacuum 0.001 mm Hg).  Resuspend in methanol. 

3. Prepare a column with a slurry of silica gel and methanol.  Pack a 10mL column so 

that it is 75-80% silica gel. 

4. Add sample and run two column volumes with methanol.  Sodium bicarbonate will 

stay at the top of the column, BC-ATP will stay on the column with methanol, and 

NB-NH2 and other contaminants will elute with methanol. 

5. Run column with diH2O to elute BC-ATP. 

6. Collect diH2O fraction and protect from light. 

7. Rotovap and resuspend to required concentration. 
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APPENDIX B - LUCIFERASE PROTOCOL 

 

ENLITEN® ATP Assay System (Promega) measured via Wallac 1420 Multilabel Counter 

(PerkinElmer) in the LSU AgCenter Biotechnology Laboratory (ABL).   

Preparation of assay  

1. Reconstitute rLuciferase/Luciferin (rL/L) reagent according to the manufacturer’s 

instructions. 

2. Prepare rL/L buffer solution with dH2O: 

a. 10mM Tris 

b. 0.1mM EDTA 

c. 25 mM MgCl2 

d. Adjust to pH 7.5 with acetic acid. 

3. Prepare 1:10 or 1:100 dilutions of rL/L reagent using the rL/L buffer solution as diluent. 

4. Aliquot per usage requirements to minimize freeze-thaw cycles. 

5. Use 96-well white opaque plate for assay. 

 

Single Sample Luminescence  

1. Set plate reader program to auto-inject 10 µL of luciferase assay solution into each well. 

2. For ATP Standards (10-6, 10-7, 10-8 M ATP in purified water), place 5 µL of ATP 

standard solutions in designated wells with 60 µL of ATP-free water each. 

3. For caged and flashed samples, place 5 µL of sample in well with 60 µL of ATP-free 

water. 

4. Run Wallac protocol “Luminescence ATP (2)” in “by well” measurement mode 

 

Co-Incubation Sample Luminescence  

1. Set plate reader program to auto-inject 60 µL of luciferase assay solution into each well. 

2. For ATP Standards (10-5, 10-6, 10-7 M ATP in purified water), place 7.5 µL of ATP 

standard solutions in designated wells with 7.5 µL of ATP-free water each. 

3. For caged and flashed co-incubations, place 7.5 µL of sample in well with 7.5 µL of 

native ATP, 100 uM initial concentrations. 

4. Run Wallac protocol “Luminescence ATP (2)” in “by well” measurement mode 
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APPENDIX C - PLAN OF STUDY 

Transfer Credit – Oklahoma State University 

Semester 7000 Level Credits 

Spring 2008 ETM 5111 - Introduction to Strategy, Technology, and Integration 1 

Spring 2008 IEM 5623 - Project Planning & Control Techniques 3 

Summer 2008 ETM 5251 - Problem Solving & Decision Making 1 

Summer 2008 ETM 5311 - Value Engineering 1 

Fall 2008 IEM 5503 - Finance and Advanced Capital Investment Analysis 3 

Spring 2009 ETM 5341 - Leadership Strategies 1 

Spring 2009 ETM 5351 - Planning Technical Projects 1 

Summer 2009 ETM 5381 - Design & Implementing Change in Technical Mgmt 1 

12 

LSU Credit 

Semester 4000 Level Credits 

Fall 2007 IE 4520 - Supply Chain Logistics 3 

Spring 2011 Math 4999 - Independent Study 3 

Spring 2011 BE 4989 - Tissue Engineering 3 

9 

 
Semester 7000 Level Credits 

Spring 2011 BE 7500 - Seminar 1 

Spring 2011 BE 8000 - Thesis 3 

Summer 2011 BE 7909 - Independent Study 3 

Summer 2011 BE 8000 - Thesis 3 

10 

 
Total Hours 31 

4000 Level 9 

7000 Level (includes 5000 level at OSU) 22 

 

 

At least half of all hours must be at or above the 7000 Level 

Must include one advanced math class 

Must include BE 7500 Seminar 
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APPENDIX D – LIST OF ABBREVIATIONS 

 

ATP  adenosine 5’-triphosphate  

DMNB  4,5-dimethoxy-2-nitrobenzyl 

DMNB-NH2  4,5-dimethoxy-2-nitrobenzylamine 

DMNPE  1-(4,5-dimethoxy-2-nitrophenyl)diazoethane 

DMSO  dimethyl sulfoxide 

DNA  deoxyribonucleic acid  

dsRNA  double-stranded RNA  

ESI-MS  electrospray ionization mass spectroscopy 

HPLC  high performance liquid chromatography  

MALDI-MS  matrix-assisted laser desorption/ionization mass spectroscopy 

mG 5’ methylated guanosine triphosphate  

miRNA  microRNA  

mRNA  messenger RNA  

MS  mass spectroscopy  

NA  nucleic acid 

NB  2-nitrobenzyl  

NB-NH2  2-nitrobenzylamine  

NPE  1-(2-nitrophenyl)ethyl  

nt  Nucleotide  

NTP  Nucleoside triphosphate 

poly-A poly-adenosine  

PTGS  post transcriptional gene silencing 

Rf  resolution factor 

RISC  RNA-induced silencing complex  

RLU  Relative luminescence unit 

RNA  ribonucleic acid  

RNAi  RNA interference  

rNTP  ribonucleotide tri-phosphate 

RP-HPLC  Reverse phase high performance liquid chromatography 

shRNA  short hairpin RNA 

siRNA  small interfering RNA  

TEA  triethylammonium  

TEAA  triethylammonium acetate 

TPE  two-photon excitation 
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