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Abstract

Banach spaces of functions, or more generally, of distributions are one of the main

topics in analysis. In this thesis, we present an abstract framework for construction

of invariant Banach function spaces from projective group representations. Coorbit

theory gives a unified method to construct invariant Banach function spaces via rep-

resentations of Lie groups. This theory was introduced by Feichtinger and Gröchenig

in [23, 24, 25, 26] and then extended in [9]. We generalize this concept by constructing

coorbit spaces using projective representation which is first studied by O. Christensen

in [10]. This allows us to describe wider classes of function spaces as coorbits, in order

to construct frames and atomic decompositions for these spaces. As in the general

coorbit theory, we construct atomic decompositions and Banach frames for coorbit

spaces under certain smoothness conditions. By this modification, we can discretize

the Bergman spaces Apα(Bn) via the family of projective representations {ρs} of the

group SU(n, 1), for any real parameter s > n.

v



Chapter 1
Introduction

Bergman spaces on the unit disk D are among the interesting function spaces which

are studied by many mathematicians. In 1950 S. Bergman introduced these spaces in

his book [3]. For 1 ≤ p <∞, Bergman space is the space of all holomorphic functions

that belong to Lp(D). One of the problems that arises is to give a discrete description

of these spaces. The same question can be asked for Bergman spaces on the unit ball

in Cn, or more generally, on a bounded symmetric domain. Recently, J. Christensen,

Gröchenig, and Ólafsson, used the coorbit theory to describe Bergman spaces on the

unit ball as coorbits of Lp-spaces in their paper [6]. They constructed these coorbits

via the representation (projective representation)

πs(x)f(z) = (−(z, b) + d̄)−sf(x−1 · z) (1.1)

of the group SU(n, 1). Here x =

 A b

ct d

, where A is an n × n matrix, and b,

c are vectors in Cn, and d ∈ C. This function is a multi-valued function for non-

integer values of s > n, due to the term (−(z, b) + d̄)−s. To make this function into

a single valued function, we have two approaches. The first is done in [6], when they

defined this function on a simply connected subgroup of SU(n, 1). This subgroup is

diffeomorphic to SU(n, 1)/K, where K is the maximal compact subgroup of SU(n, 1).

The second approach is to consider this function as a projective representation of

SU(n, 1).
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In the same paper [6], the authors constructed frames and atomic decompositions for

Bergman spaces via a representation of a finite covering group of SU(n, 1) under the

restriction that the parameter s > n is rational.

In this thesis, we obtain frames and atomic decompositions for Bergman spaces via the

full group SU(n, 1) by using the second approach. To do this, we modify the coorbit

theory so that we construct a coorbit space by using the projective representation.

In 1980’s H. Feichtinger and K. Gröchenig developed the theory of coorbits [23, 24,

25, 26], which become a powerful tool for discretizing wide classes of function spaces.

Assume that (π,H) is an integrable representation with respect to the measure w dx

on a Lie group G, where w is a submultiplicative weight function and dx is left

invariant Haar measure on G. Fix u from the space of analyzing vectors

Aw :=
{
u ∈ H | (π(·)u, u) ∈ L1

w(G)
}

and define the Banach space

H1
w :=

{
v ∈ H | (π(·)u, v) ∈ L1

w(G)
}
.

If we denote the conjugate dual space of H1
w by (H1

w)∗, then the coorbit space of a

left invariant Banach space B is

CoB :=
{
φ ∈ (H1

w)∗ | 〈φ, π(·)u〉 ∈ B
}
,

where 〈·, ·〉 is the dual pairing of H1
w and (H1

w)∗. The coorbit space CoB is a π-

invariant Banach space, which is isometrically isomorphic to a reproducing kernel

Banach subspace of B. Feichtinger and Gröchenig showed that, if {xi} is a well

spread set of G, then {π(xi)u} forms a frame and an atomic decomposition for CoB

under certain assumptions on u, see [24].

J. Christensen and Ólafsson generalized the definition of coorbit spaces in [9] to remove

the integrability and irreducibility restrictions. Let π be a representation on a Fréchet
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space S, where S is continuously embedded and weakly dense in its conjugate dual S∗.

If we fix a cyclic vector u ∈ S and define the wavelet transform Wu(φ)(x) = 〈φ, π(x)u〉,

then under the assumption in [9], the coorbit space of a left invariant Banach function

space B

CouπB := {φ ∈ S∗ | Wu(φ) ∈ B}

is a π∗-invariant Banach space, which is isometrically isomorphic to the reproducing

kernel Banach subspace

Bu := {f ∈ B | f ∗Wu(u) = f}.

In [10], O. Christensen extended the definition of the Feichtinger-Gröchenig coorbit

space to be applied for an irreducible unitary projective representation ρ on a Hilbert

space H, under the restriction of the integrability of ρ. He proved that the same

results are true as in Feichtinger-Gröchenig theory.

In this thesis, we give a general definition of the coorbit space that arises from the

projective representation to describe wider classes of function spaces as coorbits. In

particular, we apply the coorbit theory to Bergman spaces when the projective rep-

resentation is not integrable. Then, we construct frames and atomic decompositions

for these spaces.

This thesis will be organized as follows: Chapter 2 is devoted to give a background for

the main tools of coorbit theory. We define some basic concepts like a Lie group and its

left invariant Haar measure, strongly continuous representation, continuous wavelet

transform, and left/right invariant Banach function spaces; moreover, we define a

reproducing kernel Banach space. We conclude this chapter with some results related

to the square integrable representations. In Chapter 3, the coorbit theory, which

is founded by Feichtinger and Gröchenig, is studied in detail. First, we give a quick

3



survey of Feichtinger-Gröchenig theory without proofs. Then, we describe the general

coorbit theory of J. Christensen and Ólafsson. Next, we summarize the main results

about discretization of coorbit spaces. It is shown that the family {π(xi)u} forms

a frame and an atomic decomposition for the coorbit space CouπB. In Chapter 4,

we study a concrete example of a dual pairing coorbit, Bergman spaces on the unit

disk, which is studied in [6, 8, 9]. In Chapter 5, we formulate our main result about

the existence of the twisted convolutive coorbits, and the existence of its atomic

decompositions. First, we give background about a projective representation of a Lie

group, and we introduce the twisted convolution. Then, we define the twisted coorbit

space via a projective representation and study the connection between the regular

coorbits and the twisted coorbits. Finally, we find conditions that ensure that the

family {ρ(xi)u} forms a frame and an atomic decomposition for the twisted coorbit.

Then, last chapter is devoted to describe Bergman spaces, Aps(Bn), on the unit ball

as twisted coorbits of Lp spaces via a projective representation on the group SU(n, 1)

for all values of the parameter s > n. We conclude Chapter 5 with a construction of

atomic decompositions for Aps(Bn).

4



Chapter 2
Banach Function Spaces and Wavelets

2.1 Preliminaries

A Lie group 1 is a group endowed with the structure of a smooth manifold such that

the group multiplication and the group inversion are smooth. Typical examples of

Lie groups are the classical linear matrix groups, like the orthogonal group O(n),

the unitary group U(n), and the special linear group SL(n,R). A Fréchet space is a

locally convex, complete, Hausdorff topological vector space with topology induced

by a countable family of semi-norms. Fréchet spaces are a generalization of Banach

spaces, for more details see [40].

Through this thesis we assume that G is a Lie group which is σ−compact and S is a

Fréchet space. We assume that the conjugate linear dual S∗ of S equipped with the

weak*-topology. Moreover, S is continuously embedded and weakly dense in S∗. We

will use 〈·, ·〉 to denote the dual pairing of the spaces S and S∗. As usual we denote

the group of all bounded automorphisms on S with bounded inverses by GL(S), and

the subgroup of all unitary such automorphisms by U(S).

2.2 Continuous Representation

Let V be a complete locally convex Hausdorff topological vector space. A strongly

continuous representation 2 of G on the space V is a continuous group homomorphism

π : G → GL(V ) in the sense that the map x 7→ π(x)v is continuous for all v ∈ V .

That is, π : G→ GL(V ) is a continuous group homomorphism when the group GL(V )

1We only study finite dimensional Lie groups.
2In this thesis we sometimes write continuous representation or even representation instead of strongly continuous

representation.
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is endowed with the strong operator topology. If V = S, then the strong continuity

condition and the continuity of the action (x, v) 7→ π(x)v from G × S into S are

equivalent (see [46]). LetH be a Hilbert space, if π(x) is a unitary representation onH

for all x ∈ G, then the representation π : G→ U(H) is called unitary representation.

A subspace W of S is called an invariant subspace if π(x)W ⊂ W for all x ∈ G. A

representation (π,S) is called irreducible if the only invariant closed subspaces of S

are 0 and S itself. A nonzero vector u ∈ S is called π-cyclic if the span of the set

{π(x)u | x ∈ G} is a dense subset of S. This is equivalent to the following condition:

If 〈λ, π(x)u〉 = 0 for all x ∈ G, then λ = 0.

It is not hard to see that a representation is irreducible if and only if every nonzero

vector is cyclic (see [13]).

2.2.1 Contragradient Representation

Let π be a strongly continuous representation of G on the Fréchet space S. We define

the contragradient representation (or the dual representation, see [27] ) π∗ on S∗ by

〈π∗(x)φ, v〉 := 〈φ, π(x−1)v〉 (2.1)

for all v ∈ S and all φ ∈ S∗. This relation defines an actual representation of G on

the space S∗ as we show in the following lemma.

Lemma 2.1. Let π be a representation of G on the Fréchet space S and let S∗ be

the conjugate dual of S equipped with the weak*-topology. The mapping π∗ which is

defined in 2.1 is a strongly continuous representation of G on the space S∗.

Proof. First, we show that π∗ is a homomorphism. Fix φ ∈ S∗, for any v ∈ S we have

〈π∗(xy)φ, v〉 =〈φ, π((xy)−1)v〉

=〈φ, π(y−1)π(x−1)v〉
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=〈π∗(y)φ, π(x−1)v〉

=〈π∗(x)π∗(y)φ, v〉.

Thus, π∗(xy) = π∗(x)π∗(y). Now, we show that x 7→ π∗(x)φ is continuous from

G into S∗ for all φ ∈ S∗. Let {xα} be a net in G such that xα → x in G, then

π(x−1
α )v → π(x−1

α )v in S, because the inversion map and x → π(x)v are continuous.

The continuity of the dual paring implies that 〈φ, π(x−1
α )v〉 → 〈φ, π(x−1)v〉, or equiv-

alently 〈π∗(xα)φ, v〉 → 〈π∗(x)φ, v〉. Thus, π∗(xα)φ → π∗(x)φ weakly. Therefore the

mapping x 7→ π∗(x)φ is continuous.

2.3 Haar Measure on a Lie Group

In this section, we study a special kind of Borel measures on a (Hausdorff) locally com-

pact topological group. This measure is invariant under left translation of Borel sets.

For instance, Lebesgue measure on Rn is a left translation invariant Borel measure.

However, we are looking for a generalization of Lebesgue measure. For a reference we

encourage the reader to see, for example, [2, 16, 21].

Let X be a locally compact topological space. Recall that the Borel σ-algebra B on

X is the σ-algebra that is generated by the topology of X, i.e., the set of all open

subsets of X. A Boral measure µ is a positive measure defined on the Borel algebra

B. Moreover, µ is called regular if

1. µ is finite on every compact subset of X,

2. µ(B) = inf {µ(U) : U is open and B ⊂ U} for B ∈ B,

3. µ(B) = sup {µ(K) : K is compact and K ⊂ B} for B ∈ B with a finite mea-

sure.

7



Let G be a locally compact group, a Borel measure µG on G is called left invariant if

µG(aB) = µG(B) for all B ∈ B and a ∈ G. This condition can be written equivalently∫
G

f(ax) dµG(x) =

∫
G

f(x) dµG(x)

for any f ∈ Cc(G) and a ∈ G. We will use dµ(x) or dx instead of dµG(x) if there is

no confusion.

A left invariant regular Borel measure is called left Haar measure. In the same way

we define the right Haar measure. The following theorem states the existence and the

uniqueness of Haar measure.

Theorem 2.2. Let G be a locally compact group. There exists a nonzero left Haar

measure on G which is unique up to a positive constant.

One can see that if µG is the left Haar measure on G, then µG(U) > 0 for any non-

empty open subset of G, and if G is compact then µG(G) is finite. In this case, we

normalize the measure such that
∫
G
dµG(x) = 1.

If µ is a left Haar measure on G, then for any a ∈ G, we define a new left Haar

measure µa(B) = µ(Ba) for B ∈ B. By the previous theorem, there is a positive

constant, ∆(a), which depends on a such that∫
G

f(x) dµa(x) = ∆(a)

∫
G

f(x) dµ(x).

Hence, we define a function ∆ : G 7→ R+, which is called the modular function. A

group is called unimodular if the modular function identically equals to 1. In the

following theorem we summarize some properties of the modular function.

Theorem 2.3. 1. The modular function is a continuous group homomorphism

from G into R+, the multiplicative group of positive real numbers.

2. If G is abelian or compact then G is unimodular.

8



3. Let a ∈ G and f ∈ L1(G). Then∫
G

f(xa) dµ(x) = ∆(a−1)

∫
G

f(x) dµ(x).

4. If f ∈ L1(G), then ∫
G

f(x−1)∆(x−1) dµ(x) =

∫
G

f(x) dµ(x).

If G acts continuously on a manifold M, then a Borel measure µ on M is called

G-invariant if ∫
M
f(g · x) dµ(x) =

∫
M
f(x) dµ(x)

for all f ∈ Cc(M). If K is a closed subgroup of G, then G/K is manifold, and G acts

on G/K by g · (aK) = (ga)K. If we denote the natural projection from G onto G/K

by π, then for any f on G/K the function f ◦π is on G. We conclude this section with

the following proposition about the existence of G-invariant measure on the quotient

space G/K when K is compact. There is a more general statement when K is closed,

for example see [20].

Proposition 2.4. Let K be a compact subgroup of G and let µG be the left Haar

measure on G. Then, there exists a G-invariant measure µG/K on G/K. Moreover,

we can normalize µG/K so that∫
G/K

f(x) dµG/K(x) =

∫
G

f ◦ π(x) dµG(x)

where π : G→ G/K is the natural projection π(x) = xK.

2.4 Banach Function Spaces

In this section, we describe an important class of function spaces and give some

definitions that will be used to construct Banach representations.
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2.4.1 Banach Function Spaces and BF-Spaces

Let (M, µ) be a measure space. A Banach function space is a vector space B of

equivalence classes of measurable functions on M for which there exists a mapping

f 7→ ‖f‖B such that

1. the value ‖f‖B is non-negative and ‖f‖B = 0 if and only if f = 0 µ-almost

everywhere,

2. for any scalar λ, we have ‖λf‖B = |λ| ‖f‖B,

3. the triangle inequality ‖f + g‖B ≤ ‖f‖B + ‖g‖B holds for all f and g in B,

4. the space B is complete in the topology defined by ‖.‖B.

In this thesis, we assume that the space M is a σ-finite measure space with measure

µ. We say that a Banach function space B is solid if for measurable functions f and

g on M for which |g(x)| ≤ |f(x)| for almost all x ∈ M and f ∈ B, then g ∈ B with

‖g‖B ≤ ‖f‖B.

A well known family of solid Banach function spaces are the Lp-spaces. Let µn be the

Lebesgue measure on Rn. For 1 ≤ p <∞, we define

Lp(Rn) :=
{
f : Rn → C | ‖f‖p :=

(∫
Rn
|f(x)|pdµn(x)

)1/p

<∞
}
.

Other examples of solid Banach function spaces are the family of weighted Lp-spaces.

A weight w is a continuous function w : M 7→ R+. We define the Banach function

space Lpw(M) for 1 ≤ p <∞, as

Lpw(M) :=
{
f : M→ C | ‖f‖Lpw :=

(∫
M
|f(x)|pw(x) dµ(x)

)1/p

<∞
}
.

Notice that f ∈ Lp(M) if and only if |f |pw ∈ L1(M). Also w-weighted Lp-spaces are

nothing but Lp spaces with a new measure dv = w dµ which can be explained by the

10



Radon-Nikodym derivative

w =
dv

dµ
.

If M = G, where G a Lie group (or more generally Hausdorff locally compact topo-

logical group), we define the left and right translation operators on B by

Laf(x) := f(a−1x)

and

Raf(x) := f(xa)

for f ∈ B. We say that B is left invariant if Laf ∈ B for all f ∈ B and f 7→ Laf is

continuous. Similarly, we define right invariant Banach function spaces on G. We say

that the right translation is continuous if x 7→ Rxf is continuous for all f ∈ B, i.e.,

x 7→ Rx is a continuous representation of G on B. In this thesis we deal with specific

function spaces which are called BF-spaces.

Definition 2.5. A Banach function space B on G is called a BF-space if

1. Its topological dual space B∗ is a Banach function space on G, and the dual

paring is given by integral.

2. The convergence in the space B implies convergences (locally) in Haar measure

on G.

In the following example we show that the family of Banach function spaces Lpw(G),

with submultiplicative weight, are left invariant with continuous left translation. More

specific, it is a typical example of left-invariant BF-spaces.

Example 2.6. Let w : G 7→ R+ be a weight function. It is called submultiplicative if

w(xy) ≤ w(x)w(y) for all x, y ∈ G. We always assume that w(x) ≥ 1. Assume that

dµG is the left invariant Haar measure on G. We claim that the w-weighted Lp-space

Lpw(G) :=
{
f : ‖f‖Lpw :=

(∫
G

|f(x)|pw(x)dµG(x)
)1/p

<∞
}

11



is a solid left invariant Banach function space in which the left translation is continu-

ous. Indeed, solidity comes from the fact that Lpw(G) = Lp(G,wdµG). For f ∈ Lpw(G)

and a ∈ G, we have

‖Laf‖pLpw =

∫
G

|Laf(x)|pw(x)dµG(x)

=

∫
G

|f(a−1x)|pw(x) dµG(x)

=

∫
G

|f(x)|pw(ax) dµG(x)

≤
∫
G

|f(x)|pw(a)w(x) dµG(x)

=w(a)

∫
G

|f(x)|pw(x) dµG(x)

=w(a)‖f‖p
Lpw

<∞.

