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Abstract
In plant breeding, selecting cross-combinations that are more likely to result in supe-

rior lines for cultivar development is critical. This step, however, is subjective with

decisions being based on available genomic and phenotypic data for prospective par-

ents. Genomic prediction (GP) provides new opportunities to accelerate genetic gain

for a target trait by identifying superior crosses through simulation of progeny per-

formance. In this context, this study deployed GP using the phenotype and genotype

of potential parents to predict the progeny genetic variance (VG) and means of over-

all, inferior 10%, and superior 10% (μ, μip, and μsp, respectively). This retrospective

Abbreviations: BLUPs, best linear unbiased predictors; DON, deoxynivalenol; GAWN, Gulf Atlantic Wheat Nursery; GBS, genotyping-by-sequencing;
GEBV, genomic estimated breeding value; GP, genomic prediction; GSSP, GAWN, SunWheat, SPE, and SPL nurseries; h2, narrow-sense heritability; H2,
broad-sense heritability; HapMap, haplotype map; HD, heading date; MP, mid-parent; PH, plant height; PopVar, population genetic variance; RILs,
recombinant inbred lines; rrBLUP, Ridge-regression best linear unbiased prediction; SNP, single nucleotide polymorphism; SPE, SunGrains preliminary early
nursery; SPL, SunGrains preliminary late nursery; SRWW, soft red winter wheat; SunGrains, Southeastern University Small Grains Cooperative; SunWheat,
SunGrains Advanced Wheat Nursery; TP, training population; TW, test weight; USW, Uniform Southern Soft Red Winter Wheat nursery; VA, additive
variance; VG, genetic variance; YLD, grain yield.
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Grant/Award Number: FY22-SW-004;
SunGrains breeding cooperative

experimental design investigated whether the crosses that produced superior soft red

winter wheat breeding lines would have been made if progeny simulations had guided

crossing decisions of breeding programs. Here, data from historical wheat breeding

lines were used to train GP models and predict VG and means for yield, test weight,

heading date, and plant height for all combinations of 217 parents. Predicted and

observed data for 670 lines derived from biparental crosses were compared to assess

the accuracy of progeny simulations, and low-to-moderate prediction accuracy was

observed for the four traits (0.25–0.52). Of the pedigrees that produced lines that

were selected and advanced into later stage nurseries, 76% were predicted to give

rise to progeny with above-average yield. The moderate correlation found between

predicted progeny means and observed line per se performance justifies using cross-

combination prediction as a tool to reduce crossing number and focus on segregating

populations that harbor future cultivars.

1 INTRODUCTION

In plant breeding, the selection of parents is critical for devel-
oping superior progeny with the highest mean performance,
increasing or maintaining genetic variation, and enhancing
the rate of genetic gain for a target trait (Jean et al., 2021;
Yao et al., 2018). Often, new inbreds are developed from
hybridizations among elite lines, and other combinations are
not considered because a limited number of crosses can be
managed by a breeding program each year (Bernardo, 2003;
Yao et al., 2018). Further, lines derived from a high percent-
age of crosses that do not deliver superior performance are
discarded in subsequent cycles (Lado et al., 2017; Witcombe
et al., 2013). Therefore, having the biparental progeny simu-
lations among a large number of parents, before the crosses
are made and evaluated, would be helpful to improve the effi-
ciency of line development (Bernardo, 2014; Utz et al., 2001).
This is particularly important to select crosses for acceler-
ated advancement using doubled haploids or speed breeding,
which are valuable tools to hasten the breeding cycle but are
often costly and labor intensive (Dwivedi et al., 2015; Li et al.,
2013; Wanga et al., 2021).

Breeders use all information available (genetic markers
and phenotypes) to prioritize the crosses to be made (Lado
et al., 2017), but these data can be limited, particularly when
implementing rapid cycling. Superior crosses produce seg-
regating populations with a large genetic variance (VG) and
improved trait mean (μ). Predicting both parameters would
be important for identifying the best crosses and maximizing
genetic gain (Beckett et al., 2019; Utz et al., 2001; Yao et al.,
2018; Zhong & Jannink, 2007). Breeders can rely on expected
progeny μ (or mid-parent [MP] value) because it can be accu-
rately estimated by averaging the phenotypic values of two
parents (Bernardo, 2014; Jean et al., 2021). However, when
two breeding populations exhibit similar μ, a precise estima-

tion of VG may determine which populations have greater
potential (Beckett et al., 2019). Previously, obtaining accu-
rate estimations of VG was difficult (Bernardo, 2014; Zhong
& Jannink, 2007), but prediction of this genetic parameter
has improved with the application of genomic prediction (GP)
methods (Osthushenrich et al., 2018; Tiede et al., 2015).

