Increased rates of molecular evolution in an equatorial plant clade: An effect of environment or phylogenetic nonindependence?

Jeremy M. Brown
The University of Texas at Austin

Gregory B. Pauly
The University of Texas at Austin

Follow this and additional works at: https://repository.lsu.edu/biosci_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Scholarly Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Scholarly Repository. For more information, please contact ir@lsu.edu.
INCREASED RATES OF MOLECULAR EVOLUTION IN AN EQUATORIAL PLANT CLADE: AN EFFECT OF ENVIRONMENT OR PHYLOGENETIC NONINDEPENDENCE?

JEREMY M. BROWN1,2 AND GREGORY B. PAULY1,3
1Section of Integrative Biology, University of Texas, Austin, Texas, 78712
2E-mail: jembrown@mail.utexas.edu
3E-mail: gbpauly@mail.utexas.edu

Abstract—A recent study of environmental effects on rates of molecular evolution in the plant subgenus Mearnsia shows that species occurring in more equatorial latitudes have higher rates of substitution in rDNA sequences as compared to their more southerly congeners (Wright et al. 2003). However, we believe that the statistical approach employed by Wright et al. (2003) insuffi ciently accounts for the phylogenetic nonindependence of the species examined, given that all six equatorial species of Mearnsia form a clade. To distinguish between the effect of latitude and that of phylogenetic nonindependence, we have employed a variety of comparative approaches that use independent contrasts to test for an effect of environment across this entire subgenus. We fi nd very little evidence for an effect of latitude on rate of molecular evolution using these approaches and believe that the shared evolutionary history of the clade is a plausible explanation of the apparent rate difference between equatorial and subequatorial Mearnsia species.

Key words—Independent contrasts, latitudinal gradients, Mearnsia, penalized likelihood rate smoothing, relative rates test.

Received June 8, 2004. Accepted August 26, 2004.

The cause of latitudinal gradients in species diversity remains controversial (e.g., Rohde 1992, 1997). After reviewing several previously proposed hypotheses, Rohde (1992) concluded that this gradient most likely results from the increasing solar energy available in lower latitudes. He argued that (1) the increase in solar radiation leads to higher mutation rates, and (2) the increase in temperature results in shorter generation times, possibly leading to a higher mutation rate and/or faster selection. In combination, these factors lead to a faster rate of evolution for equatorial taxa relative to taxa inhabiting higher latitudes, which in turn leads to greater rates of speciation and results in the observed gradients (termed the climate-speciation hypothesis; Bromham and Cardillo 2003). This hypothesis predicts an indirect relationship between rate of molecular evolution and latitude or a correlate of latitude such as mean annual temperature (MAT; see Currie 1991).

To the best of our knowledge, no explicit tests of Rohde’s hypothesis (that latitude should exert an infl uence on rate of molecular evolution) existed until recently (Bromham and Cardillo 2003; Wright et al. 2003). In their study of 45 phylogenetically independent pairs of bird species, Bromham and Cardillo (2003) found no evidence for a correlation between latitude and rate of molecular evolution. Conversely, in an analysis of 23 Pacific species of the plant subgenus Mearnsia, Wright et al. (2003) argued for a correlation between rate of molecular evolution and the MAT of the species’ range.