It follows that Laf ∈ Lpw(G), and f 7→ Laf is continuous. So, the space Lpw(G) is

left invariant. Finally, the continuity of the left translation follows from the fact that

the space of compactly supported continuous functions is dense in Lpw(G), and the

continuity on a compact set implies uniform continuity on that set.

2.4.2 Convolution on BF-Spaces

Let dx := dµG(x) be the left Haar measure on G. For two functions f and g on the

group G, we define the convolution by

f ∗ g(x) :=

∫
G

f(y)g(y−1x) dx for all x ∈ G

whenever the integral is defined. In particular, the convolution is well defined under

the conditions of the following lemma. Through this thesis we define g∨(x) := g(x−1)

for a function g on the group G.

Lemma 2.7. Let B be a left-invariant BF-space on G. Fix a function g on G. If the

mappings x 7→ F (x)g∨(x) are in L1(G), for all F ∈ B, then the convolution

F ∗ g(x) :=

∫
G

F (y)g(y−1x) dy

12



is well defined for all x ∈ G. Moreover, if the mapping

F 7→ F ∗ g(1) =

∫
G

F (y)g(y−1) dy

is continuous on B, then the mapping F 7→ F ∗ g(x) is continuous for all x ∈ G.

Proof. For F ∈ B, we have∫
G

∣∣F (y)g(y−1x)
∣∣ dy =

∫
G

∣∣F (y)g
(
(x−1y)−1

)∣∣ dy
=

∫
G

∣∣F (xy)g(y−1)
∣∣ dy

=

∫
G

∣∣Lx−1F (y)g(y−1)
∣∣ dy.

The last integral is finite because Lx−1F is again in B. Thus, the convolution is well

defined.

Now, assume that the mapping F 7→ F ∗ g(1) is continuous. The same calculations

as above show that, for any x ∈ G, one has

F ∗ g(x) = Lx−1F ∗ g(1).

The continuity of F 7→ LxF and the continuity of F 7→ F ∗ g(1) show that the

mapping F 7→ F ∗ g(x) is continuous for all x ∈ G, that is,

|F ∗ g(x)| =|Lx−1F ∗ g(1)|

≤C1 ‖Lx−1F‖B

≤C ‖F‖B .

2.4.3 Reproducing Kernel Banach Space

Reproducing Kernel Banach spaces have an important role in sampling theory. For

example, if we can reconstruct a function f by

f(t) =

∫
R
f(w)k(t, w) dw

13



for some kernel k, then under certain assumptions one can choose a sample {ti}i∈I of

R such that

Tf :=
∑
i

f(ti)k(·, ti).

is invertible and

f(t) =
∑
i

f(ti)T
−1k(·, ti)(t).

For more details see [33].

A Hilbert space H of functions on a set X is called a reproducing kernel Hilbert

space (RKHS) if the evaluation map Ex : H → C, Ex(f) = f(x), is continuous for

all x ∈ X. Every RKHS has a unique reproducing kernel k : X ×X → C such that

f(x) = (k(x, ·), f)H. This result follows from Riesz representation theorem; indeed if

the evaluation map Ex is continuous, then there is a unique element kx in H such

that (f, kx)H = f(x) for all x ∈ X. In particular, (ky, kx)H = kx(y), and the function

k(x, y) := kx(y) is the desired kernel(see [1]). In Banach function spaces, the situa-

tions are different, because we no longer can apply the Riesz representation theorem.

Mathematicians intended to generalize this concept for Banach spaces and they came

up with different definitions that are compatible with their areas of experience. For

example see [48, 49]. We will use the following definition which generalizes the RKHS

definition.

Definition 2.8. Let X be a set, and let K : X × X → C be a function. Assume

that B and B′ are Banach function spaces on X. We say that (B,B′) is a pair of

reproducing kernel Banach spaces (RKBS) with reproducing kernel K on X if

1. The evaluation maps Ex : B → C and E ′x : B′ → C are continuous for all

x ∈ X.

2. Kx := K(x, ·) ∈ B and Kx := K(·, x) ∈ B′ for all x ∈ X.
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3. There exists a bilinear form β(·, ·) : B×B′ → C such that β(f,Kx) = f(x) and

β(Kx, g) = g(x), for all x ∈ X, f ∈ B, and g ∈ B′.

Notice that if B = H is a Hilbert space, then we can choose B′ = H. If the evaluation

map is continuous, then for any x ∈ X there is a unique reproducing kernel k such

that k(x, ·) and k(·, x) are inH. Define the sesquilinear form β to be the inner product

of H, then β(f, k(x, ·)) = f(x) and β(k(·, x), f) = f(x) for all x ∈ X and all f ∈ H.

That is, every RKHS is a RKBS.

The following definition is useful when B′ is topological dual of B. We will use this

definition through out this thesis.

Definition 2.9. Let B and its topological dual B∗ are both Banach function spaces

on a set X, and let k : X ×X → C be a function on X ×X. The space B is called a

reproducing kernel Banach space with a reproducing kernel k if

1. the evaluation maps Ex and E∗x, on B and B∗ respectively, are continuous for

all x ∈ X.

2. kx := k(x, ·) ∈ B and kx := k(·, x) ∈ B∗ for all x ∈ X.

3. 〈f, kx〉 = f(x) and 〈kx, g〉 = g(x) for all x ∈ X.

2.5 Continuous Voice Transform

In this section, we define the concept of voice transform and we summarize some

properties and results that maybe found in [41, 31, 35, 47].

Definition 2.10. Let (π,H) be a unitary representation of G. For a fixed vector

u ∈ H we define the voice transform to be the linear mapping Vu : H → Cb(G) given

by

Vu(v)(x) := (v, π(x)u)H

for v ∈ H and x ∈ G.
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Remark 2.11. Some authors call the voice transform the wavelet transform, because

the voice transform is a generalization of the wavelet transform, which comes from

the quasi-regular representation of the group ax+ b.

Note that the voice transform is a bounded operator. Indeed,

|Vu(v)(x)| ≤ ‖v‖‖u‖ for all x ∈ G.

Hence,

‖Vu(v)‖sup ≤ ‖v‖‖u‖.

The following lemma gives a characterization of cyclic vectors of a representation.

Lemma 2.12. Let (π,H) be a unitary representation of G. For a fixed nonzero vector

u ∈ H the voice transform Vu is injective if and only if u is π-cyclic.

Proof. Suppose that Vu is injective. If (v, π(x)u) = 0 for all x ∈ G, then Vu(v) = 0,

and hence v = 0. Which proves that u is π-cyclic.

Conversely, suppose that u is π-cyclic. If Vu(v) = 0, then

(v, π(x)u) = Vu(v)(x) = 0

for all x ∈ G, which implies that v = 0, and hence Vu is injective.

The following corollary describe the connection between the injectivity of the voice

transform and the irreducibility of the representation. In fact, it gives a new charac-

terization of the concept of irreducible unitary representation (see [31, 41]).

Corollary 2.13. Let (π,H) be a unitary representation of G. The voice transform

Vu is injective for all nonzero vectors u ∈ H if and only if π is irreducible.

Proof. By Lemma 2.12, Wu is injective for all nonzero u ∈ H if and only if u is

π-cyclic for all nonzero u ∈ H if and only if H is irreducible.
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One of the important tools in the coorbit theory (which is the main topic in this

thesis) on reproducing kernel Banach spaces is the following reproducing formula for

the voice transform

Vu(v) ∗ Vu(u) = Vu(v)

for all v ∈ H. Unfortunately, this formula is not hold in general. However, square-

integrable representations satisfy the reproducing formula, which is a consequence of

a result due to Duflo and Moore in [17].

Definition 2.14. An irreducible unitary representation (π,H) is called square-integrable

if there is a nonzero vector u ∈ H such that Vu(u) ∈ L2(G) , i.e.∫
G

|(u, π(x)u)H|
2 dx <∞,

such vector u is called π-admissible.

Remark 2.15. If we drop the irreduciblity condition in the definition of the admis-

sibility, we say that a nonzero vector u is admissible if Vu(v) ∈  L2(G) for all v ∈ H.

However, in an irreducible representation these two definitions are equivalent as we

will see in the corollary of the following theorem.

The following theorem is one of the important ingredients of the convolutive coorbit

theory (see [17]). A self-adjoint operator A on a Hilbert space is called positive if

(Av, v) ≥ 0 for all vectors v in its domain.

Theorem 2.16. (Doflo−Moore)Let (π,H) be a square-integrable representation of

G.Then

1. there exists a positive self-adjoint operator Aπ which is defined on a dense subset

D of H such that u ∈ H is admissible if and only if u ∈ D. Moreover, the

orthogonality relation holds
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∫
G

(v1, π(x)u1) (π(x)u2, v2) dx = (Aπu2, Aπu1) (v1, v2)

for all u1, u2 ∈ D and v1, v2 ∈ H.

2. In addition, if G is a unimodular, then D = H and Aπ = cπIdH. Thus, all

vectors of H are admissible and∫
G

(v1, π(x)u1) (π(x)u2, v2) dx = c2
π(u2, u1) (v1, v2)

for all u1, u2, v1, v2 ∈ H. The constant cπ is called the formal dimension of π.

Now we have the following corollary:

Corollary 2.17. Let u be an admissible vector in a square-integrable representation

(π,H). Then, for any v ∈ H, we have Vu(v) ∈  L2(G). In this case the voice transform

Vu : H → L2(G) is a bounded mapping.

Proof. By Theorem 2.16, u is in the domain of Aπ and∫
G

|(v, π(x)u)|2 dx =

∫
G

(v, π(x)u) (π(x)u, v) dx = ‖Aπu‖2 ‖v‖2

and the result is obtained.

2.6 General Voice Transform

In the previous section, we defined the voice (wavelet) transform related to a unitary

representation of a group G on a Hilbert space H. In this section, we generalize this

concept for representations on Fréchet spaces.

As usual, we assume that S is a Fréchet space and we assume that S∗ is the conjugate

dual space of S. If (π,S) is a strongly continuous representation of G, then for a vector

u ∈ S the function x 7→ 〈λ, π(x)u〉 is in the space C(G) for any λ ∈ S∗ and so, the
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linear mapping S∗ 3 λ 7→ 〈λ, π(·)u〉 ∈ C(G) is well defined. Let π∗ be the dual

representation of π as defined in 2.1. Then, the voice transform is defined as follows.

Definition 2.18. For a vector u ∈ S, we define the voice (wavelet) transform Vu :

S∗ 7→ C(G) by Vu(φ)(x) := 〈π∗(x−1)φ, u〉. The values 〈π∗(x−1)φ, u〉 are called the

wavelet coefficients.

This definition is an extension of the Hilbert space case. If S = H, then S∗ = H and

we have

(π∗(x−1)v, u) = (v, π(x)u) = Vu(v)(x)

in the usual sense. As we have seen in the Hilbert space case, the voice transform

Vu is a bounded mapping. Moreover, if u is a nonzero π-cyclic vector, then the voice

transform is injective as we state in the following theorem.

Theorem 2.19. Let (S∗, π∗) be the dual representation of (S, π) and let u be a nonzero

vector in the Fréchet space S. The Wavelet transform Vu : S∗ → C(G) is injective

if and only if u is π-cyclic.

Proof. The proof is the same as the case of Hilbert space, the only difference is

replacing the inner product by the dual pairing.

2.6.1 Wavelets on Compact Groups

Let G be a compact group, and let (π,H) be any irreducible unitary representation

of G. Then, any nonzero vector u ∈ H is admissible. Indeed, compact groups have

finite Haar measure, and also the function x 7→ |(u, π(x)u)|2 is continuous. These

facts together demonstrate our claim. As a consequence, the wavelet transform Vu :

H → L2(G) is injective.
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2.6.2 Non-square Integrable Representation

This example shows the existence of a non-square integrable irreducible unitary rep-

resentation. Let G be the additive real group R and let H = C. It is clear that

πσ(x) := eiσx defines a unitary representation of G on the space H, where σ any

nonzero real number. For any nonzero z ∈ H we have∫
R
|(z, π(x)z)|2 dx =

∫
R
|(z, eiσxz)|2 dx

=

∫
R
|zz̄e−iσx|2 dx

=|z|4
∫
R
dx =∞.

Therefore, π is not a square-integrable representation.
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Chapter 3
Convolutive Coorbit Theory and 
Discretization

3.1 Convolutive Coorbit Theory

In analysis, one of the most important topics is to study features of function spaces.

In 1980’s H.G Feichtinger and K. Gröchenig introduced the theory of coorbit spaces

when they were constructing frames and atomic decompositions of some function

spaces on Lie groups [24, 25]. In the Feichtinger-Gröchenig the theory, coorbit space

is a Banach space constructed by starting with an irreducible, unitary, integrable

representation of a locally compact group on a Hilbert space.

Analysts have become more interested in studying coorbit spaces, and they have

generalized coorbit spaces to represent wider classes of function spaces, such as Besov

spaces and Bergman spaces, when the integrability or irreduciblity are no longer valid

on their representations. See for example [7, 8, 9, 14, 15, 12, 24, 25, 36, 37, 39].

3.1.1 Feichtinger-Gr¨ochenig Theory

We now present in short the coorbit spaces that were introduced by H.G Feichtinger and

K. Gröchenig and we give some results about these spaces. To describe the Fe-

ichtingerand Gröchenig coorbit spaces, we go back to Theorem 2.16, in which we

can construct a coorbit space that is isomorphic to a reproducing kernel Banach

space. If π is square integrable and u is any admissible vector, one can normalize u

such that ‖Au‖ = 1, and obtains the reproducing formula

Wu(v) ∗Wu(u) = Wu(v)

for all v ∈ H. The construction of the Feichtinger-Gröchenig coorbit spaces can be

summarized as follows (see [24, 25]):
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1. Let H be a Hilbert space. Fix a weight function w on G as in example 2.6;

that is, w is a submultiplicative with w(x) ≥ 1. Moreover, we assume that

w(x) = ∆(x−1)w(x−1), where ∆ is the modular function of the Haar measure on

G. Let (π,H) be an irreducible, unitary, w-integrable, continuous representation

on the group G (we can assume that G is a locally compact Hausdorff group).

2. Define the space of analyzing vectors to be

Aw :=
{
u ∈ H | (π(·)u, u)H ∈ L1

w(G)
}
.

This space is not trivial because the representation is w-integrable.

3. Fix a nonzero analyzing vector u ∈ Aw and define the wavelet transform on H

by Wu(v)(x) = (v, π(x)u). Define the space

H1
w :=

{
v ∈ H | Wu(v) ∈ L1

w(G)
}

with norm ‖v‖H1
w

:= ‖Wu(v)‖L1
w
. Then consider the conjugate dual space (H1

w)
∗

of the space H1
w endowed with the weak*-topology. We will write 〈·, ·〉 for the

dual pairing if there is no confusion.

4. It was proved that (see [24]) the continuous embedding H1
w ↪→ H ↪→ (H1

w)
∗

holds. Moreover, H1
w is dense in H with the latter is weakly dense in (H1

w)
∗
.

This allows us to extend the wavelet transform onto (H1
w)
∗

by

Wu(v
∗)(x) = 〈v∗, π(x)u〉 for all v∗ ∈

(
H1
w

)∗
.

5. Let B be a solid Banach function space on G such that

(i) The space B is continuously embedded in the space L1
loc(G); that is, for

any compact subset K of G there exists a constant CK such that∫
K

|f(x)| dx ≤ CK‖f‖B for all f ∈ B,
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(ii) the relation B ∗ L1
w(G) ⊂ B holds with

‖f ∗ g‖B ≤ ‖f‖B‖g‖L1
w
.

6. The coorbit space of the Banach space B is

CoB :=
{
v ∈

(
H1
w

)∗ | Wu(v) ∈ B
}

with norm ‖v‖CoB := ‖Wu(v)‖B.

By the integrability of the representation, the representation is square integrable

because

|〈u, π(x)u〉|2 ≤ ‖u‖2 |〈u, π(x)u〉| .

It follows that, by theorem 2.16, we can normalize u such that ‖Au‖ = 1 and the

reproducing formula

Wu(v) ∗Wu(u) = Wu(v)

holds for all v ∈ H. Also, by the assumption in Step (5), the mapping F 7→ F ∗Wu(u)

is continuous on B. Thus it is a projection on the space B ∗Wu(u), and hence the

space B ∗Wu(u) can be described as

B ∗Wu(u) := {F ∈ B | F ∗Wu(u) = F} .

This space is a closed subspace of B and hence is a Banach space.

Let us now summarize the properties of the coorbit space which is constructed by

Feichtinger-Gröchenig. For the proof and more details see [24, 25].

Theorem 3.1. 1. The coorbit space CoB is a π-invariant Banach space which is

continuously embedded into (H1
w)
∗
.

2. The definition of CoB is independent of the choice of the analyzing vector u ∈

Aw, i.e., different vectors u ∈ Aw define the same space with equivalent norms.

23



The following theorem is the main result about coorbit spaces.

Theorem 3.2. 1. A function F ∈ B is of the form F = Wu(v) for some v ∈ CoB

if and only if F ∈ B ∗ Wu(u), i.e., F satisfies the reproducing formula F =

F ∗Wu(u).

2. The Wavelet transform Wu : CoB → B ∗Wu(u) is an isometric isomorphism,

and the mapping B 3 F 7→ F ∗Wu(u) ∈ B is a bounded projection from B onto

B ∗Wu(u).

3. The space B∗Wu(u) is contained in L1
1/w(G)∩C(G). In particular, the evaluation

mapping F 7→ F (x) is continuous.

