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ACTION FUNCTIONALS FOR STOCHASTIC DIFFERENTIAL

EQUATIONS WITH LÉVY NOISE

SHENGLAN YUAN AND JINQIAO DUAN*

Abstract. This article is about stochastic dynamical systems with small

non-Gaussian Lévy noise. We review the recent works on the large deviation
techniques that deal with the decay of probabilities of rare events on an

exponential scale. We focus on deriving the action functionals for dynamical

systems with Lévy processes of finite exponential moments. This is achieved
with help of the extended contraction principle, Legendre transform and Lévy

symbols. We also illustrate the results with an example.

1. Introduction

Stochastic effects are ubiquitous in complex systems from science and engineer-
ing [1]. Although random mechanisms may appear to be very small or very fast,
their long time impacts on the system evolution may be delicate or even profound
[13]. Mathematical modeling of complex systems under uncertainty often leads to
stochastic differential equations (SDEs), as seen in, for example, [2, 14, 18, 19].
Fluctuations appeared in these SDEs are often non-Gaussian rather than Gauss-
ian.

The long time large deviation behaviors of slow-fast systems have attracted a lot
of attention because of the various applications in statistical physics, biophysics,
geophysics, climate dynamics engineering, chemistry and financial mathematics
[3, 8, 11]. Large deviations for SDEs driven by Brownian motion are now well-
known [5, 10, 17], while certain large deviation results for SDEs with Lévy noise
are available more recently [4, 12].

Action functionals play an important role in understanding transitions in the
context of large deviations [9, 15, 16]. The main goal of this review article is to
derive the action functionals for the following SDE with a Lévy process

dXε
t = b(Xε

t−)dt+
√
εσ(Xε

t−)dBt + η(Xε
t−)dLεt ,

where Lεt := εL t
ε

is a scaled Lévy process with finite exponential moments.

We first show that the scaled Lévy process satisfies a large deviation principle,
and obtain its action functional. Then we construct continuous mappings to get an
exponentially good approximations. Finally, we derive the action functionals for
SDEs with Lévy noise by using extended contraction principle, Legendre transform
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and Lévy symbols. For simplicity, we restrict on one-dimensional processes and
stochastic dynamical systems. Most of the results can be proved in a similar
fashion for multi-dimensional processes and systems.

This article is arranged as follows. In Section 2, we recall some basic concepts,
and introduce extensions of the contraction principle. In Section 3, we focus on the
action functionals for scaled Brownian motion, and obtain the action functionals
for SDEs with Brownian motion (Lemma 3.2 and Theorem 3.3). In Section 4, we
derive the action functionals for scaled Lévy processes, and the action functionals
for SDEs with Lévy noise (Lemma 4.3, Theorem 4.5 and Corollary 4.7). This
article ends with a simple example in Section 5.

2. Prelimilaries

Let (Ω,F ,P) be a probability space. We consider Euclidean space R endowed
with the Borel σ-algebra B(R). Let bxc denotes the integer part of x ∈ R. As
usual, C[0, 1] denotes the space of all continuous functions f : [0, 1]→ R such that
f(0) = 0, equipped with the uniform norm

‖f‖∞ := sup
t∈[0,1]

|f(t)|.

We denote by D[0, 1] the space of real-valued cádlág (right continuous with finite
left limits) functions on [0, 1] endowed with the supremum norm topology, and
the σ-algebra B := σ(πt; t ∈ [0, 1]) generated by the projections πt : D[0, 1] → R,
f 7→ f(t), t ∈ [0, 1]. Note that B equals the Borel σ-algebra generated by the
J1-metric. The notation BV [0, 1] denotes the space of functions with bounded
variation. Let AC[0, 1] denotes the space of all absolutely continuous functions
with value 0 at 0.

Now we introduce the contraction principle and investigate its extensions. They
will be a crucial tool for studying action functionals of SDEs with Lévy noise. The
following theorem is devoted to transformations that preserves the large deviation
principle under continuous mappings.

Theorem 2.1. ( [5, Theorem 4.2.1] ) Let (M1, d1), (M2, d2) be metric spaces and
f : M1 → M2 be a continuous function. Suppose that a family (µε)ε>0 of proba-
bility measures on M1 satisfies a large deviation principle with action functional
I. Then the sequence of image measures (νε)ε>0 defined by νε := µε ◦ f−1 on M2,
obeys a large deviation principle with action functional

S(y) := inf{I(x) : x ∈M1, y = f(x)}.

Proof. Since I is lower semicontinuous, it attains its minimum on compact sets.
This implies that for any y ∈ M2 and S(y) < ∞, there exists x ∈ M1 such that
f(x) = y and S(y) = I(x). Then

ΦS(r) = {y ∈M2 : S(y) ≤ r} = f(ΦI(r)) for r ≥ 0.

In particular, ΦS(r) is compact, i.e., S is an action functional. Now let U be an
open set in M1. Since f is continuous, we know f−1(U) is open. Apply the large
deviation lower bound to f−1(U) and obtain

lim inf
ε→0

ε log νε(U) = lim inf
ε→0

ε logµε(f−1(U)) ≥ − inf
x∈f−1(U)

I(x) = − inf
y∈U

S(y).
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When F is a closed set in M1, the upper bound

lim sup
ε→0

ε log νε(F ) = lim sup
ε→0

ε logµε(f−1(F )) ≤ − inf
x∈f−1(F )

I(x) = − inf
y∈F

S(y)

follows in the same way. �

Remark 2.2. Once the large deviation principle with an action functional is es-
tablished for µε, the contraction principle yields the large deviation principle for
µε ◦ f−1, where f is any continuous map. Hence the large deviation principle is
preserved under continuous mappings.

Definition 2.3. Let (Xε,m)ε>0,m∈N and (Xε)ε>0 be families of random variables
taking values in a metric space (M,d). If

lim
m→∞

lim sup
ε→0

ε logP(d(Xε,m, Xε) > δ) = −∞, for all δ > 0, (2.1)

then (Xε,m)ε>0,m∈N is called exponentially good approximation of (Xε)ε>0.

The following theorem provides a relation for large deviation principles of ex-
ponentially good approximations.

