7-5-2007

Eigenvectors and reconstruction

Hongyu He
Louisiana State University

Follow this and additional works at: https://repository.lsu.edu/mathematics_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Mathematics at LSU Scholarly Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Scholarly Repository. For more information, please contact ir@lsu.edu.
Eigenvectors and Reconstruction

Hongyu He *

Department of Mathematics
Louisiana State University, Baton Rouge, USA
hongyu@math.lsu.edu

Submitted: Jul 6, 2006; Accepted: Jun 14, 2007; Published: Jul 5, 2007
Mathematics Subject Classification: 05C88

Abstract

In this paper, we study the simple eigenvectors of two hypomorphic matrices using linear algebra. We also give new proofs of results of Godsil and McKay.

1 Introduction

We start by fixing some notations ([HE1]). Let A be a $n \times n$ real symmetric matrix. Let A_i be the matrix obtaining by deleting the i-th row and i-th column of A. We say that two symmetric matrices A and B are hypomorphic if, for each i, B_i can be obtained by simultaneously permuting the rows and columns of A_i. Let Σ be the set of permutations. We write $B = \Sigma(A)$.

If M is a symmetric real matrix, then the eigenvalues of M are real. We write

$$eigen(M) = (\lambda_1(M) \geq \lambda_2(M) \geq \ldots \geq \lambda_n(M)).$$

If α is an eigenvalue of M, we denote the corresponding eigenspace by $eigen_\alpha(M)$. Let 1 be the n-dimensional vector $(1, 1, \ldots, 1)$. Put $J = 1^t1$. In [HE1], we proved the following theorem.

Theorem 1 ([HE1]) Let B and A be two real $n \times n$ symmetric matrices. Let Σ be a hypomorphism such that $B = \Sigma(A)$. Let t be a real number. Then there exists an open interval T such that for $t \in T$ we have

1. $\lambda_n(A + tJ) = \lambda_n(B + tJ)$;
2. $eigen_\lambda_n(A + tJ)$ and $eigen_\lambda_n(B + tJ)$ are both one dimensional;
3. \(\text{eigen}_{\lambda_n}(A + tJ) = \text{eigen}_{\lambda_n}(B + tJ) \).

As proved in [HE1], our result implies Tutte’s theorem which says that \(\text{eigen}(A + tJ) = \text{eigen}(B + tJ) \). So \(\det(A + tJ - \lambda I) = \det(B + tJ - \lambda I) \).

In this paper, we shall study the eigenvectors of \(A \) and \(B \). Most of the results in this paper are not new. Our approach is new. We apply Theorem 1 to derive several well-known results. We first prove that the squares of the entries of simple unit eigenvectors of \(A \) can be reconstructed as functions of \(\text{eigen}(A) \) and \(\text{eigen}(A_i) \). This yields a proof of a Theorem of Godsil-McKay. We then study how the eigenvectors of \(A \) change after a perturbation of rank 1 symmetric matrices. Combined with Theorem 1, we prove another result of Godsil-McKay which states that the simple eigenvectors that are perpendicular to \(1 \) are reconstructible. We further show that the orthogonal projection of \(1 \) onto higher dimensional eigenspaces is reconstructible.

Our investigation indicates that the following conjecture could be true.

Conjecture 1 Let \(A \) be a real \(n \times n \) symmetric matrix. Then there exists a subgroup \(G(A) \subseteq O(n) \) such that a real symmetric matrix \(B \) satisfies the properties that \(\text{eigen}(B) = \text{eigen}(A) \) and \(\text{eigen}(B_i) = \text{eigen}(A_i) \) for each \(i \) if and only if \(B = UAU^t \) for some \(U \in G(A) \).

This conjecture is clearly true if \(\text{rank}(A) = 1 \). For \(\text{rank}(A) = 1 \), the group \(G(A) \) can be chosen as \(\mathbb{Z}_2^n \), all in the form of diagonal matrices. In some other cases, \(G(A) \) can be a subgroup of the permutation group \(S_n \).