Thus, the coorbit space CoB is isomorphic to a reproducing kernel Banach subspace

of B with kernel K(x, y) = Wu(u)(x−1y).

3.1.2 Coorbit Theory: Dual Pairing

In this section, we describe a wide class of function spaces as coorbit spaces, in which

the Feichtinger-Gröchenig theory fails to apply. Then we study more properties of

coorbit spaces.

In the Feichtinger-Gröchenig theory, the representation should be irreducible, unitary,

and integrable. Even though this theory described many of interesting examples of

function spaces, there are may interesting representations that are not integrable nor

irreducible and not even unitary. In [9], J. Christensen and G. Ólafsson generalized the

concept of coorbit spaces to describe a wider classes of function spaces. Furthermore,

they gave examples of Banach function spaces as coorbit spaces the representation is

not integrable ( see [7, 8]).

To construct the coorbit space of a left-invariant BF-space on G via a representation

on that group, we start by defining the analyzing vector.
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Definition 3.3. Assume (π,S) is a representation of G on the Fréchet space S which

is continuously embedded and weakly dense in its conjugate dual S∗. A π-cyclic vector

u ∈ S is called a π-analyzing vector for S if the reproducing formula

Wu(λ) ∗Wu(u) = Wu(λ)

holds for all λ ∈ S∗.

Let u ∈ S and define the set

Bu := {f ∈ B|f ∗Wu(u) = f}.

It is easy to see that the set Bu is a normed subspace of B (maybe trivial subspace)

with norm inherited from B. The following assumptions are made on the Banach

space B to define, what we call, the coorbit space of B.

Assumption 3.4. Let B be a left-invariant BF-space on G. Assume that there exists

a nonzero π-analyzing vector u ∈ S satisfying the following properties:

(R1) The mapping B 3 f 7→
∫
G
f(x)Wu(u)(x−1) dx ∈ C is continuous.

(R2) If f ∗Wu(u) = f ∈ B, then the mapping S 3 v 7→
∫
G
f(x)Wv(u)(x−1) dx ∈ C is

in S∗.

Remark 3.5. (i) The conditions (R1) says that the convolution B ∗Wu(u) is de-

fined as we saw in Lemma 2.7, and the continuity condition says that the eval-

uation map on Bu is continuous as we will see in the following lemma.

(ii) The condition (R2) says that every function in the spaces Bu corresponds to a

distribution in S∗.

Lemma 3.6. Let B be a BF- space on G. If B and u satisfy (R1), then the space Bu

is closed in B and hence a reproducing kernel Banach space with reproducing kernel

k(x, y) = LyWu(u)(x).
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Proof. We start the proof by showing that the space Bu is a closed subspace of

B. Let {fi} be a sequence in the space Bu that converges to f ∈ B in norm. The

convergence in the space B implies the convergence in measure, and hence there exists

a subsequence fik of fi that converges to f almost everywhere. Assumption (R1) says

that the convolution f ∗Wu(u)(x) is well defined for all x ∈ G as we have seen in

Lemma 2.7. We claim that f = f ∗Wu(u) almost everywhere on G. Indeed, by the

definition of the space Bu, for almost all x ∈ G we have

fik(x) = fik ∗Wu(u)(x).

By Lemma 2.7, the function f 7→ f ∗Wu(u)(x) is continuous. Passing the limit as

k 7→ ∞ we have

f(x) = f ∗Wu(u)(x)

for almost all x ∈ G. Therefore the function f is in the space Bu and we proved the

closeness part. Now, let us prove that Bu is a reproducing Banach space, i.e., the

evaluation map Ex(f) = f(x) is continuous on Bu for x ∈ G. For a function f ∈ Bu,

we have f = f ∗Wu(u) and hence

|Ex(f)| = |f(x)| = |f ∗Wu(u)(x)|.

Again, by the continuity of f 7→ f ∗Wu(u)(x) as in Lemma 2.7 we have

|Ex(f)| ≤ C‖f‖B.

Finally, for f ∈ Bu we have

f(x) = f ∗Wu(u)(x) =

∫
G

f(y)Wu(u)(y−1x) dy

=

∫
G

f(y)LyWu(u)(x) dy

=

∫
G

f(y)k(x, y) dy

which proves that k is the reproducing kernel, and the proof is completed.
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The following result shows that the assumptions on the space B in [9] imply the

assumptions that we stated, as it is proved in [9, Theorem 2.3].

Lemma 3.7. Assume u ∈ S is a π-cyclic vector that satisfies

1. The reproducing formula Wu(v) ∗Wu(u) = Wu(v) for all v ∈ S, and

2. the mapping S∗ 3 λ 7→ Wu(λ) ∗Wu(u)(1) ∈ C is weakly continuous.

Then u is a π-analyzing vector for S.

Proof. By our assumptions, the space S is weakly dense in S∗. Therefore, for any

λ ∈ S∗ we can choose a net {λi} in S such that λi → λ weakly, that is

〈λi, v〉 → 〈λ, v〉

for all v ∈ S. Using Assumption (1), we have

Wu(λi) ∗Wu(u) = Wu(λi)

for all λi. On the other hand,

Wu(λi) ∗Wu(u)(x) =

∫
G

Wu(λi)(y)Wu(u)(y−1x) dy

=

∫
G

〈
π∗(y−1)(λi), u

〉 〈
π∗(x−1y)(u), u

〉
dy

=

∫
G

〈
π∗((xy)−1)(λi), u

〉
〈π∗(y)(u), u〉 dy

=

∫
G

〈
π∗(x−1)(λi), π(y)u

〉
〈π∗(y)(u), u〉 dy

=Wu

(
π∗(x−1)(λi)

)
∗Wu(u)(1)

and hence

Wu(λi) = Wu

(
π∗(x−1)(λi)

)
∗Wu(u)(1)

As λi → λ weakly, the left hand side

Wu(λi)(x)→ Wu(λ)(x)
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for all x ∈ G, because 〈 λi, π(x)u〉 → 〈 λ, π(x)u〉 for all x ∈ G. Also, by Assumption

(2) the right hand side

Wu

(
π∗(x−1)(λi)

)
∗Wu(u)(1)→ Wu

(
π∗(x−1)(λ)

)
∗Wu(u)(1)

for all x ∈ G. But Wu (π∗(x−1)(λ)) ∗Wu(u)(1) = Wu(λ) ∗Wu(u)(x); therefore,

Wu(λ) ∗Wu(u)(x) = Wu(λ)(x)

for all λ ∈ S∗.

Lemma 3.8. Assume B and u ∈ S satisfy Assumption 3.4. The set

Λ = {λ ∈ S∗ | Wu(λ) ∈ B}

is a Banach space with norm

‖λ‖ = ‖Wu(λ)‖B.

Proof. First the linearity of Wu ensures that Λ is a linear space contains the zero

vector. Let us now show that ‖.‖ is an actual norm. The linearity of Wu and the

fact that ‖.‖B is a norm prove all conditions of the norm, except the non-degeneracy

condition. The value ‖λ‖ = 0 if and only if ‖Wu(λ)‖B = 0. The last statement is true

if and only if λ = 0 because of the cyclicity of u. This shows that Λ is a normed space.

Now, let us show that Λ is complete. Let {λn} be a Cauchy sequence in the space Λ.

For m,n ∈ N we have

‖Wu(λn)−Wu(λm)‖B = ‖Wu(λn − λm)‖B = ‖λn − λm‖

which means that {Wu(λn)} is a Cauchy sequence in the space B, and hence it has a

limit, F ∈ B, say. We claim that λn → λ for some λ ∈ Λ, i.e., Wu(λ) ∈ B. The same
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argument as in the proof of Lemma 3.6, shows that F ∗Wu(u) = F . On the other

hand, define λ by

〈λ, v〉 = F ∗Wv(u)(1).

By Assumption (R2), λ is in the space S∗, and

Wu(λ)(y) = 〈λ, π(y)u〉

=

∫
G

F (x) 〈π∗(x)u, π(y)u〉 dx

=

∫
G

F (x)
〈
u, π(x−1y)u

〉
dx

=

∫
G

F (x)Wu(u)(x−1y) dx

=F ∗Wu(u)(y)

=F (y)

for almost all y ∈ G. So, Wu(λ) ∈ B, and hence λ ∈ Λ. Thus, the space Λ is

complete.

Remark 3.9. Note that we used all conditions of Assumption 3.4 to show that the

space Λ is well defined Banach space. Actually, we used that u is cyclic to show that

Λ is indeed a normed space, and we used the reproducing formula and the conditions

(R1), (R2) to show that Λ is complete.

Now, we can introduce the definition of the coorbit space.

Definition 3.10. Let (S, π) be a representation of G and let B be a left-invariant

BF-space on G. Assume that u ∈ S is a π-analyzing vector satisfying Assumption

3.4. A coorbit space of B related to the representation π is the Banach space

CouπB := {φ ∈ S∗ | Wu(φ) ∈ B}

with the norm

‖φ‖CouπB := ‖Wu(φ)‖B.
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Sometimes the coorbit space is a trivial space with no interesting structure. Most of

the time we will require that Wu(u) ∈ B. Automatically, this implies that Wu(u) ∈ Bu

or equivalently u ∈ CouπB. In this case we get a non-trivial coorbit space.

In the following theorem, it is shown that the coorbit space is isomorphic to a repro-

ducing Banach space.

Theorem 3.11. Assume that B and u satisfy Assumption 3.4, then

1. Wu(v) ∗Wu(u) = Wu(v) for v ∈ CouπB.

2. The space CouπB is a π∗-invariant Banach space.

3. Wu : CouπB → B intertwines π∗ and the left translation.

4. If the left translation is continuous, then π∗ acts continuously on CouπB.

5. Wu : CouπB → Bu is an isometric isomorphism.

Proof. (1) The reproducing formula is true for all φ ∈ S∗, and hence it is true for

the space CouπB.

(2) We proved that the space CouπB is a Banach space. Let us now prove that CouπB

is π∗-invariant. Assume that λ ∈ CouπB, for any fixed y ∈ G, we have

Wu(π
∗(y)λ)(x) = 〈π∗(y)λ, π(x)u〉

=
〈
λ, π(y−1x)u

〉
=Wu(λ)(y−1x)

=LyWu(λ)(x).

Thus, we have

Wu(π
∗(y)λ) = LyWu(λ). (3.1)
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The fact that λ ∈ CouπB and B is left invariant yield that LyWu(u) is in B, and

hence Wu(π
∗(y)λ) is in CouπB. This proves that the space is π∗-invariant.

(3) In 3.1, we found that Wu(π
∗(y)λ) = LyWu(λ), which means that Wu(u) inter-

twines π∗ and the left translation.

(4) By our assumption, the function G 3 x 7→ LxF ∈ B is continuous. So, for any

ε > 0, there exists a neighborhood U of the identity such that

‖LxF − F‖B < ε

for all x ∈ U . Using 3.1, we have

‖π∗(x)λ− λ‖CouπB =‖Wu(π
∗(x)λ− λ)‖B

=‖LxWu(λ)−Wu(λ)‖B

for x ∈ G and λ ∈ CouπB. But the definition of CouπB ensures that Wu(λ) is in

B. Thus

‖π∗(x)λ− λ‖CouπB < ε

for all x ∈ U . It follows that x 7→ π∗(x)(λ) is continuous at the identity. For

any y ∈ G, one can write

‖π∗(x)λ− π∗(y)λ‖CouπB =‖π∗(y)π∗(y−1x)λ− π∗(y)λ‖CouπB

=‖π∗(y)
(
π∗(y−1x)λ− λ

)
‖CouπB

=‖Wu

(
π∗(y)

(
π∗(y−1x)λ− λ

))
‖B

=‖LyWu

(
π∗(y−1x)λ− λ

)
‖B

≤C‖Wu

(
π∗(y−1x)λ− λ

)
‖B

=C‖π∗(y−1x)λ− λ‖CouπB.

As y → x, we have y−1x → 1. Thus, the term ‖π∗(x)λ − π∗(y)λ‖CouπB can be

made as small as we please, and our assertion is proved.
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(5) Let us show that Wu (CouπB) = Bu. If λ ∈ CouπB, then Wu(λ) ∈ B. By Part

(1) we have Wu(λ) ∗Wu(u) = Wu(λ), hence Wu(λ) ∈ Bu. On the other hand, if

F ∈ Bu, then F ∗Wu(u) = F and the assumption (R2) ensures that λ, which is

defined by

〈λ, v〉 =

∫
G

F (x) 〈π∗(x)u, v〉 dx,

is in the space S∗. Same calculations as in Part(2) show that Wu(λ) = F =

F ∗Wu(u), therefore F ∈ Wu (CouπB) and this shows that Wu : CouπB → Bu is

surjective. From the definition of the norm of CouπB we conclude that Wu is an

isometry.

In practice, the previous assumptions can be weakened in order cover a wider classes

of function spaces. Moreover, these modified assumptions are easy to deal with.

Assumption 3.12. Let B be a left-invariant BF-space on G, and let π be a represen-

tation of G on a Fréchet spaces S which is continuously embedded and weakly dense

in its conjugate dual S∗. Assume that there exists a π-analyzing vector u ∈ S such

that

(R1/2) The mapping

B × S 3 (f, v) 7→ f ∗Wv(u)(1) =

∫
G

f(x)Wv(u)(x−1) dx ∈ C

is continuous.

Remark 3.13. Note that if

B = Lpw(G) = {f : G→ C | ‖f‖Lpw :=

(∫
|f(x)|pw(x) dx

)1/p

<∞}

then the continuity condition will be a duality condition, i.e., S 3 v 7→ Wv(u)∨ ∈

Lq
w−q/p

(G) is continuous, where Wv(u)∨(x) = Wv(u)(x−1) and 1
p

+ 1
q

= 1. In this case
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we have∣∣∣∣∫
G

f(x)Wv(u)(x−1) dx

∣∣∣∣ =

∣∣∣∣∫
G

f(x)(w(x))1/pWv(u)(x−1)(w(x))−1/p dx

∣∣∣∣
≤
(∫

G

|f(x)|pw(x) dx

)1/p

×(∫
G

|Wv(u)(x−1)|q (w(x))−q/p dx

)1/q

=‖f‖Lpw‖Wv(u)∨‖Lq
w−q/p

≤C‖f‖Lpw‖v‖α

for some semi-norm ‖.‖α on S.

Under these assumptions the coorbit space is well defined and the results of Theorem

3.11 are still true.

Theorem 3.14. Assume that B and u ∈ S satisfy Assumption 3.12. Then the coorbit

space CouπB is well defined and the results of Theorem 3.11 are still true.

Proof. We only have to show that (R1/2) implies both (R1) and (R2), which is

obvious. So, the assumptions of Theorem 3.11 are satisfied and our assertion is true.

We end this section with the following theorem which shows how the coorbit space

depends on the analyzing vector.

Theorem 3.15. Assume that u1 and u2 are π-analyzing vectors for S which satisfy

Assumption 3.4, and the following properties hold for i, j ∈ {1, 2}:

1. there are nonzero constants Ci,j such that Wui(λ)∗Wuj(ui) = Ci,jWuj(λ) for all

λ ∈ S∗,

2. the mapping Bui 3 f 7→ f ∗Wuj(ui) ∈ B is continuous.

Then Cou1π B = Cou2π B with equivalent norms.
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Proof. Let λ ∈ Cou1π B. Then Wu1(λ) ∈ B. By Assumption (1),

Wu2(λ) = C−1
1,2Wu1(λ) ∗Wu2(u1).

By Assumption (2), we conclude that Wu2(λ) ∈ B and ‖Wu2(λ)‖B ≤ A‖Wu1‖B.

Similarly, by interchanging u1 and u2 we have the same for λ ∈ Cou2π B, and the proof

is completed.

3.2 Sampling Theory: Convolutive Coorbits 

3.2.1 Sampling on Hilbert Spaces

In sampling theory, we are interested in reconstructing a continuous signal f from a

discrete set of values {f(xi)}. One of the important tools in this field is the frame the-

ory. This theory generalize the definition of the orthonormal-basis of a Hilbert space.

Let H be a separable Hilbert space a sequence {ei}i∈N of vectors in H form a basis if

span{ei | i ∈ N} is dense in H and (ei, ej)H = δi,j, where δi,j is the Kronecker delta

function. It follows that, for {(f, ei)H}, the signal f can be reconstructed uniquely by

f =
∑

i(f, ei)H ei. However, we are looking to reconstruct f from the sample {f(xi)}.

If we assume that H is a reproducing Hilbert space, then one can replace (f, ei) by

the evaluation map at xi which gives the require reconstruction. Frame theory is es-

tablished by R. Duffin and A. Schaeffer in 1952 [18]. A sequence {fi} of elements of

H is called a Hilbert frame if there are positive constants A and B such that

A‖f‖2 ≤
∑
i

|(f, fi)|2 ≤ B‖f‖2

for all f ∈ H. The numbers A and B are called frame bounds. If A = B, then

the frame is called a tight frame (see [11] for more details). Note that the condition

A‖f‖2 ≤
∑

i |(f, fi)|2 implies that the frame {fi} is complete, i.e., the closure of

span{fi : i ∈ N} equals to H. The condition
∑

i |(f, fi)|2 ≤ B‖f‖2 ensures that

the operator T : H → `2(N), T (f) = {(f, fi)} is bounded. If we denote the adjoint

34



operator of T by T ∗, then the frame operator is defined to be S : H → H, S := T ∗T .

One can see that S(f) =
∑

i(f, fi)fi and S is a bounded, invertible, self adjoint,

and positive operator (see, for example, [11]). Therefore, we can reconstruct f by

f =
∑

i(f, fi)S
−1fi.

3.2.2 Sequence Spaces and Banach Frames

In this section, we have a background and some results about atomic decompositions

and frames of coorbit spaces constructed by convolution which is defined by a given

representation on G. A Banach space of sequences {xi}i∈I is called a Banach sequence

space with index I. For any solid BF-space B, we can associate a sequence Banach

space Bd which is first introduced in [24]. For example, a natural Banach sequence

space that corresponds to the Lp(R) spaces is the sequence space lp(Z) space. We

need the following definition in order to introduce the associated Banach sequence

space of B.

