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LIMITING MEANS FOR SPHERICAL SLICES

AMY PETERSON* AND AMBAR N. SENGUPTA

Abstract. We show that for a suitable class of functions of finitely-many
variables, the limit of integrals along slices of a high dimensional sphere is
a Gaussian integral on a corresponding finite-codimension affine subspace in
infinite dimensions.

1. Introduction

In this paper we generalize a result of [10] showing that the large-N limit of the

integral of a function f over affine slices of a high dimensional sphere SN−1(
√
N)

is Gaussian. In [10] this was proved for bounded f , and here we establish the
result for f in a suitable Lp space, for any p > 1.

1.1. Notation, definitions, and background. Let A be a closed affine sub-
space of l2 of finite codimension m then there is

Q : l2 → R
m

a continuous linear surjection and w0 ∈ R
m so that we can write A as a level set

of Q,

A = Q−1(w0). (1.1)

Let z0 be the point on Q−1(w0) closest to the origin and SN−1(
√
N) be the sphere

in R
N of radius

√
N centered at the origin. Now we are interested in ’circles’

formed by intersecting the part of A in R
N , AN , with the sphere SN−1(

√
N):

SAN
:= AN ∩ SN−1(

√
N). (1.2)

Let

QN : RN → R
m

defined by QN = QJN where JN is the inclusion map from R
N to l2. We can

write AN = Q−1
N (w0) and the point on AN closest to the origin as z0N . Thus the

’circle’ SAN
is a sphere with center at z0N and radius az0

N
=

√

a2 − |z0N |2 where

a =
√
N . See Figure 1.

Note that z0N converges weakly to z0 and so

Tz0N → Tz0 (1.3)
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Figure 1. The affine subspace Q−1
N (w0) slices the sphere

SN−1(
√
N) in a ‘circle’ with center z0N and radius az0

N
.

for continuous linear T : H → X where X is finite dimensional. See [10] Proposi-
tion 4.1 for full detail.

We are interested in integrals of a function φ over SAN
with respect to the

normalized surface area measure σ̄:
∫

SAN

φ(x1, . . . , xk)dσ̄(x) =

∫

SN−1(
√
N)∩Q−1

N (w0)

φ(x1, . . . , xk)dσ̄(x). (1.4)

We will take φ to be a Borel function that only depends on the first k-coordinates
for k < N . We will also need an important disintegration formula for the integral
(1.4) and to that end we need the following projections. Let

P(k) : l
2 → R

k = X z 7→ (z1, . . . , zk)

be the projection from l2 onto the first k-coordinates. Then let L be the restriction
of P(k) to kerQ:

L : kerQ → X (1.5)

This is a surjection provided dim (ker(Q)) > dim(X). Further we define LN to be
the restriction of P(k) to ker(QN ):

LN : kerQN = kerQ ∩ ZN → X (1.6)

for large enough N , LN is also surjective. (See [10] Proposition 6.2). Next we also
want to restrict L and LN to be isomorphisms. We define L0 to be the restriction
of L to kerQ ⊖ kerL which is the orthogonal complement of kerQ ∩ kerL within
kerQ:

L0 : kerQ⊖ kerL → X.

This is an isomorphism. Lastly let L0,N be the restriction of LN to kerQN⊖kerLN

L0,N : kerQN ⊖ kerLN → X
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for large N this is an isomorphism (See again [10] Prop. 6.2).
Now we state without proof the disintegration formula we will need. See [10]

Theorem 3.3 for full detail.

Theorem 1.1. Let f be a bounded, or non-negative, Borel function defined on
SAN

= SN−1(
√
N)∩Q−1

N (w0) for some w0 ∈ R
m. Let z0N be the point on Q−1

N (w0)
closest to 0. Let L0,N and LN be defined as above and let x0 = LN (z0N ) ∈ X. Then

∫

SN−1(
√
N)∩Q−1(w0)

f dσ

=

∫

x∈DN

{

∫

SAN
∩LN

−1(x)

f dσ

}

az0
N

√

a2
z0
N

−
∥

∥L0,N
−1(x− x0)

∥

∥

2

dx

| detL0,N | ,
(1.7)

where az0
N

=
√

N − |z0N |2 and DN consists of all x ∈ x0 + LN (kerQN ) ⊂ X for

which the term under the square-root is positive:

DN = x0 + {y ∈ LN (kerQN) :
∥

∥L0,N
−1(y)

∥

∥ < az0
N
}. (1.8)