Before the widespread use of genome-wide markers, the
usefulness criterion (Up) was proposed to measure the short-
term genetic gain achieved in biparental crosses (Schnell &
Utz, 1975). The Up is a function of the population mean (μ),
additive variance (VA), narrow-sense heritability (h2), and
selection intensity (i) (Schnell & Utz, 1975). Assigning value
to a given cross without a priori information on its μ or VA is
now possible using genomic information (Bernardo, 2014).

GP provides new opportunities to accelerate genetic gain
within modern crop breeding programs (Crossa et al., 2017;
Voss-Fels et al., 2019). This method uses calibrated statistical
models with genotypes and phenotypes of a training popu-
lation (TP) to predict the additive merit (termed as genomic
estimated breeding values [GEBVs]) of new, unphenotyped
breeding lines based on genome-wide marker data. In princi-
ple, GEBVs can be used to advance genotypes with favorable
trait values in the breeding pipeline prior to phenotyping and
to select parents for new cross-combinations (Voss-Fels et al.,
2019). Using a GP approach to evaluate all possible parental
combinations in silico could allow breeders to identify crosses
that would produce useful progenies (Jean et al., 2021) based
on both VG and μ (Beckett et al., 2019; Utz et al., 2001;
Yao et al., 2018; Zhong & Jannink, 2007). Implementing GP
methodology, the R package PopVar (population genetic vari-
ance) uses genotype and phenotype data of a set of potential
parents to predict VG and progeny means for all possible
biparental crosses in a half-diallel mating design (Moham-
madi et al., 2015). Based on predicted population parameters,
superior crosses can theoretically be identified.
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BALLÉN-TABORDA ET AL. 2197Crop Science

This study investigated the usefulness of progeny simula-
tions to select the best cross-combinations in soft red winter
wheat (SRWW). It was examined whether the crosses that
produced superior wheat breeding lines, defined as lines
that advanced into later stage nurseries or were released,
would have been prioritized by SunGrains’ (Southeastern
University Small Grains Cooperative) breeders if progeny
simulations had been available. The simulated performance
of biparental populations was completed using genotype and
phenotype data for 217 parental lines and compared with
data from 670 lines previously evaluated in multi-year, mul-
tilocation trials. Four traits were investigated in the study,
including grain yield (YLD), test weight (TW), heading date
(HD), and plant height (PH). Results indicate that predicted
VG and μ—and, by extension, μsp—in progeny simulations
could collectively inform breeders to help identify the most
valuable crosses and allocate resources toward useful cross-
combinations and downstream progeny selection. Predicting
parental combinations using genome-wide markers could
significantly increase the efficiency of breeding programs,
including reducing cost, by allowing breeders to focus efforts
on pedigrees that are more likely to give rise to superior lines
for cultivar development.

2 MATERIALS AND METHODS

2.1 Plant materials and historical
phenotype data

As part of the SunGrains multi-institutional breeding cooper-
ative, superior SRWW breeding lines are evaluated annually
across the greater Southeastern United States in five regional
nurseries: the Uniform Southern Soft Red Winter Wheat
Nursery (USW), the Gulf Atlantic Wheat Nursery (GAWN),
the SunGrains Advanced Wheat Nursery (SunWheat), and the
SunGrains preliminary early and late nurseries (SPE and SPL)
(Figure 1). A total of 3084 lines have been tested in 24 trial
locations across 11 states over 15 years (2008–2022) (Table
S1). The SunGrains multi-year, multilocation, and multi-trait
historical phenotypic dataset used in the present study con-
sisted of 30,382 observations for YLD (kg ha−1), 25,470
observations for TW (kg hL−1), 18,742 observations for HD
(Julian days), and 13,761 observations for PH (cm). The num-
ber of replications per site-year combination varied, with an
average of 1.4.

Two methods were used to subset the historical phenotypic
dataset into TP. TP1 included historical data collected from
the GAWN, SunWheat, SPE, and SPL nurseries (GSSP) from
2008 to 2022, and TP2 included only data collected from the
GAWN and SunWheat nurseries (GSW) over the same years
(Table 1). For TP2, SPE and SPL were excluded to investigate
the inclusion or exclusion of these preliminary, unreplicated
nurseries.

Core Ideas
∙ In plant breeding, selecting parents to be crossed is

critical for developing superior progeny.
∙ Historical winter wheat data were used to assess

the usefulness of genomic prediction for parental
selection.

∙ Predicted yield and SunGrains breeders’ assess-
ment and selection largely agreed.

∙ Simulated progeny performance could allow
breeders to focus on the most promising crosses.