Definition 3.16. For a relatively compact neighborhood U of the identity, the family

{xi}i∈I of elements in G is called U-well spread in G if

i. G ⊂
⋃
i∈I
xiU , and

ii. if there exists an real integer N such that

sup
i

#{j : xiU ∩ xjU 6= φ} ≤ N.

Now, let us define the sequence space Bd that associated to the space B.

Definition 3.17. Let B be a solid Banach space. Assume that the family {xi}i∈I is

U-well spread in G. The associated sequence space Bd is the space

Bd =
{
{λi}i∈I |

∑
i∈I

|λi|1xiU ∈ B
}
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equipped with the norm

‖{λi}i∈I‖Bd :=

∥∥∥∥∥∑
i

|λi|1xiU

∥∥∥∥∥
B

.

The space Bd is a solid Banach space in the sense that for {λi}i∈I and {ηi}i∈I with

{λi}i∈I ∈ Bd and |ηi| ≤ |λi| for all i ∈ I, then {ηi}i∈I ∈ B and ‖{ηi}i∈I‖Bd ≤

‖{λi}i∈I‖Bd . A typical example is the space B = Lp(G) with the corresponding se-

quence space Bd = lp(I). More properties of Bd can be found in [24].

Now, we introduce the definition of atomic decompositions and Banach frames which

were first introduced in [28].

Definition 3.18. Let B be a Banach space, and let B∗ its dual space. If there is an

associated Banach sequence space Bd with index set I, such that for λi ∈ B∗ and

φi ∈ B, we have

i. {λi(f)}i∈I ∈ Bd for all f ∈ B,

ii. the norms ‖λi(f)‖Bd and ‖f‖B are equivalent, that is, there exist A,B > 0 such

that

A‖f‖B ≤ ‖λi(f)‖Bd ≤ B‖f‖B,

iii. f can be written as f =
∑
i∈I
λi(f)φi.

Then {(λi, φi)}i∈I is an atomic decomposition of B with respect to Bd.

More generally, a Banach frame for a Banach space can be defined as the following:

Definition 3.19. Let B be a Banach space, and let B∗ its dual space. If there is an

associated Banach sequence space Bd with index set I, such that for λi ∈ B∗ we have

i. {λi(f)}i∈I ∈ Bd for all f ∈ B,
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ii. the norms ‖λi(f)‖Bd and ‖f‖B are equivalent, that is, there exist A,B > 0 such

that

A‖f‖B ≤ ‖λi(f)‖Bd ≤ B‖f‖B,

iii. there is a bounded reconstruction operator T : Bd → B such that

T ({λi(f)}i∈I) = f.

Then {λi}i∈I is a Banach frame for B with respect to Bd. The constants A and B

are called frame bounds. The frame called a tight frame if A = B.

The following concept will be used in our theory of this chapter and later on.

Definition 3.20. Let U be a relatively compact neighborhood of the identity. A family

{ψi}i∈I of non-negative functions on G is called a bounded uniform partition of unity

subordinate to U (or U-BUPU), if there is a U-well spread family {xi}i∈I in G such

that suppψi ⊆ xiU and
∑
i∈I
ψi(x) = 1 for all x ∈ G. Note that the sum is finite for a

given x ∈ G.

The following example is a concrete example of a U -BUPU family, which is used to

prove some results in the upcoming chapters.

Example 3.21. Consider the one dimensional torus T, for a fixed integer N ∈ N

define

V :=
{
eiθ| − π

N
≤ θ <

π

N

}
where i =

√
−1. We will construct a V -well spread family {tj}Nj=1 as follows, define

tk := e
2π
N

(k−1)i for all k = 1, ..., N.

Then

tkV =

{
eθi | −π + 2π(k − 1)

N
≤ θ <

π + 2π(k − 1)

N

}
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hence tjV ∩ tj+1V = φ. It follows that

sup
k

#{j : tkV ∩ tjV 6= ∅} = 0.

On the other hand, it is clear that

T =
N⋃
j=1

tjV.

Hence {tj}Nj=1 is a V -well spread set. Therefore, the family {ηj}nj=1, where

ηj := 1tjV

is a V -BUPU.

3.2.3 Discretization: Feichtinger-Gr¨ochenig Theory

In this section, we summarize the mechanism of the sampling theory on the coorbit

spaces that were constructed by Feichtinger-Gröchenig theory. For more details and

proofs see [24] and [28]. In this theory, we assume that

1. w is a submultiplicative weight function on G such that w(x) ≥ 1 and w(x) =

∆(x−1)w(x−1).

2. (π,H) is an irreducible, unitary, w-integrable representation.

3. The space B is a solid left-invariant Banach function space which is continuously

embedded in L1
loc(G) and the relation B ∗ L1

w(G) ⊂ B holds with

‖f ∗ g‖B ≤ ‖f‖B‖g‖L1
w
.

The main ingredient to construct a Banach frame and an atomic decomposition is

the oscillation function which is given in the following definition.
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Definition 3.22. Let U be a relatively compact neighborhood of the identity, and let

F be a function on G. The U-left oscillation of F is

M l
UF (x) := sup

u∈U
|F (ux)− F (x)|

and the U-right oscillation of F is

M r
UF (x) := sup

u∈U
|F (xu−1)− F (x)|.

Discretization of coorbit spaces in this theory can be done if we have more restrictions

on the analyzing vector u ∈ Aw which can be chosen from the better vectors. The

better vectors construction depends on the Wiener spaces, which we introduce in

summary as the following:

Let Q be a compact neighborhood of the identity, the control function of a function

F on G is defined by

KF (x) := sup
y∈xQ
|F (y)|.

Let B be a BF -space, we define the space

W (B) := {F ∈ B | KF ∈ B}

with norm

‖F‖W (B) := ‖F‖B.

This space is independent of the choice of the compact subset Q. Now, we define the

set of better vectors (or basic atoms) as

Bw :=
{
u ∈ H | Wu(u) ∈ W

(
L1
w(G)

)}
.

This set of better vectors is a subset of Aw and it is still dense in H1
w by irreducibility.

In the following theorem, we can see the advantages of the better vectors on the dis-

cretization. Here we introduce a discretization operators which discretize the identity

operator on the space B ∗Wu(u).
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Theorem 3.23. Let {xi}i∈I be a U-well spread family, and let {ψi}i∈I be any U-

BUPU family with suppψi ⊂ xiU . If u ∈ Bw and M l
UWu(u) ∈ L1

w(G), then the

following operators are well define bounded operators from B ∗Wu(u) into itself:

(1) TUf :=
∑

i f(xi)ψi ∗Wu(u).

(2) SUf :=
∑

i cif(xi)ψi ∗ LxiWu(u), where ci =
∫
ψi.

(3) RUf :=
∑

i ci(f)ψi ∗ LxiWu(u), where ci(f) =
∫
f(x)ψi(x) dx.

Here, the sum is pointwise limit of partial sums, and if the compactly supported con-

tinuous functions are dense in B, then the sum is in norm. Moreover, these operators

converge to the identity operator on B ∗Wu(u) as Int(U)→ {1}, and the convergence

is in the operator norm.

The convergence of the operators in the previous theorem is in the following sense: De-

note the interior of U by Int(U) and the identity operator on B ∗Wu(u) by idB∗Wu(u).

For any family {{ψαi }i∈I , Uα}α of Uα’s-BUPU we define the partial ordering by inclu-

sion on Uα’s. Then

‖TUα − idB∗Wu(u)‖op → 0

as Int(Uα)→ {1}.

One can choose Uα small enough such that these operators are invertible. For example,

if we choose Uα such that ‖M l
Uα
Wu(u)‖B < 1, then TUα is invertible because ‖TUα −

IdB∗Wu(u)‖op < ‖M l
Uα
Wu(u)‖B as proved in [28]. Now, we state the main results about

the coorbit frames and decompositions.

Theorem 3.24. Under the assumptions of this section, let u ∈ Bw, and choose U

small enough such that the discretization operators of the identity are invertible. If

M l
UWu(u) ∈ L1(G), then
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i. (Banach frame by TU and SU) The family {π(xi)u} is a frame of CouπB with

respect to the sequence space Bd, with reconstruction operators given by

(a) (the TU operator)

v 7→ W−1
u T−1

U

(∑
i

(v, π(xi)u)Hψi ∗Wu(u)

)
,

(b) (the SU operator)

v 7→ W−1
u S−1

U

(∑
i

ci(v, π(xi)u)Hψi ∗Wu(u)

)
where ci =

∫
ψi.

ii. (Atomic decomposition by SU and RU)

(a) Let

λi(v) :=
(
S−1
U Wu(v)

)
(xi).

Then {(λi, π(xi)u)} is an atomic decomposition for CouπB with respect to

the sequence space Bd.

(b) Let

λi(v) :=

∫
G

(
R−1
U Wu(v)

)
(x)ψi(x) dx.

Then {(λi, π(xi)u)} is an atomic decomposition for CouπB with respect to

the sequence space Bd.

Any vector v ∈ CouπB can be reconstructed by v =
∑

i λi(v)π(xi)u with con-

vergence in weak*-topology. If the compactly supported continuous functions are

dense in B, then the convergence is in norm.

3.2.4 Discretization: Convolutive Coorbits via Weakly Smooth Vectors.

As we have seen in the previous section, the integrability condition is assumed in the

discretization of coorbit spaces in the Feichtinger-Gröchenig theory. In this section,
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we are going to replace this condition by a smoothness condition which will enable us

to cover more function spaces that the Feichtinger-Gröchenig theory. We summarize

the results from [5].

Let G be a Lie Group, and let g be its Lie algebra of dimension n. Fix a basis

{E1, E2, ..., En} for g. For a function f ∈ B, we say that f is left differentiable in the

direction of X ∈ g, if

L(X)f(x) :=
d

ds

∣∣∣∣
s=0

LesXf(x) =
d

ds

∣∣∣∣
s=0

f(e−sXx)

exists for all x ∈ G.

We say that f is right differentiable in the direction of X ∈ g if

R(X)f(x) :=
d

ds

∣∣∣∣
s=0

ResXf(x) =
d

ds

∣∣∣∣
s=0

f(xesX)

exists for all x ∈ G. A function f is left differentiable if it is differentiable in the

direction of X for all X ∈ g, and the same for right differentiablity.

Let N ∈ N. Then for any multi-index α = (α(1), α(2), ..., α(N)) ∈ {1, 2, ..., n}N , we

say that α is of order N and we write |α| = N . We define

Rαf := R(Eα(N))R(Eα(N−1))...R(Eα(1))f

and

Lαf := L(Eα(N))L(Eα(N−1))...L(Eα(1))f

whenever the derivatives exist. We use the convention that E0 = idg for |α| = 0.

Finally, a function f on G is left differentiable of order N if Lαf exists for all α with

|α| = N . Similarly, we define the right differentiablity of a function of order N . To

discretize the coorbit space we need the following concept of smoothness.
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Definition 3.25. Let (π,S) be a representation of G on a Fréchetspace S which is

continuously embedded and weakly dense in its dual S∗. Let E1, E2, ..., E3 be a basis

for the Lie algebra g of G.

(1) A vector u ∈ S is called π-weakly differentiable in the direction of X ∈ g, the Lie

algebra of G, if there is a vector, denoted by π(X)u, in S such that

〈λ, π(X)u〉 =
d

ds

∣∣∣∣
s=0

〈
λ, π(esX)u

〉
for all λ ∈ S∗. A vector u ∈ S is called a π-weakly differentiable of order 1 if for

α ∈ {1, 2, ..., n} there is a vector π(Eα)u ∈ S such that

〈λ, π(Eα)u〉 =
d

ds

∣∣∣∣
s=0

〈λ, π(esEα)u〉

for all λ ∈ S∗.

(2) A vector u ∈ S is called a π-weakly differentiable of order 2 if for all α ∈

{0, 1, ..., n} × {0, 1, ..., n} there is a vector π(Eα)u ∈ S such that

〈λ, π(Eα)u〉 =
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

〈λ, π(esEα(2))π(etEα(1))u〉

for all λ ∈ S∗. Inductively we define π-weakly differentiable vector of order N

(3) A distribution λ ∈ S∗ is called π∗-weakly differentiable in the direction of X ∈ g

if there is a distribution, denoted by π∗(X)λ, in S∗ such that

〈π∗(X)λ, v〉 =
d

ds

∣∣∣∣
s=0

〈
π∗(esX)λ, v

〉
for all v ∈ S. A vector u ∈ S is called a π-weakly differentiable of order 1 if for

α ∈ {1, 2, ..., n} there is a distribution π∗(Eα)u ∈ S∗ such that

〈π∗(Eα)λ, v〉 =
d

ds

∣∣∣∣
s=0

〈π∗(esEα)λ, v〉

for all v ∈ S. Similarly we define π∗-weak differentiablity of order N .
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Note that if π(Eα(N)), π(Eα(N−1)), ...π(Eα(1)) exist, then

π(Eα)u = π(Eα(N))π(Eα(N−1))...π(Eα(1))u

and the same for π∗(Eα).

For the rest of this chapter, we assume that B is a BF-space on G satisfying the

following assumptions:

Assumption 3.26. Assume B is a solid bi-invariant BF-space of G such that

I. The operators f 7→ Laf and f 7→ Raf are uniformly bounded on compact subsets

of G, in the sense that for any compact subset U of G, there is a constant CU

such that

sup
x∈U
‖Lxf‖B ≤ CU‖f‖B

and

sup
x∈U
‖Rxf‖B ≤ CU‖f‖B,

II. the right translation x 7→ Rxf is continuous for all f ∈ B.

Furthermore, we define Uε as follows

Uε := {exp(t1E1) exp(t2E2)... exp(tnEn) : −ε ≤ tj ≤ ε, 1 ≤ j ≤ n := dim(G)}

Lemma 3.27. If u ∈ S is π-weakly differentiable up to order N , then the function

x 7→ Wu(λ)(x) is right differentiable up to order N for all λ ∈ S∗ and RαWu(λ)(x) =

Wπ(Eα)u(λ) for any multi-index α. Similarly, if λ ∈ S∗ is π∗-weakly differentiable,

then the function x 7→ Wv(λ)(x) is left differentiable for all v ∈ S and LαWu(λ)(x) =

(−1)|α|Wu (π∗ (Eα)λ) for any multi-index α ∈ {1, 2, ..., dim(G)}N , N ∈ N.
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Proof. Assume that u ∈ S is a π-weakly differentiable vector. For any X ∈ g and any

λ ∈ S∗ we have

R(X)Wu(λ)(x) =
d

ds

∣∣∣∣
s=0

Wu(λ)(xesX)

=
d

ds

∣∣∣∣
s=0

〈
λ, π(xesX)u

〉
=
d

ds

∣∣∣∣
s=0

〈
π∗(x−1)λ, π(esX)u

〉
=
〈
π∗(x−1)λ, π(X)u

〉
=Wπ(X)u(λ)(x).

By induction, we have RαWu(λ)(x) = Wπ(Eα)u(λ)(x).

Next, we assume that λ ∈ S∗ is π∗-weakly differentiable, then

L(X)Wu(λ)(x) =
d

ds

∣∣∣∣
s=0

Wu(λ)(e−sXx)

=
d

ds

∣∣∣∣
s=0

〈
λ, π(e−sX)π(x)u

〉
= 〈π∗(−X)λ, π(x)u〉

=−Wu (π∗ (X)λ) (x).

Again, the induction gives the result for LαWu(λ).

Now, we discretize the reproducing kernel Banach space Bu in order to discretize the

coorbit space CouπB. Remember that the mapping

B 3 f 7→
∫
G

f(y)LxWu(u)∨(y) dy ∈ C

is continuous for all x ∈ G (see Lemma 2.7). This allows us to present LxWu(u)∨ as

a functional on B with the pairing

〈LxWu(u)∨, f〉 =

∫
G

f(y)LxWu(u)∨(y) dy = f ∗Wu(u)(x).
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In particular,

〈LxWu(u)∨, f〉 = f(x)

for f ∈ Bu.

Theorem 3.28. Let (π,S) be a representation of G, and let B be a BF-space on

G satisfying Assumption 3.26. Assume that u ∈ S is π-weakly and π∗-weakly differ-

entiable up to order of dimG, and satisfies Assumption 3.12 as well. Assume that

Wu(u) ∈ B and assume that the mappings

f 7→ f ∗ |Wπ(Eα)u(u)| and f 7→ f ∗ |Wu(π
∗(Eα)u)|

are continuous on B for all α with |α| ≤ dim(G). Then

1. We can choose ε small enough such that for any Uε-BUPU {ψi} the following

three operators

T1f :=
∑
i

f(xi)(ψi ∗Wu(u))

T2f :=
∑
i

λi(f)LxiWu(u) ,

(
λi(f) =

∫
f(x)ψi(x) dx

)
T3f :=

∑
i

cif(xi)LxiWu(u) ,

(
ci =

∫
ψi(x) dx

)
are all invertible on Bu. The convergence of the sums above is pointwise and, if

the continuous compactly supported functions are dense in B, then the conver-

gence is also in norm.

2. (Frame) The family {LxiWu(u)∨} is a frame for the space Bu with respect to the

sequence space Bd. That means, the norms ‖f‖B and ‖{f(xi)}‖Bd are equiva-

lent, and any f ∈ Bu can be reconstructed by

f = T−1
1 A({f(xi)})

46



where A : Bd → Bu is a bounded operator given by

A({λi}) =
∑
i

λi ψi ∗Wu(u).

3. (Atomic decomposition) The families {λi ◦ T−1
2 , LxiWu(u)} and {ciLxiWu(u) ◦

T−1
3 , LxiWu(u)} are atomic decompositions of Bu with respect to the sequence

space Bd. That means, the norms ‖f‖B and ‖{λi ◦ T−1
2 (f)}‖Bd are equivalent,

and f ∈ Bu can be written as f =
∑

i λi(T
−1
2 f)LxiWu(u). The same for the

other atomic decomposition.