Taking φ to be a Borel function on R
k we let f be the function obtained by

extending φ to R
N by setting

f(x) = φ(x1, . . . , xk) for all x ∈ R
N

and denote SN−1(
√
N)∩Q−1(w0) ∩LN

−1(x) = SAN
∩LN

−1(x) then the disinte-
gration formula (1.7) for this particular f is:

∫

SN−1(
√
N)∩Q−1(w0)

f dσ

=

∫

x∈DN

{

∫

SAN
∩LN

−1(x)

f dσ

}

az0
N

√

a2
z0
N

−
∥

∥L0,N
−1(x− x0)

∥

∥

2

dx

| detL0,N |

=

∫

x∈DN

{

Vol(SAN
∩ LN

−1(x))
} az0

N
√

a2
z0
N

−
∥

∥L0,N
−1(x− x0)

∥

∥

2

dx

| detL0,N | .

(1.9)

Let d = N − 1 then the volume of the sphere is:

Vol
(

SAN
∩ LN

−1(x)
)

= cd−k−m

[

a2z0
N
−

∥

∥L0,N
−1(x− x0)

∥

∥

2
]

d−k−m
2

(1.10)

where cd−k−m is the surface measure of the (d− k−m)-dimensional sphere given,
for all j, by the formula:

cj = 2
π

j+1
2

Γ
(

j+1
2

) . (1.11)

We can then rewrite (1.10) as
∫

SN−1(
√
N)∩Q−1(w0)

f dσ = cd−k−m

∫

x∈DN

IN (x)
dx

| detL0,N | , (1.12)

where

IN (x) = φ(x)az0
N

[

a2z0
N
−
∥

∥L0,N
−1(x− x0)

∥

∥

2
]

d−k−m−1
2

. (1.13)
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The sphere SN−1(
√
N) ∩Q−1(w0) has dimension d−m and its volume is

cd−mad−m
z0
N

.

So, using the normalized surface measure σ on the sphere SN−1(
√
N) ∩Q−1(w0),

we have
∫

SN−1(
√
N)∩Q−1(w0)

f dσ =
cd−k−m

cd−mad−m
z0
N

∫

x∈DN

IN (x)
dx

| detL0,N | , (1.14)

where IN (x) is as in (1.13).

1.2. Related literature. This paper is a generalization of work done in [10]
where more detailed results are proved for a bounded Borel function φ.

The connection between Gaussian measure and the uniform measure on high
dimensional spheres appeared originally in the works of Maxwell [7] and Boltz-
mann [2, pages 549-553]. Later works included Wiener’s paper [12] on “differential
space”, Lévy [6], McKean [8], and Hida [3]. The work of Mehler [9] is one example
illustrating the classical interest in functions on high-dimensional spheres.

For the theory of Gaussian measures in infinite dimensions we refer to the
monographs of Bogachev [1] and Kuo [5].

This paper is the fourth in a series of papers. The first [4] develops the Gaussian
Radon transform for Banach spaces, where a support theorem was established.
The second [11] establishes the result for hyperplanes and the third [10] proves the
result for the case of affine planes.

2. Limiting Results

In this section we review our previous results and prove the main result of this
paper.

2.1. Previous results. From the previous paper [10] the main result was the
following theorem:

Theorem 2.1. Let A be a finite-codimension closed affine subspace in l2, specified
by (1.1). Let k be a positive integer; suppose that the image of A under the
coordinate projection l2 → R

k : z 7→ z(k) = (z1, . . . , zk) is all of R
k. Let φ be

a bounded Borel function on R
k. Then

lim
N→∞

∫

SAN

φ(x1, . . . , xk) dσ(x1, . . . , xN ) =

∫

R∞

φ(z(k)) dµ(z), (2.1)

where σ is the normalized surface area measure on SAN
, and µ is the probability

measure on R
∞ specified by the characteristic function

∫

R∞

exp (i〈t, x〉) dµ(x) = exp

(

i〈t, pA〉 −
1

2
‖P0t‖2

)

for all t ∈ R
∞
0 , (2.2)

where pA is the point on A closest to the origin and P0 is the orthogonal projection
in l2 onto the subspace A− pA.
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We give a sketch of the proof here for full detail refer to [10] Theorem 2.1. The
pushforward measure π(k)∗µ of µ to R

k is

π(k)∗µ(S) = µ
(

π−1
(k)(S)

)