For each TP, estimates of genotype values across environ-
ments for YLD, TW, HD, and PH were estimated by fitting the
following linear model (Yao et al., 2018) using the function
“lmer” of the “lme4” package in R (Bates et al., 2015):

𝑌𝑖𝑗𝑘 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 +𝑅𝑘(𝑗) + 𝐺𝐸𝑖𝑗 + 𝑒𝑖𝑗𝑘

where Yijk represents the phenotypic observation of genotype
i in environment j and replication k; μ is the overall mean;
Gi is the effect of genotype i; Ej is the effect of environment
(site-year combination) j; Rk(j) is the effect of replication k
nested in environment j; GEij is the G × E interaction between
genotype i and environment j; and eijk is the residual effect
associated with genotype i in environment j and replication k.
All terms except genotype were estimated as independent and
identically distributed random effects. Genotype was defined
as a random effect (Yao et al., 2018) to calculate best linear
unbiased predictors (BLUPs) using the “coef” functions of the
“lme4” package in R. The Cullis broad-sense heritability (H2)
(Cullis et al., 2006), recommended for unbalanced datasets
(Covarrubias-Pazaran, 2019), was estimated with the “H2cal”
function of the “inti” R package (Lozano-Isla, 2022):

𝐻2
Cullis = 1 −

𝑉 BLUP
Δ
2 × 𝜎2

𝑔

where 𝑉 𝐵LUP
Δ refers to the average standard error of the

genotypic BLUPs, 𝜎2 refers to variance, and 𝑔 refers to
genotype.

2.2 Genotype data

Genotyping was performed as reported in previous stud-
ies that used the SunGrains dataset (Sarinelli et al., 2019;
Winn et al., 2022). According to manufacturer’s instruc-
tions, DNA was isolated using the sbeadex maxi plant kit
(LGC Genomics). Genotyping-by-sequencing (GBS) was per-
formed as previously described (Poland et al., 2012), and
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2198 BALLÉN-TABORDA ET AL.Crop Science

T A B L E 1 Four combinations of input data for population genetic
variance (PopVar) simulation of population parameters.

No. of SNPs training
population

1500 SNPs (randomly
distributed) 12,917 SNPs

TP1 (GSSP) 1 2

TP2 (GSW) 3 4

Abbreviations: GSSP, GAWN, SunWheat, SPE, and SPL nurseries; GSW, GAWN
and SunWheat nurseries; SNP, single nucleotide polymorphism; TP, training
population.

libraries were prepared at the USDA-ARS Eastern Regional
Small Grains Genotyping Laboratory and sequenced on an
Illumina HiSeq 2500 or NovaSeq 6000. Reads were mapped
to the wheat RefSeq 1.0 genome assembly (Appels et al., 2018)
using Burrows–Wheeler aligner (v.0.7.12) (Li & Durbin,
2009). Single nucleotide polymorphism (SNP) discovery was
completed with TASSEL 5 GBSv2 (v.5.2.35; Glaubitz et al.,
2014). Data were filtered by removing taxa with >85%
missing data while retaining SNPs with ≥5% minor allele fre-
quency, ≤20% of heterozygous proportion, and missing data
≤25%. Finally, missing SNP calls were imputed with Beagle
v.5.1 (B. Browning et al., 2018; S. Browning & Brown-
ing, 2007). The generated variant call format file containing
19,232 SNPs for 6399 breeding lines was converted to a
diploid haplotype map (HapMap) using TASSEL 5 (Bradbury
et al., 2007). The HapMap was then converted into a numer-
ical matrix (0, 1, 2) using GAPIT (v.3.1.0) in R (Lipka et al.,
2012).

2.3 Genetic map

The genetic map was constructed using a population of
906 recombinant inbred lines (RILs) derived from the

F I G U R E 1 Workflow for advancing lines from preliminary to
advanced nurseries. From F6 generation → SPE/SPL (SunGrains
Preliminary Early/Late Nursery) → SunWheat (SunGrains Advanced
Wheat Nursery) → GAWN (Gulf Atlantic Wheat Nursery) to → USW
(Uniform Southern Soft Red Winter Wheat Nursery).

cross between the Synthetic W7984 × Opata M85 (Syn-
OpRIL) (Gutierrez-Gonzalez et al., 2019). The GBS SNP
data were used to interpolate recombination distances for
the GBS SNP datasets obtained for SunGrains breeding
programs. The MonoPoly R package (Turlach & Mur-
ray, 2019) was used to fit a ninth-degree monotonically
increasing spline to the SynOpRIL genetic map for each
chromosome. Recombination distances for the SNP markers
used in the present study were then obtained from the fit
splines.