The convergence of the sums is pointwise, and if the compactly supported con-

tinuous functions are dense in B, then the convergence is also in norm.

Proof. Set Φ(x) = Wu(u)(x), then by Lemma 3.27 we know that Φ is left and

right differentiable up to order dimG. Moreover, RαWu(u)(x) = Wπ(Eα)u(u) and

LαWu(u)(x) = (−1)|α|Wu (π∗ (Eα)u). It follows that all assumptions of Theorem 2.6

in [7] are satisfied and the results hold.

As a consequence of the above theorem and the fact that the spaces Bu and CouπB

are isometrically isomorphic, we have the following result about the existence of a

frame and an atomic decomposition of the coorbit space of a function space under a

smoothness condition on the kernel. For the proof, see [5].

Theorem 3.29. Let (π,S) be a representation of G, and let B be a BF-space on G.

Assume that u ∈ S is a π-analyzing vector satisfying Assumption 3.12, which is both

π-weakly and π∗-weakly differentiable. Furthermore, assume that Wu(u) ∈ B and the

mappings

f 7→ f ∗ |Wπ(Eα)u(u)| and f 7→ f ∗ |Wu(π
∗(Eα)u)|

are continuous on B for all α with |α| ≤ dim(G).
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Then, we can choose ε small enough such that for any Uε-well spread set {xi} the

family {π(xi)u} is a frame for CouπB with respect to the sequence space Bd, and the

families {λi◦T−1
2 ◦Wu , π

∗(xi)u} and {ciT−1
3 ◦Wu , π

∗(xi)u} are atomic decompositions

for CouπB with respect to the sequence space Bd. In particular, φ ∈ CouπB can be

reconstructed by

φ =W−1
u T−1

1

(∑
i

Wu(φ)(xi)ψi ∗Wu(u)
)

φ =
∑
i

λi
(
T−1

2 Wu(φ)
)
π(xi)(u)

φ =
∑
i

ci T
−1
3 Wu(φ) π(xi)(u)

with convergence in S∗. The convergence is in CouπB if Cc(G) is dense in B.
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Chapter 4
Bergman Spaces on the Unit Disc

As an important application of coorbit theory, we can construct a frame and an atomic

decomposition for spaces that can be described by coorbits. In this chapter we study

as a concrete example the Bergman spaces on the unit disc.

4.1 Bergman Spaces

In this section we define Bergman spaces and summarize some results about Bergman

spaces which can be found in, for example, [19], [30].

Let D = {z ∈ C | |z| < 1} be the unit disc. Let dz denote the Lebesgue measure dxdy

where z = x+ iy. For s > −1, let

dµs(z) :=
s+ 1

π

(
1− |z|2

)s
dz

be the s−weighted measure on the disc D. For 1 ≤ p < ∞, define the s− weighted

Lp space :

Lps(D) :=

{
f : D→ C measurabe | ‖f‖Lps :=

(∫
D
|f(z)|p dµs(z)

)1/p

<∞

}

If we denote the space of holomorphic functions on the unit disc D by O(D), then we

define the Bergman spaces, Aps(D), to be

Aps(D) := {f ∈ Lps(D) | f ∈ O(D)}

with norm

‖f‖Aps(D) := ‖f‖Lps(D) .
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Now let us summarize some important properties of Bergman spaces. We start by

proving that Bergman spaces are Banach spaces. However, we need the following

lemma, from [30], to prove our claim.

Lemma 4.1. Fix 1 ≤ p < ∞, s > −1. For every compact subset of D there exists a

positive constant C such that

sup
z∈K
|f(z)| ≤ C‖f‖Lps(D)

for all f ∈ Aps(D).

Theorem 4.2. Assume that 1 ≤ p < ∞, and s > −1. Bergman spaces are closed

subspaces of Lps(D), and hence they are Banach spaces.

Proof. Let {fn} be a sequence in the space Aps(D) such that fn → f in the space Lps(D).

According to Theorem 5.2 from [42], it is enough to show that fn → f uniformly on

every compact subet of the unit disc D. For any n,m ∈ N we have fn − fm ∈ Aps(D),

therefore, one can apply Lemma 4.1. Thus

sup
z∈K
|fn(z)− fm(z)| ≤ C‖fn − fm‖Lps(D)

By the uniform Cauchy criteria, fn → f uniformly on K.

In particular, A2
s(D) is a Hilbert space with the inner product:

(f, g)s :=

∫
D
f(z)g(z) dµs(z).

As a consequence of Lemma 4.1, Bergman spaces are reproducing kernel Banach

spaces.

Theorem 4.3. For 1 ≤ p <∞, and s > −1, Bergman spaces are reproducing kernel

Banach spaces. In particular, A2
s(D) is a reproducing kernel Hilbert space.
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Proof. We have to show that the evaluation map f 7→ f(z) is continuous. Let z ∈ D,

choose K to be a closed disc with center z and radius r < min{|z|, 1− |z|}.Then the

estimation of |f(z)| given by Lemma 4.1:

|f(z)| ≤ sup
w∈K
|f(w)| ≤ C‖f‖Lps(D)

In the following theorem we find the orthogonal projection of the space A2
s(D) explic-

itly.

Theorem 4.4. For s > −1, the orthogonal projection Ps : L2
s(D) → A2

s(D) onto

A2
s(D) is given by

Psf(z) =

∫
D

f(w)

(1− w̄z)s+2 dµs(w).

In particular, for f ∈ A2
s(D), we have

f(z) =

∫
D

f(w)

(1− w̄z)s+2 dµs(w).

If we define k(z, w) := (1− w̄z)−(s+2), then for any f ∈ A2
s(D) we have

f(z) =

∫
D
f(w)k(z, w) dµs(w).

therefore, the function k is a reproducing kernel.

4.2 The Group of Automorphisms of the Unit Disc

As a natural question one would ask about the natural groups that act on Bergman

spaces. For that reason we will study the group of automorphisms on the unit disc.

Recall that the group of automorphisms of the unit disc is the group of all biholo-

morphic functions from D onto itself. In complex analysis, it is a well known fact that

any automorphism of the unit disc is of the form

f(z) = eiθ
z + a

1 + āz

51



for some a ∈ D and θ ∈ R. Note that if f(z) = eiθ z+a
1+āz

for some θ, then θn := θ+ 2nπ

gives the same function for all n ∈ Z. One can also describe the automorphisms group

in terms of linear matrix groups. Let SU(1, 1) be the group

SU(1, 1) :=


 a b

b̄ ā

 : |a|2 − |b|2 = 1


It is not hard to see that the mapping

f 7→ 1√
1− |a|2

 eiθn/2 aeiθn/2

e−iθn/2ā e−iθn/2ā


for some choice of θn is a double valued function,

1√
1− |a|2

 eiθ/2 aeiθ/2

e−iθ/2ā e−iθ/2ā

 and
−1√

1− |a|2

 eiθ/2 aeiθ/2

e−iθ/2ā e−iθ/2ā


corresponds to the same f . When identifying these two matrices we have an isomor-

phism between the group of all automorphisms on D and SU(1, 1)/{±1}.

From the discussion above, the group SU(1, 1) is the natural group acting on the

disc, and hence on Bergman spaces. The following theorem describes the action of

SU(1, 1) on the unit disc.

Theorem 4.5. The group SU(1, 1) acts transitively on the unit disc D by the action a b

b̄ ā

 · z =
az + b

b̄z + ā
.

More over if we denote the origin in C by o, then the subgroup

K =


 eiθ 0

0 e−iθ

 : θ ∈ R


is the stabilizer of o.
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Proof. Direct calculations show that g1 · (g2 · z) = (g1g2) · z for all g1, g2 ∈ SU(1, 1).

Let us show that SU(1, 1) acts transitively on D, for any z ∈ D define

gz =
1√

1− |z|2

 1 z

z̄ 1


then we have ∣∣∣∣∣ 1√

1− |z|2

∣∣∣∣∣
2

−

∣∣∣∣∣ z√
1− |z|2

∣∣∣∣∣
2

= 1

and gz · o = z, which shows that gz ∈ SU(1, 1), and hence the action is transitive. For

the zero stabilizer we have g · 0 = 0 if and only if b = 0 and hence

g =

 a 0

0 ā


with |a| = 1.

As a consequence we can describe the unit disc as a homogeneous space.

Corollary 4.6. The unit disc D is homeomorphic to SU(1, 1)/K, where

K =


 eiθ 0

0 e−iθ

 : θ ∈ R

 .

4.3 Discrete Series Representations of SU(1,1)

Let g ∈ SU(1, 1), z ∈ D, and define

j(g, z) :=
d(g · z)

dz

then

j(g, z) =
a(b̄z + ā)− b̄(az + ā)

(b̄z + ā)2

=
1

(b̄z + ā)2
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and the function j satisfies the cocycle condition

j(g1g2, z) = j(g1, g2 · z)j(g2, z).

The calculations in [43] show that the the measure dµ(z) = 1
π
(1 − |z|2)−2dz is an

SU(1, 1)-invariant measure on D. Therefore, for all integer values of s > −1, the

function

πs(g)f(z) :=
(
j(g−1, z)

)s/2
f(g−1 · z)

defines a unitary representation of SU(1, 1) in the space L2
s−2(D). This representa-

tion is not irreducible, however if we restrict that representation on the Bergman

space Hs := A2
s−2(D), the result is an irreducible representation (see [43]). In term of

elements of SU(1, 1) one can write the representation by the formula:

πs

 a b

b̄ ā

 f(z) = (−b̄z + a)−sf

(
az − b
−b̄z + a

)
(4.1)

This family of representations, {πs}∞s=0 is called the discrete series representations of

SU(1, 1).

Note that we restrict ourselves to s = 0, 1, 2, 3, 4, 5, ..., because otherwise the term

(−b̄z + a)−s

will be undefined as single valued function. We now define a discrete series repre-

sentations for all s > −1. For this reason we will restrict our representations to a

simply connected subgroup of SU(1, 1). To construct this group we use the Iwasawa

decomposition of SU(1, 1) = S ×K, where

K =


 eiθ 0

0 e−iθ

 : θ ∈ R


and S ' SU(1, 1)/K ' D, which implies that S is simply connected group. Also

there is a one to one correspondence between functions on S( or equivalently K-right
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invariant functions on G) and functions on D, which is given by f(x) = f̃(x · o). This

correspondence induces an SU(1, 1)-invariant measure on S given by∫
S

f(x) dx =
s+ 1

π

∫
D
f̃(z)

dz

(1− |z|2)2
(4.2)

For s > −1, we define the s-weighted Lp space on S as

Lps(S) = {f : S → C :

∫
S

|f(x)|p (1− |x · o|2)sdx <∞}

with norm

‖f‖Lps(S) :=

(∫
S

|f(x)|p (1− |x · o|2)sdx

)1/p

Using (4.2), we see that∫
S

|f(x)|p (1− |x · o|2)(s+2)dx =
s+ 1

π

∫
D
|f̃(z)|p (1− |z|2)sdx

Therefore we have the isometry

‖f‖p
Lp
(s+2)

(S)
= ‖f̃‖p

Lps(D)
. (4.3)

Since the universal covering of a simply connected group is isomorphic to itself, the

restriction of πs on the group S is a well defined unitary representation for all real

values s > −1. We will also denote this restriction by πs.

From now on, we will work with the subgroup S instead of the full group SU(1, 1),

and the representation πs is the one that defined on S.

4.4 Wavelets on the Bergman Space As2(D)

In this section we define the wavelet transform on the Bergman space Aps−2, to use it

later to define coorbit spaces of Bergman spaces. Form now on, through this chapter,

we use Hs = Aps−2, and u = 1D the characteristic function on the disc D.

The function u is in the space Hs = A2
(s−2)(D). Indeed, the integral:∫

D
1D(z) dµs−2(z) =

s− 1

π

∫
D

(
1− |z|2

)s−2
dz
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=
s− 1

π

∫ 2π

0

∫ 1

0

(
1− r2

)s−2
r drdθ

=
s− 1

π

∫ 2π

0

∫ 1

0

1

2
us−2 dudθ

=1

is finite, and so u ∈ O(D)∩L2
s−2(D). It follows that, one can define the wavelet (voice)

transform Wu : Hs → Cb(G) by:

W s
u(v)(x) = (v, πs(x)u)Hs = (v, πs(x)u)(s−2)

which can be concretely given in following result.

Proposition 4.7. For s > 1, the voice transform W s
u on the space Hs = A2

s−2 is

given by

W s
u(v)

 a b

b̄ ā

 = (ā)−s v

(
b

ā

)
.

In particular,

|W s
u(u)(x)| = |a|−s = (1− |x · o|2)s/2.

Proof. The voice transform for a function v ∈ A2
s(D) is given byW s

u(v)(x) = (v, π(x)u),

for

x =

 a b

b̄ ā


we have

W s
u(v)(x) =

s− 1

π

∫
D
v(z) πs(x)u(z)

(
1− |z|2

)s−2
dz

=
s− 1

π

∫
D
v(z) (−bz + ā)−s

(
1− |z|2

)s−2
dz

=
s− 1

π

∫
D

(ā)−s v(z)

(
1− b

ā
z

)−s (
1− |z|2

)s−2
dz

= (ā)−s v

(
b

ᾱ

)
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where we used Theorem 4.4 in the last step. For the other part, note that |a|2−|b|2 = 1

which implies that

|a|−1 = (1− |b/ā|2)1/2 = (1− |x · o|2)1/2.

Therefore, |W s
u(u)(x)| = |a|−s = (1− |x · o|2)s/2.

In the following lemma we see that for 1 < s ≤ 2 the representation πs is not integrable

and hence we can not use the Feichtinger-Gröchenig theory to discretize Bergman

spaces for this case.

Lemma 4.8. The representation (πs,Hs) of the group S, is square integrable if and only if

s > 1, and it is integrable if and only if s > 2.

Proof. Assume u = 1D, by Proposition 4.7 we have∫
S

|(u, πs(x)u)Hs|2 dx =

∫
S

(1− |x · o|2)2 dx

=
s− 1

π

∫
D
(1− |z|2)s−2 dz

This integral is finite if and only if s > 2. A similar argument shows the other

part.

4.5 Bergman Spaces as Coorbits

We have seen in the previous section that (πs,Hs) is a integrable irreducible unitary

representation for s > 2, which means that we can apply Feichtinger-Gröchenig the-

ory, where as the representation is no longer integrable for 1 < s ≤ 2, and hence we

will use the construction of the coorbits in the dual pairing.

In this section we are going to write Apα(D) as a coorbit space of the Banach space

Lpα+2−sp/2(S) by using our Fréchetspace to be the space of smooth vectors H∞s of the
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Hilbert space Hs = Aps−2(D). We start by a background about the space of smooth

vectors which can be found in [46].

A function f : G → H is of class C1(G,H) if L(Ej)f exists and continuous for all

j = 1, 2, ...n. For any multi-index α of order N a function f on G is of class CN(G,H),

if for any |α| = N , the function Lαf is continuous. Finally, a function f is of class

C∞(G,H) if it is of class CN(G,H) for all N . The space C∞(G,H) is a Fréchetspace

which is topologized by the family of semi-norms:

‖f‖N,K := sup
x∈K,|α|=N

‖Lαf(x)‖H

for any compact subset K of G.

Definition 4.9. The space of smooth vectors is defined by

H∞π := {v ∈ Hπ | x 7→ π(x)v is inC∞(G,Hπ)}

with a topology inherited from the space C∞(G,H) under the inclusion v 7→ Fv where

Fv(x) = π(x)v. A representation Hπ is called smooth representation if the space of

smooth vectors H∞π is dense in Hπ.

We summarize some properties of the space of the smooth vectors in the following

theorem which can be found in [46].

Theorem 4.10. Let Hπ be a square-integrable unitary representation of G. then the

following are true:

1. The space of smooth vectors H∞π is a Fréchetspace with the family of semi-norms

‖v‖N,K := sup
x∈K,|α|=N

‖EαFv(x)‖H.

2. The space H∞π is dense in Hπ, in particular the representation Hπ is smooth.
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3. The space H∞π is π-invariant subspace of Hπ.

4. The representation π
∣∣H∞π is irreducible.

We will keep denoting the restriction of the representation π on the space H∞ by π.

If we denote the conjugate dual of H∞ by H−∞, then the dual representation of π

will be denoted by π∗, that is

〈π∗(x)λ, u〉 = 〈λ, π(x)u〉

Go back to Bergman spaces, we start by the following characterization of the smooth

vectors and its conjugate dual which can be found in [34].

Lemma 4.11. The space of smooth vectors H∞s and its conjugate dual H−∞s are

exactly described to be:

(i) A vector v ∈ H∞s if and only if v =
∑∞

k=0 akz
k such that for any m ∈ N there

exists a constant Cm satisfies

|ak|2 ≤ Cm(1 + k)−m.

(ii) A distribution v ∈ H−∞s if and only if v =
∑∞

k=0 bkz
k such that there exist both

m ∈ N and a constant Cm satisfy

|bk|2 ≤ Cm(1 + k)m.

By Theorem 4.10, the space H∞s is πs-invariant subspace and it is dense in Hs. We

keep denoting the subrepresentation on the space H∞s by πs, then πs is a unitary

representation on G.

The following corollaries play an important role in the discretization of Bergman

spaces:
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Corollary 4.12. The smooth vectors of the representations Hs are bounded on the

unit disc.

Proof. Let v be a smooth vector, by Theorem 4.11, we obtain the series representation

v =
∑
akz

k with

|ak|2 ≤ Cm(1 + k)−m.

We can estimate the sum by

∑
|ak| =

∑
(|ak|2)1/2

≤C1/2
4

∑
(1 + k)−2

≤C.

Thus, |v(z)| ≤
∑
|ak| ≤ C for all z ∈ D.