Theorem 2.4. Let (Xε,m)ε>0,m∈N be an exponentially good approximation of
(Xε)ε>0 such that Xε,m satisfies a large deviation principle with action functional
Sm as ε→ 0.
(i) (Xε)ε>0 satisfies a weak large deviation principle with action functional

S(x) := sup
δ>0

lim inf
m→∞

inf
y∈B(x,δ)

Sm(y), (2.2)

i.e., S is lower semicontinuous, the large deviation lower bound for (Xε,m)ε>0

holds for all open set in M , and the large deviation upper bound for (Xε,m)ε>0

holds for all compact set in M .
(ii) If S is an action functional and

inf
x∈F

S(x) ≤ sup
δ>0

lim sup
m→∞

inf
x∈F

Sm(x) (2.3)

holds for each closed set F ⊆M , then (Xε)ε>0 satisfies a large deviation principle
with action functional S.

Proof. (i) In order to prove (2.2), it suffices to show that for any x ∈M ,

S(x) = − inf
δ>0

lim sup
ε→0

ε logP(Xε ∈ B[x, δ]) = − inf
δ>0

lim inf
ε→0

ε logP(Xε ∈ B(x, δ)).

(2.4)
Fix δ > 0 and x ∈M . From

P(Xε,m ∈ B(x, δ)) ≤ P(Xε ∈ B(x, 2δ)) + P(d(Xε,m, Xε) > δ),

we find, by the large deviation lower bound for (Xε,m)ε>0,

− inf
y∈B(x,δ)

Sm(y) ≤ lim inf
ε→0

ε logP(Xε,m ∈ B(x, δ))

≤ max{lim inf
ε→0

ε logP(Xε ∈ B(x, 2δ)), lim sup
ε→0

ε logP(d(Xε,m, Xε) > δ)}.

Since (Xε,m)ε>0,m∈N is an exponentially good approximation,

inf
δ>0

lim inf
ε→0

ε logP(Xε ∈ B(x, 2δ)) ≥ inf
δ>0

lim sup
m→∞

(− inf
y∈B(x,δ)

Sm(y)) = −S(x). (2.5)
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By interchanging the roles of Xε,m and Xε, we get

lim sup
ε→0

ε logP(Xε ∈ B[x, δ])

≤ max{lim inf
ε→0

ε logP(Xε ∈ B[x, 2δ]), lim sup
ε→0

ε logP(d(Xε,m, Xε) > δ)}.

Therefore, by the large deviation upper bound for (Xε,m)ε>0 and (2.1), we obtain

inf
δ>0

lim sup
ε→0

ε logP(Xε ∈ B[x, δ]) ≤ inf
δ>0

lim sup
m→∞

(− inf
y∈B[x,2δ]

Sm(y)) = −S(x). (2.6)

Combining (2.5) and (2.6) yields (2.4).
(ii) From the first part of this theorem that (Xε)ε>0 satisfies a weak large

deviation principle, it remains to show the large deviation upper bound for any
closed set F ⊆ M . Fix δ > 0, the large deviation upper bound for (Xε,m)ε>0

implies

lim sup
ε→0

ε logP(Xε ∈ F )

≤ max{lim sup
ε→0

ε logP(Xε,m ∈ F +B[0, δ]), lim sup
ε→0

ε logP(d(Xε,m, Xε) > δ)}

≤ max{− inf
x∈F+B[0,δ]

Sm(x), lim sup
ε→0

ε logP(d(Xε,m, Xε) > δ)}.

Consequently, by (2.1) and (2.3),

lim sup
ε→0

ε logP(Xε ∈ F ) ≤ − lim
δ→0

lim sup
m→∞

inf
x∈F+B[0,δ]

Sm(x)

≤ − lim
δ→0

inf
x∈F+B[0,δ]

S(x) = − inf
x∈F

S(x).

This finishes the proof. �

Remark 2.5. If the action functional S of (Xε)ε>0 satisfies

lim
δ→0

lim inf
ε→0

ε logP(Xε ∈ B(x, δ)) = lim
δ→0

lim sup
ε→0

ε logP(Xε ∈ B[x, δ]) = −S(x),

then (Xε)ε>0 obeys a weak large deviation principle.

In order to extend the contraction principle beyond the continuous case, we
consider the extension of the contraction principle to maps that are not continuous,
but that can be approximated well by continuous maps. Now we present the
extended contraction principle.

Theorem 2.6. Let (M1, d1), (M2, d2) be metric spaces and (Xε)ε>0 denotes a
family of random variables obeying a large deviation principle in (M1, d1) with
action functional I. For m ∈ N, let fm : M1 → M2 be continuous functions and
f : M1 →M2 measurable such that

lim sup
m→∞

sup
{x:I(x)≤r}

d2(fm(x), f(x)) = 0 for all r ≥ 0. (2.7)

Then for any family of random variables (Y ε)ε>0 for which (fm(Xε))ε>0,m∈N is
an exponentially good approximation obeys a large deviation principle with action
functional

S(y) = inf{I(x) : y = f(x)}.
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Proof. Since the functions fm, m ∈ N, are continuous, the contraction principle
entails that (fm(Xε))ε>0 satisfies a large deviation principle with action functional

Sm(y) := inf{I(x) : y = fm(x)}.
Moreover, by (2.7), f is continuous on any sublevel set ΦI(r) := {x ∈M1 : I(x) ≤
r}, r ≥ 0. Hence, S is an action functional with sublevel sets f(ΦI(r)). In view of
Theorem 2.4, it suffices to check (2.3) and identify the action functional.

Fix F ⊆M2 closed and δ > 0, and also suppose

c := lim inf
m→∞

inf
y∈F

Sm(y) <∞.

Then we can choose a sequence (xm)m∈N ⊆M1 and r > 0, such that fm(xm) ∈ F
and I(xm) = infy∈F Sm(y) ≤ r. From (2.6) we have f(xm) ∈ F + B[0, δ] for
m = m(δ) sufficiently large. Thus,

inf
y∈F+B(0,δ)

S(y) ≤ S(f(xm)) ≤ I(xm) = inf
y∈F

Sm(y).

Taking δ → 0 and m→∞, we infer

inf
y∈F

S(y) ≤ lim inf
m→∞

inf
y∈F

Sm(y) = c.

Obviously, this inequality is trivially satisfied if c =∞. In particular, (2.3) holds.
In order to identify the action functional, we use the preceding inequality for
F := B[y, δ] and let δ → 0. �

3. Action Functionals for Stochastic Systems
with Brownian Noise

Let Bt, t ∈ [0, 1] denotes a standard Brownian motion in R. The logarithmic
moment generating function of B1 is

Λ(ξ) := logEeξB1 =
1

2
ξ2,

and the Legendre transform [8] of Λ is

Λ∗(p) := sup
ξ∈R
{ξp− 1

2
ξ2} = sup

ξ∈R
{−1

2
(ξ − p)2 +

1

2
p2} =

1

2
p2.