2 Reconstruction of Square Functions

Theorem 2 Let \(A \) be a \(n \times n \) real symmetric matrix. Let \((\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n) \) be the eigenvalues of \(A \). Suppose \(\lambda_i \) is a simple eigenvalue of \(A \). Let \(p_i = (p_{1,i}, p_{2,i}, \cdots, p_{n,i})^t \) be a unit vector in \(\text{eigen}_{\lambda_i}(A) \). Then for every \(m \), \(p_{m,i}^2 \) can be expressed as a function of \(\text{eigen}(A) \) and \(\text{eigen}(A_m) \).

Proof: Let \(\lambda_i \) be a simple eigenvalue of \(A \). Let \(p_i = (p_{1,i}, p_{2,i}, \cdots, p_{n,i})^t \) be a unit vector in \(\text{eigen}_{\lambda_i}(A) \). There exists an orthogonal matrix \(P \) such that \(P = (p_1, p_2, \cdots, p_n) \) and \(A = PDP^t \) where

\[
D = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}.
\]

Then

\[
A - \lambda_i I = PDP^t - \lambda_i I = P(D - \lambda_i I)P^t = \sum_{j \neq i} (\lambda_j - \lambda_i)p_j p_j^t.
\]
which equals

\[
\begin{pmatrix}
 p_{1,1} & \cdots & \hat{p}_{1,i} & \cdots & p_{1,n} \\
 p_{2,1} & \cdots & \hat{p}_{2,i} & \cdots & p_{2,n} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 p_{n,1} & \cdots & \hat{p}_{n,i} & \cdots & p_{n,n}
\end{pmatrix}
\begin{pmatrix}
 \lambda_1 - \lambda_i & \cdots & 0 & \cdots & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & \cdots & \lambda_i - \lambda_i & \cdots & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & \cdots & \lambda_n - \lambda_i
\end{pmatrix}
\begin{pmatrix}
 p_{1,1} & p_{2,1} & \cdots & p_{n,1} \\
 \vdots & \vdots & \ddots & \vdots \\
 \hat{p}_{1,i} & \hat{p}_{2,i} & \cdots & \hat{p}_{n,i} \\
 \vdots & \vdots & \ddots & \vdots \\
 p_{1,n} & p_{2,n} & \cdots & p_{n,n}
\end{pmatrix}
\]

Deleting the \(m\)-th row and \(m\)-th column, we obtain

\[
\begin{pmatrix}
 p_{1,1} & \cdots & \hat{p}_{1,i} & \cdots & p_{1,n} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 \hat{p}_{m,1} & \cdots & \hat{p}_{m,i} & \cdots & \hat{p}_{m,n} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 p_{n,1} & \cdots & \hat{p}_{n,i} & \cdots & p_{n,n}
\end{pmatrix}
\begin{pmatrix}
 \lambda_1 - \lambda_i & \cdots & 0 & \cdots & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & \cdots & \lambda_i - \lambda_i & \cdots & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & \cdots & \lambda_n - \lambda_i
\end{pmatrix}
\begin{pmatrix}
 p_{1,1} & \hat{p}_{m,1} & \cdots & p_{n,1} \\
 \vdots & \vdots & \ddots & \vdots \\
 \hat{p}_{1,i} & \hat{p}_{m,i} & \cdots & \hat{p}_{n,i} \\
 \vdots & \vdots & \ddots & \vdots \\
 p_{1,n} & \hat{p}_{m,n} & \cdots & p_{n,n}
\end{pmatrix}
\]

This is \(A_m - \lambda_i I_{n-1}\). Notice that \(P\) is orthogonal. Let \(P_{m,i}\) be the matrix obtained by deleting the \(m\)-th row and \(i\)-th column. Then \(\det P_{m,i}^2 = p_{m,i}^2\) where \(p_{m,i}\) is the \((m, i)\)-th entry of \(P\). Taking the determinant, we have

\[
\det(A_m - \lambda_i I_{n-1}) = p_{m,i}^2 \prod_{j \neq i} (\lambda_j - \lambda_i).
\]

It follows that

\[
p_{m,i}^2 = \frac{\prod_{j=1}^{n-1} (\lambda_j (A_m) - \lambda_i)}{\prod_{j \neq i} (\lambda_j - \lambda_i)}.
\]

Q.E.D.