Corollary 4.13. Assume u = 1D, and assume v ∈ H∞s . Then, there exists a con-

stant Cv depending continuously on v such that |Wu(v)(x)| ≤ Cv|Wu(u)(x)| and

|Wv(u)(x)| ≤ Cv|Wu(u)(x)| for all x ∈ G.

Proof. Assume that v ∈ H∞s . Note that for x =

 a b

b̄ ā

, we have

|Wu(v)(x)| =
∣∣∣∣(ā)−s v

(
b

ā

)∣∣∣∣
=|Wu(u)(x)||v

(
b

ā

)
|

≤Cv|Wu(u)(x)|

where we used Proposition 4.7 and Corollary 4.12. For the other part, we have

|Wv(u)(x)| = |(u, πs(x)v)| = |(v, πs(x−1)u)|

= |Wu(v)(x−1)| ≤ Cv|Wu(u)(x−1)|
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= Cv|Wu(u)(x)|

where we used the first part and the fact that (πs,Hs) is unitary.

Corollary 4.14. Assume that 1 ≤ p < ∞, s > 1. If v is a smooth vector for Hs,

then W s
u(v) ∈ Lpt (S) for t+ ps/2 > 1.

Proof. By Corollary 4.13, we have∫
S

|Wu(v)(x)|p(1− |x · o|2)t dx ≤C
∫
S

|Wu(u)(x)|p(1− |x · o|2)t dx

=C

∫
S

(1− |x · o|2)t+ps/2 dx

=C

∫
D
(1− |z|2)t+ps/2−2 dz

this integral is finite if t+ ps/2− 2 > −1 or equivalently t+ ps/2 > 1.

We claim that the space CouπsL
p
α+2−sp/2(S) is a non-zero well defined Banach space

for −1 < α < p(s − 1) − 1. More precisely, The space B = Lpα+2−sp/2(S) satisfies

Assumption 3.4.

I. The vector u = 1D is πs-cyclic vector in H∞s . Which follows from the fact

that πs is irreducible on the full group SU(1, 1) and x ∈ SU(1, 1) has the

decomposition x = sk where s ∈ S and k ∈ K. A vector v ∈ H∞s can be written

as v =
∑

j cjπs(xj)u =
∑

j cjπ(sj)π(kj)u =
∑

j(cje
−sθji)πs(sj)u.

II. The vector u is πs-analyzing vector for H∞s . If φ ∈ H−∞s , then φ =
∑

k akφk

where φk(z) = zk,and hence

Wu(φ)(x) =
∑
k

akWu(φk)(x)

=
∑
k

ak(ā)−sφk(
b

ā
)

=(ā)−sφ(
b

ā
).
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Also, simple calculations show that if x =

 ax bx

b̄x āx

, y =

 ay by

b̄y āy

,

w = x · o, and z = y · o, then āy−1x = ayāx(1− wz̄). Now,

Wu(φ) ∗Wu(u)(x) =

∫
S

Wu(φ)(y)Wu(u)(y−1x) dy

=

∫
S

(āy)
−sφ(y · o)(āy−1x)

−sdy

=(āx)
−s
∫
S

(āy)
−s(ay)

−sφ(y · o)(1− wz̄)−sdy

=
s− 1

π
(āx)

−s
∫
D
(1− |z|2)sφ(z)(1− wz̄)−s

dz

(1− |z|2)2

=
s− 1

π
(āx)

−s
∫
D

∑
k

akφk(z)
(1− |z|2)s−2

(1− wz̄)s
dy

=
s− 1

π
(āx)

−s
∑
k

ak

∫
D
φk(z)

(1− |z|2)s−2

(1− wz̄)s
dy

=
s− 1

π
(āx)

−s
∑
k

akφk(w)

=
s− 1

π
Wu(φ)(x)

Where we are allowed to interchange the integral and the sum by using Tonelli’s

Theorem, indeed,∫
D

∑
k

∣∣∣∣akφk(z)
(1− |z|2)s−2

(1− wz̄)s

∣∣∣∣ dy ≤C1

∫
D

∑
k

|ak|
∣∣∣∣(1− |z|2)s−2

(1− wz̄)s

∣∣∣∣ dy
≤C

∫
D

1D(z)

∣∣∣∣(1− |z|2)s−2

(1− wz̄)s

∣∣∣∣ dy
=C

III. Now we show that the mapping

Lpα+2−sp/2(S)×H∞s 3 (f, v) 7→
∫
S

f(x) 〈π∗s(x)u, v〉 dx

is continuous. As we remarked before this is a duality condition, that is we only

have to show that |Wv(u)∨| = |Wu(v)| ∈ Lq−αq/p+sq/2(G). By corollary 4.14, this

is true if −αq/p+ sq/2 + sq/2 > 1 which equivalent to α < p(s− 1)− 1.
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IV. Finally, we show that the coorbit space is non-trivial, by showing that u ∈

CouH∞s L
p
α+2−sp/2(S). According to Corollary 4.14, we have

Wu(u) ∈ Lpα+2−sp/2(S),

hence u ∈ CouH∞s L
p
α+2−sp/2(S).

The steps (I)− (IV ) prove the following theorem:

Theorem 4.15. The spaces CouπsL
p
r(G) are non-zero well defined πs−invariant Ba-

nach spaces whenever 1 ≤ p <∞ and −1 < α < p(s− 1)− 1.

We end this section with our main result about Bergman spaces on the unit disc,

which will be proved in detail for the general case of the unit ball in Chapter 6, so

we will not include the proof here.

Theorem 4.16. Assume that 1 ≤ p < ∞ and −1 < α < p(s − 1) − 1. The space

Apα(D) is corresponding to the coorbit space CouπsL
p
α+2−sp/2(S) up to equivalence of

norms.

4.6 Discretization: Bergman Spaces on the Unit Disc

In the previous section we described Bergman spaces as coorbits. In this section we

will use the theory of coorbits to construct frames and atomic decompositions for

Bergman spaces via the subgroup S. Further, in [6], the authors gave a discretization

through a finite covering group of SU(1, 1) to include the discrete representation series

(πs,Hs) for rational s > 1 and all smooth vectors to be analyzing vectors.

Proposition 4.17. Assume that 1 ≤ p <∞ and −1 < α < p(s− 1)− 1. The convo-

lution operators f 7→ f ∗ |Wu(v)| and f 7→ f ∗ |Wv(u)| are continuous on Lpα+2−sp/2(S)

for all v ∈ H∞s .
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Proof. By Theorem 4.13, it is enough to show that the mapping f 7→ f ∗ |Wu(u)| is

continuous on Lpα+2−sp/2(S). Now, for if x =

 ax bx

b̄x āx

, y =

 ay by

b̄y āy

, w = x ·o,

and z = y · o, then āy−1x = ayāx(1− wz̄) and

f ∗ |W s
u(u)|(x) =

∫
S

f(y)|W s
u(u)|(y−1x)| dy

≤C1

∫
S

f(y)(1− |y−1x · o|2)s/2 dy

=C

∫
D
|f̃(z)

|(1− |w|2)s/2 (1− |z|2)s/2−2

|1− wz̄|s
dy

According to the Theorem 2.10 in [50], the operator S which is given by

Sf(z) = (1− |w|2)s/2
∫
Bn
|f(z)| (1− |z|

2)s/2−2

|1− 〈w, z〉 |s
dz

is continuous on Lpα−sp/2(D) whenever −sp/2 < α − sp/2 + 1 < p (s/2− 1) which

equivalent to −1 < α < p(s − 1) − 1. Since ‖f‖Lp
α−sp/2(D) = ‖f̃‖Lp

α+2−sp/2(S) , the

operator F 7→ f ∗ |Wu(u)| is continuous on Lpα+2−sp/2(S).

Theorem 4.18. Assume that 1 ≤ p < ∞ and −1 < α < p(s − 1) − 1. Fix u = 1D.

Then we can choose ε small enough such that for any Uε-well spread set {xi} there

exist a family of functionals {φi} on Apα such that the family {(φi, πs(xi)u)} forms an

atomic decomposition for Apα, and the family {πs(xi)u} forms a frame as well. The

reconstruction operators are given in Theorem 3.29.

Proof. We will apply Theorem 3.29. In last section, we proved that all the assumptions

of Theorem 3.29 are satisfied and the continuity of the convolution operators are done

in the previous proposition. So the existence of a frame and an atomic decomposition

is established by Theorem 3.29.
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Chapter 5
Projective Representation, Twisted
Convolutive Coorbits, and Discretization.

5.1 Projective Representation

A generalization of group representation is a projective representation. In this section

we start by introducing the definition of the continuous projective representation.

Then we will construct a representation from given projective representation, and we

will introduce the definition of twisted left translation and some useful results. We

define T to be the one dimensional Torus, that is T := {t ∈ C | |t| = 1}.

Definition 5.1. Let S be a locally convex topological vector space. A continuous

projective representation of a Lie group G is a mapping ρ : G→ GL(S) that satisfies

the following:

1. ρ(1) = id.

2. There is a smooth cocycle σ : G × G → T, which satisfies the cocycle ρ(ab) =

σ(a, b)ρ(a)ρ(b).

3. For every v ∈ S the mapping a 7→ ρ(a)v is continuous.

The following are straightforward consequences about the cocycle σ:

1. σ(a, b)σ(ab, c) = σ(a, bc)σ(b, c) for all a, b, and c in G,

2. σ(a, 1) = σ(1, a) = 1 for all a ∈ G,

3. σ(a, b)−1 = σ(a, b).

We define unitary projective representation, irreducible projective representation,

ρ-cyclic, square-integrable projective representation, and ρ-admissible vector in the

same way as for representations.
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In the following lemma we define the dual projective representation on the conjugate

dual of S.

Lemma 5.2. Let (ρ,S) be a continuous projective representation of G on a Fréchet

space S, and let S∗ be the conjugate dual of S equipped with the weak*-topology. The

mapping ρ∗, which is given by

〈ρ∗(x)λ, v〉 := 〈λ, ρ(x)−1v〉

for all λ ∈ S and all v ∈ S, defines a continuous projective representation of G on

the space S∗ with the same cocycle as (ρ,S).

Proof. Assume that σ(x, y) is a cocycle of (ρ,S). Then we have

〈ρ∗(xy)λ, v〉 =〈λ, ρ(xy)−1v〉

=〈λ, (σ(x, y)ρ(x)ρ(y))−1v〉

=〈λ, σ(x, y)ρ(y)−1ρ(x)−1v〉

=〈σ(x, y)λ, ρ(y)−1ρ(x)−1v〉

=〈σ(x, y)ρ∗(x)ρ∗(y)λ, v〉

Hence, ρ∗(xy) = σ(x, y)ρ∗(x)ρ∗(y). Let us prove the continuity condition. For a net

xα → x in G we have x−1
α → x−1 and σ(xα, x

−1
α ) → σ(x, x−1), which implies that

σ(xα, x
−1
α )ρ(x−1

α )v → σ(x, x−1)ρ(x−1)v for all v ∈ S. So ρ(xα)−1v → ρ(x)−1v. the

continuity of the dual pairing implies that 〈λ, ρ(xα)−1v〉 → 〈λ, ρ(x)−1v〉 for all λ ∈ S∗.

Thus ρ∗(xα)v → ρ∗(x)v weakly, i.e., in S∗.

This projective representation is called the dual projective representation of (ρ,S).

For any projective representation ρ on a given Lie group G we can construct a rep-

resentation from ρ on a new group related to G which is called the Mackey group of
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G (see [10]). This construction will connect the convolutive coorbits and the twisted

convolutive coorbits that arise from the projective representation of G.

Definition 5.3. Let (ρ,S) be a projective representation of G with a cocycle σ. The

Mackey group that corresponds to G is the Lie group Gσ := G×T, with multiplication

given by

(x, t)(y, z) = (xy, σ(x, y) tz),

and equipped by the product manifold structure.

The Mackey group Gσ has left-invariant Haar measure given by dµGσ(x, t) = dx dt,

where dx is the left invariant Haar measure of G and dt is the normalized Lebesgue

measure on T. If (ρ,S) is a projective representation of G then

πρ(a, z) = zρ(a)

defines a representation of Gσ on the space S.

Let u ∈ S be ρ-cyclic vector. We define the projective Wavelet transform (or twisted

wavelet transform)
#

W u: S∗ → L2(G) by

#

W u (λ)(x) := 〈λ, ρ(x)u〉.

Lemma 5.4. Let (ρ,S) be a projective representation of G and let (πρ,S) be the

corresponding representation of Gσ. Then the following are true:

1. The vector u ∈ S is ρ-cyclic if and only if u is πρ-cyclic.

2. The wavelet transform Wu, generated by πρ, and the projective wavelet transform
#

W u are related by

Wu(λ)(x, t) = t̄
#

W u (λ)(x).

Proof. (1)The following calculations

span{π(x, z)u | (x, z) ∈ Gσ} =span{zρ(x)u | x ∈ G, z ∈ T}
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=span{ρ(x)u | x ∈ G}

show our assertion.

(2) Assume that (x, t) ∈ Gσ, then

Wu(λ)(x, t) =〈λ, πρ(x, t)u〉

=〈λ, tρ(x)u〉

=t̄ 〈λ, ρ(x)u〉

=t̄
#

W u (λ)(x).

Now we introduce the twisted left and right invariance operators on a BF-spaces.

Definition 5.5. Let B be a BF-space on G, and let (ρ,S) be a projective representa-

tion on G with a cocycle σ. For a function f ∈ B, we define

L#(a)f(x) := σ(a, a−1x)Laf(x)

and

R#(a)f(x) := σ(x, a)Raf(x),

We say that B is twisted left-invariant if L#(a)f ∈ B for all f ∈ B and f 7→ L#(a)f

is continuous for all a ∈ G. Analogously, we define twisted right-invariant spaces.

Example 5.6. Let (ρ,S) be a continuous projective representation of G and let B

be a solid left invariant BF-space on G. If left translation on B is continuous, then

a 7→ L#(a) is a continuous projective representation of G on the space B. Indeed, one

can use the cocycle property

σ(ab, b−1a−1x)σ(a, b) = σ(a, a−1x)σ(b, b−1a−1x)

to conclude that L#(ab)f(x) = σ(a, b)L#(a)L#(b)f(x). Moreover, solidity and left

invariance of B show that ‖L#(a)f‖ = ‖Laf‖. Finally, continuity of a 7→ L#(a)f
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follows from the fact that a 7→ Laf and σ are uniformly continuous on compact

subsets.

Remark 5.7. If B is a solid space, then the left invariance of the space B implies

twisted-left invariance of the space B.

5.1.1 Twisted Convolution

As before, (ρ,S) is a projective representation of G with cocycle σ. We define the

twisted convolution of functions f and g on G by

f#g(x) :=

∫
G

f(y)L#(y)g(x) dy =

∫
G

f(y)g(y−1x)σ(y, y−1x) dy

whenever the integral exists. In the following theorem we state the relation between

the convolution and the twisted convolution.

Theorem 5.8. Let f and g be measurable functions on G, then the following are

equivalent:

(i) The convolution f ∗ g(x) is defined for x ∈ G.

(ii) The convolution f ∗ |g|(x) is defined for x ∈ G.

(iii) The convolution |f | ∗ |g|(x) is defined for x ∈ G.

(iv) The twisted convolution f#g(x) is defined for x ∈ G.

(v) The twisted convolution |f |#|g|(x) is defined for x ∈ G.

Proof. The proof follows from the fact that

∣∣f(y)g(y−1x)
∣∣ =
∣∣|f(y)|

∣∣g(y−1x)
∣∣∣∣

=
∣∣∣f(y)g(y−1x)σ(y, y−1x)

∣∣∣
=
∣∣∣|f(y)|

∣∣g(y−1x)
∣∣σ(y, y−1x)

∣∣∣ .
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As we have seen with the convolution operator, the following lemma gives sufficient

conditions to define the twisted convolution operator with
#

W u (u).

Lemma 5.9. Let B be a twisted left-invariant Banach function space on G, and fix

a vector u ∈ S. If the mapping x → F (x)
#

W u (u)(x−1) is in L1(G) for all F ∈ B,

then the twisted convolution

F#
#

W u (u)(x) :=

∫
G

F (y)
#

W u (u)(y−1x)σ(y, y−1x) dy

is well defined for all x ∈ G. Moreover, if the mapping F 7→ F#
#

W u (u)(1) is

continuous on B, then the mapping F 7→ F#
#

W u (u)(x) is continuous for all x ∈ G.

Proof. For F ∈ B, we have∫
G

∣∣∣∣F (y)
#

W u (u)(y−1x)σ(y, y−1x)

∣∣∣∣ dy =

∫
G

∣∣∣∣F (y)
#

W u (u)
(
(x−1y)−1

)∣∣∣∣ dy
=

∫
G

∣∣∣∣F (xy)
#

W u (u)(y−1)

∣∣∣∣ dy
=

∫
G

∣∣∣∣σ(x−1, xy)F (xy)
#

W u (u)(y−1)

∣∣∣∣ dy
=

∫
G

∣∣∣∣L#(x−1)F (y)
#

W u (u)(y−1)

∣∣∣∣ dy.
The last integral is finite because L#(x−1)F is again in B. Thus, the function y 7→

F (y)
#

W u (u)(y−1x)σ(y, y−1x) is integrable, and hence, the twisted convolution F#
#

W

(x) is well defined for all x ∈ G.

Now, assume that the mapping f 7→ f#
#

W u (u)(1) is continuous. For any x ∈ G, one

has

F#
#

W u (u)(x) =

∫
G

F (y)
#

W u (u)(y−1x)σ(y, y−1x) dy

=

∫
G

F (xy)
#

W u (u)(y−1)σ(xy, y−1) dy.

Using the cocycle properties, we have

σ(x−1, xy)σ(y, y−1) = σ(x−1, x)σ(xy, y−1).
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It follows that

F#
#

W u (u)(x) =σ(x−1, x)

∫
G

L#(x−1)F (y)
#

W u (u)(y−1)σ(y, y−1) dy

=σ(x−1, x)L#(x−1)F#
#

W u (u)(1).