2.4 Progeny simulations

With the assumption that useful crosses give rise to superior
breeding lines that are advanced and later released by breed-
ers, a retrospective analysis was performed to understand
the relationship between line advancement and predicted
cross merit. Pedigrees of 3084 SunGrains advanced breeding
lines were used to identify 2294 lines derived from two-way
crosses, from which a total of 217 unique parents with avail-
able genome-wide SNP were identified. Phenotype data were
available for 194 of the 217 lines. There were 670 breeding
lines, including four released cultivars (GA09436-16LE12,
AR09137UC-17-2, LA06146E-P4, and ARLA06146E-1-4),
that had a two-way pedigree where both parents had genomic
and phenotypic data available. The last two released cultivars
(also known as AGS3000 and AGS3000-late, respectively)
are full sibs that were selected and released as early and late
heading lines, respectively. The R package PopVar (Moham-
madi et al., 2015) was used to simulate progenies of all
23,436 possible pairwise combinations in a half-diallel mat-
ing design [(P × (P − 1))/2, where P = number of parents
(n = 217)]. The phenotypic estimated BLUPs for YLD, TW,
HD, and PH and the high-density genotype data of the TPs
(TP1 and TP2) were used as input for PopVar. The genetic
map described above was used to allow an accurate estima-
tion of recombination across the genome. Ridge-regression
best linear unbiased prediction (rrBLUP) was used for cross-
validation and to estimate marker effects, with the number
of iterations each population is simulated “nSim” set to 25,
the predicted progeny size per cross “nInd” set to 200, and
other parameters left as default. To determine whether input
data (SNP number or phenotype) could influence predic-
tions, four simulation experiments were completed using four
combinations of input parameters (Table 1).

Upon review, the mean correlation for predicted parame-
ters (μ, VG, μip, and μsp) for the four simulation combinations
(Table 1) was 0.90 for all agronomic traits (YLD, TW, HD,
and PH) (Figure S1). Given the consistency among these com-
binations, simulations using 1500 SNPs and BLUPs of the
TP1 (GSSP) were only reported in the results for simplicity
and brevity.
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BALLÉN-TABORDA ET AL. 2199Crop Science

2.5 Data analysis

Pearson’s correlations were estimated for the four predicted
PopVar outputs: (1) progeny mean (μ) or MP GEBV, (2) VG,
(3) mean of inferior 10% progeny (μip), and (4) mean of
superior 10% progeny (μsp). To assess whether the progeny
simulations matched the empirical data on the 670 breeding
lines, Pearson’s correlations between observed values and pre-
dicted progeny parameters for YLD, TW, HD, and PH were
calculated, and relationships were visualized through scatter
plots between each trait’s progeny mean (μ) and observed val-
ues. Correlations between observed MP values and MP GEBV
for the four traits were analyzed to assess accuracy further.
Pairwise correlations among the four phenotypes were also
studied. Correlations were computed using the “cor” function
of the “stats” R package (R Core Team, 2013) and the “cor-
rplot” and “cor.mtest” functions of the “corrplot” R package
(Wei & Simko, 2017).

Scatter plots between predicted values of μ versus μsp and
VG versus μ for each trait were generated to study whether
predictions for the 670 SunGrains lines agreed with breeders’
decisions to advance lines to later stage evaluation nurseries
(SunWheat, GAWN, and USW) or to drop from the breed-
ing program following preliminary evaluation (SPE and SPL).
Unlike YLD and TW, where breeders directionally select for
higher values, optimal values for HD and PH are interme-
diate and breeders frequently select against extremes (i.e.,
stabilizing selection). To identify HD and PH windows where
progenies could have top yield potential, scatter plots between
predicted μ for YLD versus agronomic trait (HD or PH) were
generated.

To examine the performance of populations derived from
best-by-best crosses, scatter plots of predicted progeny mean
(μ) versus mean of superior 10% progeny (μsp) for YLD were
labeled in two different ways. First, based on YLD estimated
BLUPs, 30 top-yielding parents were identified, and their 435
derived simulated progenies were highlighted. Additionally,
categories representing the number of years between each par-
ent’s last year of evaluation (0–3, 4–7, 8–11, and 12–14) were
highlighted to compare rapid cycling (new line by new line
crosses) with the benefit of potentially reusing or recycling
older lines as parents for superior crosses. Second, based on
YLD means for each nursery–year combination (e.g., SPL-
2008 or GAWN-2022), the top two yielding parents were
selected, and their simulated progeny were marked in the plot.
All plots were generated using the “ggplot” package in R
(Wickham, 2016).

To understand why two distinct clusters were observed in
the PH scatter plots of μ versus μsp and VG versus μ, vari-
ous analyses were completed. First, an estimation of marker
effects was calculated through the “mixed solve” function of
the R “rrBLUP” package (Endelman, 2011). Second, KASP
marker data of major PH genes (Rht1, Rht2, and Rht8) were

inspected along with the parental allelic combinations on
the 23,436 predicted progenies. Third, a principal component
analysis was generated using the SunGrains’ lines SNP data
with “prcomp” package (R Core Team, 2013) and plotted with
“ggplot.” Fourth, a genome-wide association study (GWAS)
was deployed using a mixed linear model in TASSEL 5 (Brad-
bury et al., 2007) to identify SNPs associated with the distinct
clustering. The Manhattan plot was created using the “qqman”
R package (Turner, 2014), and thresholds were calculated
with the Bonferroni method using the “CalcThreshold” func-
tion of the “Rainbow” package (Hamazaki & Iwata, 2020).
Parental allelic combinations at the significant SNPs were
assessed on both the set of 670 SunGrains lines and the 23,436
cross simulations.

