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Thermal Simulation of Additive Manufacturing 

 

Abstract 

Additive Manufacturing (AM) is a rapidly expanding technique that is being adopted by 

industries and universities across the world. Accurate thermal simulation of the AM process can 

lead to less build failures and identify parts with high residual stresses that may benefit from 

annealing. Traditional FEA simulation of AM parts lacks the capability to simulate the part as built 

by the G-Code and cannot account for the anisotropic properties that result from the AM process.  

This work seeks to address this gap by introducing an as-built simulation process which takes the 

G-Code output from the slicer to dictate the model geometry. By calculating the contact between 

elements and applying a finite difference approximation, the simulation accurately models the AM 

process. Because empirical thermal properties were not available, the simulation results in this 

work should not be used for design decisions. But with proper study of the user’s FDM process, 

this model will provide an accurate approximation of the thermal history of the AM part. Future 

research should focus on addressing the gaps in the thermal understanding of FDM thermoplastics 

and consider integrating thermal simulation capabilities into existing slicer software. 
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Introduction  

Additive manufacturing (AM) is quickly becoming the industry standard for rapid prototyping 

and small batch production. However, its growth beyond these applications is limited by its 

relatively poor repeatability and non-uniform physical properties [1]. For thermoplastic parts 

manufactured by extrusion-based AM, also known as fused deposition modeling (FDM), the 

properties are highly dependent on their thermal history throughout the printing process [2]. High 

thermal gradients can cause warping, insufficient cooling can cause drooping, and rapid heating 

and cooling can leave high residual stresses and cracks. Simulating the AM process is important 

for predicting and mitigating these defects, however, due to the complex internal geometry and 

time dependent manufacturing process, traditional finite element simulation (FEA) is untenable. 

This thesis details an alternative simulation approach that directly utilizes the G-Code produced 

by the slicing software to accurately capture the exact manufacturing process.  

To accomplish this, the G-Code was interpreted and stored as discrete elements, then the 

contact between the elements was determined, and finally, the thermal simulation was performed 

using a forward finite difference approximation. As long as the thermal properties of the FDM 

process are carefully determined beforehand, this simulation method is capable of returning a 

part’s complete thermal history without the need for computationally expensive FEA.  
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Chapter 1: Thermal Simulation of Additive Manufacturing 

1.1 Background 

Since its inception in 1989, FDM has grown rapidly, becoming a staple for industries, labs, 

and hobbyists [3]. FDM is particularly useful for rapidly manufacturing prototypes and complex 

parts. Because AM allows users to precisely control both the external and internal geometry of 

their parts, it is particularly useful to the aerospace and automotive industries for its weight saving 

potential as illustrated in Figure 1 [4].  

 

Figure 1: Bird bone vs. AM part internal geometry [5] [6] 

AM, however, has yet to see widespread adoption in consumer products due to its poor 

repeatability and difficulty in accurately simulating the manufacturing process [1]. Accurate 

thermal simulation of AM parts is critical to predicting the properties of AM parts, but traditional 

FEA is too computationally complex and time intensive for rapid iterations.  
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1.2 LSAM at LSU 

The Advanced Manufacturing and Machining Facility (AMMF) at Louisiana State University 

(LSU) currently lacks the ability to produce Large Scale Additively Manufactured (LSAM) parts. 

This shortcoming is being addressed by 2021-22 Capstone Team 55, which has been tasked with 

building a LSAM system using a robotic arm positioning system. The ability to simulate the 

thermal history of the parts produced by the LSAM system will ensure that prints have the highest 

chances of success, because high thermal gradients can be caught and avoided, and that the 

produced parts can be safely used, because the temperature dependent physical properties are 

known. While such simulations are outside of the scope of Project 55, the simulation method 

developed for this thesis can be used to perform the necessary simulations.  

1.3 Problem Definition 

To ensure that the developed simulation method accurately and efficiently predicts the thermal 

history of FDM parts, it is important to fully define the physical problem that will be simulated. 

Though AM parts are created directly from Computer-Aided Design (CAD) models, the final 

geometry is not accurately captured by the CAD model, because each AM part requires the CAD 

model to be processed by a slicing software. Slicing software takes a 3D CAD model and divides 

it into individual layers to be built sequentially by the 3D printer. Furthermore, the software 

instructs the printer to build each layer in a specific order: outer walls, inner walls, and then infill 

according to the geometric pattern specified in the slicer. This process is illustrated in Figure 2.  
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Figure 2: Sliced geometry for an AM part with grid infill [7] 

For accurate simulation, the exact physical geometry of the AM part must be extracted from 

the G-Code output of the slicing software.  

Conduction, convection, and radiation heat transfer are all non-negligible during the FDM 

process. The simplified model used to describe the heat transfer process is illustrated in Figure 3 

below.  



5 

 

 

Figure 3: Element heat transfer diagram 

The heat transfer modes can be broken into two primary categories: element-to-element heat 

transfer and heat transfer to surroundings. For element-to-element transfer, it is important to 

distinguish between heat conduction through consecutive elements – 𝑄𝑟𝑜𝑎𝑑 – where there is no 

additional thermal resistance and heat transfer between non-consecutive elements – 

𝑄𝑠𝑖𝑑𝑒 , 𝑄𝑡𝑜𝑝, 𝑄𝑏𝑜𝑡𝑡𝑜𝑚 – where layer lines and small air bubbles prevent pure conduction. The 

elements in the bottom layer experience significant heat transfer from the heated bed – 𝑄𝑏𝑒𝑑 – 

which is in turn transfered to the elements in subsequent layers. Because the thermoplastic material 

is extruded at high temperatures, typically 200 °C for PLA, radiation heat transfer – 𝑄𝑟𝑎𝑑 – is non-

negligible. Finally, the amount of area not in direct contact with other elements or the bed, 

experiences convective heat transfer – 𝑄𝑎𝑖𝑟 – with the air, this is further complicated if a cooling 

fan is used to provide forced convection around the extrusion area. 
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1.4 Literature Survey 

As AM has grown in application and adoption, accurate thermal simulation is an increasingly 

important research topic. Rapid thermal simulation techniques for Selective Laser Sintering (SLS) 

with metal powders have been developed by Nachiket et al. in 2013 and Michaleris in 2014 [8] 

[9]. Both methods utilize the isotropic thermal properties of the metal powder to simplify the 

physical problem, and Michaleris introduced an additional simplification by categorizing elements 

as active or inactive based on their proximity to the heat source and time since activation. FDM 

simulation presents additional challenges not addressed by these methods, due to the anisotropic 

properties of the parts and lack of a dominating heat transfer form.  

Bhandari et al. describes the progression of FDM simulation techniques 

“Compton et al. discussed a 1D transient thermal model to describe a build process and 

analyze warping and cracking in thin-walled structures. The thermal model was solved by 

using a finite difference method that calculated the temperature at the nodes at each time 

step. Zhang et al. used an adaptable, boundary adjusting finite difference method to 

simulate the thermal history of a 3D-printed polylactic acid (PLA) part. Stockman et al. 

presented a thermal model tailored for additive manufacturing that was based on the 3D 

finite difference method. The researchers used coarse meshing in time and space along with 

simplifying assumptions about the solidification process. The finite difference scheme-

based models work well for simple geometries such as thin-layered walls and rectangular 

cuboids. However, for more complex geometry parts that extrusion-based 3D printing 

usually produces, a method that can account for changes in geometry is necessary” [2]. 

 

While the sophistication of the models has increased, the computational complexity has 

increased as well. Additionally, these simulation methods often assume the model has a 100% 

infill and each layer is identically extruded. Zhang and Shapiro addressed this issue by introducing 

active and inactive elements for the FDM thermal simulation [10]. This method is important for 

simulating larger and more complex parts and is implemented in this thesis.  
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Chapter 2: Thermal Simulation from G-Code Approach 

2.1 General Approach 

The simulation process implemented in this project is structurally similar to the approach of 

Bhandari et al. shown in Figure 4 below.  

 

Figure 4: Code flowchart for FDM thermal simulation 
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In addition to updating the temperatures, the active elements are updated before each timestep 

to reduce the simulation time. The simulation can be broken into five key steps which can be coded 

independently of one another and then run sequentially. 

1. Read and reformat G-Code: The G-Code should be accessed by MATLAB and the relevant 

lines stored in an accessible data structure such as a cell array.  

2. Define simulation elements from stored G-Code: The stored G-Code lines should be 

translated into extruder velocity, element XYZ positions, and element start and end times.  

3. Create a contact matrix to calculate and store element interactions: The area of overlap 

between each element should be calculated and stored.  

4. Perform the thermal simulation: The thermal simulation should be run through each 

timestep, updating the number of extruded elements and active elements for each interval.  

5. Display the results: The stored temperature data and final temperature for each element 

should be displayed as requested by the user.  

2.2 G-Code Processing 

Any G-Code can be divided into three sections: starting G-Code, main G-Code, and end G-

Code. The starting G-Code prepares the machine for the main building operations and the ending 

G-Code contains the relevant shutdown codes to prepare the machine for the next operation. While 

important to the FDM process, these codes do not contain relevant information for the thermal 

simulation and the simulation program should ignore these lines.  

The main G-Code can contain millions of lines of code depending on the complexity and scale 

of the model, however, each of these lines is structurally similar. An excerpt of G-Code from a 

simple rectangle is listed below.  
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Test Rectangle G-Code  

G1 F775.6 X15.447 Y16.578 E12.72979 

G0 F12000 X15.447 Y17.144 

G1 F775.6 X15.781 Y17.478 E12.74551 

G0 F12000 X15.781 Y17.83 

;MESH:NONMESH 

G0 F300 X15.781 Y17.83 Z0.8 

G0 F12000 X15.781 Y17.92 

G0 X23.698 Y18.03 

;TIME_ELAPSED:39.255089 

;LAYER:3 

M106 S255 

;TYPE:WALL-INNER 

;MESH:TestBlock v1.stl 

G1 F774.2 X14.898 Y18.03 E13.03819 

G1 X14.898 Y14.23 E13.16458 

G1 X23.698 Y14.23 E13.45727 

G1 X23.698 Y18.03 E13.58366 

G0 F12000 X24.098 Y18.43 

;TYPE:WALL-OUTER 

G1 F774.2 X14.498 Y18.43 E13.90296 

G1 X14.498 Y13.83 E14.05595 

All comment lines are identified by a semicolon at the start of the line. While helpful for 

understanding the code, these lines do not contain needed information and should be discarded. 