, for all Borel S ⊂ R
k, (2.3)

where

π(k) : R
∞ → R

k : z 7→ z(k) = (z1, . . . , zk)

is the projection on the first k coordinates. Now define µ∞ on R
k by

dµ∞(x) = (2π)−k/2 exp

(

−1

2
〈(L0L∗

0)
−1(x− z0(k)), x− z0(k)〉

)

dx

| detL0|
, (2.4)

where L0 is given in (1.7) and z0(k) is the first k-coordinates of z0, the point on

A = Q−1(w0) closest to the origin.
From their respective characteristic functions we can deduce that

π(k) ⋆ µ(S) = µ∞

Now, using this and Theorem 2.2 below, we can conclude that

lim
N→∞

∫

SN−1(
√
N)∩Q−1

N (w0)

φ(x1, . . . , xk) dσ̄(x1, . . . , xN )

=

∫

Rk

φdµ∞

=

∫

Rk

φdπ(k)∗µ =

∫

R∞

φ ◦ π(k) dµ.

(2.5)

For the first equality in (2.5) we need the following theorem (from [10] Theorem
4.1).

Theorem 2.2. Let A be an affine subspace of l2 given by Q−1(w0), where Q :
l2 → R

m is a continuous linear surjection. Suppose that the projection P(k) : l
2 →

R
k : z 7→ z(k) maps kerQ onto R

k. Let SN−1(
√
N) be the sphere of radius

√
N in

the subspace R
N ⊕ {0} in l2. Let φ be a bounded Borel function on R

k and let f
be the function obtained by extending φ to l2 by setting

f(x) = φ(x1, . . . , xk) for all x ∈ l2. (2.6)

Then

lim
N→∞

∫

SZN
(
√
N)∩Q−1

N (w0)

f dσ̄

= (2π)−k/2

∫

x∈Rk

φ(x) exp

(

−〈(L0L0
∗)−1(x − z0(k)), x− z0(k)〉

2

)

dx

| detL0|
,

(2.7)

where L0 is the restriction of the projection P(k) to kerQ⊖ kerP(k), and z0 is the

point on Q−1(w0) closest to the origin.
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Note that in order to extend Theorem 2.1 for a more general function φ we only
need to extend Theorem 2.2.

Again we give a sketch of the proof for Theorem 2.2 . Let a =
√
N and d = N−1.

From the disintegration formula above (1.14) we have

lim
N→∞

∫

SN−1(
√
N)∩Q−1

N (w0)

f dσ̄ = lim
N→∞

cd−k−m

akz0,N cd−m

∫

Rk

IN
dx

| detL0,N | , (2.8)

where

IN = φ(x)
{

1− a−2
z0,N

∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2
}

d−k−m−1
2

1DN
(x). (2.9)

We state here the limits of the constant term outside the integral (in (2.8)), as well
as those of the full integrand on the right hand side, including the determinant
term without proof, for full detail refer to [10]:

lim
N→∞

cd−k−m

akz0,N cd−m
= (2π)−k/2, (2.10)

lim
N→∞

| detL0,N | = lim
N→∞

det(L0,NL∗
0,N ) = det(L0L∗

0) = | detL0|, (2.11)

and

lim
N→∞

{

1− a−2
z0,N

∥

∥L0,N
−1(x − z0,N (k))

∥

∥

2
}

d−k−m−1
2

1DN
(x)

= lim
N→∞

{

1− a−2
z0,N

∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2
}

N
2

1DN
(x)

= exp

(

−1

2
〈(L0L0

∗)−1(x− z0(k)), x− z0(k)〉
)

. (2.12)

Therefore if φ is such that we can apply dominated convergence theorem in
(2.8) we have,

lim
N→∞

∫

SN−1(
√
N)∩Q−1

N (w0)

f dσ̄ = lim
N→∞

cd−k−m

ak
z0,N cd−m

∫

Rk

IN
dx

| detL0,N | (2.13)

= (2π)−k/2

∫

Rk

lim
N→∞

IN
dx

| detL0,N | (2.14)

= (2π)−k/2

∫

Rk

φ(x) exp

(

−1

2
〈(L0L0

∗)−1(x− z0(k)), x− z0(k)〉
)

dx

| detL0|
(2.15)

= (2π)−k/2

∫

Rk

φ(x) exp

(

−1

2

∥

∥

∥
L0

−1(x− z0(k))
∥

∥

∥

2) dx

| detL0|
(2.16)

which is the result in Theorem 2.2.