Definition 3.1. Let φ ∈ C[0, 1]. The functional S : C[0, 1]→ [0,∞],

S(φ) =

{
1
2

∫ 1

0
|φ′(t)|2dt, φ ∈ AC[0, 1],

∞, otherwise,
(3.1)

is the action functional of the Brownian motion (Bt)t∈[0,1].

Lemma 3.2. The scaled Brownian motion Bεt := εB t
ε

satisfies a large deviation

principle in (C[0, 1], ‖ · ‖∞) as ε→ 0 with action functional in (3.1), i.e.,

lim inf
ε→0

ε logP(εB(
.

ε
) ∈ U) ≥ − inf

φ∈U
S(φ),

lim sup
ε→0

ε logP(εB(
.

ε
) ∈ F ) ≤ − inf

φ∈F
S(φ),

for any open set U ⊂ C[0, 1] and closed set F ⊂ C[0, 1]
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Proof. In order to prove that (Bεt )t∈[0,1] satisfies a large deviation principle, by
the scaling property

εB(
t

ε
)
d
=
√
εB(t), t ∈ [0, 1],

where “
d
= ” denotes equivalence (coincidence) in distribution, we may replace Bεt

by
√
εBt, i.e.,

lim inf
ε→0

ε logP(
√
εB ∈ U) ≥ − inf

φ∈U
S(φ),

lim sup
ε→0

ε logP(
√
εB ∈ F ) ≤ − inf

φ∈F
S(φ).

For every φ0 ∈ U , there is some δ0 > 0 such that

{φ ∈ C[0, 1] : ‖φ− φ0‖∞ < δ0} ⊂ U.
Based on Schilder’s theorem in [21],

P(
√
εB ∈ U) ≥ P(‖

√
εB − φ0‖∞ < δ0) ≥ exp[−1

ε
(S(φ0) + γ)], for γ > 0.

Then
lim inf
ε→0

ε logP(
√
εB ∈ U) ≥ S(φ0).

Since φ0 ∈ U is arbitrary,

lim inf
ε→0

ε logP(
√
εB ∈ U) ≥ − inf

φ∈U
S(φ).

Denote by
Φ(r) := {f ∈ C[0, 1] : I(f) ≤ r}, r ≥ 0

the sub-level sets of the action functional S in (3.1). From Lemma 12.8 in [22],
the action functional S is lower semicontinuous. Then sub-level sets are closed.
For each r > 0, 0 ≤ s < t ≤ 1 and φ ∈ Φ(r), by Cauchy-Schwarz inequality,

|φ(t)− φ(s)| = |
∫ t

s

φ′(u)du| ≤ (

∫ t

s

|φ′(u)|2du)
1
2

√
t− s

≤
√

2S(φ)
√
t− s ≤

√
2r
√
t− s.

This implies that the family Φ(r) is equibounded and equicontinuous. Using As-
coli’s theorem, Φ(r) is compact. By the definition of the sub-level set Φ(r), we
have Φ(r) ∩ F = ∅ for all r < infφ∈F S(φ). So

d(Φ(r), F ) = inf
φ∈Φ(r)

d(φ, F ) =: δr > 0.

Applying Schilder’s theorem, we obtain that

P(
√
εB ∈ F ) ≤ P(d(

√
εB,Φ(r)) > δr) ≤ exp(−r − γ

ε
), for γ > 0.

Hence
lim sup
ε→0

ε logP(
√
εB ∈ F ) ≤ −r.

Since r < infφ∈F S(φ) is arbitrary, we get

lim sup
ε→0

ε logP(
√
εB ∈ F ) ≤ − inf

φ∈F
S(φ).

�
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Theorem 3.3. Let b, σ : R → R be bounded, globally Lipschitz continuous func-
tions such that infx∈R σ(x) > 0, i.e., there exists K > 0 such that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K|x− y|, for all x, y ∈ R.

Assume that (Xε
t )t∈[0,1] is a solution of the stochastic differential equation driven

by Brownian motion, i.e., SDE of the form

dXε
t = b(Xε

t )dt+
√
εσ(Xε

t )dBt, X
ε
0 = 0. (3.2)

Then (Xε)ε>0 satisfies a large deviation principle in (C[0, 1], ‖ · ‖∞) with action
functional

S(φ) =

{
1
2

∫ 1

0
|φ
′(t)−b(φ(t))
σ(φ(t)) |2dt, φ ∈ AC[0, 1], φ(0) = 0,

∞, otherwise.
(3.3)

Proof. The key point of proof is that the family of solutions (Xε,m
t )t∈[0,1] given by

the stochastic differential equation

dXε,m
t = b(Xε,m

bmtc
m

)dt+
√
εσ(Xε,m

bmtc
m

)dBt (3.4)

is an exponentially good approximation of (Xε
t )t∈[0,1]. Then the stochastic integral

can be evaluated pathwise.
Let δ, ρ, ε > 0. For m ∈ N, define Fm : C[0, 1] −→ C[0, 1] via φ = Fm(g), where

φ(t) = φ(tmk ) + b(φ(tmk ))(t− tmk ) + σ(φ(tmk ))(g(t)− g(tmk )),

for t ∈ (tmk , t
m
k+1], tmk := k/m, k = 0, ....,m−1, and φ(0) = 0, such that Fm(

√
εB) =

Xε,m. Define a Fεt -stopping time by

τ := τ(ρ) := inf{t ≥ 0 : |Xε,m
t −Xε,m

bmtc
m

| > ρ} ∧ 1,

and set

bt := b(Xε,m
bmtc
m

)− b(Xε
t ), σt := σ(Xε,m

bmtc
m

)− σ(Xε
t ),

where Fεt := σ{Bεs : s ≤ t} denotes the canonical filtration. By the global Lipschitz
continuity,

|bt|+ |σt| ≤ K|Xε,m
bmtc
m

−Xε
t | ≤

√
2K(ρ2 + |Xε,m

t −Xε
t |2)

1
2 , for any t ∈ [0, τ ].

A calculation shows

ε logP( sup
t∈[0,τ ]

|Xε,m
t −Xε

t | > δ) ≤ C + log(
ρ2

ρ2 + δ2
),

where C > 0 is a constant that does not depend on m, ε, ρ. So,

lim
ρ→0

sup
m≥1

lim sup
ε→0

ε logP( sup
t∈[0,τ ]

|Xε,m
t −Xε

t | > δ) = −∞, for all δ > 0.