Similarly, lines that begin with an M-Code can be discarded as these are machine codes and do 

not impact any of the thermal simulation parameters. Though information like the line width and 

height, nozzle and bed temperature, maximum nozzle travel speed, etc. could be recovered directly 

from the G-Code, it is far quicker and easier to input these parameters manually from the slicer 

settings.  

The relevant G-Code lines all begin with G0 or G1. G0 lines contain XYZ information and are 

used for rapid positioning of the nozzle without extrusion. G1 lines contain XYZ information as 

well as extruder – E – position and feedrate – F – speed. Traditionally, XYZE are in mm and F is 

in mm/min. For each line, any of these five indexes may be referenced in FXYZE order, if one is 
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not listed, its value is inherited from the preceding line. To store the information in each line, a 

cell array with 6 columns can be used, because, while unlikely, a line could potentially include a 

G command and FXYZE commands. The basic program structure for storing the G-Code data 

should follow the pseudo-code below.  

G-Code Processing Program Pseudo-Code 

1: Open G-Code file in MATLAB 

2: Discard starting G-Code lines 

3: Loop through main code 

 A: Locate G0 and G1 commands 

 B: Split commands by spaces and store in cell array 

 C: Discard other lines 

4: Discard ending G-Code and close file 

2.3 Element Definition  

To effectively simulate the FDM process, the continuous lines of extruded material must be 

discretized into small elements. These elements are defined by seven variables: their starting and 

ending X and Y positions, their starting and ending time, and their layer. This information can be 

easily recovered from the processed G-Code. The elements are also defined by their height, width, 

and material; however, these parameters are assumed to remain constant throughout the FDM 

process.  

Each G1 command could be directly stored as a single element, but elements created this way 

would be arbitrarily long. In order to approximate the elements as being laid instantaneously, the 

elements must be sufficiently short. For thermoplastics, a maximum timestep of 0.1 seconds is 

reasonable for simulation stability and speed [10]. To cut longer elements such that they are 

divided into equal parts with 𝑡𝑚𝑎𝑥 < 0.1𝑠, the following pseudo-code is used.  

Element Division Pseudo-Code 

If element_time > 0.1s 
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 Number of splits = element_time rounded up then divided by 0.1 

 For each split 

  Element_time_split = element_time divided by the number of splits 

  Repeat for XYZ position  

With the above splitting algorithm in place, the element definition program can be created 

following the pseudo-code below.  

Element Definition Pseudo-Code 

For all lines processed lines of G-Code 

 For columns 2-6 

  If the first character is “F” 

   Update current speed 

  If the first character is “X” 

   Update the current X position 

  If the first character is “Y” 

   Update the current Y position 

  If the first character is “Z” 

   Update the current Z position 

   Update the current layer 

  If the first character is “E” 

   Update the current E position 

 Calculate distance traveled 

 Update current time based on distance travel and speed 

 If the line is a G1 command and material was extruded 

  If element_time > 0.1s 

   Split element and store split elements 

  Else 

   Store element 

 Set old XYZE position to equal current XYZE position  

2.4 Contact Matrix 

Convective and conductive heat transfer between two objects are both proportional to the 

contact area between those objects. It is therefore necessary to accurately determine the contact 

area between each element in the FDM thermal simulation. This, however, is a non-trivial problem 

as illustrated in Figure 5. Each side of each element could have contact with any number of other 
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elements. Additionally, this overlap has multiple fringe cases which appear quiet frequently in the 

G-Code.  

 

Figure 5: Possible contact areas 

Algorithms to determine the overlapping area of two rectangles are quite common when the 

rectangles can both be assumed to align with the X and Y axes, however, for the case of arbitrary 

orientation, no simple solution was found. A workaround to this issue was found by applying the 

Sutherland-Hodgman algorithm, an algorithm that returns the polygon of overlap between two 

arbitrary polygons, and MATLAB’s built-in function for returning the area of an arbitrary polygon. 

The original Sutherland-Hodgman algorithm was coded in 1974 and has since been translated into 

MATLAB, as well as many other programming languages, by Rosetta Code [11].  

To reduce simulation time, all easily recovered contact areas are first determined before 

applying the Sutherland-Hodgman algorithm to the remaining elements. Additionally, the model 
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is divided by an XY grid with side lengths defined by the maximum distance the nozzle can travel 

in 0.1 seconds. Because no element is larger than this distance, only elements in the same section 

or neighboring sections must be checked for contact.  

While these conditions are sufficient for contact between elements in adjacent layers, 

determining the side contact requires a slight modification and another step. Because the area of 

overlap in Case 6 is zero, the algorithm cannot properly capture the contact between such elements. 

To remedy this, one element is expanded a very small amount in all directions before applying the 

Sutherland-Hodgman algorithm. The longest side of the returned polygon is then recovered and 

its length multiplied by the height of the element to calculate the total area of overlap. 

Contact Matrix Pseudo-Code 

For all layers 

 For all elements in layer 

  Calculate element bounding box 

  For all other close elements in layer 

   Calculate expanded bounding box 

   Calculate polygon of overlap 

   Calculate longest side of overlap 

   Store contact area in matrix 

  For all other close elements in above layer 

   Calculate bounding box 

   Calculate polygon of overlap 

   Calculate area of overlap 

   Store contact area in matrix 

Store top contact area as bottom contact area shifted up a layer 

2.5 Thermal Simulation 

Once the G-Code has been processed and the model has been reconstructed, the thermal 

simulation can begin. For an arbitrary element, five modes of heat transfer must be calculated. 

These modes of heat transfer are defined in Table 1 below, all variables used in equations are listed 

in Appendix B.  
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Table 1: Element heat transfer modes 

Type Equation [10] 

Radiation to 

surroundings 

𝑄𝑖
rad = ∫  

Δ𝑡

𝜀𝜎𝐴𝑖
free(𝑇𝑖(𝑡)4 − 𝑇∞

4 ) ⋅ 𝑑𝑡 (1) 

Convection to 

surroundings 

𝑄𝑖
conv = ∫  

Δ𝑡

ℎconv𝐴𝑖
free(𝑇𝑖(𝑡) − 𝑇∞) ⋅ 𝑑𝑡 (2) 

Conduction to 

consecutive elements 

𝑄𝑖
cond = ∫  

Δ𝑡

𝜆 (𝐴𝑖,𝑖−1

𝑇𝑖(𝑡) − 𝑇𝑖−1(𝑡)

0.5(𝐿𝑖 + 𝐿𝑖−1)
+ 𝐴𝑖,𝑖+1

𝑇𝑖(𝑡) − 𝑇𝑖+1(𝑡)

0.5(𝐿𝑖 + 𝐿𝑖+1)
) ⋅ 𝑑𝑡 (3) 

Conduction to 

contacting elements 

𝑄𝑖
elem = ∑  

𝑗∈𝕊𝑖

∫  
Δ𝑡

ℎ𝑟𝐴𝑖,𝑗
𝑐 (𝑇𝑖(𝑡) − 𝑇𝑗(𝑡)) ⋅ 𝑑𝑡 (4) 

Conduction to 

heated bed 

𝑄𝑖
bed = ∫  

Δ𝑡

ℎ𝑐𝐴𝑖
bed (𝑇𝑖(𝑡) − 𝑇bed ) ⋅ 𝑑𝑡 (5) 

 

Each element can be approximated as having a spatially uniform temperature distribution due 

to their small Biot numbers. Using this approximation, the conservation of energy can be applied 

as seen in Equation 6.   

−𝜌𝑐𝑉Δ𝑇 = 𝑄𝑟𝑎𝑑 + 𝑄𝑐𝑜𝑛𝑣 + 𝑄𝑐𝑜𝑛𝑑 + 𝑄𝑒𝑙𝑒𝑚 + 𝑄𝑏𝑒𝑑 (6) 

Finally, Equation 6 is discretized in time using a forward Euler approximation to form the finite 

difference approximation shown in Equation 7 below [10]. 

𝜌𝑐𝑉𝑖(𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛) = −Δ𝑡𝑛 (𝜆 (𝐴𝑖,𝑖−1

𝑇𝑖
𝑛 − 𝑇𝑖−1

𝑛

0.5(𝐿𝑖 + 𝐿𝑖−1)
+ 𝐴𝑖,𝑖+1

𝑇𝑖
𝑛 − 𝑇𝑖+1

𝑛

0.5(𝐿𝑖 + 𝐿𝑖+1)
) + ℎconv 𝐴𝑖

free (𝑇𝑖
𝑛 − 𝑇∞)

 

+𝜀𝜎𝐴𝑖
free ((𝑇𝑖

𝑛)4 − 𝑇∞
4 ) + ℎ𝑐𝐴𝑖

bed (𝑇𝑖
𝑛 − 𝑇bed ) + ∑  

𝑗∈S𝑖

ℎ𝑟𝐴𝑖,𝑗
𝑐 (𝑇𝑖

𝑛 − 𝑇𝑗
𝑛)) (7)
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With these equations defined, the pseudo-code proceeds as seen below.  

Thermal Simulation Pseudo-Code 

Define parameters 

For all layers 

 For all elements 

  Calculate timestep 

  For all active layers 

   For all active elements 

    Calculate Qs 

    Update temperature 

    Store temperature and current time 

2.6 Results and Validation 

After performing the simulation, the data must be stored and processed appropriately to 

highlight potential problems and inform design decisions. The temperature of each element in the 

simulation is recorded for each timestep that element is active. From this data, the heating and 

cooling of each element can be graphed and the thermal gradients throughout the model can be 

recovered.  

A simple check for the numerical model is to compare the results of a known case to the 

analytical solution. For a line of filament extruded at a constant temperature – 𝑇0 – and velocity – 

v, with uniform width – W – and height – H, the heat transfer equation, considering only 

conduction along the extrusion direction and uniform convection around the perimeter of the 

extruded line, reduces to Equation 8 [12].  