3 RESULTS

3.1 Relationships among observed
phenotypes

Using observed data for the 670 wheat lines evaluated in mul-
tilocation yield plots, the broad-sense heritability was 0.49 for
YLD, 0.35 for TW, 0.63 for HD, and 0.58 for PH. The rela-
tionships among trait BLUPs were low, ranging from −0.05
to 0.29 (Figure S2). Fortunately, the two most correlated traits
were YLD and TW (r = 0.29), which favor increasing traits
in tandem. Using BLUPs generated from the wide range of
testing environments (Table S1) resulted in no significant rela-
tionship between YLD and HD (r = 0.05), while YLD had a
small positive correlation (r = 0.12) with PH. Given absent or
low relationships, with no negative correlations in particular,
among the four traits under study as well as the predominant
focus on increasing YLD, a multi-trait selection index was not
explored for predicting progeny performance.

The released and commercialized cultivars LA06146E-P4
and ARLA06146E-1-4, which are full sibs from the same
cross, were independently selected in contrasting environ-
ments (Louisiana and Arkansas, respectively). As a result,
the two cultivars have a near 10-day difference in HD (97.4–
106.6), demonstrating high VG for the cross. Meanwhile, the
predicted μ and VG for HD of this family were 102.4 and 0.86,
respectively, which was early maturity with a slightly greater
than average VG (Figures 2c, 3c, and 4c).

3.2 Predicted population variance
parameters and their correlation with observed
BLUPs

As expected, correlations between trait μ and μsp were con-
sistently high, with all traits having a r ≥ 0.93 (Figure S2B).
Conversely, correlations between μ and VG were low or
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T A B L E 2 Descriptive statistics including average (Ave.), standard deviation (SD.), minimum (Min.), and maximum (Max.) values for four
predicted population genetic variance (PopVar) parameters (μ, VG, μip, and μsp) for four agronomic traits.

Trait
PopVar
parameter Ave. SD. Min. Max.

Yield μ 4313.9 78.7 4031.1 4579.1

VG 0.75 0.18 0.00 1.68

μip 4213.5 82.1 3943.1 4540.6

μsp 4414.4 77.2 4096.0 4658.7

Test weight μ 73.3 0.3 72.1 74.5

VG 0.04 0.01 0.00 0.08

μip 72.8 0.3 71.6 74.4

μsp 73.7 0.3 72.5 74.9

Heading date μ 103.4 1.2 98.9 107.5

VG 0.84 0.23 0.01 2.19

μip 101.8 1.2 97.6 106.0

μsp 105.0 1.2 99.8 109.1

Plant height μ 88.5 1.7 82.7 94.0

VG 0.35 0.19 0.00 0.97

μip 86.1 2.0 80.3 92.6

μsp 91.0 1.6 84.4 96.0

Abbreviations: μ, progeny mean; μip, inferior 10% progeny mean; μsp, superior 10% progeny mean; VG, genetic variance.

nonexistent, oscillating between −0.29 and 0.07. To evalu-
ate prediction accuracy, pairwise correlations were calculated
between predicted progeny μ and observed BLUPs of 670
progeny lines selected from predicted families and later eval-
uated. Low-to-moderate correlations were observed for each
trait (Figure 2), ranging from 0.25 (TW) to 0.52 (HD). YLD
had a r = 0.3 to indicate a moderate relationship existed
between predicted progeny μ and derived progeny line mean
performance over environments. The correlation between MP
BLUP values and MP GEBVs was 0.68, 0.78, 0.82, and 0.72
for YLD, TW, HD, and PH, respectively.

Using the 23,436 progeny simulations, the average pre-
dicted within-family progeny μ for YLD was 4313.9± 78.7 kg
ha−1 with a VG of 0.75 ± 0.2 (Table 2). For TW, average
progeny μ was 73.3 ± 0.3 kg hL−1 with a VG of 0.04 ± 0.01.
A progeny mean of 103.4 ± 1.2 Julian days to heading was
obtained with a VG of 0.84 ± 0.23, while PH had an average μ
of 88.5 ± 1.7 cm and VG of 0.35 ± 0.19. See Table 2 for more
descriptive statistics of all progeny predicted parameters.

3.3 Ability of predicted progeny means to
inform superior cross-combinations for key
traits

The predicted progeny μ and μsp were plotted to retrospec-
tively assess how predicted progeny simulation parameters
would relate to observed data for the 670 derived lines that

were advanced to field testing (Figure 3 and Table S2). The
same assessment was made using plots of VG and progeny μ.
In addition, the scatter plots contained all 23,436 possible sim-
ulations from intercrossing all 217 parents for which genotype
and phenotype data were available. The stepwise field testing
framework (Figure 1) enabled cross-combination prediction
parameters to be generalized for every nursery stage, where
each nursery stage (SPE, SPL, SunWheat, GAWN, and USW)
represented a collection of lines that was their final destina-
tion before being discarded (or released). This answered the
following questions: (1) Did lines that were advanced to later
stage nurseries (SunWheat, GAWN, and USW) have favor-
able progeny predictions based on the cross-combination?
(2) Were lines derived from pedigrees that were predicted to
underperform discarded following preliminary testing (SPE
and SPL)?