The continuity of F 7→ L#(x)F and the continuity of F 7→ F#
#

W u (u)(1) show that

the mapping F 7→ F#
#

W u (u)(x) is continuous for all x ∈ G. Indeed,∣∣∣∣F#
#

W u (u)(x)

∣∣∣∣ =|L#(x−1)F#
#

W u (u)(1)|

≤C ′
∥∥L#(x−1)F

∥∥
B

≤C ‖F‖B .

5.2 Twisted Convolutive Coorbit Spaces

Let u ∈ S and define the space

B#
u := {f ∈ B|f#

#

W u (u) = f}

with norm inherited from B. A ρ-cyclic vector u ∈ S, is called a ρ-analyzing vector

for S if the reproducing formula

#

W u (λ)#
#

W u (u) =
#

W u (λ)

holds for all λ ∈ S∗. We state sufficient conditions that make the twisted convolutive

coorbit a well defined Banach space.

Assumption 5.10. Let B be a twisted left-invariant BF-space on G. Assume there

exists a nonzero ρ-analyzing vector u ∈ S satisfying the following continuity condition:

The mapping

(R′1/2) B × S 3 (f, v) 7→ f#
#

W v (u)(1) =

∫
G

f(y)
#

W v (u)∨(y)σ(y, y−1) dy ∈ C

is continuous.
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Remark 5.11. 1. As in the convolutive coorbits, we have weaker assumptions on

the twisted convolutive coorbits. However, we will consider the above assump-

tions, the reason behind that is we only need these assumptions in practice.

2. As before, if B = Lpw(G) then the continuity condition will be a duality require-

ment, i.e.

S 3 v 7→
#

W v (u)∨ ∈ Lq
w−q/p

(G)

is continuous, where 1
p

+ 1
q

= 1.

3. The above continuity condition ensures that
#

W v (u)∨ is a continuous linear

functional on B, with the paring

〈
#

W v (u)∨, f〉 =

∫
G

f(y)
#

W v (u)∨(y)σ(y, y−1) dy.

We are now ready to define the twisted convolutive coorbit space.

Definition 5.12. Let (ρ,S) be a projective representation of G, and let B be a twisted

left-invariant BF-space on G. Assume that u ∈ S is a ρ-analyzing vector satisfying

Assumption 5.10. A twisted convolutive coorbit space of B related to the projective

representation ρ is the space

CouρB := {λ ∈ S∗|
#

W u (λ) ∈ B}

with the norm

‖λ‖CouρB := ‖
#

W u (λ)‖B.

To connect the theory of twisted convolutive coorbits to the ordinary coorbit theory,

we introduce the following function spaces on Gσ = G × T that corresponds to a

function space B on G:

B̃ = {f̃ : G× T→ C | f̃ is measuralbe, f :=

∫
T
|f̃(., t)| dt ∈ B}
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with norm ‖f̃‖B̃ := ‖f‖B, and the space

B̂ := {f̃ : G× T→ C | f̃(a, t) = t̄f(a), f ∈ B}

with norm ‖f̃‖B̂ := ‖f‖B. These spaces are Banach function spaces, and the space

B̃ is studied in [26]. It is easy to see that B is isometrically isomorphic to B̂ and the

latter is continuously embedded in B̃. However, if B is a solid Banach space, then B̃

is solid, but B̂ is not solid in general. For the coorbit theory we use the space B̂ to

connect the convolutive coorbits by the twisted convolutive coorbits when the solidity

is not needed. However, we will use the space B̃ when the solidity is needed as in the

discretization of the coorbit spaces.

Lemma 5.13. If G×T and B̂ are defined as before, then the following relations hold.

1. If the space B is twisted left-invariant, then B̂ is left-invariant.

2. For f̃ ∈ B̂, we have f̃ ∗Wu(u)(x, z) = z̄ f #
#

W u (u)(x).

3. CouρB = CouπρB̂.

4. The spaces B#
u , B̂u are isometrically isomorphic via Λf(x, t) := t̄ f(x).

Proof. The first part is done by the following calculations:

L(a,w)f̃(x, z) =f̃(a−1x, w̄zσ(a, a−1)σ(a−1, x))

=f̃(a−1x, w̄zσ(a, a−1x))

=wz̄ σ(a, a−1x)f(a−1x)

=z̄w Laf(x).

Therefore, B is twisted left-invariant if and only if B̂ is left invariant. For the second

part, we have

f̃ ∗Wu(u)(x, z) =

∫∫
f̃(y, w)Wu(u)((y, w)−1(x, z))dwdy
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=

∫∫
f̃(y, w)Wu(u)(y−1x, w̄zσ(y, y−1)σ(y−1, x))dwdy

=z̄

∫
f(y)

#

W u (u)(y−1x)σ(y, y−1)σ(y−1, x) dy

=z̄ f#
#

W u (u)(x).

Next, assume that λ ∈ S. Then, λ ∈ CouρB if and only if
#

W u (λ) ∈ B if and only if

Wu(λ) ∈ B̂ if and only if λ ∈ CouπρB̂.

Finally, it is clear that Λ is surjective, and ‖Λf‖B̂ = ‖f‖B.

The following theorem is the connection between the coorbit theory that arises from

representation theory and the one that arise from projective representation theory.

Theorem 5.14. If B and u satisfy Assumption 5.10, then B̂ and u satisfy Assump-

tion 3.12.

Proof. First, by Lemma 5.4 we know that u is π-cyclic, and by Lemma 5.13 the space

B̂ is left invariant. Next, denote the wavelet transform related to the representation

πρ by Wu. Assume that u is a ρ-analyzing vector. We show that u satisfying the

reproducing formula Wu(λ) ∗Wu(u) = Wu(λ) for all λ ∈ S∗. The same calculations,

as in Lemma 5.13 (2), show that

Wu(λ) ∗Wu(u)(x, z) =z̄
#

W u (λ) #
#

W u (u)(x)

=z̄
#

W u (λ)

=Wu(λ)(x, z).

Hence Wu(λ) ∗Wu(u) = Wu(λ) for all λ ∈ S∗.

Now, let B and u satisfy (R′1/2), and note that

74



∣∣∣∣∫∫ f̃(x, z)
#

W v (u)((x, z)−1) dzdx

∣∣∣∣ ≤ ∣∣∣∣∫∫ z̄f(x)
#

W v (u)(x−1, z̄σ(x, x−1)) dzdx

∣∣∣∣
≤
∣∣∣∣∫ f(x)Wv(u)((x−1)σ(x, x−1) dx

∣∣∣∣ .
It follows that the continuity of (f, v) 7→

∫
f(x)Wv(u)((x−1)σ(x, x−1) dx on B × S

implies the continuity of (f̃ , v) 7→
∫∫

f̃(x, z)
#

W v (u)((x, z)−1) dzdx. Therefore B̂ and

u satisfy (R1/2).

The following theorem states that the space B#
u is a reproducing kernel Banach space.

Theorem 5.15. Let B be a twisted left-invariant BF-space on G and let u ∈ S be a

ρ-cyclic vector. If B and u satisfy:

(R′1) The mapping B 3 f 7→ f#
#

W u (u)(1) ∈ C is continuous,

then B#
u is closed in B, and hence is a reproducing kernel Banach space with k(x, y) =

L#(y)
#

W u (u)(x).

Proof. We know thatB is isometrically isomorphic to B̂ by the isomorphism (Λf)(x, t) :=

t̄f(x) and Λ(B#
u ) = B̂u. By Theorem 5.14 (we consider the continuity in the first ar-

gument), the space space B̂ and u satisfy (R1). Hence by Lemma 3.6, the space B̂u

is a closed subspace of B̂. This proves that B#
u is closed. Also, k is the reproducing

kernel, because for f ∈ B#
u we have∫

G

f(y)k(x, y)dy =

∫
G

f(y)σ(y, y−1x)
#

W u (u)(y−1x)dy

=f#
#

W u (u)(x) = f(x).

Now we demonstrate our main result about the coorbit space constructed by the

twisted convolution.
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Theorem 5.16. Assume that B and u satisfy Assumption 5.10. Then

1.
#

W u (v)#
#

W u (u) =
#

W u (v) for v ∈ CouρB.

2. The space CouρB is a ρ∗-invariant Banach space.

3.
#

W u: CouρB → B intertwines ρ∗ and a 7→ L#(a).

4.
#

W u: CouρB → B#
u is an isometric isomorphism.

Proof. By Theorem 5.14, the space B̂ and u satisfy Assumption 3.12. So we can apply

Theorem 3.11 to the space B̂.

(1) For v ∈ CouπρB̂ we have Wu(λ) ∗Wu(u) = Wu(λ) for all λ ∈ S∗. Moreover, as we

noted in Lemma 5.13 and Lemma 5.4 we have CouρB = CouπρB̂ and

Wu(v) ∗Wu(u)(x, z) = z̄
#

W u (v)#
#

W u (u)(x)

as well as Wu(v)(x, z) = z̄
#

W u (v)(x). Putting all the pieces together, we have

#

W u (v)#
#

W u (u) =
#

W u (v)

for v ∈ CouρB .

(2) We know that the space CouπρB̂ = CouρB is π∗ρ-invariant Banach space. SoWu(π
∗
ρ(y, w)φ) ∈

CouπρB̂. On the other hand

Wu(π
∗
ρ(y, w)φ)(x, z) = z̄w

#

W u (ρ∗(y)φ)(x),

which implies that
#

W u (ρ∗(y)φ) ∈ B.

(3) Using the fact that Wu intertwines π∗ρ with left translation, and π∗ρ(x, z) = zρ∗(x).

We have

#

W u (ρ∗(y)φ)(x) =w̄zWu(π
∗
ρ(y, w)φ)(x, z) = w̄zL(y,w)Wu(φ)(x, z)
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=σ(y, y−1)σ(y−1, x)Ly
#

W u (φ)(x)

=L#(y)
#

W u (φ)(x).

(4) If we denote the isometry isomorphism between Bu and B̂u by Λ, then
#

W u=

Λ−1Wu : CouρB → B#
u and the result is obtained.

In the following theorem, we prove that the twisted coorbit space is independent of

the choice of the ρ-analyzing vector under some assumptions.

Theorem 5.17. Assume that u1 and u2 are ρ-analyzing vectors for S which satisfy

Assumption 5.10, and the following properties are hold for i, j ∈ {1, 2}

1. there are nonzero constants Ci,j such that
#

W ui (λ)#
#

W uj (ui) = Ci,j
#

W uj (λ)

for all λ ∈ S∗

2. the mapping Bui 3 f 7→ f#
#

W uj (ui) ∈ B is continuous.

Then Cou1ρ B = Cou2ρ B with equivalent norms.

Proof. Consider the space B̂ and the Mackey group G × T. Since u1 and u2 are ρ-

analyzing vectors for S that satisfying Assumption 5.10, they are also πρ-analyzing

vectors for S that satisfying Assumption 3.12 (see Theorem 5.14). Also for i, j ∈ {1, 2}

and λ ∈ S∗, we have

Wui(λ) ∗Wuj(ui)(x, t) =t̄
#

W ui (λ)#
#

W uj (ui)(x)

=t̄Ci,j
#

W uj (λ)(x)

=Ci,jWuj(λ)(x, t)

Moreover, the mapping B̂ui 3 f̃ 7→ f̃ ∗ Wuj(ui) ∈ B̂ is continuous, indeed, |f̃ ∗

Wuj(ui)| = |f#
#

W uj (ui)| ≤ C‖f‖B = C‖f̃‖B̂. Therefore, by Theorem 3.15, Cou1πρB̂ =

Cou2πρB̂. Since CouiπρB̂ = Couiρ B, the result is obtained.
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We finish this section by the following version of Duflo-Moore theorem for square

integrable projective representation.

Theorem 5.18. Let (ρ,H) be a square-integrable projective representation of G.

1. There exists a positive self adjoint operator Aρ which is defined on a dense subset

D of H, such that u ∈ H is ρ-admissible if and only if u ∈ D. Moreover, the

orthogonality relation∫
G

(v1, ρ(x)u1) (ρ(x)u2, v2) dx = (Aρu2, Aρu1) (v1, v2)

holds for all u1, u2 ∈ D and v1, v2 ∈ H.

2. In addition, if G is a unimodular, then D = H and Aρ = cρIdH. Thus, all

vectors of H are ρ-admissible and∫
G

(v1, ρ(x)u1) (ρ(x)u2, v2) dx = c2
ρ(u2, u1) (v1, v2)

for all u1, u2, v1, v2 ∈ H. The constant cρ is called the formal dimension of ρ.

Proof. Consider the Mackey group G × T with the corresponding representation

πρ(x, t) = tρ(x). The representation πρ is square integrable. Indeed, if W is a πρ

invariant subspace of H, then ρ(x)W ⊂ W for all x ∈ G, so W = 0 or W = H. Also,

〈πρ(x, t)v, πρ(x, t)u〉 = 〈tρ(x)v, tρ(x)u〉 = 〈v, u〉, thus πρ is an irreducible unitary

representation of G× T. Let u be a ρ-admissible vector, then∫∫
|〈u, πρ(x, t)u〉|2 dt dx =

∫∫
|〈u, tρ(x)u〉|2 dt dx

=

∫
G

|〈u, ρ(x)u〉|2 dx <∞.

By Theorem 2.16, there is a positive self adjoint operator Aπρ with domain D ⊂ H

such that the orthogonality relation∫∫
(v1, πρ(x, t)u1) (πρ(x, t)u2, v2) dt dx = (Aπρu2, Aπρu1) (v1, v2)
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holds for all u1, u2 ∈ D and v1, v2 ∈ H. Now,∫∫
(v1, πρ(x, t)u1) (πρ(x, t)u2, v2) dt dx =

∫∫
(v1, tρ(x)u1) (tρ(x)u2, v2) dt dx

=

∫
G

(v1, ρ(x)u1) (ρ(x)u2, v2) dx.

If we define Aρ := Aπρ , then the orthogonality relation holds for ρ. For the second

part, note that if G is unimodular, then G × T is also a unimodular, therefore the

formal dimension cρ is the same as cπρ and the relation holds for ρ.

5.3 Discretization on a Twisted Convolutive Coorbit

After constructing the twisted convolutive coorbit spaces, we are ready to state the

theory of discretizing such spaces. With some modification, we will see that the theory

of convolutive coorbits cam be transformed to projective representations.

From now on, we assume B satisfying Assumption 3.26. We define ρ-weakly differ-

entiable vectors for a given projective representation (ρ,S) on G in the same way

that we defined the π-weakly differentiable vectors for a given representation (π,S).

We start by obtaining the relation between the ρ-weak differentiability and the cor-

responding πρ-weak differentiability. Let {E1, E2, ..., EdimG} be a basis for g. Then

{Ẽ1, Ẽ2, ..., ẼdimG+1} forms a basis of g×iR where Ẽj = (Ej, 0) for j = 1, ..., dimG and

ẼdimG+1 = (0, i). Note that Ẽα := Ẽα(N)Ẽα(N−1)...Ẽα(1) = (Eβ(N−s)Eβ(N−s−1)...Eβ(1), i
s)

with 0 ≤ β(j) ≤ dimG and |β| = |α| − s.

Proposition 5.19. (i) If a vector u ∈ S is ρ-weakly differentiable up to order

dimG+ 1, then it is πρ-weakly differentiable up to order dimG× T. Moreover,

πρ(Ẽα)u = isρ(Eα′)u for some α′ with |α′| = |α| − s and 0 ≤ α′(j) ≤ dimG.

(ii) If a distribution λ ∈ S∗ is ρ∗-weakly differentiable up to order dimG + 1,

then it is π∗ρ-weakly differentiable up to order dimG×T. Moreover, π∗ρ(Ẽα)u =

isρ∗(Eα′)u for some α′ with |α′| = |α| − s and 0 ≤ α′(j) ≤ dimG.
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Proof. We will prove the second part, and the first part is proved in the same way.

Assume that λ ∈ S∗ is a ρ∗-weakly differentiable up to order dimG+1. We can easily

see that for X ∈ g, and for all v ∈ S

d

ds

∣∣∣∣
s=0

〈π∗ρ(exp(s(X, 0))λ, v〉 =
d

ds

∣∣∣∣
s=0

〈λ, πρ(exp(s(X, 0))−1v〉

=
d

ds

∣∣∣∣
s=0

〈λ, πρ(exp(sX), a(s))−1v〉

=
d

ds

∣∣∣∣
s=0

〈λ, a(s)ρ (exp(sX))−1 v〉

=
d

ds

∣∣∣∣
s=0

a(s)〈λ, ρ (exp(sX))−1 v〉

=〈ρ∗(X)λ, v〉,

where a(s) is a curve on T such that a(0) = 1 and a′(0) = 0. Hence π∗ρ(X, 0)λ =

ρ∗(X)λ. Similarly we have π∗ρ(0, i)λ = iλ, and inductively we conclude that

π∗ρ(Ẽα)λ = isρ∗(Eα′)λ

with |α| = |α′|+s. Therefore, u is π∗-weakly differentiable up to order dim(G×T).

As we mentioned before, we used the space B̂ to connect the coorbits with the twisted

coorbits. Nevertheless, the space B̂ is no longer solid, and therefore we need to study

the space B̃ to see the relation between the frames and the atomic decompositions of

the coorbits and the ones of the twisted coorbits. We summarize some of the properties

of the space B̃ in the following theorem.

Theorem 5.20. Let B be a BF-space on G, and let B̃ defined as before, then the

following are true:

1. If the space B satisfies Assumption 3.26, then the space B̃ satisfies the same

assumption.
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2. The spaces B̃u and B̂u are equal, and hence the spaces B̃u and B#
u are isomet-

rically isomorphic via Λ : B#
u → B̃u, which is given by Λ(f)(x, t) = t̄f(x). In

particular, f̃ ∈ B̃u if and only if f̃(x, t) = t̄f(x) for some f ∈ B#
u .