𝜌cAcross

∂𝑇

∂𝑡
= 𝐴𝑐𝑟𝑜𝑠𝑠𝜆

∂2𝑇

∂𝑥2
− ℎ𝑃𝑐𝑟𝑜𝑠𝑠(𝑇 − 𝑇∞) (8) 

This equation can be reduced to the ordinary differential equation in Equation 9 by substituting 

∂𝑇

∂𝑡
=  

∂𝑇

∂𝑥
𝑣 and 𝑇∗ = (𝑇 − 𝑇∞) into Equation 8. 
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𝜆

𝜌𝑐

∂2𝑇∗

∂𝑥2
−

∂𝑇∗

∂𝑥
−

ℎ𝑃𝑐𝑟𝑜𝑠𝑠

𝜌𝑐𝐴𝑐𝑟𝑜𝑠𝑠
𝑇∗ = 0 (9) 

By applying the boundary conditions 

𝑇 = {
𝑇0 𝑥 = 0  and 𝑡 ≥ 0
𝑇∞ 𝑥 = ∞  and 𝑡 ≥ 0

 (10) 

Equation 9 has the known solution shown in Equation 11. 

𝑇 = 𝑇∞ + (𝑇0 − 𝑇∞)e−mx (11) 

𝑚 = (√(1 + 4𝛼𝛽) − 1)/2𝛼, 𝑥 =  𝑣𝑡, 𝛼 = (𝜆/𝜌𝑐𝑣), 𝛽 = (ℎ𝑃/𝜌cA𝑣) 

For a given set of thermal and geometric parameters, the numerical simulation and analytical 

solution can be compared to check the accuracy of the simulation. 

      For more complex models, no analytical solution exists, however, the entire model can be 

rendered visually and various sanity checks can be performed. For example, at 𝑡∞ it is expected 

that 𝑇𝑒𝑙𝑒𝑚  ≈  𝑇𝑎𝑖𝑟 for all elements in the top layer. By reconstructing the model and coloring the 

elements to reflect their temperature at various simulation times, the model can be visually checked 

to ensure it aligns with expectations.  

To perform the operations discussed, the following pseudo-code was used.  

Data Analysis and Validation Pseudo-Code 

Read element data 

Render 3D model with temperature coloration 

Read maximum and minimum temperature 

Normalize temperature data to range [min, max] 

Load colorjet map 

Plot all elements using colorjet color range 

Compare analytical solution to numerical simulation 

 Calculate analytical solution using the defined thermal parameters 

 Plot the temperature data of the middle element used in the simulation 

 Plot the analytical solution 
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Chapter 3: Thermal Simulation Implementation 

3.1 G-Code Processing Program 

The full MATLAB programs are listed Appendix A; however, it is also important to discuss 

the implementation methods used in each so that the programs can be expanded upon by other 

researchers and modified as needed by other users. The G-Code processing file will require slight 

modifications depending on the slicer software used and the name of the stored G-Code file.  

G-Code Processing Code Requiring Modification 

% Select file to open 

fid = fopen('YOUR_FILE_HERE.gcode','r'); 

 

% Initialize line variables 

tlines = cell(0,1); 

check = false; 

% Loop until beginning of relavent Gcode 

while check == false 

    line = fgetl(fid); 

    if length(line) >= 5 

        if line(1:5) == ';MESH' 

            check = true; 

        end 

    end 

end 

The G-Code file on which the simulation is to be performed must be selected by modifying the 

first field in the fopen function with the appropriate filename. Additionally, the identifier used to 

discard the starting G-Code must be updated depending on the slicer used. Here, the Cura slicer is 

used, and ‘;MESH’ is selected as the break before the relevant G-Code. This is because, as seen in 

the code below, all Cura G-Code files use this identifier as the first 5 characters in the line before 

the model file is built.  
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Start-up G-Code Excerpt from Cura Slicer 

G28 ;Home 

 

G92 E0 ;Reset Extruder 

G1 Z2.0 F3000 ;Move Z Axis up 

G1 X10.1 Y20 Z0.28 F5000.0 ;Move to start position 

G1 X10.1 Y200.0 Z0.28 F1500.0 E15 ;Draw the first line 

G1 X10.4 Y200.0 Z0.28 F5000.0 ;Move to side a little 

G1 X10.4 Y20 Z0.28 F1500.0 E30 ;Draw the second line 

G92 E0 ;Reset Extruder 

G1 Z2.0 F3000 ;Move Z Axis up 

 

G92 E0 

G92 E0 

G1 F2700 E-5 

;LAYER_COUNT:4 

;LAYER:0 

M107 

;MESH:TestBlock v1.stl 

G0 F6000 X23.698 Y18.03 Z0.2 

;TYPE:WALL-INNER 

G1 F2700 E0 

G1 F802.2 X14.898 Y18.03 E0.29269 

While this is true for the Cura slicer, this comment line may not be included in other slicing 

software. If the ‘;MESH’ identifier is not present, a different identifier should be selected, or the 

identifier should be inserted into the G-Code file before the start of the first layer.   

After discarding the starting G-Code, the remaining G-Code should be stored until the end 

identifier is found. For the Cura slicer, ‘;End’ was chosen as the identifier. If a different slicer is 

used, this identifier should be updated as well. Because the G-Code can contain any number of 

comment lines or M codes, only lines with G commands should be stored in a cell array. This is 

accomplished by checking whether or not the first character of each line is a ‘G’, and, if so, storing 

the line. 
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Once each G command line is stored, the lines must be split using the space key – ‘ ‘ – as the 

delimiter. The strsplit function can be used on each cell to split each parameter into a separate cell. 

Because the resulting cell arrays have non-uniform dimensions, they should be standardized by 

segmenting all the G commands in the first cell, all the F commands in the second cell, all the X 

commands in the third cell, etc. This division process is illustrated in Figure 6 for a G-Code 

program with 3 lines.  

 

Figure 6: G-Code cell division process 

With this segmentation complete, the G-Code information can be quickly and conveniently 

accessed throughout the rest of the simulation process.  

3.2 Element Definition Loop 

Using the processed G-Code, the model can be broken into small elements that can be 

approximated as having uniform properties. While the G0 codes contain important position 

information, only G1 codes are used for extrusion. However, not all G1 codes produce model 

elements, as G1 codes can also be used for filament retraction before rapid movement. Therefore, 
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for each line of G-Code, the time and position information should be updated but model elements 

should only be created if it is a G1 command and the new extruder position is larger than the 

previous extruder position. 

For a valid approximation, the Biot number of each element should be less than 0.1 [10]. In 

general, the heat transfer coefficient of thermoplastics in air can be up to four orders of magnitude 

larger than its thermal conductivity: e.g., ℎ𝑃𝐿𝐴 = 101
𝑊

𝑚𝐾
, 𝜆𝑃𝐿𝐴 = 0.13

𝑊

𝑚2𝐾
 [13] [14]. This 

requires that the characteristic length –  𝐿𝑐 – be approximately less than or equal to 0.0001 m or 

0.1 mm. The characteristic length is defined for a rectangular prism by Equation 12.  

𝐿𝑐 =
𝑉

𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒
=

𝑙𝑤ℎ

2𝑙𝑤 + 2𝑙ℎ + 2𝑤ℎ
 (12) 

This equation can be solved for the element length – l – in terms of the element width – w – 

and height – h. A script was then created to validate whether a maximum timestep of 0.1 seconds 

would result in elements with valid Biot numbers.  

Valid Element Lengths Function 

% Function to determine if 0.1 timestep is valid 

function [L_min, L_max] = Length_Determine (w,h,max_speed) 

L_min = -w*h/(w+h-5*w*h); % Calculate characteristic length that satisfies 

Lc < 0.1 mm 

L_max = max_speed*0.1; % Calculate maximum length for 0.1 sec timestep 

 

if L_max <L_min % Throw error if Biot number would be too large 

    error('Biot Number too large!'); 

end 

 

% Print valid element length range 

fprintf('Element length must be greater than %f and less than %f 

\n',L_min,L_max); 

end 

 

>> [L_min, L_max] = Length_Determine (0.4,0.2,50); 

Element length must be greater than -0.400000 and less than 5.000000 
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For the standard line width of 0.4 mm, line height of 0.2 mm, and max speed of 50 mm/s, the 

maximum Biot number possible for the elements is 0.05, therefore, a uniform temperature can be 

assumed for each element. Once this assumption is confirmed, the element definition code can be 

run without issue.   

3.3 Contact Graph and Clipping Algorithm 

The contact graph code depends on the line width and height defined in the slicing software. 

To ensure the clipping algorithm runs correctly, these values must first be defined at the start of 

the code. To accurately simulate the anisotropic properties of the FDM part, four forms of contact 

must be calculated and stored: the top contact, bottom contact, side contact, and consecutive 

element contact. This can be simplified to three forms of contact – because the bottom contact area 

of the layer(k+1) is equivalent to the top contact area of layer(k) – by running the following line 

of code.  

% Set bottom contact based on top contact with shifted layers 

bottomcontact(:,:,2:h) = topcontact(:,:,1:h-1); 

To calculate the top and side contact between each of the elements, the Sutherland-Hodgman 

algorithm was applied to all element pairs. To loop through element pairs the following structure 

was used.  

For Loop Structure for Contact Matrix Program 

for i = 1:l 

   % Skip iteration if Elem row is empty 

   if sum(Elem(i,:,k)) ~= 0 

       % Calculate subject rectangle for side overlap 

       subside = Box_Over(Elem(i,1:4,k),W); 

       % Caclulate subject rectangle for top overlap 

       sub = Box(Elem(i,1:4,k),W); 

       % Loop through all other elements in row 

       for j = 1:l 

  % Apply condition checks 
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  % Calculate and store overlap 

 To reduce computation time, before applying this algorithm the following conditions were 

checked and the algorithm was skipped if any of the conditions were met.  

1. If elements i and j are not in neighboring grid squares 

2. If i = j 

3. If i and j are consecutive 

a. Store consecutive data 

If none of the conditions were true, the Sutherland-Hodgman algorithm was applied to the 

elements. If the algorithm detected overlap, the longest side was stored as the side contact and the 

total area was stored as the top contact.  

3.4 Finite Difference Approximation Thermal Simulation 

The thermal simulation program requires the user to define a large number of thermal 

parameters. These parameters are listed in the code below.  