For YLD, lines that persisted longer in the breeding
pipeline were predicted to have superior YLD, including two
released cultivars (GA09436-16LE12 and AR09137UC-17-
2), with progeny μ equal to or higher than the overall mean
and μsp values higher than the overall mean of top progeny
(Table S2). Of the five lines that advanced to the USW, the
most advanced nursery (Figure 1), all five had above-average
predicted YLD (Figure 3a) with a collective average μ and μsp
of 4365.5 and 4469.4 kg ha−1, respectively. Additionally, 75%
of lines that advanced to both the GAWN (58 of 77) and Sun-
Wheat (106 of 141) nurseries also had above-average means
(Figure 3a). GAWN lines had a collective mean of 4362.6 kg
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ha−1 for μ and 4468.1 kg ha−1 for μsp, while the SunWheat
class of lines was lower with a μ of 4341.8 kg ha−1 and μsp of
4444.5 kg ha−1. Lines that did not pass the preliminary testing
stage (SPE and SPL) were much more uniformly distributed
across the entire range (from low to high) of predicted YLD
values, with 67% having a progeny μ over the grand mean
of combinations. As such, the SPE/SPL YLD means (in kg
ha−1) for μ and μsp were more modest at 4339.7/4322.6 and
4440.8/4424.5 kg ha−1, respectively (Table S2).

Unlike YLD, TW simulations did not display a trend
despite having a wide range for progeny μ and μsp across
cross-combinations, with a grand mean falling between
73 and 74 kg hL−1 for all nurseries (Figure 3b and
Table S2). Three of the four released lines (GA09436-
16LE12, LA06146E-P4, and ARLA06146E-1-4) showed
above-average TW, while AR09137UC-17-2 was near the
grand prediction mean.

Similar to TW, HD progeny prediction parameters for later
stage nurseries (SunWheat, GAWN, and USW) had a wide
overall range (103–105 Julian days). There was a clear trend
where lines evaluated in the preliminary early (SPE) headed
earlier, where 156 of 220 lines (71%) had a progeny prediction
for μ and μsp that were both below average. The percentage of
lines tested in the late nursery (SPL) that arose from families
predicted to head later than the grand mean was even greater
(81%; 162 of 199 lines). Interestingly, the four released cul-
tivars included in the study were predicted to all head earlier
than average (Figure 3c).

With respect to PH, lines that were advanced to later stage
nurseries were much more likely to emanate from a progeny
that was simulated to have below average height (132 below
average, 63 above average). The grand mean predicted param-
eters for PH were 88.5 and 91 cm for μ and μsp, respectively
(Figure 3d).

3.4 Role of genetic variance estimations in
determining progeny usefulness

As previously mentioned, there were no significant corre-
lations between VG and other predicted cross-combination
parameters. In general, progeny lines that advanced to mul-
tilocation field testing exhibited a wide predicted VG for YLD
(Figure 4a and Table S2). Notably, the majority of lines
advancing to later stage nurseries tended to derive from fami-
lies predicted to have above-average VG for YLD (80% USW,
68% GAWN, and 55% SunWheat), with predicted crosses that
gave rise to preliminary lines being more evenly distributed
(52%). Despite the two traits being phenotypically correlated,
the opposite trend was observed for TW, where the majority
of 670 progeny lines demonstrated a narrow VG (Figure 4b).
Despite observing a wide range of predicted VG for HD, there
was no clear distinguishable trend for this trait (Figure 4c),

and the bimodal distribution observed for PH made it difficult
to assess trends (Figure 4d). The simulations for PH revealed
this clustering pattern that grouped predictions for all popula-
tion variance parameters (Figures 3d and 4d), including VG,
into two distinct clusters. Despite completing numerous anal-
yses to find the cause of the bimodal distribution (Figure S3),
a clear explanation was not elucidated.

3.5 Assessment of pedigrees with
agronomic trait intervals that give rise to
high-yielding progeny

In winter wheat, breeders typically select (phenotypically)
against extreme values of HD and PH on both sides of
their distributions, especially when selecting cultivars for
broad adaptation. To mimic this approach and thus iden-
tify HD and PH windows where cross-combinations have an
increased likelihood of producing superior progeny, scatter
plots between predicted μ for YLD versus HD or PH were
analyzed. To recall, correlations for progeny μ between YLD
versus HD and YLD versus PH were r = −0.07 and r = 0.16,
respectively (Figure S2B). It was observed that 3790 (includ-
ing 135 existing crosses) parental combinations with high
predicted YLD (μ + SD) headed between 100.1 and 106.3
days (Figure 5a) and had a PH ranging from 83.8 to 93.0 cm
(Figure 5b). Further, a total of 370 (including 26 existing
crosses) cross-combinations with outstanding predicted YLD
(μ + 2SD) matured between 101.4 and 105.8 Julian days and
their PH oscillated from 86.0 to 91.1 cm. In general, derived
lines from predicted cross-combinations that advanced to late-
stage field evaluation and demonstrated highest progeny μ for
YLD tended to have predicted μ PH very near the grand mean,
while predicted μ HD for these theoretically high-yielding
families tended to be either near the grand prediction mean
or later heading lines than average (Figure 5).