Pacific species of Mearnsia occur on New Guinea (NG), the Philippines (Ph), the Solomon Islands (SI), New Zealand (NZ), and New Caledonia (NC). Wright et al. (2003) generated a phylogeny for the 23 Pacific species and determined the MAT of the midpoint of the elevational and latitudinal range of each species (Fig. 1). The average MAT of members of the NG/Ph/SI (equatorial) radiation was 7.1°C higher than the average MAT of the higher latitude NZ/NC (subequatorial) species. Wright et al. (2003) also noted that there are an increased number of substitutions per site (measured as branch length on a maximum likelihood phylogeny) between the terminal taxa of the equatorial radiation and the ancestor of all Pacific species (mean = 0.0465, n = 6) relative to this same measure for the subequatorial species (mean = 0.0172, n = 17). Because this method calculates branch lengths of each species by summing the number of substitutions per site from the common ancestor of all Pacific species to each terminal taxon, each species is treated as an independent unit despite the shared ancestry of the clade members. For example, the branch subtending the equatorial clade is included in the branch length tabulation of all six members of this clade (Fig. 1, branch A). To compensate for the lack of independence, Wright et al. (2003) conducted a one-tailed t-test using only one degree of freedom. Finding a signifi cant result (0.025 < P < 0.05), the authors concluded that there was a correlation between rate of molecular evolution and MAT. However, we question the appropriateness of simply reducing the number of degrees of freedom in a t-test to address this problem. In the situation in which one or a few mutations occurred in the ancestor of all equatorial Mearnsia species that elevated the mutation rate, one would simply be comparing the rate of molecular evolution in those species with this mutation to those without—an effect in no way caused by the environment. Therefore, we explored alternative methods of analysis using phylogenetically independent contrasts to look for an effect of MAT on rate of molecular evolution across this entire subgenus.

Re-analysis of Mearnsia Dataset

After visual inspection of the ITS and ETS alignment of Wright et al. (2003), we noted several regions where sequences of one to a few individuals were shifted by a few bases. Therefore, we began by realigning the sequences using
MacClade version 4.05 (Maddison and Maddison 2002). Changes were primarily in the alignment of *Metrosideros angustifolia* and *Cloeia floribunda* sequences relative to the remaining species. The realigned dataset included 111 parsimony-informative characters, whereas the alignment of Wright et al. (2003) contained 120 parsimony-informative characters. Phylogenetic analyses were conducted in PAUP* version 4.0b10 (Swofford 1999). We found the most-parsimonious trees using a branch-and-bound algorithm. Analysis of the realigned dataset yielded four most-parsimonious trees of 412 steps (CI = 0.745, RI = 0.708) whereas Wright et al.'s (2003) alignment yielded 130 most-parsimonious trees of 446 steps (CI = 0.762, RI = 0.714). Nonparametric bootstrapping was used to assess branch support by generating 1000 pseudoreplicate datasets and analyzing each replicate using a heuristic algorithm with a stepwise addition starting tree (generated through "as-is" sequence addition) and tree-bisection-reconnection (TBR) branch swapping. We then tested various models of evolution using Modeltest version 3.06 (Posada and Crandall 1998) under the Akaike information criterion (AIC) on one of the four most-parsimonious trees. The HKY + Γ model was chosen as the most appropriate, and the relevant parameters were optimized on the same most-parsimonious tree. These parameter values were then fixed and used to search among maximum likelihood (ML) trees with TBR branch swapping, using the four most-parsimonious trees as starting trees. The ML tree resulting from this search was then used to reoptimize parameter values and begin another search for a better ML tree. This process of successive approximation was continued until two identical ML trees were returned. The ML tree resulting from this search on the adjusted alignment was largely congruent with the tree given by Wright et al. (2003) aside from the placement of *M. angustifolia* (Fig. 1).
Independent Contrasts Analyses

For the following comparative analyses, the outgroup *C. floribunda* was removed because we were primarily interested in rate variation within the ingroup. Additionally, for most purposes (aside from rate smoothing; see below) *M. angustifolia* was removed because MAT data are not available for it. We first analyzed rate variation by calculating independent contrasts of both rate of molecular evolution and MAT between terminal taxa (similar to Bromham and Cardillo 2003). Contrasts were always calculated as the trait value of the higher MAT species minus the trait value of the lower MAT species. Therefore, all contrasts in MAT were positive, whereas contrasts in rate of substitution were only positive if the species with the higher MAT also had a higher rate. Rate contrasts were calculated both as the difference in terminal branch lengths on the maximum likelihood tree and as the difference in genetic distance from an outgroup (HKY + Γ corrected) chosen from the ML tree (relative rates test; Sarich and Wilson 1973). Species pairs and outgroups are given in Table 1. To avoid any potential node density effects, species pairs were pruned from the tree once contrasts were found, but this result was found to be entirely due to the position of one extreme outlier (Fig. 2). Once this contrast was removed from the analysis, the slope of the regression became negative and not significantly different from zero ($t = -0.62$, df = 20, one-tailed $P = 0.50$, $\beta = 6.1 \times 10^{-6}$). This outlying contrast corresponds to the root node of the ingroup and represents the contrast in rate of molecular evolution and MAT between the equatorial and subequatorial species of *Mearnsia*. Three other contrasts with similarly high MAT differences (i.e., >8.5) do not show a corresponding increase in rate of molecular evolution.