Thermal Parameters for Thermal Simulation 

W = 0.4; % Width in mm 

H = 0.2; % Height in mm 

K = 273.15; % Conversion to Kelvin 

h_bed = 50; %W/m2*K Thermal contact coefficient to bed 

h_elem = 50; %W/m2*K Thermal contact coefficient to touching elements 

h_air = 50; %W/m2*K Heat transfer coefficient to air 

lam = 0.13; %W/m*K Thermal conductivity 

T_air = 25+K; % K Temperature of air 

T_bed = 25+K; % K Temperature of bed 

p = 1300; % kg/m^3 Density of PLA 

c = 1800; % J/kg*K Specific heat capacity of PLA 

E = 0.9; % Emissivity of PLA 

These thermal properties of PLA can be easily found in literature, however, no accepted values 

for the thermal contact coefficients and heat transfer coefficient were found. These parameters 
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should be determined experimentally for the thermoplastic and bed material being used and the 

room in which the print is taking place.  

To save computational resources, the storage for the temperature data collected during the 

simulation should be preallocated. This is accomplished using the following for loop.  

Preallocation For Loop for Thermal Simulation 

% Define temperature collection cell array 

Elem_Temp_time = cell(l,h); 

% Preallocate memory for stored temperature data 

for k = 1:h 

    for i = 1:l 

        Elem_Temp_time{i,k} = NaN(2,(h-k)*(l)+(l+1-i)); 

        %Store temperature and time data 

        Elem_sim(i,w+1,k) = Elem_sim(i,w+1,k) + 1; 

        Elem_Temp_time{i,k}(1,1) = Elem_sim(i,7,k); 

        Elem_Temp_time{i,k}(2,1) = Elem_sim(i,11,k); 

    end 

end 

First, a cell array is created with length equal to the number of elements per layer – l – and 

height equal to the number of layers – h. Then each cell is filled with a NaN matrix with dimensions 

equal to the number elements remaining in the model.  Finally, the first column of each matrix is 

filled with that element’s starting time and temperature.  

The thermal simulation then proceeds following the logic shown in the Pseudo-Code in Section 

2.5. For this simulation to work properly, the free area – 𝐴𝑓𝑟𝑒𝑒 – must be calculated accurately or 

the simulation becomes unstable. To do this, the total possible free area is defined as the entire 

surface area of the element. Then, as each form of heat transfer is calculated, the area used in that 

calculation is subtracted from the free area. Finally, 𝑄𝑟𝑎𝑑 and 𝑄𝑐𝑜𝑛𝑣 can be calculated over the 

remaining free area.  
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To reduce computation time in large models, only the active elements are included in the 

simulation. To calculate which elements are active at each time step, the Active function was built. 

This function returns 1 for all active elements and 0 for all inactive elements. An element is active 

if any of the following conditions are met.  

1. The element was extruded less than 8 seconds ago 

2. The current element being extruded is in the same or a neighboring grid square and the 

current element is less than 3 layers away 

For elements with width and height much larger than those used here, the inactive time of 8 seconds 

should be redetermined.  

3.5 Results Collection and Graphics 

Thermal simulation results are typically returned as graphics with a temperature dependent 

color gradient and graphs of a particular element or nodes temperature plotted against time. To 

graph the model as built, each element can be plotted using the plot3 function in MATLAB. To 

color each element based on its temperature, the jet colormap, as seen in Figure 7, was used.  

 

Figure 7: Jet colormap 

The jet colormap has 256 possible colors, so the temperature data collected must be normalized 

to a range of 1-256. To do this, the maximum and minimum temperature are first identified, then 

the temperatures are normalized from 0-1. Next, they are multiplied by 255, rounded down, and 

then 1 is added.  

Plotting a single element’s temperature data is straightforward, first, that elements cell should 

be accessed and then the first row plotted along the x-axis and the second row plotted along the y-
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axis. To do so, the position element position – I – and layer – K – should be input in the code 

below.  

Element Temperature Graph Code 

figure(2) 

plot((Elem_Temp_time{100,1}(1,:)-

Elem_Temp_time{100,1}(1,1)),Elem_Temp_time{I,K}(2,:)) 

title('Element 100 temperature data') 

xlabel('Time (sec)') 

ylabel('Temperature (K)') 
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Chapter 4: Results and Improvements  

4.1 Simple Accuracy Test Results 

A simple accuracy test was performed using the known analytical solution to a single line of 

extruded filament at constant velocity – v. The results from the analytical solution and numerical 

solution with an 0.1 sec maximum timestep are shown in Figure 8 below.  

 

Figure 8: Simulation temperature vs. analytical temperature 

The numerical and analytical solutions closely align with a maximum temperature error of 

0.28% at 3.1 seconds and an average error of 0.21% from 0-10 seconds. This suggests a high 

degree of accuracy in the numerical simulation. For additional verification, this check was run with 

the varying parameters shown in Table 2 below.  
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Table 2: Numerical and Analytical Solution Comparison 

𝒉 (
𝑾

𝒎𝟐𝑲
) 𝝀 (

𝑾

𝒎𝑲
) 𝒄 (

𝑱

𝒌𝒈𝑲
) 𝑻∞ (𝑪) 𝑾 ∗ 𝑯(𝒎𝒎𝟐) Max Error Avg. Error 

50 0.13 1800 25 0.4x0.2 0.3% 0.2% 

5 0.26 600 25 0.8x0.4 0.03% 0.01% 

25 0.05 3600 50 0.4x0.2 0.06% 0.03% 

 

4.2 Simple Rectangle Simulation Results 

To allow for rapid testing and modifications, a small rectangular model was used for testing. 

When sliced, this model had 4 layers with 190 elements per layer. Each layer was comprised of 

three outer wall lines and was filled with a diagonal pattern that alternated direction with each 

layer. The final timestep in the thermal simulation can be seen in Figure 9 below.  

 

Figure 9: Rectangular model with low heat transfer 
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This model cooled very slowly due to the low heat transfer coefficient used – 5 
𝑊

𝑚𝐾
. By 

increasing this coefficient to 50 
𝑊

𝑚𝐾
, the model cools more rapidly as seen in Figure 10.  

 

Figure 10: Rectangular model with rapid heat transfer 

For the rapid heat transfer mode, the temperature of the elements initially followed the 

analytical trajectory, and then, as expected, they experienced slight reheating and recooling as 

neighboring elements were laid, Figure 11.  
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Figure 11: Element 100 temperature with rapid heating and cooling 

This simulation data aligns closely with expectations; however, no empirical data is available 

to validate if the model can accurately predict a real world FDM process.  

4.3 Physical Parameter Testing and Empirical Data Collection 

While some of the thermal parameters used in the simulation are well documented in literature 

[14], the thermal contact coefficients and heat transfer coefficients used were not found in literature 

or from testing. Though these values do not impact the validity of the simulation model, it prevents 

useful engineering data from being determined from the results. To remedy this, future research 

should be conducted to determine empirical values for these parameters over a wide range of 

printing conditions. In particular, the anisotropic properties of thermoplastics used in FDM should 

be investigated. It is likely that heat transfer occurs more rapidly along the extrusion path than 

from layer to layer and line to line, however, the exact effects are unknown.  
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The heat transfer coefficient between the filament and the air is the dominating heat transfer 

mode for the outer wall as well as a significant mode for every element until the element is covered 

by the next layer. It is well documented that the heat transfer coefficient varies widely with air 

speed and humidity. Therefore, the use of a cooling fan and the specific composition of air 

surrounding the print volume are also important parameters for accurate simulation results.  

4.4 Space-based Computational Approach 

The elements in the simulation were stored in the order that they are extruded. This is effective 

computationally and programmatically for MATLAB; however, a space-based storage method 

may allow for more rapid simulations in other languages. A space-based method would store 

elements based on their location, allowing for rapid identification of nearby elements and element 

to element interactions. This approach would require storing the time information non-natively 

and would likely require more time to process the simulation step, however, the computational 

load is likely less because the space information is accessed once for every element per time step 

while the time information is only accessed once per timestep. Future work should consider this 

implementation method to further reduce computation times.  

4.5 Expanded G-Code Capabilities and Slicer Integration 

While this simulation method is capable of identifying poor print settings and points of possible 

failure, it is likely that most users forgo this step in favor of trial-and-error printing and their own 

experience with FDM printers. To address this shortcoming, this simulation approach should be 

integrated with a common slicer such as Cura. This integration would allow users to see the thermal 

simulation of their part as it is sliced, allowing for an informed choice to be made on settings such 

as the cooling fan, bed temperature, nozzle temperature, and print speed. Additionally, the software 

could recommend adding a larger brim or raft if warping is expected from the simulation data.  
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Conclusion 

As additive manufacturing becomes more prevalent, accurate simulation techniques must be 

developed as well. For LSAM, material costs can be thousands of dollars per part and prints can 

last days. Simulating the process before starting the print can be used to avoid critical failures and 

provide helpful information about possible areas with high thermal gradients. Traditional FEA is 

not capable of simulating the parts as built by the FDM machines in a reasonable amount of time.  

Extracting the model directly from the G-Code allows the simulation to accurately account for 

the parts internal geometry as built. Additionally, creating elements directly from the G-Code 

allows for more rapid simulation without sacrificing accuracy. This numerical simulation 

technique accounts for the anisotropic properties of the as-built FDM part. By storing the top 

contact, bottom contact, side contact, and consecutive contact separately, variations in thermal 

contact resistance and thermal conductance can be included. These additional considerations 

require empirical data not yet available, but future works and research will likely fill these gaps.  