3.6 Comparison of cross-combinations
selected from simulations versus phenotypic
best-by-best

To study performance of the traditional approach of cross-
ing phenotypic best-by-best relative to GEBVs from predicted
progeny simulations, two different graphical depictions were
completed using the progeny μ versus mean of superior 10%
progeny (μsp) scatter plot for YLD (Figure 6). First, 435 pro-
genies derived from 30 parents with top YLD BLUPs were
highlighted, along with the information of the difference in
years when each parent was last evaluated. Of the pheno-
typic best-by-best crosses, 96.6% (420 total, including 25
existing crosses derived from 10 pedigrees) were predicted
to have above-average YLD. It was noted that regardless of
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how chronologically distanced two parents were (from 0- to
14-year difference), the offspring tended to have outstanding
predicted YLD (Figure 6a). Further, of the 42 nursery–year
combinations, the predicted performance of progeny derived
from two parents with top mean YLD was identified. In most
cases (91%), they displayed higher predicted YLD than the
overall means, whereas four progenies developed from the two
best-by-best parents from SunWheat-2016, SPE-2015, 2016,
and SPL-2015 fell below predicted YLD averages (Figure 6b).

4 DISCUSSION

The selection of parental lines that are most likely to gen-
erate high-performing genotypes is critical to increasing the
genetic gain of a target trait and enhancing the efficiency of
the cultivar development pipeline (Jean et al., 2021; Yao et al.,
2018). Before the genomic era, the Up was utilized to iden-
tify the best parental combinations (Schnell & Utz, 1975).
Nowadays, genome-wide selection methods have been lever-
aged to identify promising cross-combinations by simulating
progeny means and VG (Bernardo, 2014; Lado et al., 2017;
Mohammadi et al., 2015). In this context, tools such as PopVar
have allowed the estimation of biparental population param-
eters that could inform breeders of the most valuable crosses
(Mohammadi et al., 2015).

With the assumption that certain populations possess a
greater propensity to give rise to superior breeding lines that
are advanced and later released by breeders, a retrospective
analysis was conducted to assess the accuracy and utility
of key simulated population parameters to select valuable
crosses. Historical phenotype and genotype data of wheat
breeding lines (TPs) that included 217 parental lines (rep-
resenting 670 field-tested breeding lines) were entered into
PopVar to simulate 23,436 potential populations, a num-
ber that far exceeds the capacity of any breeding program.
To examine the practical value and accuracy of progeny
simulations and the persistence of lines through the nar-
rowing selection pipeline, predicted progeny means (μ and
μsp) and VG were compared to observed BLUPs for YLD,
TW, HD, and PH of 670 breeding lines. Low-to-moderate
prediction accuracies were observed between the predicted
progeny parameters and observed values (0.25–0.52). Values
for YLD, TW, and HD were expected due to the nature and
heritability of the traits; however, PH exhibited lower val-
ues than anticipated (Ballén et al., 2022; DeWitt et al., 2021;
Heffner et al., 2011). Additionally, the significant correla-
tions between observed and predicted MP values (0.68–0.82)
indicated that GP is useful for cross-prediction.

Of the 670 lines subjected to field evaluation and selection
for YLD, 223 (33.3%) were retained and tested in advanced
nurseries, including four releases. Of these 223 breeding lines,
169 (76%) were derived from cross-combinations that were

predicted to have above-average YLD. This suggests that
GP of progeny performance for YLD, a primary target trait,
and SunGrains breeders’ assessment largely agreed. Similar
results were described in a similar retrospective analysis in
soybean, where 91% of the superior crosses retained by breed-
ers were predicted to have above-average YLD (Jean et al.,
2021), and in barley, where crosses selected and advanced
by breeders (≥F6) had a high predicted YLD means (Abed
& Belzile, 2019). In contrast, a number of retrospective val-
idation crosses predicted to generate high-yielding progeny
were not preserved by breeders. The reasons could be that
lines may not have shown satisfactory performance for non-
yield traits (e.g., disease resistance or HD), predictions might
not have been accurate (Abed & Belzile, 2019; Jean et al.,
2021), or breeders may have mistakenly discarded valuable
crosses. In this context, predicted superior multi-trait perfor-
mance (Mohammadi et al., 2015) (e.g., high YLD, improved
resistance to a pest/disease, and optimal agronomic trait val-
ues) could be helpful to develop lines adapted to specific
conditions across target production environments (Benaouda
et al., 2022; Boyles et al., 2019; Crespo-Herrera et al., 2022).
Furthermore, although the correlation coefficients between
predicted YLD versus HD and YLD versus PH were trivial
(−0.07 and 0.16, respectively), it was possible to identify win-
dows of HD and PH where parental combinations were more
likely to produce above-average yielding progenies. Look-
ing at predicted values for agronomic traits (including HD
and PH) would allow breeders to identify cross-combinations
that are more likely to produce better adapted lines across
geographic regions (Boyles et al., 2019).