Since b and σ are bounded, we find

|Xε,m
k
m+s
−Xε,m

k
m

| ≤ C̃(
1

m
+
√
ε max

0≤k≤m−1
sup

0≤s≤ 1
m

|B k
m+s −B k

m
|), for 0 ≤ s ≤ 1

m
,
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where C̃ := max{‖b‖∞, ‖σ‖∞}. By the stationarity of the increments, we have

P(τ < 1) = P(

m−1⋃
k=0

{ sup
0≤s≤ 1

m

|Xε,m
k
m+s
−Xε,m

k
m

| > ρ}) ≤ mP( sup
0≤s≤ 1

m

|Bs| ≥
ρ− C̃/m

2
√
εC̃

),

for all m > C̃/ρ. By Etemadi’s inequality [7] and Markov’s inequality,

P( sup
0≤s≤ 1

m

|Bs| ≥
ρ− C̃/m

2
√
εC̃

) ≤ 6 exp(−ρ− C̃/m
6
√
εC̃

+ Ĉ)

with a constant Ĉ > 0. Then

lim
m→∞

lim sup
ε→0

ε logP(τ < 1) = −∞ for all ρ > 0.

From

{‖Xε,m −Xε‖∞ > δ} ⊆ {τ < 1} ∪ { sup
t∈[0,τ ]

|Xε,m
t −Xε

t | > δ},

the family of solutions (Xε,m)ε>0,m∈N is indeed an exponentially good approxima-
tion of (Xε)ε>0.

In Lemma 3.2 we have shown that Bεt obeys a large deviation principle with
action functional S as in (3.1), and

√
εBt satisfies the same large deviation prin-

ciple as Bεt . The task is now to find a function F : C[0, 1] → C[0, 1] such that
the assumptions of Theorem 2.6 are satisfied, and the continuous mappings Fm
converges uniformly on the compact sublevel set of S in (3.1) to F .

For absolutely continuous functions g ∈ C[0, 1] and x ∈ R, by b and σ are
globally Lipschitz continuous, there exists a unique solution φ = F (g) of the
integral equation

f(t) =

∫ t

0

b(f(s))ds+

∫ t

0

σ(f(s))g′(s)ds, t ∈ [0, 1].

Fix g ∈ Φ(r) := {φ ∈ C[0, 1] : S(φ) ≤ r}. Using b, σ are bounded and the
Cauchy-Schwarz inequality,

sup
0≤t≤1

|Fm(g)(t)−Fm(g)(
btmc
m

)| ≤ ‖b‖∞
m

+ ‖σ‖∞

√
1

m

√∫ 1

0

g′(s)2ds =: δm
m→0−→ 0.

Similarly,

d(t) :=|Fm(g)(t)− F (g)(t)|

≤ K
∫ t

0

(1 + |g′(s)|)|Fm(g)(
bmsc
m

)− F (g)(s)|ds

≤ K(1 +
√

2r)δm + L

∫ t

0

(1 + |g′(s)|)d(s)ds.

From Gronwall’s lemma,

d(t) ≤ K(1 +
√

2r)δm[1 +K

∫ t

0

(1 + |g′(s)|) exp(K

∫ t

s

(1 + |g′(u)|)du)ds]

≤ K(1 +
√

2r)δm(1 +K(1 +
√

2r)eK(1+
√

2r)).
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Because the constants K, 1 +
√

2r, δm do not depend on t and g,

sup
g∈Φ(r)

||Fm(g)− F (g)||∞ ≤ K(1 +
√

2r)δm(1 +K(1 +
√

2r)eK(1+
√

2r))
m→0−→ 0.

Apply Theorem 2.6, (Xε)ε>0 satisfies a large deviation principle with action func-
tional

S(φ) =

{
1
2

∫ 1

0
|g′(t)|2dt, φ ∈ AC[0, 1], φ(0) = 0,

∞, otherwise,

where the infimum is taken over all functions g ∈ AC[0, 1], g(0) = 0, such that

φ(t) = F (g)(t) =

∫ t

0

b(φ(s))ds+

∫ t

0

σ(φ(s))g′(s)ds,

that is,

g′(t) =
φ′(t)− b(φ(t))

σ(φ(t))
.

�

Remark 3.4. For the special case σ = 1, the solution (Xε)ε>0 of the stochastic
differential equation

dXε
t = b(Xε

t )dt+
√
εdBt, X

ε
0 = 0,

has the action functional

S(φ) =

{
1
2

∫ 1

0
|φ′(t)− b(φ(t))|2dt, φ ∈ AC[0, 1], φ(0) = 0,

∞, otherwise.

Corollary 3.5. The symbol of solution Xt for the SDE driven by Brownian motion

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = 0,

is given by

q(x, ξ) = ib(x)ξ − 1

2
σ2(x)ξ2.

Set

H(x, ξ) := q(x,−iξ) = b(x)ξ +
1

2
σ2(x)ξ2,

then the Legendre transform of H(x, ξ) is

L(x, ζ) = sup
ξ∈R

[ζξ −H(x, ξ)]

= sup
ξ∈R

[ζξ − b(x)ξ − 1

2
σ2(x)ξ2]

= sup
ξ∈R

[−1

2
σ2(x)

(
ξ2 − 2

σ2(x)
(ζ − b(x))ξ

)
]

= sup
ξ∈R

[−1

2
σ2(x)

(
ξ − ζ − b(x)

σ2(x)

)2
+

1

2
|ζ − b(x)

σ2(x)
|2]

=
1

2
|ζ − b(x)

σ2(x)
|2.



10 SHENGLAN YUAN AND JINQIAO DUAN

Hence the action functional of solution (Xε)ε>0 for (3.2) is

S(φ) :=

{ ∫ 1

0
L(φ(t), φ′(t))dt, φ ∈ AC[0, 1], φ(0) = 0,

∞, otherwise,

where

L(φ(t), φ′(t)) =
1

2
|φ
′(t)− b(φ(t))

σ(φ(t))
|2.

4. Action Functionals for Stochastic Systems
with Lévy Noise

A stochastic process Lt ∈ R, t ∈ [0, 1] is called a Lévy process [6, Chapter 7] if
the following properties hold:
(1) L0 = 0(a.s.);
(2) L has independent increments, i.e., for each n ∈ N and 0 ≤ t1 < t2 < ... <
tn+1 ≤ 1, the random variables (Ltj+1

− Ltj , 1 ≤ j ≤ n) are independent;
(3) L has stationary increments, i.e., for each n ∈ N and 0 ≤ t1 < t2 < ... <

tn+1 ≤ 1, Ltj+1
− Ltj

d
= Ltj+1−tj ;

(4) L is stochastically continuous, i.e., limt↓0 P(|Lt| > ε) = 0 for all ε > 0;
(5) the paths t 7→ Lt are cádlág with probability 1, that is, the trajectories are
right continuous with existing left limits.