Even though Felsenstein’s independent contrasts method is relatively robust to violations of assumptions regarding node of evolution (Díaz-Uriarte and Garland 1996), we examined the possibility that biases in reconstructing ancestral node trait values caused spurious results in this situation given that MAT has an unknown pattern of change across species in this group. To do this, we examined only those contrasts between terminal taxa. The slope of this regression was also not significantly different than zero ($r = 0.02$, df = 8, one-tailed $P = 0.50$, $\beta = 2.3 \times 10^{-7}$).

By looking at a plot of rate of molecular evolution, in which rates are estimated through penalized likelihood rate smoothing (Sanderson 2002), as a function of MAT for each species without correcting for phylogeny (Fig. 3), it appears,
as pointed out by Wright et al. (2003), that the rates of evolution for all equatorial species are higher than for any of the subequatorial species. This is true even for equatorial and subequatorial species occurring at nearly identical MATs. For instance, the subequatorial *M. patens* has a MAT higher than three (*M. ovata, M. ramiflora, and M. cordata*) of the six equatorial species, yet its rate of molecular evolution is drastically lower (Fig. 3). Additionally, there seems to be no trend in rate within either clade. The regression line in Figure 3 is, in effect, based only on the means of the two clades.

In light of the above analyses, an effect of phylogenetic nonindependence appears to be a plausible explanation of the greater substitution rate in the equatorial *Mearnsia*. However, given the small number of *Mearnsia* species examined, extracting a general pattern may be especially problematic. Mean annual temperature, or an ecological correlate of MAT, may impact rate of evolution, but determining the causal factor of rate variation is likely to require more data than is available in this case. If the correlation between MAT and rate of molecular evolution is relatively weak, then multiple contrasts with large differences may be necessary before a substantial change in rate of evolution is seen. Other environmental effects, such as mean annual precipitation, mean annual evapotranspiration, or the extent of annual variation in temperature, precipitation, and/or evapotranspiration (Currie and Paquin 1987; Currie 1991) may impact rates of evolution in different ways, providing confounding “noise” to estimates of ecological correlates of rate variation. Other en-

Fig. 2. The least-squares regression of contrasts in rate of molecular evolution as a function of contrasts in mean annual temperature (MAT; solid line). The regression is forced through the origin, as required by independent contrast techniques (Felsenstein 1985). The point in the upper right corner of the plot is clearly an outlier and the cause of the positive slope. Removal of this point results in a negative slope for the regression (dotted and dashed line). This point corresponds to the contrast between equatorial and subequatorial *Mearnsia* species.

Fig. 3. The least-squares regression of the rate of evolution for extant equatorial (squares) and subequatorial (diamonds) *Mearnsia* species as a function of mean annual temperature (MAT) without correcting for phylogeny. Note that all equatorial species have a rate >0.0275.
vironmental variables may be the true cause of rate variation in Pacific species of *Mearnsia* but may be only weakly correlated with MAT. To address this issue, it would be ideal to simultaneously measure many ecological variables that could be examined using phylogenetically independent contrasts for correlations with rates of evolution.

Acknowledgments

We thank members of the Hill Country Student Journal Club at the University of Texas for stimulating discussions on this topic. D. Bickford, S. Pawar, and D. Hillis provided helpful comments on this manuscript, and D. Zwickl provided guidance with regards to analyses. We also thank S. Wright for providing us with the original aligned sequence data. JMB was supported by a Donald D. Harrington fellowship from the University of Texas. GBP was supported by a National Science Foundation IGERT fellowship in Computational Phylogenetics and Applications to Biology (DGE-0114387).

Literature Cited

Corresponding Editor: G. May