Generally, crossing the best with the best, based on both
line per se performance and the line’s record of having
produced superior progeny, is expected to have a higher prob-
ability of generating superior progeny due to additive gene
action (van Ginkel & Ortiz, 2018). To assess how well this tra-
ditional approach works in the absence of GPs, and how well
progeny simulations agree with this, offspring derived from
parents with top observed YLD values were studied. Crossing
phenotypic best-by-best still appears efficient in enhancing
genetic gain for a target trait, given PopVar progeny simu-
lations consistently aligned with best-by-best wheat crosses
examined in this study. Part of this effect may relate to the
greater replication of older lines, which produces less shrink-
age of predicted line performance to the mean relative to
less-observed, newer lines. While it is rare to cross top old
lines (recycled) with newer advanced lines, such as those with
8- to 14-year difference between the last evaluation year, the
predictions demonstrated that these could potentially generate
new breeding materials with superior performance. Hybridiz-
ing old and new elite lines from within the breeding program
is necessary to enhance the genetic gain over time. The geno-
typic and phenotypic data collected on progenies from these
crosses can be utilized to train and improve the predictive
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ability of GP models (Rutkoski et al., 2022). However, if old
lines have been discarded, the best lines tested closer in time
(0- to 7-year difference) could also produce superior progeny.

Breeders commonly use high progeny mean (or MP value)
to identify superior parental combinations for a given trait
(Bernardo, 2014; Jean et al., 2021); however, the expected
VG would be a valuable criterion on which to discriminate
among populations with similar progeny means (e.g., when
crossing elite parents) (Beckett et al., 2019; Merrick et al.,
2022; Osthushenrich et al., 2018). Previous work suggests that
the μ is the major determinant for identifying superior crosses
for yield (YLD) in wheat, whereas the VG has more influ-
ence on end-use quality traits (Lado et al., 2017; Yao et al.,
2018). In barley, two scenarios were described: (1) when the
primary trait for selection was YLD, both predicted progeny
μ and VG were meaningful determinants to identify lines with
outstanding yield but not for lower deoxynivalenol (DON)
levels where their distribution was more scattered, and (2)
when the emphasis for selection was placed on DON (pre-
breeding), the predicted μ and VG were more variable for both
YLD and DON (Abed & Belzile, 2019). In soybean, progeny
μ facilitated the identification of superior crosses with above-
average YLD (64%) and below-average maturity (73%), and
VG did not influence selection for either high YLD or a spe-
cific maturity window (Jean et al., 2021). Results from this
study reinforced that μ, and by extension μsp, was a strong
driver for highlighting superior crosses for YLD (advanced
into SunWheat, GAWN, and USW nurseries). In contrast, VG
did not have an influence on identifying top-yielding crosses.
Conversely, there was no clear effect of predicted μ or VG to
improve overall cross-selection for the other three evaluated
traits (TW, HD, and PH). Though the influence of VG was
a minor contributor to identifying improved progeny lines in
SRWW, it remains valuable for maintaining genetic diversity
within the breeding materials (Lado et al., 2017).

5 CONCLUSION

This retrospective study predicted progeny performance using
genome-wide marker effects and historical phenotypic data to
inform breeders of the most valuable crosses among all possi-
ble parental combinations. Predicted progeny μ of biparental
populations was moderately correlated with per se trait per-
formance of derived inbred lines that breeders advanced to
regional yield trials. These positive correlations suggest that
selecting crosses based on simulated trait means and variances
would effectively allow a reduction of total crosses made each
cycle to allocate more resources to downstream segregating
populations that are more likely to yield superior lines for cul-
tivar development. Increased predicted within-cross genetic
variation is associated with greater genetic diversity between
parents. As such, even if the information on predicted cross
variance only marginally improves yearly genetic gain, select-

ing based on cross variability will improve genetic gain in the
long term by maintaining the diversity of the breeding pro-
gram. Further, simulating progeny performance to select the
best cross-combinations and coupling with doubled haploid
technology would accelerate the breeding cycle and theoret-
ically increase genetic gain. Results from this study provide
considerable evidence that progeny predictions using genomic
information of prospective parents can be leveraged by breed-
ing programs to concentrate on more rewarding populations
for crop improvement. Finally, this study in winter wheat
and previous reports in soybean and barley have shown that
progeny simulations to select superior cross-combinations
could be implemented in other self-pollination crops. Exten-
sive, high-quality phenotypic and genotypic information is
key to building reliable GP models.
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