The finite difference approximation used in the thermal simulation is valid for elements with 

Biot number less than 0.1. To satisfy this condition, a maximum element length should be 

computed and translated into a maximum allowable timestep based on the travel speed of the 

extruder. By comparing the simulation to a known analytical case, a simple accuracy check was 

performed. While the numerical model aligned closely with the analytical model and the complex 

simulation results matched expectations, without more accurate thermal parameters no engineering 

conclusions can be made from the data.  
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Appendix A: Code Listing 

A.1 G-Code Processing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Noah Foster 

% Process Gcode file 

% Code a 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Clear and reset 

clf; 

clear; 

clc; 

 

% Select file to open 

fid = fopen('Small_Test_Block_H02_W04.gcode','r'); 

 

% Initialize line variables 

tlines = cell(0,1); 

check = false; 

% Loop until beginning of relavent Gcode 

while check == false 

    line = fgetl(fid); 

    if length(line) >= 5 

        if line(1:5) == ';MESH' 

            check = true; 

        end 

    end 

end 

 

% Reset line variables 

check = false; 

tline = fgetl(fid); 

n=1; 

Codes = cell(0,1); 

 

% Loop until end of relavent Gcode and store G0 and G1 lines in Codes cell 

% array 

while check == false 

    if length(tline) > 0 

        if tline(1) == 'G' 

            Codes{end+1,1} = tline; 

        end 

    end 
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    tline = fgetl(fid); 

    n=n+1; 

    if length(tline) >= 4 

        if tline(1:4) == ';End' 

            check = true; 

        end 

    end 

end 

 

% Close Gcode file 

fclose(fid); 

%% 

 

% Split code cells by spaces in between codes 

CodeSplit = cellfun(@(x) strsplit(x, ' '), Codes, 'UniformOutput', false); 

 

% Store split codes into cell with unifrom dimensions 

CodeCells = cell(length(CodeSplit),6); 

for i = 1:length(CodeSplit) 

    CodeCells{i,1} = CodeSplit{i,1}{1,1}; 

    j_max = length(CodeSplit{i,1}); 

    j = 2; 

    if CodeSplit{i,1}{1,j}(1) == 'F' 

        CodeCells{i,2} = CodeSplit{i,1}{1,j}; 

        j = j+1; 

    end 

 

    if j > j_max 

        continue; 

    end 

 

    if CodeSplit{i,1}{1,j}(1) == 'X' 

        CodeCells{i,3} = CodeSplit{i,1}{1,j}; 

        j = j+1; 

    end 

 

    if j > j_max 

        continue; 

    end 

 

    if CodeSplit{i,1}{1,j}(1) == 'Y' 

        CodeCells{i,4} = CodeSplit{i,1}{1,j}; 

        j = j+1; 

    end 
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    if j > j_max 

        continue; 

    end 

 

    if CodeSplit{i,1}{1,j}(1) == 'Z' 

        CodeCells{i,5} = CodeSplit{i,1}{1,j}; 

        j = j+1; 

    end 

 

    if j > j_max 

        continue; 

    end 

 

    if CodeSplit{i,1}{1,j}(1) == 'E' 

        CodeCells{i,6} = CodeSplit{i,1}{1,j}; 

        j = j+1; 

    end 

end 

A.2 Element Chopping 

%%%%%%%%%%%%%%%%%%%%%%%%% 

% Build model from Gcode, MUST RUN GCODE_PROCESS_LIVE FIRST 

% Noah Foster 

% Code b 

%%%%%%%%%%%%%%%%%%%%%%%%% 

%Initialize potion and time vectors 

posE = 0; 

posX = str2double(CodeCells{1,3}(2:end)); 

posY = str2double(CodeCells{1,4}(2:end)); 

time = 0; 

nposX = posX; 

nposY = posY; 

nposE = 0; 

K = 273.15; % Conversion to Kelvin 

Temp = 200+K; % Initial filament temperature in Kelvin 

Layer = str2double(CodeCells{1,5}(2:end)); 

%Initialize distance and speed vector 

d = zeros([length(CodeCells)-1,1]); 

Speed = zeros([length(CodeCells),1]); 

max_speed = 0; 

 

%Initialize results vector 

Elem = zeros([0,11,1]); 
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k = 1; 

lay = 1; 

 

% Calculate length of CodeCells 

[code_length, ~] = size(CodeCells); 

% for each Gcode command store distance, postion and speed data 

for i = 2:code_length 

 

    % Store F codes as Speed data 

    if ~isempty(CodeCells{i,2}) 

        Speed(i) = str2double(CodeCells{i,2}(2:end))/60; %mm/s 

    else 

        Speed(i) = Speed(i-1); 

    end 

 

    % Store X Y and Z codes as positions 

    if ~isempty(CodeCells{i,3}) 

        nposX = str2double(CodeCells{i,3}(2:end)); 

    end 

    if ~isempty(CodeCells{i,4}) 

        nposY = str2double(CodeCells{i,4}(2:end)); 

    end 

    if ~isempty(CodeCells{i,5}) 

        Layer(k+1,1) = str2double(CodeCells{i,5}(2:end)); 

 

        % Update to layer K and reset lay variable 

        k = k+1; 

        lay = 1; 

    end 

 

    % Update extruder position for E codes 

    if ~isempty(CodeCells{i,6}) 

        nposE = str2double(CodeCells{i,6}(2:end)); 

    end 

 

    % Calculate total distance travel for the line of Code 

    d(i-1) = sqrt((nposX-posX)^2+(nposY-posY)^2); 

    if d(i-1) == 0 

        d(i-1) = abs(nposE-posE); 

    end 

 

    % Calculate time step based on distance/speed 

    ntime = time + d(i-1)/Speed(i); 
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    % Store G1 codes with extrusion as elements 

    if CodeCells{i,1}(1:2) == 'G1' & nposE-posE > 0 

        % Update max extrusion speed 

        if Speed(i) > max_speed 

            max_speed = Speed(i); 

        end 

        % Split elements if timestep is shorter than 0.1 seconds 

        if (ntime-time)*100 > 10 

            split = ceil((ntime-time)*10); 

            iposX = (nposX-posX)/split; 

            iposY = (nposY-posY)/split; 

            iposE = (nposE-posE)/split; 

            itime = (ntime-time)/split; 

            for j = 1:split 

                Elem(lay,:,k) = 

[posX,posX+iposX,posY,posY+iposY,posE,posE+iposE,time,time+itime,d(i-

1)/split,Temp,Temp]; 

                posX = posX+iposX; 

                posY = posY+iposY; 

                posE = posE+iposE; 

                time = time + itime; 

                lay = lay+1; 

            end 

        else 

            Elem(lay,:,k) = 

[posX,nposX,posY,nposY,posE,nposE,time,ntime,d(i-1),Temp,Temp]; 

 

            % Increase lay to move to next element in layer k 

            lay = lay+1; 

        end 

 

    end 

    % Reset pos and time variables for next loop iteration 

    posX = nposX; 

    posY = nposY; 

    posE = nposE; 

    time = ntime; 

 

end 

 

% Reset Layer to appropriate number of elements 

[l,w,h] = size(Elem); 

Layer = Layer(1:h); 
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% Uncomment to plot 

% for k = 1:h 

%     for i = 1:l 

%         plot3(Elem(i,1:2,k),Elem(i,3:4,k),[Layer(k); Layer(k)]); 

%         hold on; 

%         grid on; 

%     end 

% end 

 

A.3 Contact Graph 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Noah Foster 

% Contact Graph 

% Code C 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Set Width and Height based on slicing parameters 

W = 0.4; % Width in mm 

H = 0.2; % H in mm 

 

% Calculate size of Elem matrix 

[l,w,h] = size(Elem); 

 

% Create contact matrices 

sidecontact = zeros(l,l,h); 

topcontact = zeros(l,l,h); 

bottomcontact = zeros(l,l,h); 

 

% Create consecutive elements and non consecutive elements matrices 

consec = zeros(l,l,h); 

free = 2*ones(l,h); 

 

% Calculate grid_divide with grid_divide function 

[grid_x,grid_y,Elem_grid] = grid_divide(Elem,max_speed); 

 

% Loop through all elements not in top layer 

for k = 1:h-1 

    for i = 1:l 

        % Skip iteration if Elem row is empty 

        if sum(Elem(i,:,k)) ~= 0 

            % Calculate subject rectangle for side overlap 

            subside = Box_Over(Elem(i,1:4,k),W); 
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            % Caclulate subject rectangle for top overlap 

            sub = Box(Elem(i,1:4,k),W); 

            % Loop through all other elements in row 

            for j = 1:l 

                % Skip if side element is not in same or neighboring 

                % grid_divide 

                if abs(Elem_grid(i,1,k)-Elem_grid(j,1,k)) < 2 && 

abs(Elem_grid(i,2,k)-Elem_grid(j,2,k)) < 2 

 

                    % Skip if identical element 

                    if i == j 

 

                        % Skip if consectutive but store consecutive data 

                    elseif Elem(i,2,k) == Elem(j,1,k) && Elem(i,4,k) == 

Elem(j,3,k) 

                        consec(i,j,k) = 1; 

                        free(i,k) = free(i,k) - 1; 

 

                    elseif Elem(i,1,k) == Elem(j,2,k) && Elem(i,3,k) == 

Elem(j,4,k) 

                        consec(i,j,k) = 1; 

                        free(i,k) = free(i,k) - 1; 

                        % Else, calculate overlap and longest side and 

store contact area 

                    else 

 

                        % Calculate clip rectangle 

                        clip = Box(Elem(j,1:4,k),W); 

 

                        % Calculate top overlap polygon 

                        over = sutherlandHodgman(subside,clip); 

                        % Skip if no overlap 

                        if isempty(over) 

 

                        else 

 

                            sidecontact(i,j,k) = long_side(over)*H; 

                            % Uncomment to visualize process 

                            %             sidecontact(i,j,k) 

                            %             figure(1) 

                            %             daspect([1 1 1]) 

                            %             plot([clip(:,1); 

clip(1,1)],[clip(:,2); clip(1,2)]); 

                            %             daspect([1 1 1]) 
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                            %             hold on; 

                            %             plot([subside(:,1); 

subside(1,1)],[subside(:,2); subside(1,2)]); 

                            %             daspect([1 1 1]) 

                            %             hold on; 

                            %             plot([over(:,1); 

over(1,1)],[over(:,2); over(1,2)],'LineWidth',2); 

                            %             daspect([1 1 1]) 

                            %             pause(0.3); 

                            %             hold off; 

                        end 

                    end 

                end 

 

                % Skip if top element is not in same or neighboring 

                % grid_divide 

                if abs(Elem_grid(i,1,k)-Elem_grid(j,1,k+1)) < 2 && 

abs(Elem_grid(i,2,k)-Elem_grid(j,2,k+1)) < 2 

 

                    % Calculate top overlap for layer k + 1 

                    cliptop = Box(Elem(j,1:4,k+1),W); 

                    overtop = sutherlandHodgman(sub,cliptop); 