The Lévy-Itô decomposition [20] of Lévy process (Lt)t∈[0,1] with Lévy triplet

(a, σ2, ν) is

Lt = at+ σBt +

∫ t

0

∫
|z|>1

zN(dz, ds) +

∫ t

0

∫
0<|z|≤1

zÑ(dz, ds),

where (Bt)t∈[0,1] is a Brownian motion, N denotes the jump counting measure,

and Ñ is the compensated jump counting measure. The characteristic function of
(Lt)t∈[0,1] is given by the Lévy-Khintchine formula [6] :

EeiξLt = etψ(ξ), ξ ∈ R, t ∈ [0, 1],

where ψ is the Lévy symbol

ψ(ξ) = iaξ − 1

2
σ2ξ2 +

∫
R\{0}

(eiξy − 1− iξyχ{|y|≤1})ν(dy).

There is a one-to-one correspondence between ψ and (a, σ2, ν) consisting of the
drift parameter a ∈ R, the diffusion coefficient σ ≥ 0, and the Lévy measure ν on
(R \ {0},B(R \ {0})) satisfying

∫
R\{0}(y

2 ∧ 1)ν(dy) < ∞. Denote the logarithmic

moment generating function of L1 by

Ψ(ξ) = ψ(−iξ) = aξ +
1

2
σ2ξ2 +

∫
R\{0}

(eξy − 1− ξyχ{|y|≤1})ν(dy). (4.1)

If σ = 0, we say that (Lt)t∈[0,1] is a Lévy process without Gaussian component.

Example 4.1. The Lévy measure of the a tempered stable Lévy process (Lt)t∈[0,1]

is

ν(dy) =
1

2

α(α− 1)

Γ(2− α)
e−my

dy

|y|1+y
, forα ∈ (1, 2), m > 0.
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The Lévy symbol of (Lt)t≥0 is given by

ψ(ξ) = −(|ξ|2 +m2)
α
2 cos(α arctan

|ξ|
m

) +mα.

Definition 4.2. Assume that Lévy process (Lt)t∈[0,1] with Lévy triplet (a, σ2, ν)

satisfies Eeλ|L1| < ∞, for all λ ≥ 0. The action functional of (Lt)t∈[0,1] on
(D[0, 1], ‖ · ‖∞) is defined by

S(φ) =

{ ∫ 1

0
Ψ∗(φ′(t))dt, φ ∈ AC[0, 1], φ(0) = 0,

∞, otherwise,
(4.2)

where Ψ∗(·) is the Legendre transform of Ψ(·) in (4.1).

Lemma 4.3. The scaled Lévy process Lεt := εL t
ε
, t ∈ [0, 1] satisfies a large devia-

tion principle in (D[0, 1], ‖ · ‖∞) as ε→ 0 with action functional in (4.2), i.e.,

lim inf
ε→0

ε logP(Lε ∈ U) ≥ − inf
φ∈U

S(φ),

lim sup
ε→0

ε logP(Lε ∈ F ) ≤ − inf
φ∈F

S(φ),

for any open set U ∈ B and closed set F ∈ B.

Proof. In order to prove that (Lεt )t∈[0,1] satisfies a large deviation principle as
ε→ 0 with the action functional S in (4.2), we split the proof into several steps:

(i) The sequence of discretizations (ZLn )n∈N defined by

ZLn (t, ω)

n
:=

1

n
L(bn.tc, ω) =

1

n
[

n−1∑
j=0

L(j, ω)χ[ jn ,
j+1
n )(t) + L(n, ω)χ{1}(t)]

is exponentially tight in (D[0, 1], ‖ · ‖∞).
Since the mapping

(Rn, | · |) 3 x 7→ (Tnx)(t) :=

n−1∑
j=1

xjχ[ jn ,
j+1
n )(t) + xnχ{1}(t) ∈ (D[0, 1], ‖ · ‖∞)

is continuous, we obtain that Tn(K) is compact for any compact set K ⊆ Rn. For
K ⊆ R compact, we have

P(
ZLn
n

/∈ Tn(Kn)) ≤
n−1∑
j=1

P(
Lj
n

/∈ K).

The distribution of
Lj
n is a probability measure on (R,B(R)), hence

Lj
n is tight.

For j = 1, ..., n, we conclude that
ZLn
n is tight in (D[0, 1], ‖ · ‖∞). Fix r > 0 and

ε > 0, for K ⊆ R and n ≥ m, we get

P(d(Z
L
n

n
, Tm(Km)) > ε) ≤ P(Z

L
n

n
/∈ Tn(K

n)) + P(Z
L
n

n
∈ Tn(K

n), d(
ZL

n

n
, Tm(Km)) > ε)

=: I1 + I2. (4.3)

We choose K := [−r, r] and estimate the terms separately. Applying Etemadi’s
inequality and Markov’s inequality yields

I1 = P( sup
1≤j≤n

|Lj
n
| > r) ≤ 3 sup

1≤j≤n
P(|Lj | >

nr

3
) ≤ 3 sup

1≤j≤n
Ee|Lj |−nr/3 ≤ 3e−nr/3βn1 ,
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where β1 := Ee|L1| <∞ because (Lt)t∈[0,1] has finite exponential moments. If we

set fm := f( bm.cm ), then

d(f, Tm(Km)) ≤ ‖f − fm‖∞, for all f ∈ Tn(Kn). (4.4)

Moreover,

‖f − fm‖∞ = max
1≤i≤m−1

sup
t∈[ im ,

i+1
m )

|f(t)− fm(t)|

= max
1≤i≤m−1

sup
t∈[ im ,

i+1
m )

|f(
bntc
n

)− f(
bmtc
m

)|

≤ max
1≤i≤m−1

sup
1≤j≤b nm c+1

|f(
bn i

mc
n

+
j

n
)− f(

bn i
mc
n

)|. (4.5)

Combining (4.4) and (4.5),

I2 ≤ P( sup
1≤i≤m−1

sup
1≤j≤b nm c+1

|ZLn (
bn i

mc
n

+
j

n
)− ZLn (

bn i
mc
n

)| > nε)

≤
m−1∑
i=1

P( sup
1≤j≤b nm c+1

|L(bn i

m
c+ j)− L(bn i

m
c)| > nε).