Corollary 1 Let \(A\) and \(B\) be two \(n \times n\) real symmetric matrices. Suppose that \(\text{eigen}(A) = \text{eigen}(B)\) and \(\text{eigen}(A_i) = \text{eigen}(B_i)\). Let \(\lambda_i\) be a simple eigenvalue of \(A\) and \(B\). Let
\(p_i = (p_{1,i}, p_{2,i}, \ldots, p_{n,i})^t \) be a unit vector in \(\text{eigen}_{\lambda_i}(A) \) and \(q_i = (q_{1,i}, q_{2,i}, \ldots, q_{n,i})^t \) be a unit vector in \(\text{eigen}_{\lambda_i}(B) \). Then

\[
p^2_{j,i} = q^2_{j,i} \quad \forall j \in [1,n].
\]

Corollary 2 (Godsil-McKay, see Theorem 3.2, [GM]) Let \(A \) and \(B \) be two \(n \times n \) real symmetric matrices. Suppose that \(A \) and \(B \) are hypomorphic. Let \(\lambda_i \) be a simple eigenvalue of \(A \) and \(B \). Let \(p_i = (p_{1,i}, p_{2,i}, \ldots, p_{n,i})^t \) be a unit vector in \(\text{eigen}_{\lambda_i}(A) \) and \(q_i = (q_{1,i}, q_{2,i}, \ldots, q_{n,i})^t \) be a unit vector in \(\text{eigen}_{\lambda_i}(B) \). Then

\[
p^2_{j,i} = q^2_{j,i} \quad \forall j \in [1,n].
\]

3 Eigenvalues and Eigenvectors under the perturbation of a rank one symmetric matrix

Let \(A \) be a \(n \times n \) real symmetric matrix. Let \(x \) be a \(n \)-dimensional row column vector. Let \(M = xx^t \). Now consider \(A + tM \). We have

\[
A + tM = PDP^t + tM = P(D + tP^tMP)P^t = P(D + tP^txx^tP)P^t.
\]

Let \(P^tx = q \). So \(q_i \) is \((p_i, x) \) for each \(i \in [1,n] \). Then

\[
A + tM = P(D + tqq^t)P^t.
\]

Put \(D(t) = D + tqq^t \).

Lemma 1 \(\det(D + tqq^t - \lambda I) = \det(A - \lambda I)(1 + \sum_i \frac{tq^2}{\lambda_i - \lambda}) \).

Proof: \(\det(D - \lambda I + tqq^t) \) can be written as a sum of products of \(\lambda_i - \lambda \) and \(q_ig_j \). For each \(S \) a subset of \([1,n] \), combine the terms containing only \(\prod_{i \in S}(\lambda_i - \lambda) \). Since the rank of \(qq^t \) is one, only for \(|S| = n, n-1 \), the coefficients may be nonzero. We obtain

\[
\det(D + tqq^t - \lambda I) = \prod_{i=1}^{n}(\lambda_i - \lambda) + \sum_{i=1}^{n} t q_i^2 \prod_{j \neq i}(\lambda_i - \lambda).
\]

The Lemma follows. \(\square \)

Put \(P_t(\lambda) = 1 + \sum_i \frac{tq^2_i}{\lambda_i - \lambda} \).

Lemma 2 Fix \(t < 0 \). Suppose that \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are distinct and \(q_i \neq 0 \) for every \(i \). Then \(P_t(\lambda) \) has exactly \(n \) roots \((\mu_1, \mu_2, \cdots, \mu_n) \) satisfying an interlacing relation:

\[
\lambda_1 > \mu_1 > \lambda_2 > \mu_2 > \cdots > \mu_{n-1} > \lambda_n > \mu_n.
\]
Proof: Clearly, \(\frac{dP_t(\lambda)}{d\lambda} = \sum_i \frac{(q_i^2)}{\lambda_i - \lambda} \) < 0. So \(P_t(\lambda) \) is always decreasing. On the interval \((-\infty, \lambda_n)\), \(\lim_{\lambda \to -\infty} P_t(\lambda) = 1 \) and \(\lim_{\lambda \to \lambda_n} P_t(\lambda) = -\infty \). So \(P_t(\lambda) \) has a unique root \(\mu_n \in (-\infty, \lambda_n) \). Similar statement holds for each \((\lambda_{i-1}, \lambda_i)\). On \((\lambda_1, \infty)\), \(\lim_{\lambda \to \infty} P_t(\lambda) = 1 \) and \(\lim_{\lambda \to \lambda_1^+} P_t(\lambda) = \infty \). So \(P_t(\lambda) \) does not have any roots in \((\lambda_1, \infty)\). Q.E.D.

Theorem 3 Fix \(t < 0 \) and \(x \in \mathbb{R}^n \). Let \(M = xx^t \). Let \(l \) be the number of distinct eigenvalues satisfying \((x,eigen_{\lambda_i}(A)) \neq 0\). Choose an orthonormal basis of each eigenspace of \(A \) so that one of the eigenvectors is a multiple of the orthogonal projection of \(x \) onto the eigenspace if this projection is nonzero. Denote this basis by \(\{p_i\} \) and let \(P = (p_1, p_2, \ldots, p_n) \). Let

\[
S = \{i_1 > i_2 > \cdots > i_l\}
\]

such that \((x, p_i) \neq 0\) for every \(i \in S \) and \((x, p_i) = 0\) for every \(i \notin S \). Then there exists \((\mu_1, \ldots, \mu_l)\) such that

\[
\lambda_{i_1} > \mu_1 > \lambda_{i_2} > \mu_2 > \cdots > \lambda_{i_l} > \mu_l
\]

and

\[
eigen(A + tM) = \{\lambda_i(A) \mid i \notin S\} \cup \{\mu_1, \mu_2, \ldots, \mu_l\}.
\]

Furthermore, \(\eigen_{\mu_j}(A + tM) \) contains

\[
\sum_{i \in S} p_i \frac{q_i}{\lambda_i - \mu_j}.
\]

Here the index set \(\{i_1, i_2, \ldots, i_l\} \) may not be unique. I shall also point out a similar statement holds for \(t > 0 \) with

\[
\mu_1 > \lambda_{i_1} > \mu_2 > \lambda_{i_2} > \cdots > \mu_l > \lambda_{i_l}.
\]

Proof: Recall that \(q_i = (p_i, x) \). Since \((x, eigen_{\lambda_j}(A)) \neq 0, q_{i_j} \neq 0\). For \(i \notin S, q_i = 0\). Notice

\[
P_t(\lambda) = 1 + \sum_{j=1}^l \frac{tq_{i_j}^2}{\lambda_{i_j} - \lambda}.
\]

Applying Lemma 2 to \(S \), we obtain the roots of \(P_t(\lambda), \{\mu_1, \mu_2, \ldots, \mu_l\} \), satisfying

\[
\lambda_{i_1} > \mu_1 > \lambda_{i_2} > \mu_2 > \cdots > \lambda_{i_l} > \mu_l.
\]

It follows that the roots of \(\text{det}(A + tM - \lambda I) = P_t(\lambda) \prod_{i=1}^n (\lambda_i - \lambda) \) can be obtained from \(\eigen(A) \) by changing \(\{\lambda_{i_1} > \lambda_{i_2} > \cdots > \lambda_{i_l}\} \) to \(\{\mu_1, \mu_2, \ldots, \mu_l\} \). Therefore,

\[
\eigen(A + tM) = \{\lambda_i(A) \mid i \notin S\} \cup \{\mu_1, \mu_2, \ldots, \mu_l\}.
\]
Fix a μ_j. Let $\{e_i\}$ be the standard basis for \mathbb{R}^n. Notice that