 

                    % Skip if no overlap 

                    if isempty(overtop) 

 

                        % Else, calculate overlap area 

                    elseif polyarea(overtop(:,1),overtop(:,2)) > 0 

                        topcontact(i,j,k) = 

polyarea(overtop(:,1),overtop(:,2)); 

                        % Uncomment to visualize and plot 

                        %             topcontact(i,j,k) 

                        %             figure(1) 

                        %             daspect([1 1 1]) 

                        %             plot([cliptop(:,1); 

cliptop(1,1)],[cliptop(:,2); cliptop(1,2)]); 

                        %             daspect([1 1 1]) 

                        %             hold on; 

                        %             plot([sub(:,1); sub(1,1)],[sub(:,2); 

sub(1,2)]); 

                        %             daspect([1 1 1]) 

                        %             hold on; 

                        %             plot([overtop(:,1); 

overtop(1,1)],[overtop(:,2); overtop(1,2)],'LineWidth',2); 
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                        %             daspect([1 1 1]) 

                        %             pause(0.5); 

                        %             hold off; 

                    end 

                end 

            end 

        end 

    end 

    k 

end 

k = k+1 

 

if h == 1 

    k = 1 

end 

% Repeat without top contact for last layer 

for i = 1:l 

    if sum(Elem(i,:,k)) ~= 0 

        subside = Box_Over(Elem(i,1:4,k),W); 

        for j = 1:l 

            if i == j 

                sidecontact(i,j,k) = 0; 

            elseif Elem(i,2,k) == Elem(j,1,k) && Elem(i,4,k) == Elem(j,3,k) 

                consec(i,j,k) = 1; 

                free(i,k) = free(i,k) - 1; 

 

            elseif Elem(i,1,k) == Elem(j,2,k) && Elem(i,3,k) == Elem(j,4,k) 

                consec(i,j,k) = 1; 

                free(i,k) = free(i,k) - 1; 

            else 

                clip = Box(Elem(j,1:4,k),W); 

                over = sutherlandHodgman(subside,clip); 

                if isempty(over) 

 

                else 

                    sidecontact(i,j,k) = long_side(over)*H; 

                end 

            end 

        end 

    end 

end 

 

% Normalize data to account for slight over estimations of 

% contact area 
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for k = 1:h 

    for i = 1:l 

 

        % Skip if row is empty or total area is less than available area 

        if sum(Elem(i,:,k)) ~= 0 

            % Skip if overlapping area is less than total area 

            if sum(topcontact(i,:,k)) > W*Elem(i,9,k) 

                % Normalize based on actual top surface area 

                topcontact(i,:,k) = 

topcontact(i,:,k)*W*Elem(i,9,k)/sum(topcontact(i,:,k)); 

            end 

            % Skip if overlapping area is less than total area 

            if sum(sidecontact(i,:,k)) > (Elem(i,9,k)*H+free(i,k)*W*H) 

                % Normalize based on non-consectutive side surface area 

                sidecontact(i,:,k) = 

sidecontact(i,:,k)*(Elem(i,9,k)*H+free(i,k)*W*H)/sum(sidecontact(i,:,k)); 

            end 

        end 

    end 

end 

% Convert Contact to m^2 from mm^2 

sidecontact = sidecontact/1000^2; 

topcontact = topcontact/1000^2; 

 

% Set bottom contact based on top contact with shifted layers 

bottomcontact(:,:,2:h) = topcontact(:,:,1:h-1); 

 

A.4 Thermal Simulation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Thermal Simulation using contact matrices 

% Noah Foster 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculate size of Elem 

[l,w,h] = size(Elem); 

 

% Define Editable Elem 

Elem_sim = zeros(l,w+1,h); 

Elem_sim(:,1:w,:) = Elem; % Store Elem data in new variable 

 

Elem_sim(:,9,:) = Elem_sim(:,9,:)/1000; %Distance converted to meters. 

W = 0.4/1000; % Width in m 

H = 0.2/1000; % Height in m 
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K = 273.15; % Conversion to Kelvin 

h_bed = 5; %W/m2*K heat transfer coefficient to bed 

h_elem = 5; %W/m2*K heat transfer coefficient to touching elements 

h_air = 5; %W/m2*K heat transfer coefficient to air 

lam = 0.13; %W/m*K thermal conductivity 

T_air = 25+K; % K temperature of air 

T_bed = 25+K; % K temperature of bed 

p = 1300; % kg/m^3 density of PLA 

c = 1800; % J/kg*K specific heat capacity of PLA 

E = 0.9; % Emissivity of PLA 

 

t = 0; % sec Current print time 

o = 5.67*10^-8; % W/m2*K4 Boltzman constant 

 

 

 

% Define temperature collection cell array 

Elem_Temp_time = cell(l,h); 

 

% Preallocate memory for stored temperature data 

for k = 1:h 

    for i = 1:l 

        Elem_Temp_time{i,k} = NaN(2,(h-k)*(l)+(l+1-i)); 

        %Store temperature and time data 

        Elem_sim(i,w+1,k) = Elem_sim(i,w+1,k) + 1; 

        Elem_Temp_time{i,k}(1,1) = Elem_sim(i,7,k); 

        Elem_Temp_time{i,k}(2,1) = Elem_sim(i,11,k); 

    end 

end 

 

% Iteration count 

iter = 1; 

% Loop through all layers 

for ko = 1:h 

    ko 

    % Loop through all elements in each layer 

    for io = 1:l 

        % Skip if element row is empty 

        if sum(Elem_sim(io,1:11,ko)) ~= 0 

            % Calculate simulation timestep 

            dt = Elem_sim(io,8,ko)-t; 

 

            % Update temperatures if extra time passed between elements 

            if dt <= 0 || dt > 0.11 
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                % If time between last element and next element > 0.01 sec 

                if abs(Elem_sim(io,7,ko)-t) > 0.01 

                    % Calculate number of addition timesteps 

                    split = ceil((Elem_sim(io,7,ko)-t)/0.1); 

                    % Split into equal dt timesteps 

                    dt =(Elem_sim(io,7,ko)-t)/split; 

                    % Define active elements = to last simulation step 

                    if io == 1 

                        ksplit = ko - 1; 

                        isplit = l; 

                    else 

                        ksplit = ko; 

                        isplit = io - 1; 

                    end 

                    % Run simulation update for each needed split 

                    for split_time = 1:split 

                        t = t + dt; 

                        % Loop through all active layers 

                        for k = 1:ksplit 

                            % Check if on top layer 

                            if k<ksplit 

                                icheck = l; 

                            else 

                                icheck = isplit; 

                            end 

 

                            % Loop through all elements if not on top layer 

                            % Loop through deposited elements if on top 

layer 

                            for i = 1:icheck 

 

                                % Skip if row is empty 

                                if sum(Elem_sim(i,1:11,k)) ~= 0 

                                    grid = Elem_grid(isplit,1:2,ksplit); 

                                    [Act] = 

Active(t,grid,k,Elem_sim,Elem_grid); 

 

                                    % Initialize Q_elem 

                                    Q_elem = 0; 

 

                                    % Reset free area to total surface area 

                                    A_free = 

2*(W*H+W*Elem_sim(i,9,k)+H*Elem_sim(i,9,k)); 

                                    % Conduction Heat Transfer 
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                                    % If forward element is consectutive 

calculate Q 

                                    if i ~= l && consec(i,i+1,k) == 1 

                                        Q_cond_f = 

lam*W*H*(Elem_sim(i,10,k)-

Elem_sim(i+1,10,k))/(0.5*(Elem_sim(i,9,k)+Elem_sim(i+1,9,k))); 

                                        A_free = A_free - W*H; 

                                    else 

                                        Q_cond_f = 0; 

                                    end 

 

                                    % If previous element is consectutive 

calculate Q 

                                    if i ~= 1 && consec(i,i-1,k) 

                                        Q_cond_b = 

lam*W*H*(Elem_sim(i,10,k)-Elem_sim(i-

1,10,k))/(0.5*(Elem_sim(i,9,k)+Elem_sim(i-1,9,k))); 

                                        A_free = A_free - W*H; 

                                    else 

                                        Q_cond_b = 0; 

                                    end 

 

 

                                    % Platform Heat Convection for bed 

layer 

                                    if k == 1 

                                        Q_bed = 

h_bed*W*Elem_sim(i,9,k)*(Elem_sim(i,10,k)-T_bed); 

                                        A_free = A_free - 

W*Elem_sim(i,9,k); 

                                    else 

                                        Q_bed = 0; 

                                    end 

 

                                    % Element to Element Convection 

                                    % Loop through all elements 

                                    for j = 1:l 

                                        % Skip if element is inactive 

                                        if Act(j,k) == 1 

                                            % If active calculate side 

convection 

                                            Q_elem = Q_elem + 

h_elem*sidecontact(i,j,k)*(Elem_sim(i,10,k)-Elem_sim(j,10,k)); 
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                                            A_free = A_free - 

sidecontact(i,j,k); 

                                            if k < h && Act(j,k+1) == 1 

                                                % If active and not top 

layer 

                                                % Calculate top convection 

                                                Q_elem = Q_elem + 

h_elem*topcontact(i,j,k)*(Elem_sim(i,10,k)-Elem_sim(j,10,k+1)); 

                                                A_free = A_free - 

topcontact(i,j,k); 

                                            end 

                                            if k ~= 1 && Act(j,k-1) == 1 

                                                % If active and not bottom 

layer 

                                                % Calculate bottom 

convection 

                                                Q_elem = Q_elem + 

h_elem*bottomcontact(i,j,k)*(Elem_sim(i,10,k)-Elem_sim(j,10,k-1)); 

                                                A_free = A_free - 

bottomcontact(i,j,k); 

                                            end 

                                        end 

                                    end 

 

 

                                    % Air Convection and Radiation 

                                    % Calculate based on non contact area 

                                    Q_conv = 

h_air*A_free*(Elem_sim(i,10,k)-T_air); 

 

 

                                    Q_rad = 

E*o*A_free*(Elem_sim(i,10,k)^4-T_air^4); 

 

                                    % % Uncomment if running analytical 

comparison 

                                    % Q_rad = 0; 

 