By the stationarity and independence of the increments of L and Markov’s in-
equality,

I2 ≤ mP( sup
1≤j≤b nm c+1

|Lj | > nε) ≤ 3m sup
1≤j≤b nm c+1

P(|Lj | >
nε

3
)

≤ 3m sup
1≤j≤b nm c+1

Eer|Lj |−nrε/3 ≤ 3mβ
b nm c+1
2 e−nrε/3,

where β2 := Eer|L1| <∞. Then

lim sup
n→∞

1

n
logP(d(

ZLn
n
, Tm(Km)) > ε) ≤ max{log β1 −

r

3
,

1

m
log β2 −

rε

3
}

r,m→∞−→ −∞.

Consequently, (ZLn )n∈N is exponentially tight in (D[0, 1], ‖ · ‖∞).
(ii) (ZLn )n∈N satisfies a large deviation principle in (D[0, 1], ‖ · ‖∞) with respect

to B as n→∞ with action functional

I(φ) = sup
α∈BV [0,1]∩D[0,1]

(

∫ 1

0

φdα− 1

2

∫ 1

0

Ψ(α(1)− α(s))ds). (4.6)

where Ψ(·) as in (4.1). Note that

ZLn =

n−1∑
j=1

Ljχ[ jn ,
j+1
n ) + Lnχ{1} =

n∑
j=1

(Lj − Lj−1)χ[ jn ,1].
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By the stationarity and independence of the increments,

Ee〈α,Z
L
n 〉 = E exp(

n∑
j=1

(Lj − Lj−1)(α(1)− α(
j

n
)))

=

n∏
j=1

E exp(L1(α(1)− α(
j

n
))).

Since
EeλL1 = eΨ(λ), for all λ ∈ R,

we have

Λ(α) := lim
n→∞

1

n
logEe〈α,Z

L
n 〉 = lim

n→∞

1

n

n∑
j=1

Ψ(α(1)−α(
j

n
)) =

∫ 1

0

Ψ(α(1)−α(s))ds.

Pick β ∈ BV [0, 1] ∩ D[0, 1] and set

u(t, s) := Ψ((α(1)− α(s)) + t(β(1)− β(s))), t ∈ [−1, 1], s ∈ [0, 1].

From α, β ∈ BV [0, 1], it follows that ‖α‖∞ + ‖β‖∞ ≤ C < ∞. By Eeλ|L1| < ∞,
for all λ ≥ 0, we have

−∞ < logEe−2C|L1| ≤ |u(t, s)| ≤ logEe2C|L1| <∞.
And then

|∂tu(t, s)| ≤ 2C
1

Ee−2C|L1|

√
E(L2

1)
√
Ee2C|L1| <∞, for all t ∈ [−1, 1].

We get

Λ(α+ tβ)− Λ(α)

t

t→0−→
∫ 1

0

∂tu(0, s)ds

=

∫ 1

0

(β(1)− β(s))
1

EeL1(α(1)−α(s))
E(L1e

L1(α(1)−α(s)))ds.

So Λ is D[0, 1]-Gâteaux differentiable at α, and its derivative equals

Dα(t) :=

∫ t

0

1

EeL1(α(1)−α(s))
E(L1e

L1(α(1)−α(s)))ds, t ∈ [0, 1].

We defer the rest proof of (ii) to (iv).
(iii) (ZLb 1ε c

/b 1
εc)ε>0 and εL( .ε ) are exponentially equivalent.

Let ε > 0 and r ≥ 0. We have

‖
ZLb 1ε c

b 1
εc
− εL(

.

ε
)‖∞ ≤ (

1

b 1
εc
− ε)‖ZLb 1ε c‖∞ + ‖εZLb 1ε c − εL(

.

ε
)‖∞ := Cε +Dε. (4.7)

We find

P(Cε > ε) ≤ P( sup
0≤k≤b 1ε c

|Lk| >
1

ε
(
1

ε
− 1)ε) ≤ 3 exp(−1

ε
(
1

ε
− 1)

ε

3
)β
b 1ε c
1 , (4.8)

where β1 = Ee|L1| as in (i). Note that

sup
t∈[0,1]

|ZLb 1ε c(t)− L(
t

ε
)| ≤ sup

0≤k≤b 1ε c
sup
l∈[0,2]

|Lk+l − Lk| when
t

ε
− bb1

ε
ctc ≤ 2.
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By Etemadi’s inequality and the stationarity of the increments for L,

P(Dε > ε) ≤ P( sup
0≤k≤b 1ε c

sup
l∈[0,2]

|Lk+l − Lk| >
ε

ε
) ≤ 3(b1

ε
c+ 1) sup

l∈[0,2]

P(|Ll| >
ε

3ε
).

Since (Lt−tEL1)t≥0 is a martingale, we know that (er|Lt−tEL1|)t≥0 is a submartin-
gale. By Markov’s inequality,

sup
l∈[0,2]

P(|Ll − lEL1| >
ε

3ε
) ≤ e−rε/3εEer|L2−2EL1| =: β3e

−rε/3ε. (4.9)

Combining (4.7), (4.8) and (4.9) implies

lim sup
ε→0

ε logP(‖
ZLb 1ε c

b 1
εc
− εL(

.

ε
)‖∞ > 2ε)

≤ max{lim sup
ε→0

ε logP(Cε > ε), lim sup
ε→0

ε logP(Dε > ε)} ≤ −rε
3

r→∞−→ −∞.

Hence (ZLb 1ε c
/b 1

εc)ε>0 and εL( .ε ) are exponentially equivalent.

(iv) (Lεt )t∈[0,1] satisfies a large deviation principle with action functional I in
(4.6) that equals the action functional S defined in (4.2).

Fix ε > 0, 0 < s1 < t1 ≤ ...... ≤ sn < tn ≤ 1, and c = (c1, ..., cn) ∈ Rn. We
define

α(t) :=

n∑
j=1

cjχ[sj ,tj)(t), t ∈ [0, 1]. (4.10)

Then α ∈ BV [0, 1] ∩D[0, 1] and∫ 1

0

φdα =

n∑
j=1

cj(φ(sj)− φ(tj)). (4.11)

Moreover, ∫ 1

0

logEeL1(α(1)−α(s))ds =

n∑
j=1

∫ 1

0

logEe−cjL1χ[sj ,tj)(s)ds

≤ logEe||c||∞|L1|
n∑
j=1

(tj − sj). (4.12)

By (4.6), we obtain∫ 1

0

φdα ≤ I(φ) +

∫ 1

0

logEeL1(α(1)−α(s))ds.