$$
(A + tM) \sum_{i \in S} \frac{q_i}{\lambda_i - \mu_j} p_i
=P(D + tqq^t)P^t \sum_{i \in S} \frac{q_i}{\lambda_i - \mu_j} p_i
=P(D + tqq^t) \sum_{i \in S} \frac{q_i}{\lambda_i - \mu_j} e_i
=P \left(\sum_{i \in S} \frac{\lambda_i q_i}{\lambda_i - \mu_j} e_i + t \begin{pmatrix} q_1 \\ \vdots \\ q_n \end{pmatrix} \sum_{i \in S} \frac{q_i^2}{\lambda_i - \mu_j} \right)
=P \left(\sum_{i \in S} \frac{\mu_j q_i}{\lambda_i - \mu_j} e_i - \sum_{i \in S} q_i e_i \right)
=P \sum_{i \in S} \frac{\mu_j q_i}{\lambda_i - \mu_j} e_i
=\mu_j \sum_{i \in S} \frac{q_i}{\lambda_i - \mu_j} p_i
$$

(1)

Notice that here we use the fact that $P_t(\mu_j) = \sum_{i \in S} \frac{tq_i^2}{\lambda_i - \mu_j} + 1 = 0$. We have obtained that $(A + tM) \sum_{\lambda_i \in S} \frac{q_i}{\lambda_i - \mu_j} p_i = \mu_j \sum_{i \in S} \frac{q_i}{\lambda_i - \mu_j} p_i$. Therefore,

$$
\sum_{i \in S} \frac{q_i}{\lambda_i - \mu_j} p_i \in \text{eigen}_{\mu_j}(A + tM).
$$

Q.E.D.

4 Reconstruction of Simple Eigenvectors not perpendicular to 1

Now let $M = J = 11^t$. Theorem 3 applies to $A + tJ$ and $B + tJ$.

Theorem 4 (Godsil-McKay, [GM]) Let B and A be two real $n \times n$ symmetric matrices. Let Σ be a hypomorphism such that $B = \Sigma(A)$. Let $S \subseteq [1,n]$, $A = PD^t$ and $B = UD^t$ be as in Theorem 3. For $i \in S$, we have $p_i = u_i$ or $p_i = -u_i$. In particular, if λ_i is a simple eigenvalue of A and $(\text{eigen}_{\lambda_i}(A), 1) \neq 0$, then $\text{eigen}_{\lambda_i}(A) = \text{eigen}_{\lambda_i}(B)$.

Proof: • By Tutte’s theorem, $eigen(A) = eigen(B)$. Let $A = PD^t$ and $B = UD^t$. Since $\det(A + tJ - \lambda I) = \det(B + tJ - \lambda I)$, by Lemma 1,

$$
\det(A - \lambda I)(1 + \sum_i \frac{t(1, p_i)^2}{\lambda_i - \lambda}) = \det(B - \lambda I)(1 + \sum_i \frac{t(1, u_i)^2}{\lambda_i - \lambda}).
$$
It follows that for every \(\lambda_i, \sum_{j} \lambda_j (1, p_j)^2 = \sum_{j} \lambda_j (1, u_j)^2 \). Consequently, the \(l \) for \(A \) is the same as the \(l \) for \(B \). Let \(S \) be as in Theorem 3 for both \(A \) and \(B \). Without loss of generality, suppose that \(A = PDP^t \) and \(B = UDU^t \) as in Theorem 3. In particular, for every \(i \in [1, n] \), we have
\[
(p_i, 1)^2 = (u_i, 1)^2. \tag{2}
\]

- Let \(T \) be as in the proof of Theorem 1 in [HE1] for \(A \) and \(B \). Without loss of generality, suppose \(T = (t_1, t_2) \subseteq \mathbb{R}^- \). Let \(t \in T \) and let \(\mu_i(t) \) be the \(\mu_i \) in Theorem 3 for \(A \) and \(B \). Notice that the lowest eigenvectors of \(A + tJ \) and \(B + tJ \) are in \(\mathbb{R}^+ \) (see Lemma 1, Theorem 7 and Proof of Theorem 2 in [HE1]). So they are not perpendicular to \(1 \). By Theorem 3, \(\mu_i(t) = \lambda_n(A + tJ) = \lambda_n(B + tJ) \). By Theorem 1,
\[
eigen_{\mu_i(t)}(A + tJ) = \eigen_{\mu_i(t)}(B + tJ) \cong \mathbb{R}.
\]