                                    % Calculate new temperature based on 

conservation 

                                    % of energy 

                                    Elem_sim(i,11,k) = Elem_sim(i,10,k) - 

dt*(Q_cond_f+Q_cond_b+Q_conv+Q_rad+Q_bed+Q_elem)/p/c/W/H/Elem_sim(i,9,k); 
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                                    % Throw error if temperature data is 

NaN 

                                    if isnan(Elem_sim(i,11,k)) 

                                        error('NaN'); 

                                    end 

 

                                    if Elem_sim(i,11,k) < 0 

                                        error('Temperature less than 

Zero!'); 

                                    end 

                                end 

                            end 

                        end 

                    end 

                else 

                    error('Timestep Error') 

                end 

            end 

 

            % Update simulation time 

            t = Elem_sim(io,8,ko); 

 

            % Loop through all active layers 

            for k = 1:ko 

                % Check if on top layer 

                if k<ko 

                    icheck = l; 

                else 

                    icheck = io; 

                end 

 

                % Loop through all elements if not on top layer 

                % Loop through deposited elements if on top layer 

                for i = 1:icheck 

 

                    % Skip if row is empty 

                    if sum(Elem_sim(i,1:11,k)) ~= 0 

                        grid = Elem_grid(io,1:2,ko); 

                        [Act] = Active(t,grid,k,Elem_sim,Elem_grid); 

 

                        % Initialize Q_elem 

                        Q_elem = 0; 

 

                        % Reset free area to total surface area 



49 

 

                        A_free = 

2*(W*H+W*Elem_sim(i,9,k)+H*Elem_sim(i,9,k)); 

                        % Conduction Heat Transfer 

                        % If forward element is consectutive calculate Q 

                        if i ~= l && consec(i,i+1,k) == 1 

                            Q_cond_f = lam*W*H*(Elem_sim(i,10,k)-

Elem_sim(i+1,10,k))/(0.5*(Elem_sim(i,9,k)+Elem_sim(i+1,9,k))); 

                            A_free = A_free - W*H; 

                        else 

                            Q_cond_f = 0; 

                        end 

 

                        % If previous element is consectutive calculate Q 

                        if i ~= 1 && consec(i,i-1,k) 

                            Q_cond_b = lam*W*H*(Elem_sim(i,10,k)-

Elem_sim(i-1,10,k))/(0.5*(Elem_sim(i,9,k)+Elem_sim(i-1,9,k))); 

                            A_free = A_free - W*H; 

                        else 

                            Q_cond_b = 0; 

                        end 

 

 

                        % Platform Heat Convection for bed layer 

                        if k == 1 

                            Q_bed = 

h_bed*W*Elem_sim(i,9,k)*(Elem_sim(i,10,k)-T_bed); 

                            A_free = A_free - W*Elem_sim(i,9,k); 

                        else 

                            Q_bed = 0; 

                        end 

 

                        % Element to Element Convection 

                        % Loop through all elements 

                        for j = 1:l 

                            % Skip if element is inactive 

                            if Act(j,k) == 1 

                                % If active calculate side convection 

                                Q_elem = Q_elem + 

h_elem*sidecontact(i,j,k)*(Elem_sim(i,10,k)-Elem_sim(j,10,k)); 

                                A_free = A_free - sidecontact(i,j,k); 

                                if k < h && Act(j,k+1) == 1 

                                    % If active and not top layer 

                                    % Calculate top convection 
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                                    Q_elem = Q_elem + 

h_elem*topcontact(i,j,k)*(Elem_sim(i,10,k)-Elem_sim(j,10,k+1)); 

                                    A_free = A_free - topcontact(i,j,k); 

                                end 

                                if k ~= 1 && Act(j,k-1) == 1 

                                    % If active and not bottom layer 

                                    % Calculate bottom convection 

                                    Q_elem = Q_elem + 

h_elem*bottomcontact(i,j,k)*(Elem_sim(i,10,k)-Elem_sim(j,10,k-1)); 

                                    A_free = A_free - 

bottomcontact(i,j,k); 

                                end 

                            end 

                        end 

 

 

                        % Air Convection and Radiation 

                        % Calculate based on non contact area 

                        Q_conv = h_air*A_free*(Elem_sim(i,10,k)-T_air); 

 

 

                        Q_rad = E*o*A_free*(Elem_sim(i,10,k)^4-T_air^4); 

 

                        % % Uncomment if running analytical comparison 

                        % Q_rad = 0; 

 

                        % Calculate new temperature based on conservation 

                        % of energy 

                        Elem_sim(i,11,k) = Elem_sim(i,10,k) - 

dt*(Q_cond_f+Q_cond_b+Q_conv+Q_rad+Q_bed+Q_elem)/p/c/W/H/Elem_sim(i,9,k); 

 

                        % Throw error if temperature data is NaN 

                        if isnan(Elem_sim(i,11,k)) 

                            error('NaN'); 

                        end 

 

                        if Elem_sim(i,11,k) < 0 

                            error('Temperature less than Zero!'); 

                        end 

 

                        %Store temperature and time data 

                        Elem_sim(i,w+1,k) = Elem_sim(i,w+1,k) + 1; 

                        iter = Elem_sim(i,w+1,k); 
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                        Elem_Temp_time{i,k}(1,iter) = t; 

                        Elem_Temp_time{i,k}(2,iter) = Elem_sim(i,11,k); 

 

                    end 

                end 

            end 

        end 

        % Update old temperature to new temperatue 

        Elem_sim(:,10,:) = Elem_sim(:,11,:); 

    end 

end 

 

 

 

A.5 Results Graphing 

%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Noah Foster 

% Plot Thermal temp 

%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Store Elem_sim data 

Elem_sim(Elem_sim == 0) = NaN; 

Elem_Plot = Elem_sim; 

 

% Store normalized temperature data as nearest interger 

ca = [min(min(Elem_Plot(:,11,:))) max(max(Elem_Plot(:,11,:)))]; % Saved for 

color axis 

Elem_Plot(:,11,:) = 1+floor((Elem_Plot(:,11,:)-

min(min(Elem_Plot(:,11,:))))/(max(max(Elem_Plot(:,11,:)))-

min(min(Elem_Plot(:,11,:))))*254); 

[l,w,h] = size(Elem_Plot); 

 

% Store jet color map 

clr = jet; 

 

figure(1) 

% Plot all elements that are not empty 

for k = 1:h 

    for i = 1:l 

        if isnan(Elem_sim(i,1:11,k)) 
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        else 

            plot3(Elem_Plot(i,1:2,k),Elem_Plot(i,3:4,k),[Layer(k); 

Layer(k)],'Color', clr(Elem_Plot(i,11,k),:),'LineWidth',2); 

        end 

        hold on; 

        grid on; 

    end 

end 

 

colorbar; 

caxis(ca); 

title('Final Model Temperature (K)') 

xlabel('X position (mm)') 

ylabel('Y position (mm)') 

zlabel('Z position (mm)') 

 

% Plot Node Temperature with adjusted time 

figure(2) 

node = 100; 

grid on; 

plot((Elem_Temp_time{node,1}(1,:)-

Elem_Temp_time{node,1}(1,1)),Elem_Temp_time{node,1}(2,:),'LineWidth',2) 

title('Element 100 temperature data') 

xlabel('Time (sec)') 

ylabel('Temperature (K)') 

 

% % Uncomment if running analytical comparison 

 

% % Validation test graph 

% v = max_speed/1000; % Velocity in meters per second 

% P = (2*W+2*H); % Perimeter in meters 

% A = W*H ; % Cross-sectional area 

% a = lam/p/c/v; % alpha parameter 

% b = h_air*P/p/c/A/v; % beta parameter 

% m = (sqrt(1+4*a*b)-1)/2/a; % m parameter 

% time = 0:0.1:10; % Time in sec 

% analytical_Temp = T_air + (Temp-T_air)*exp(-m*v*time); 

%  

% hold on; 

% plot(time,analytical_Temp,'.','LineWidth',3); 

% grid on; 

% legend('Simulation Temperature','Analytical Temperature') 

%  

% % Calculate percentage error 
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% [max_dif pos] = max(abs(Elem_Temp_time{node,1}(2,1:100)-

analytical_Temp(1:100))); 

% max_perc_error = max_dif/analytical_Temp(pos)*100 

% time_of_error = time(pos) 

% ave_error = sum(abs(Elem_Temp_time{node,1}(2,1:100)-

analytical_Temp(1:100))./analytical_Temp(1:100)) 

 

 

A.6 Supplemental Scripts 

Grid Division Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% XY grid_divide 

% Noah Foster 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Function to split model elements into XY grid 

function [grid_x,grid_y,Elem_grid] = grid_divide(Elem,max_speed) 

[l,~,h] = size(Elem); % Calculate the size of Elem 

max_travel = max_speed*0.1; % Maximum travel distance in 0.1s in mm 

NaN_Elem = Elem; % Store Elem data in editable matrix 

NaN_Elem(NaN_Elem == 0) = NaN; % Change all zeros to NaNs 

% Calculate max and min X and Y values 

xmin = min(min(NaN_Elem(:,1,:))); 

xmax = max(max(NaN_Elem(:,1,:))); 

ymin = min(min(NaN_Elem(:,3,:))); 

ymax = max(max(NaN_Elem(:,3,:))); 

xlen = xmax-xmin; % Calculate X length 

ylen = ymax-ymin; % Calculate Y length 

% Calculate number of allowable splits such that no interval is smaller 

than max_travel 

split_grid_x = floor(xlen/max_travel)-1; 

split_grid_y = floor(ylen/max_travel)-1; 

% Define X and Y grid boundaries 

grid_x = linspace(xmin,xmax,2+split_grid_x); 

grid_y = linspace(ymin,ymax,2+split_grid_y); 

 

% Initialize Elem_grid matrix 

Elem_grid = ones(l,2,h); 

 

for k = 1:h % Loop through layers 
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    for i = 1:l % Loop through elements 

        j = 1; % Reset j 

        while j <= length(grid_x) % loop through X grid 

            % If the X coordinate of the midway point is less than the 

            % boundary put it in that grid square 

            if (Elem(i,1,k)+Elem(i,2,k))/2 < grid_x(j) 