Using (4.11) and (4.12), we find
n∑
j=1

cj(φ(sj)− φ(tj)) ≤ I(φ) + logEe||c||∞|L1|
n∑
j=1

(tj − sj).

In particular, for cj := rsgn(f(sj)− f(tj)) and r > 0,
n∑
j=1

|φ(tj)− φ(sj)| ≤
I(φ)

r
+

logEe|L1|r

r

n∑
j=1

(tj − sj).
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Choosing r > 0 sufficiently large and δ > 0 sufficiently small, we see that

n∑
j=1

(tj − sj) < δ =⇒
n∑
j=1

|φ(tj)− φ(sj)| < ε,

i.e., φ is absolutely continuous. Letting t→ 0 and r →∞,

|φ(t)| ≤ I(φ)

r
+ t

logEe|L1|r

r

yields φ(0) = 0. Hence I(φ) < ∞ implies that φ is absolutely continuous and
φ(0) = 0. Then there exists f ∈ L1[0, 1] such that

φ(t) =

∫ t

0

f(s)ds, t ∈ [0, 1].

So∫ 1

0

φdα−
∫ 1

0

Ψ(α(1)− α(s))ds =

∫ 1

0

[f(s)(α(1)− α(s))−Ψ(α(1)− α(s))]ds

≤
∫ 1

0

Ψ∗(f(s))ds =

∫ 1

0

Ψ∗(φ′(s))ds = S(φ),

for any α ∈ BV [0, 1] ∩ D[0, 1]. Now we prove I(φ) ≥ S(φ) for φ ∈ AC[0, 1],
φ(0) = 0. By the monotone convergence theorem, it suffices to show∫ 1

0

Λk(φ′(s))ds ≤ I(φ) where Λk(x) := sup
|α|≤k

(αx−Ψ(α)), x ∈ R, k ∈ N.

Note that Λk is convex and locally bounded, hence continuous. From

n−1∑
j=0

φ( j+1
n )− φ( jn )

1
n

χ[ jn ,
j+1
n )(t) −→ φ′(t) a.s.

and the dominated convergence theorem, we get∫ 1

0

Λk(φ′(t))dt = lim
n→∞

n−1∑
j=0

1

n
Λk(n[φ(

j + 1

n
)− φ(

j

n
)]).

As α 7→ αx−Ψ(α) is continuous, we can choose |α(x)| ≤ k such that

Λk(x) = α(x)x−Ψ(α(x)).

For suitable αn0 , ..., α
n
n−1,∫ 1

0

Λk(φ′(t))dt = lim
n→∞

n−1∑
j=0

[αnj (φ(
j + 1

n
)− φ(

j

n
))− 1

n
Ψ(αnj )]

= lim
n→∞

(

∫ 1

0

φdαn −
∫ 1

0

Ψ(αn(1)− αn(t))dt) ≤ I(φ),

where αn ∈ BV [0, 1] ∩ D[0, 1], n ∈ N, is a step function of the form (4.10).
Consequently, the action funtionals (4.2) and (4.6), i.e., S(φ) = I(φ). �
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Remark 4.4. Lemma 3.2 does not apply to Lévy processes with infinite moments
of order n, for some n ∈ N. In particular, α-stable process with symbol ψ(ξ) = |ξ|α
is not covered because it has finite first order moment for α ∈ (1, 2]. But Lemma
3.2 is valid for the tempered stable Lévy process (Lt)t∈[0,1] in Example 4.1.

Theorem 4.5. Let b, σ, η : R → R be bounded, Lipschitz continuous functions.
There exists K > 0 such that

|b(x)− b(y)|+ |σ(x)− σ(y)|+ |η(x)− η(y)| ≤ K|x− y|, for all x, y ∈ R.

Let (Bt)t≥0 be a Brownian motion and (Lt)t≥0 be an independent Lévy process

with Lévy triplet (a, 0, ν) and symbol ψ such that Eeλ|L1| < ∞, for all λ ≥ 0.
Define a scaled Lévy process as Lεt := εL t

ε
. Then the family of solutions (Xε)ε>0

of

dXε
t = b(Xε

t−)dt+
√
εσ(Xε

t−)dBt + η(Xε
t−)dLεt (4.13)

satisfies a large deviation principle in (D[0, 1], ‖·‖∞) as ε→ 0 with action funtional

S(φ) :=

{
inf{ 1

2

∫ 1

0
|g′(t)|2dt+

∫ 1

0
Ψ∗(h′(t))dt}, φ ∈ AC[0, 1], φ(0) = 0,

∞, otherwise,
(4.14)

where Ψ∗(·) denotes the Legendre transform of Ψ(·) defined by

Ψ(ξ) := ψ(−iξ) = aξ +

∫
R\{0}

(eξy − 1− ξyχ{|y|≤1})ν(dy), ξ ∈ R,

and the infimum is taken over all functions g, h ∈ AC[0, 1], g(0) = h(0) = 0, such
that

φ(t) = F (g, h)(t) =

∫ t

0

b(φ(s))ds+

∫ t

0

σ(φ(s))g′(s)ds+

∫ t

0

η(φ(s))h′(s)ds.

Proof. Since (Bt)t≥0 and (Lt)t≥0 are independent, (Bt, Lt)t≥0 is a Lévy process.
Denote by (ZBb 1ε c

/b 1
εc)ε>0 and (ZLb 1ε c

/b 1
εc)ε>0 of the approximations of (Bεt )t∈[0,1]

and (Lεt )t∈[0,1]. By straightforward modifications for the proof of Lemma 3.2,

(
√
εB,Lε)ε>0 satisfies a large deviation principle in D[0, 1]×D[0, 1] endowed with

the norm

‖(f1, f2)‖ := ‖f1‖∞ + ‖f2‖∞, f, g ∈ D[0, 1],

as ε→ 0 with action funtional

S(g, h) =

{
1
2

∫ 1

0
|g′(t)|2dt+

∫ 1

0
Ψ∗(h′(t))dt, g, h ∈ AC[0, 1], g(0) = h(0) = 0,

∞, otherwise.
(4.15)

For m ∈ N define continuous mappings Fm : D[0, 1] × D[0, 1] −→ D[0, 1] via
φ = Fm(g, h), where