So \(\sum_{i \in S} p_i \lambda_i (p_i, 1) \) is parallel to \(\sum_{i \in S} u_i \lambda_i (u_i, 1) \). Since \(\{p_i\} \) and \(\{u_i\} \) are orthonormal, by Equation 2,
\[
\| \sum_{i \in S} p_i (p_i, 1) \|_2^2 = \| \sum_{i \in S} u_i (u_i, 1) \|_2^2.
\]

It follows that for every \(t \in T \),
\[
\sum_{i \in S} p_i \frac{(p_i, 1)}{\lambda_i - \mu_i(t)} = \pm \sum_{i \in S} u_i \frac{(u_i, 1)}{\lambda_i - \mu_i(t)}.
\]

- Recall that \(-\frac{1}{t} = \sum_i \frac{q_i^2}{\lambda_i - \rho} \). Notice that the function \(\rho \to \sum_i \frac{q_i^2}{\lambda_i - \rho} \) is a continuous and one-to-one mapping from \((-\infty, \lambda_n) \) onto \((0, \infty) \). There exists a nonempty interval \(T_0 \subseteq (-\infty, \lambda_n) \) such that if \(\rho \in T_0 \), then \(\sum_i \frac{q_i^2}{\lambda_i - \rho} \in (-\frac{1}{t_1}, -\frac{1}{t_2}) \). So every \(\rho \in T_0 \) is a \(\mu_i(t) \) for some \(t \in (t_1, t_2) \). It follow that for every \(\rho \in T_0 \),
\[
\sum_{i \in S} p_i \frac{(p_i, 1)}{\lambda_i - \rho} = \pm \sum_{i \in S} u_i \frac{(u_i, 1)}{\lambda_i - \rho}.
\]

Notice that both vectors are nonzero and depend continuously on \(\rho \). Either,
\[
\sum_{i \in S} p_i \frac{(p_i, 1)}{\lambda_i - \rho} = \sum_{i \in S} u_i \frac{(u_i, 1)}{\lambda_i - \rho} \quad \forall (\rho \in T_0);
\]
or,
\[
\sum_{i \in S} p_i \frac{(p_i, 1)}{\lambda_i - \rho} = - \sum_{i \in S} u_i \frac{(u_i, 1)}{\lambda_i - \rho} \quad \forall (\rho \in T_0);
\]

- Notice that the functions \(\rho \to \frac{1}{\lambda_i - \rho} \) are linearly independent. For every \(i \in S \), we have
\[
p_i(p_i, 1) = \pm u_i(u_i, 1).
\]

Because \(p_i \) and \(u_i \) are both unit vectors, \(p_i = \pm u_i \). In particular, for every simple \(\lambda_i \) with \((p_i, 1) \neq 0 \) we have \(\eigen_{\lambda_i}(A) = \eigen_{\lambda_i}(B) \). Q.E.D.
Corollary 3 Let B and A be two real $n \times n$ symmetric matrices. Suppose that $B = \Sigma(A)$ for a hypomorphism Σ. Let λ_i be an eigenvalue of A such that $(\text{eigen}_{\lambda_i}(A), 1) \neq 0$. Then the orthogonal projection of 1 onto $\text{eigen}_{\lambda_i}(A)$ equals the orthogonal projection of 1 onto $\text{eigen}_{\lambda_i}(B)$.

Proof: Notice that the projections are $p_i(p_i, 1)$ and $u_i(u_i, 1)$. Whether $p_i = u_i$ or $p_i = -u_i$, we always have

$$p_i(p_i, 1) = u_i(u_i, 1).$$

Q.E.D.

Conjecture 2 Let A and B be two hypomorphic matrices. Let λ_i be a simple eigenvalue of A. Then there exists a permutation matrix τ such that $\tau\text{eigen}_{\lambda_i}(A) = \text{eigen}_{\lambda_i}(B)$.

This conjecture is apparently true if $\text{eigen}_{\lambda_i}(A)$ is not perpendicular to 1.

References