                Elem_grid(i,1,k) = j; 

                j = length(grid_x); 

            end 

            j = j+1; 

        end 

        j = 1; 

        while j <= length(grid_y) % loop through Y grid 

            % If the Y coordinate of the midway point is less than the 

            % boundary put it in that grid square 

            if (Elem(i,3,k)+Elem(i,4,k))/2 < grid_y(j) 

                Elem_grid(i,2,k) = j; 

                j = length(grid_y); 

            end 

            j = j+1; 

        end 

    end 

end 

end 

 

Active Element Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Active Function 

% Noah Foster 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Function to determine which elements are thermally active in the 

% simulation 

function [Act] = Active(time,grid,layer,Elem,Elem_grid) 

[l,~,h] = size(Elem); % Calculate size of Elem 

Act = ones(l,h); % Initialize Act matrix 

inactive_time = 8; % Amount of time until 99% of heat has dissapated in sec 

for k = 1:h % Loop through layers 

    for i = 1:l % Loop through elements 

        if sum(Elem(i,:,k)) ~= 0 % If row is not empty 

            if time < Elem(i,8,k) 

                Act(i,k) = 0; % Set inactive if element has not been layed 
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            elseif time - Elem(i,8,k) > inactive_time && abs(layer-k)>2 

                Act(i,k) = 0; % Set inactive if time has passed and element 

is greater than 2 layers away 

            elseif time - Elem(i,8,k) > inactive_time && (abs(grid(1)-

Elem_grid(i,1,k))>2 || abs(grid(2)-Elem_grid(i,2,k))>2) 

                Act(i,k) = 0; % Set inactive if time has passed and element 

is more than 2 grid squares away in X or Y direction 

            end 

        end 

    end 

end 

end 

Box and Box_over functions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Box function 

% Noah Foster 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [XY] = Box(AB,W) 

A = [AB(1),AB(3)]; 

B = [AB(2),AB(4)]; 

q = atan2(B(2)-A(2),B(1)-A(1)); 

C = [0,0]; 

C(1) = A(1)+sin(q)*W/2; 

C(2) = A(2)-cos(q)*W/2; 

D = [0,0]; 

D(1) = A(1)-sin(q)*W/2; 

D(2) = A(2)+cos(q)*W/2; 

E = [0,0]; 

E(1) = B(1)+sin(q)*W/2; 

C(2) = A(2)-cos(q)*W/2; 

E(2) = B(2)-cos(q)*W/2; 

F = [0,0]; 

F(1) = B(1)-sin(q)*W/2; 

F(2) = B(2)+cos(q)*W/2; 

X = [D(1),C(1),E(1),F(1)]'; 

Y = [D(2),C(2),E(2),F(2)]'; 

XY = [X,Y]; 

end 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Box_over function 

% Noah Foster 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [XY] = Box(AB,W) 

W = W + 0.02; 

if AB(1) > AB(2) 

    AB(1) = AB(1)+0.01; 

    AB(2) = AB(2)-0.01; 

elseif AB(2) > AB(1) 

    AB(1) = AB(1)-0.01; 

    AB(2) = AB(2)+0.01; 

end 

if AB(3) > AB(4) 

    AB(3) = AB(3)+0.01; 

    AB(4) = AB(4)-0.01; 

elseif AB(4) > AB(3) 

    AB(3) = AB(3)-0.01; 

    AB(4) = AB(4)+0.01; 

end 

A = [AB(1),AB(3)]; 

B = [AB(2),AB(4)]; 

q = atan2(B(2)-A(2),B(1)-A(1)); 

C = [0,0]; 

C(1) = A(1)+sin(q)*W/2; 

C(2) = A(2)-cos(q)*W/2; 

D = [0,0]; 

D(1) = A(1)-sin(q)*W/2; 

D(2) = A(2)+cos(q)*W/2; 

E = [0,0]; 

E(1) = B(1)+sin(q)*W/2; 

C(2) = A(2)-cos(q)*W/2; 

E(2) = B(2)-cos(q)*W/2; 

F = [0,0]; 

F(1) = B(1)-sin(q)*W/2; 

F(2) = B(2)+cos(q)*W/2; 

X = [D(1),C(1),E(1),F(1)]'; 

Y = [D(2),C(2),E(2),F(2)]'; 

XY = [X,Y]; 

end 

Long side function  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Noah Foster 

% Longest side Function 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function len = long_side(poly) 

polyX = poly(:,1); 

polyY = poly(:,2); 

[r, ~] = size(poly); 

d = 0; 

for i = 1:r-1 

    dnew = sqrt((polyX(i)-polyX(i+1))^2+(polyY(i)-polyY(i+1))^2); 

    if dnew > d 

        len = dnew; 

        d = dnew; 

    end 

end 

    dnew = sqrt((polyX(1)-polyX(i+1))^2+(polyY(1)-polyY(i+1))^2); 

    if dnew > d 

        len = dnew; 

    end 

Sutherland-Hodgman Algorithm [11] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% PolyClip 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%The inputs are a table of x-y pairs for the verticies of the subject 

%polygon and boundary polygon. (x values in column 1 and y values in column 

%2) The output is a table of x-y pairs for the clipped version of the  

%subject polygon. 

function clippedPolygon = sutherlandHodgman(subjectPolygon,clipPolygon) 

  

%% Helper Functions 

  

    %computerIntersection() assumes the two lines intersect 

    function intersection = computeIntersection(line1,line2) 

  

        %this is an implementation of 

        %http://en.wikipedia.org/wiki/Line-line_intersection 

  

        intersection = zeros(1,2); 

  

        detL1 = det(line1); 

        detL2 = det(line2); 

  

        detL1x = det([line1(:,1),[1;1]]); 

        detL1y = det([line1(:,2),[1;1]]); 
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        detL2x = det([line2(:,1),[1;1]]); 

        detL2y = det([line2(:,2),[1;1]]); 

  

        denominator = det([detL1x detL1y;detL2x detL2y]); 

  

        intersection(1) = det([detL1 detL1x;detL2 detL2x]) / denominator; 

        intersection(2) = det([detL1 detL1y;detL2 detL2y]) / denominator; 

  

    end %computeIntersection 

  

    %inside() assumes the boundary is oriented counter-clockwise 

    function in = inside(point,boundary) 

  

        pointPositionVector = [diff([point;boundary(1,:)]) 0]; 

        boundaryVector = [diff(boundary) 0]; 

        crossVector = cross(pointPositionVector,boundaryVector); 

  

        if ( crossVector(3) <= 0 ) 

            in = true; 

        else 

            in = false; 

        end 

  

    end %inside 

  

%% Sutherland-Hodgman Algorithm 

  

    clippedPolygon = subjectPolygon; 

    numVerticies = size(clipPolygon,1); 

    clipVertexPrevious = clipPolygon(end,:); 

  

    for clipVertex = (1:numVerticies) 

  

        clipBoundary = [clipPolygon(clipVertex,:) ; clipVertexPrevious]; 

  

        inputList = clippedPolygon; 

  

        clippedPolygon = []; 

        if ~isempty(inputList), 

            previousVertex = inputList(end,:); 

        end 

  

        for subjectVertex = (1:size(inputList,1)) 
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            if ( inside(inputList(subjectVertex,:),clipBoundary) ) 

  

                if( not(inside(previousVertex,clipBoundary)) )   

                    subjectLineSegment = 

[previousVertex;inputList(subjectVertex,:)]; 

                    clippedPolygon(end+1,1:2) = 

computeIntersection(clipBoundary,subjectLineSegment); 

                end 

  

                clippedPolygon(end+1,1:2) = inputList(subjectVertex,:); 

  

            elseif( inside(previousVertex,clipBoundary) ) 

                    subjectLineSegment = 

[previousVertex;inputList(subjectVertex,:)]; 

                    clippedPolygon(end+1,1:2) = 

computeIntersection(clipBoundary,subjectLineSegment);                             

            end 

  

            previousVertex = inputList(subjectVertex,:); 

            clipVertexPrevious = clipPolygon(clipVertex,:); 

  

        end %for subject verticies                 

    end %for boundary verticies 

end %sutherlandHodgman 
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Appendix B: Variables 

Variables used in Equations listed in order of appearance.  

Symbol Units Description 

𝑄𝑟𝑎𝑑 W Radiation to surroundings 

t sec Simulation time 

𝜀 ~ Emissivity of PLA 

𝜎 
𝑊

𝑚2𝐾4
 Stefan-Boltzmann constant 

𝐴𝑓𝑟𝑒𝑒 𝑚2 Area of element open to surroundings 

T K Temperature of element 

𝑇∞ K Temperature of surrounding air 

𝑄𝑐𝑜𝑛𝑣 W Convection to surroundings 

ℎ𝑐𝑜𝑛𝑣 
𝑊

𝑚2𝐾
 Surrounding air convection coefficient 

𝑄𝑐𝑜𝑛𝑑 W Conduction to consecutive elements 

𝜆 
𝑊

𝑚𝐾
 Thermal conductivity of PLA 

𝐴𝑖 ,𝑖−1 𝑚2 Cross sectional area of road element 

L m Length of road element 

𝑄𝑒𝑙𝑒𝑚 W Conduction to neighboring elements 

ℎ𝑟 
𝑊

𝑚2𝐾
 Thermal contact conductance coefficient between elements 

𝐴𝑖,𝑗
𝑐  𝑚2 Contact area between neighboring elements 
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𝑄𝑏𝑒𝑑 W Conduction to heated bed 

ℎ𝑐 
𝑊

𝑚2𝐾
 Thermal contact coefficient between elements and bed 

𝐴𝑏𝑒𝑑 𝑚2 Contact area between elements and bed 

𝑇𝑏𝑒𝑑 K Temperature of heated bed 

𝜌 
𝑘𝑔

𝑚3
 Density of PLA 

c 
𝐽

𝑘𝑔𝐾
 Specific heat capacity of PLA 

V 𝑚3 Volume of road element 

𝐴𝑐𝑟𝑜𝑠𝑠 𝑚2 Cross sectional area 

𝑃𝑐𝑟𝑜𝑠𝑠 m Perimeter of cross section 

𝑇0 K Deposition temperature of filament 

 

 

 

 


	Thermal Simulation of Additive Manufacturing from G-Code
	Recommended Citation

	[Thesis Title]