φ(t) = φ(tmk ) + b(φ(tmk ))(t− tmk ) +σ(φ(tmk ))(g(t)− g(tmk )) + η(φ(tmk ))(h(t)−h(tmk ))

with t ∈ (tmk , t
m
k+1], tmk := k

m , k = 0, ....,m − 1, and φ(0) := φ(0−) = 0. Using
similar arguments as in the proof of Theorem 3.3, the solutions (Xε,m

t )m∈N,ε>0 =
(Fm(

√
εBt, L

ε
t ))m∈N,ε>0 of the stochastic differential equation

dXε,m
t = b(Xε,m

bmtc
m −

)dt+
√
εσ(Xε,m

bmtc
m −

)dBt + η(Xε,m
bmtc
m −

)dLεt , Xε,m
0 = 0,



ACTION FUNCTIONALS FOR SDES WITH LÉVY NOISE 17

are an exponential approximation of (Xε)ε>0. For absolutely continuous functions
g, h ∈ D[0, 1], by b and σ are globally Lipschitz continuous, there exists a unique
solution F (g, h) of the integral equation

φ(t) =

∫ t

0

b(φ(s))ds+

∫ t

0

σ(φ(s))g′(s)ds+

∫ t

0

η(φ(s))h′(s)ds, t ∈ [0, 1],

such that

lim
m→∞

sup
(g,h)∈Φ(r)

‖Fm(g, h)− F (g, h)‖∞ = 0, for all r ≥ 0,

where Φ(r) := {(g, h) ∈ D[0, 1] × D[0, 1] : S(g, h) ≤ r} is the sublevel set of the
action functional S defined in (4.15). From Theorem 2.6, it follows that (Xε)ε>0

satisfies a large deviation principle with action functional S as in (4.14). �

Remark 4.6. For the special case η = 0, Theorem 4.5 concides with Theorem 3.3.

Corollary 4.7. The symbol of the solution of the stochastic differential equation

dXt = b(Xt−)dt+ σ(Xt−)dBt + η(Xt−)dLt

is given by

q(x, ξ) = ib(x)ξ − 1

2
σ2(x)ξ2 + ψ(η(x)ξ)

= i(b(x) + aη(x))ξ − 1

2
σ2(x)ξ2 +

∫
R\0

(eiyη(x)ξ − 1− iyη(x)ξχ{|y|≤1})ν(dy).

Set

H(x, ξ) := q(x,−iξ) = (b(x) + aη(x))ξ

+
1

2
σ2(x)ξ2 +

∫
R\0

(eyη(x)ξ − 1− yη(x)ξχ{|y|≤1})ν(dy),

and denote the Legendre transform of H(x, ξ) by

L(x, ζ) = sup
ξ∈R

[ζξ −H(x, ξ)]

= sup
ξ∈R

[ζξ − (b(x) + aη(x))ξ − 1

2
σ2(x)ξ2 −

∫
R\0

(eyη(x)ξ − 1− yη(x)ξχ{|y|≤1})ν(dy)].

Suppose that L(x, ζ) satisfies
(H1) The function (x, ζ) 7→ L(x, ζ) is finite, i.e., for all x, ζ ∈ R, L(x, ζ) < ∞.
For any r > 0, there exist constants C1, C2 > 0 such that

L(x, ζ) + | ∂
∂ζ
L(x, ζ)| ≤ C1 and

∂2

∂ζ2
L(x, ζ) > C2, for all x ∈ R, |ζ| ≤ r.

(H2) Continuity condition:

sup
|x−y|<δ

sup
ζ∈R

L(x, ζ)− L(y, ζ)

1 + L(y, ζ)

δ→0−→ 0.

Then the family of solutions (Xε)ε>0 of (4.13) has the action functional:

S(φ) :=

{ ∫ 1

0
L(φ(t), φ′(t))dt, φ ∈ AC[0, 1], φ(0) = x,

∞, otherwise,
(4.16)
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where

L(φ(t), φ′(t)) = sup
ξ∈R

[φ′(t)ξ − b((φ(t)) + aη(φ(t)))ξ − 1

2
σ2(φ(t))ξ2

−
∫
R\0

(eyη(φ(t))ξ − 1− yη(φ(t))ξχ{|y|≤1})ν(dy)].

Remark 4.8. The action functionals (4.15) and (4.16) are the same. The Lévy
symbol ψ is twice differentiable because (Lt)t≥0 has finite exponential moments.
Then ξ 7→ H(x, ξ) is twice differentiable and so is its Legendre transform ζ 7→
L(x, ζ).

5. An Example

We now present the action functional for a simple stochastic differential equation
with non-Gaussian Lévy noise.

Example 5.1. Let U : R → R be a smooth enough function with a global point
of minimum 0 ∈ R. We consider the stochastic differential equation

dXε
t = −∇U(Xε

t )dt+ εdLεt , X
ε
0 = 0.

Here, the scaled Lévy process Lε is given by

Lεt =

∫ t

0

∫
R
zÑ

1
ε (ds, dz), t ∈ [0, 1],

where Ñ
1
ε is the compensated Poisson random measure with compensator 1

εds
⊗
ν.

The intensity measure ν has the form

ν(dz) = e−|z|
α

dz, for some α > 0.

The action functional of (Xε
t )t∈[0,1] is

S(φ) :=

{
inf{

∫ 1

0

∫
R(g(t, z) ln g(t, z)− g(t, z) + 1)ν(dz)dt}, φ ∈ AC[0, 1], φ(0) = 0,

∞, otherwise,

such that

φ(t) = −
∫ t

0

∇U(φ(s))ds+

∫ t

0

∫
R
z(g(s, z)− 1)ν(dz)ds.

Acknowledgment. We would like to thank Wei Wei, Yong Chen, Franziska
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Systems Perturbed by Lévy Processes, Doctor thesis, 2018.

5. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, Springer, Berlin,
2010 (2nd edition).

6. Duan, J.: An introduction to stochastic dynamics, Cambridge University Press, 2015.

7. Etemadi, N.: On some Classical Results in Probability Theory. Sankhya A, 47(1985), 215-
221.

8. Feng, J., Kurtz, T. G.: Large deviations for stochastic processes, American Mathematical

Society, 2006.
9. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, Springer, New

York, 1998 (2nd edition).

10. Garcia, J.: A large deviation principle for stochastic integrals, Journal of Theoretical Prob-
ability, 21 (2008), no. (2), 476-501.

11. Kifer, Y.: Averaging principle for fully coupled dynamical systems and large deviations,
Ergodic Theory and Dynamical Systems, 24 (2004), 847-871.
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