2.2. The main result. We turn now to the main result of this paper, an exten-
sion of the previous result Theorem 2.1 to more general functions. We will show
that if φ is a Borel function on R

k which is Lp, p > 1, with respect to the Gaussian
measure with density proportional to

e−‖L
−1
0 (x−z0

(k))‖2
/2 dx,
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then the conclusion of 2.1 still holds. To this end we state and prove a generaliza-
tion of Theorem 2.2.

Theorem 2.3. Let A be an affine subspace of l2 given by Q−1(w0), where Q :
l2 → R

m is a continuous linear surjection. Suppose that the projection P(k) : l
2 →

R
k : z 7→ z(k) maps kerQ onto R

k. Let SN−1(
√
N) be the sphere of radius

√
N in

the subspace R
N ⊕ {0} in l2. Let φ be a Borel function on R

k which is in Lp with
respect to the Gaussian measure with density proportional to

e−‖L
−1
0 (x−z0

(k))‖2
/2 dx,

for some p > 1, and let f be the function obtained by extending φ to l2 by setting

f(x) = φ(x1, . . . , xk) for all x ∈ l2. (2.17)

Then

lim
N→∞

∫

SN−1(
√
N)∩Q−1

N (w0)

f dσ̄

= (2π)−k/2

∫

x∈Rk

φ(x) exp

(

−〈(L0L0
∗)−1(x − z0(k)), x− z0(k)〉

2

)

dx

| detL0|
,

(2.18)

where L0 is the restriction of the projection P(k) to kerQ⊖ kerP(k), and z0 is the

point on Q−1(w0) closest to the origin.

Proof. Utilizing the proof from Theorem 2.2 we need only show (2.14) still holds,
that is,

lim
N→∞

cd−k−m

ak
z0,N cd−m

∫

Rk

IN
dx

| detL0,N | = (2π)−k/2

∫

Rk

lim
N→∞

IN
dx

| detL0,N | (2.19)

where IN = φ(x)
{

1− a−2
z0,N

∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2
}

d−k−m−1
2

1DN
(x) and DN is

all x ∈ R
k such that the square-root term is positive.

First we have the following inequality,
{

1− a−2
z0,N

∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2
}d−k−m−1

=

{

1−
∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2

N − |z0,N |2

}N−k−m−2

≤
{

1−
∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2

N

}N−k−m−2

.

(2.20)

We observe that, for N > k +m+ 2, the maximum of the function
(

1− y

N

)N−k−m−2

ey for all y ∈ (0, N ]

occurs at y = k+m+2; this is seen by checking that the derivative d/dy is positive
for y ∈ [0, k +m+ 2) and negative for y ∈ (k +m+ 2, N ]. Thus,
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(

1− y

N

)N−k−m−2

ey ≤
(

1− k +m+ 2

N

)N−k−m−2

ek+m+2

Taking y =
∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2
, we have:

{

1−
∥

∥L0,N
−1(x − z0,N (k))

∥

∥

2

N

}N−k−m−2

≤
(

1− k +m+ 2

N

)N−k−m−2

ek+m+2e−‖L0,N
−1(x−z0,N

(k))‖2

≤ ek+m+2e−‖L0,N
−1(x−z0,N

(k))‖2

. (2.21)

Thus

{

1−
∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2

N

}

N−k−m−2
2

≤ e
k+m+2

2 e
−1
2 ‖L−1

0,N (x−z0,N
(k))‖2

(2.22)

Lemma 2.4 gives the bound:

e−
1
2‖L−1

0,N (x−z0,N
(k))‖2

≤ e−
1
2‖L−1

0 (x−z0
(k))‖2

. (2.23)

Let

aN (x) = L−1
0 (x− z0,N(k) ) and a(x) = L−1

0 (x− z0(k)). (2.24)

Then by (1.3), for any ǫ > 0 and large enough N

‖aN (x)− a(x)‖ < ǫ.

Hence

‖a(x)‖2 − ‖aN(x)‖2 = (‖a(x)‖ − ‖aN (x)‖) (‖a(x)‖ + ‖aN (x)‖)
≤ ‖a(x) − aN (x)‖ (‖a(x)‖ + ‖aN (x)‖)
≤ ǫ (‖a(x)‖ + ‖aN(x) − a(x)‖ + ‖a(x)‖)
≤ ǫ (2 ‖a(x)‖+ ǫ)

(2.25)

and so

−‖aN (x)‖2 ≤ ǫ2 + 2ǫ ‖a(x)‖ − ‖a(x)‖2 . (2.26)

This gives us:

e−‖aN (x)‖2/2 ≤ eǫ
2/2eǫ‖a(x)‖−‖a(x)‖2/2. (2.27)

Now since φ is a Borel function on R
k which is in Lp with respect to the Gaussian

measure with density proportional to

e−‖a(x)‖2/2 dx,

for some p > 1. We have then the bound

|φ(x)e−‖aN (x)‖2/2| ≤ |φ(x)|eǫ2/2eǫ‖a(x)‖e−‖a(x)‖2/2 (2.28)
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The dominating function is integrable:

eǫ
2/2

∫

Rk

φ(x)eǫ‖a(x)‖e−‖a(x)‖2/2 dx ≤ cǫ

{
∫

Rk

φ(x)pe−‖a(x)‖2/2 dx

}1/p

, (2.29)

where

cǫ = eǫ
2/2

{
∫

Rk

eǫq‖a(x)‖−‖a(x)‖2/2

}1/q

(2.30)

and q is the conjugate to p as usual: p−1 + q−1 = 1. The integral in cǫ is finite
because, after changing variables to y = a(x),

∫

Rk

et‖y‖−‖y‖2/2 dy = |Sk−1|
∫ ∞

0

etR−R2/2Rk−1 dR < ∞, (2.31)

for any t ∈ R.
Using the argument above we can conclude the dominated convergence in (2.19)

holds:

lim
N→∞

cd−k−m

ak
z0,N cd−m

∫

Rk

IN (x)
dx

| detL0,N |

=
1

2πk/2

∫

Rk

lim
N→∞

φ(x)
{

1− a−2
z0,N

∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2
}

d−k−m−1
2 dx

| detL0,N |
and using the limits (2.10), (2.11), and (2.12) we have established:

lim
N→∞

∫

SN−1(
√
N)∩Q−1

N
(w0)

f dσ̄ = lim
N→∞

cd−k−m

ak
z0,N cd−m

∫

Rk

IN
dx

| detL0,N |

=
1

2πk/2

∫

Rk

lim
N→∞

φ(x)
{

1− a−2
z0,N

∥

∥L0,N
−1(x− z0,N (k))

∥

∥

2
}

d−k−m−1
2 dx

| detL0,N |

= (2π)−k/2

∫

x∈Rk

φ(x) exp

(

−〈(L0L0
∗)−1(x − z0(k)), x− z0(k)〉

2

)

dx

| detL0|
.

�

Lemma 2.4. With notation as above,
∥

∥

∥
L−1
0,N

(

x− z0,N(k)

)∥

∥

∥
≥

∥

∥

∥
L−1
0

(

x− z0,N(k)

)∥

∥

∥
(2.32)

Proof. Recall the definition of L, it is the projection on k coordinates restricted
to the kerQ:

L : kerQ → X = R
k (2.33)

and L0 is the restriction of L to the orthogonal complement of kerL inside kerQ.
Since L is surjective L0 is an isomorphism. Let x ∈ R

k and y0 = L−1
0 (x) then any

vector y ∈ L−1(x) can be written as

y = y0 + v v ∈ kerL.
This means

‖y‖ = ‖y0 + v‖ v ∈ kerL
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for all y ∈ L−1(x) therefore y0 = L−1
0 (x) is the point in L−1(x) of smallest norm.

By the same argument, provided N is large enough for LN to be a surjection, for
x ∈ R

k, the point L−1
0,N (x) is the point on L−1

N (x) of smallest norm.

Let y ∈ ker(QN ) then y ∈ R
N and QNy = 0. Taking R

N to be contained in l2

as RN ⊕ {0} then for all y ∈ kerQN we take y = (y, 0). Now

0 = QNy = Q(JNy)

therefore JNy ∈ kerQ and so (y, 0) ∈ kerQ. Thus kerQN is contained in kerQ.
Now for y ∈ kerQN we have L(y) = LN (y) since both L and LN are the

projection onto the first k coordinates. Since L−1
N (x) is all y ∈ kerQN such that

LN (y) = x it is contained in L−1(x).
Now we have the inequality (2.32). �

Let us look at an example that shows the necessity of the Lp, p > 1, condition
and the difficult nature of the limit of Gaussian integrals above. In this context
for the function

g(x) = ex
2/2(1 + x2)−1 for all x ∈ R,

we have
∫

R

g(x)e−x2/2dx < ∞ but

∫

R

g(x)e−(x−xN )2/2dx = ∞ for all xN 6= 0,

(2.34)
and so

lim
z→0

∫

R

g(x)e−(x−z)2/2dx 6=
∫

R

g(x)e−x2/2dx. (2.35)
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