3. Assume that Bd and B̃d are the corresponding sequence spaces of B and B̃

respectively. Assume that {xi}i∈I is a U-well spread set in G, choose V and

{tj}Nj=1 as in Example 3.21. Then, for N ∈ N, the set {(xi, tj)}i∈I,j=1,2,...,N is a

U×V -well spread set for G×T, and {λi,j} ∈ B̃d if and only if {
∑N

j=1 |λi,j|} ∈

Bd, in this case ‖{λi,j}‖B̃d = ‖{
∑N

j=1 |λi,j|}‖Bd.

4. Let u ∈ S be a ρ-analyzing vector for S. If B and u satisfy Assumption 3.12,

then u is a πρ-analyzing vector and the space B̃ and u satisfy Assumption 5.10.

It is worth now to remind the reader that the assumption (R′1/2) implies that the

mapping

f 7→
∫
G

f(y)
#

W u (u)∨(y)σ(y, y−1) dy

is continuous on B. As a result, the mapping

f 7→
∫
G

f(y)L#(x)
#

W u (u)∨(y)σ(x, x−1y)σ(y, y−1x) dy

is continuous for every x ∈ G, it follows that for every x ∈ G this map defines a

functional on B and we will keep denoting it by L#(x)
#

W u (u)∨ when there is no

confusion. Note that

〈L#(x)
#

W u (u)∨, f〉 =

∫
G

f(y)L#(x)
#

W u (u)∨(y)σ(x, x−1y)σ(y, y−1x) dy.

In particular, for any f ∈ B#
u , we have 〈L#(x)

#

W u (u)∨, f〉 = f(x). Before we

construct a Banach frame for the twisted coorbit space CouρB, we will construct a

Banach frame for B#
u .

Theorem 5.21. Let (ρ,S) be a projective representation of G, and let B be a BF-

space on G satisfies Assumption 3.26. Assume that u ∈ S is ρ-weakly and ρ∗-weakly
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differentiable up to order of dimG+1, and satisfies Assumption 5.10 as well. Assume

that
#

W u (u) ∈ B, and assume that the mappings

f 7→ f ∗ |
#

W ρ(Eα)u (u)| and f 7→ f ∗ |
#

W u (ρ∗(Eα)u)|

are continuous on B for all α with |α| ≤ dimG+ 1. Then

1. We can choose ε small enough such that for any Uε- well spread set {xi} and

any Uε-BUPU {ψi} with suppψi ⊂ xiUε the following three operators

S1f :=
∑
i

f(xi)(ψi#
#

W u (u))

S2f :=
∑
i

λi(f)L#(xi)
#

W u (u) ,

(
λi(f) =

∫
f(x)ψi(x) dx

)
S3f :=

∑
i

cif(xi)L#(xi)
#

W u (u) ,

(
ci =

∫
ψi(x) dx

)
are all invertible on B#

u . The convergence of the sums above is pointwise and,

if the continuous compactly supported functions are dense in B, then the con-

vergence is also in norm.

2. (Frame) The family {L#(xi)
#

W u (u)∨} is a Banach frame for the space B#
u

with respect to the sequence space Bd, with reconstruction operator R = S−1
1 A,

where A : Bd → B#
u given by

A({ηi}) =
∑
i

ηiψi#
#

W u (u).

3. (Atomic decomposition) The families {λi ◦ S−1
2 , L#(xi)

#

W u (u)} and {ciL#

#

W u

(u)∨ ◦ S−1
3 , L#(xi)

#

W u (u)} are atomic decompositions of B#
u with respect

to the sequence space Bd, with reconstruction representations given by f =∑
i λi(S

−1
2 (f))L#(xi)

#

W u (u) and f =
∑

i ci S
−1
3 f(xi)L#(xi)

#

W u (u) respec-

tively.
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Proof. (1) Consider the group G×T and the space B̃. By Theorem 5.20 the space B̃

satisfies Assumption 3.26 and the vector u satisfies Assumption 3.12. By Theorem 5.19

the vector u is πρ and π∗ρ-weakly differentiable up to order dimG× T, also Wu(u) is

an element in B̃ because Wu(u)(x, t) = t̄
#

W u (u)(x) with
#

W u (u) ∈ B. The continuity

of f 7→ f ∗ |
#

W ρ(Eα)u (u)| and f 7→ f ∗ |
#

W u (ρ∗(Eα)u)| on B implies the continuity of

f̃ 7→ f̃ ∗ |Wπρ(Ẽβ)u(u)| and f̃ 7→ f̃ ∗ |Wu(π
∗
ρ(Ẽβ)u)| on B̃, for |β| ≤ dimG× T. Indeed

for |β| ≤ dimG× T = dimG+ 1 with 0 ≤ β(j) ≤ dimG× T we have

|Wπρ(Ẽβ)u(u)(x, t)| =
∣∣∣〈u, πρ(x, t)(πρ(Ẽβ)u)〉

∣∣∣
= |〈u, ρ(x)(ρ(Eα)u)〉|

=|
#

W ρ(Eα)u (u)(x)|

for some α with |α| ≤ |β| and 0 ≤ α(j) ≤ dimG. Now, for f̃ ∈ B̃ we have∣∣∣f̃ ∗ |Wπρ(Ẽβ)u(u)|
∣∣∣ =

∣∣∣∣∫∫ f̃(y, w)|Wπρ(Ẽβ)u(u)
(
(y, w)−1(x, t)

)
| dw dy

∣∣∣∣
=

∣∣∣∣∫∫ f̃(y, w)|Wπρ(Ẽβ)u(u)
(
y−1x, w̄tσ(y, y−1x)

)
| dw dy

∣∣∣∣
=

∣∣∣∣∫∫ f̃(y, w)|
#

W ρ(Eα)u (u)(y−1x)| dw dy
∣∣∣∣

=

∣∣∣∣∫
G

(∫
T
f̃(y, w) dw

)
|

#

W ρ(Eα)u (u)(y−1x)| dy
∣∣∣∣

≤C
∥∥∥∥∫

T
|f̃(·, w)| dw

∥∥∥∥
B

=C‖f̃‖B̃.

The same calculations show the other continuity condition on B̃. It follows that the

vector u and the space B̃ satisfy all the assumptions of Theorem 3.28. For a fixed N ,

let {tj}Nj=1 and V be defined as in Example 3.21, then {(xi, tj)}i,j is a Uε × V -well

spread set(see [10]). If we define ψ̃i,j(x, t) := ψi(x)1tjV (t), then ψ̃i,j is a Uε×V -BUPU.

There exists an ε such that for large enough N , the operators T1, T2, and T3 (which

defined in Theorem 3.28) are invertible. Assume f̃(x, t) = t̄f(x) with f ∈ B#
u , then
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simple calculations show that

∑
i,j

f̃(xi, tj)ψ̃i,j ∗Wu(u)(x, t) = t̄
sin(π/N)

π/N

∑
i

f(xi)ψi#
#

W (x).

If we denote the isomorphism between B#
u and B̃u by Λ, then the operator

S1 :=
π/N

sin(π/N)
Λ−1T1Λ

is invertible on B#
u and

S1f =
∑
i

f(xi)ψi#
#

W (x).

If Cc(G) is dense in B, the sum converges in norm as proved in [38, 5]. Indeed, if

we define Θf = (
∑

i f(xi)ψi) #
#

W u (u), then Θ is bounded operator. Moreover,

S1f = Θf , for f ∈ Cc(G), because
∑

i f(xi)ψi is finite. Now, assume that f ∈ Bu. For

ε > 0, choose g ∈ Cc(G) such that ‖f − g‖B. Then

‖S1f −Θf‖B ≤‖S1f − S1g‖B + ‖S1g −Θf‖B

=‖S1f − S1g‖B + ‖Θg −Θf‖B ≤ C‖f − g‖B.

The last term can be made as small as we please, so the convergence is in norm. For

the operator S2, the operator

T2f̃ =
∑
i,j

λ̃i,j(f̃)L(xi,tj)Wu(u)

is invertible on B̃, where λ̃i,j(f̃) =
∫∫

f̃(x, t)ψ̃i,j(x, t) dt dx. Note that

λ̃i,j(f̃) =

∫∫
f̃(x, t)ψ̃i,j(x, t) dt dx

=

∫∫
t̄ f(x)ψi(x) 1tjV (t) dt dx

=λi(f)

∫
T
t̄ 1tjV (t) dt

=
− sin(π/N)

π/N
t̄j λi(f).
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If we define

S2 :=
−π/N

sin(π/N)
Λ−1T2Λ,

then S2 is invertible on B#
u , with

S2f =
∑
i

λi(f)L#(xi)
#

W u (u)
(
λi(f) :=

∫
G

f(x)ψi(x) dx
)
.

The convergence statement follows as above. The invertibility of S3 is done by the

same calculations above.

(2) To show that the family {L#(xi)
#

W u (u)∨} forms a Banach frame for B#
u we

apply again Theorem 3.28 on the space B̃. It follows that the family {L(xi,tj)Wu(u)∨}

is a frame for B̃u with reconstruction operator R̃ = T−1
1 Ã, where

Ã({η̃i}) =
∑
i,j

η̃i,j ψ̃i,j ∗Wu(u)

for any {η̃i,j} ∈ B̃. For any {ηi} ∈ Bd define η̃i,j = t̄jηi. By Theorem 5.20, we have

{η̃i,j} ∈ B̃ and ‖{η̃i,j}‖B̃d = N‖{ηi}‖Bd . Also

Ã({η̃i})(x, t) =
∑
i,j

η̃i,j ψ̃i,j ∗Wu(u)(x, t)

=
∑
i,j

t̄jηi

∫∫
1tjV (w)ψi(y)Wu(u)(y−1x, w̄tσ(y, y−1x)) dw dy

=
∑
i,j

t̄jηi

∫
T
w1tjV (w) dw

∫
G

ψi(y)
#

W u (u)(y−1x)σ(y, y−1x) dy

=t̄
∑
i,j

t̄jηi tj
sin(π/N)

π
ψi#

#

W u (u)(x)

=t̄
sin(π/N)

π/N

∑
i

ηi ψi#
#

W u (u)(x).

If we define A({ηi}) =
∑

i ηi ψi#
#

W u (u), then the correspondence between B#
u

and B̃u in Theorem 5.20 implies that A : Bd → B#
u is a well defined and bounded

operator. Also, for any f ∈ B#
u , we have f̃ ∈ B̃u with ‖f‖B = ‖f̃‖B̃. On the other hand
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f̃(xi, tj) = t̄jf(xi), and hence {f(xi)} ∈ Bd with ‖{f̃(xi, tj)}‖B̃d = N‖{f(xi)}‖Bd . It

follows that ‖f‖B and ‖{f(xi)}‖Bd . Finally, if we define R = S−1
1 A, then R({f(xi)}) =

f for all f ∈ B#
u , which completes our proof.

(3) We only have to prove the reconstruction formula

f =
∑
i

λi(S
−1
2 (f))L#(xi)

#

W u (u).

By applying the operator S2 for S−1
2 f , the reconstruction formula is obtained. Sim-

ilarly, we can show that {ciL#

#

W u (u)∨ ◦ S−1
3 , L#(xi)

#

W u (u)} is also an atomic

decomposition for Bnu.

The following is the main theorem of this section. It provides frames and atomic

decompositions for coorbits.

Theorem 5.22. Let (ρ,S) be a projective representation of G, and let B be a BF-

space on G satisfying Assumption 3.26. Assume that u ∈ S is a ρ-analyzing vector

satisfying Assumption 5.10, which is both ρ-weakly and ρ∗-weakly differentiable. Fur-

thermore, assume that
#

W u (u) ∈ B and the mappings

f 7→ f ∗ |
#

W ρ(Eα)u (u)| and f 7→ f ∗ |
#

W u (ρ∗(Eα)u)|

are continuous on B for all α with |α| ≤ dimG+ 1.

Then, we can choose ε small enough such that for any Uε-well spread set {xi} the

family {ρ∗(xi)u} is a Banach frame for CouρB with respect to the sequence space

Bd, and the families {λi ◦ S−1
2 ◦

#

W u , ρ
∗(xi)u} and {ciS−1

3 ◦
#

W u , ρ
∗(xi)u} are atomic

decompositions for CouρB with respect to the sequence space Bd. In particular, φ ∈

CouρB can be reconstructed by

φ =(
#

W u)
−1S−1

1

(∑
i

#

W u (φ)(xi)ψi#
#

W u (u)
)
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φ =
∑
i

λi
(
S−1

2

#

W u (φ)
)
ρ∗(xi)u

φ =
∑
i

ci S
−1
3

#

W u (φ) ρ∗(xi)u

with convergence in S∗. The convergence is in CouρB if Cc(G) is dense in B.

Proof. Our assumptions are the same as the assumptions of Theorem 5.21, which

guarantee the invertibility of the operators S1, S2, and S3 for a small enough ε. Also

the family {L#(xi)
#

W u (u)∨} forms a frame for B#
u with respect to Bd. For any

φ ∈ CouρB, we have
#

W u (φ) ∈ B#
u . Hence, {

#

W u (φ)(xi)} ∈ Bd such that ‖
#

W u

(φ)‖B = ‖φ‖CouρB and ‖
#

W u (φ)(xi)‖Bd = ‖〈φ, ρ(xi)u〉‖Bd are equivalent. Next, we

show the reconstruction formula. For φ ∈ CouρB, the reconstruction formula

#

W u (φ) = S−1
1

(∑
i

#

W u (φ)(xi)ψi#
#

W u (u)
)

holds. Therefore,

φ = (
#

W u)
−1S−1

1

(∑
i

#

W u (φ)(xi)ψi#
#

W u (u)
)

is true for all φ ∈ CouρB.

Now, let us show that the family {λi◦S−1
2 ◦

#

W u , ρ
∗(xi)u} forms an atomic decomposi-

tion for CouρB with respect to Bd. By Theorem 5.21, the family {λi ◦S−1
2 , L#(xi)

#

W u

(u)} forms an atomic decomposition for B#
u . That is, ‖{λi ◦ S−1

2 (φ)}‖Bd and ‖
#

W u

(φ)‖B = ‖φ‖CouρB are equivalent, and for any φ ∈ CouρB, the function
#

W u (φ) can be

reconstructed by

#

W u (φ) =
∑
i

λi
(
S−1

2

#

W u (φ)
)
L#(xi)

#

W u (u).

It follows that

φ =
∑
i

λi
(
S−1

2

#

W u (φ)
)
(

#

W u)
−1

(
L#(xi)

#

W u (u)

)
.
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By Theorem 5.16,
#

W u intertwines ρ∗ and the twisted left translation, that is L#(xi)
#

W u

(u) =
#

W u (ρ∗(xi)u). Therefore, φ =
∑

i λi
(
S−1

2

#

W u (φ)
)
ρ∗(xi)u. A similar argument

shows that the family {ciS−1
3 ◦

#

W u , ρ
∗(xi)u} forms an atomic decomposition for CouρB

with respect to the sequence space Bd.
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Chapter 6
Bergman Spaces on the Unit Ball

As we motivated in the discretization of Bergman spaces on the unit disc, Bergman

space are discretized through the simply connected subgroup S with the corresponding

family of representations (πs,Hs) for s > 1. Recently, in [6], Christensen, Gröchenig,

and Ólafsson, obtained more general results not only for Bergman spaces on the

unit disc, but also for Bergman spaces on the unit ball in Cn. The authors de-

scribe Bergman spaces on the unit ball as coorbits of Lp spaces. Moreover they con-

structed Banach frames and atomic decompositions for Bergman spaces on the unit

ball through a finite covering group of the group SU(n, 1) with restricting s > n to

be rational. Discretization of Bergman spaces through the group SU(n, 1) is valid for

integer values of the parameter s > n. Nevertheless, the definition of the representa-

tion is no longer gives a single valued function for non-integer values of s. We dedicate

this chapter to generate a Banach frame and an atomic decomposition of Bergman

spaces on the unit ball via the group SU(n, 1). In this chapter we collected most of

our facts from [6] and we use the same technique that used to prove the results for the

regular coorbit with some modifications that needed to the projective representation.

For more references we encourage the reader to see [4, 22, 29, 32, 45, 50].

6.1 Bergman Spaces on the Unit Ball

In this section we collect facts about Bergman spaces on the unit ball. Let Cn be

equipped with the usual inner product (z, w) = z1w1 + z2w2 + ... + znwn and define

the unit ball by

Bn :=
{
z ∈ Cn : |z|2 := |z1|2 + |z2|2 + ...+ |zn|2 < 1

}
.
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Let dv be a normalized volume measure on the unit ball under identifying Cn with

R2n. For α > −1, define the measure

dvα(z) := Cα(1− |z|2)αdv(z)

where Cα is a constant such that dvα is a probability measure. Notice that the measure

dvα is finite measure on Bn if and only if α > −1.

We define the α-weighted Lp space on the unit ball as

Lpα(Bn) = {f : Bn → C :

∫
Bn
|f(z)|pdvα(z) <∞}

with norm

‖f‖Lpα =

(∫
Bn
|f(z)| dvα(z)

)1/p

,

where 1 ≤ p < ∞. For α > −1, we define the weighted Bergman spaces on the unit

ball to be

Apα(Bn) := Lpα(Bn) ∩ O(Bn)

with norm inherited from Lpα(Bn), where O(Bn) is the space of holomorphic functions

on the unit ball. We have the condition α > −1 to construct a non-trivial Bergman

spaces, in fact, if α ≤ −1, then the only holomorphic function in Lpα(Bn) is the zero

function.

As we have seen in the special case on the unit disc, Bergman spaces are closed

subspaces of Lpα(Bn), i.e., Bergman spaces are Banach spaces. In the case p = 2, the

space A2
α(Bn) is a Hilbert space with the inner product

(f, g)α =

∫
Bn
f(z)g(z) dvα(z).

The orthogonal projection of L2
α(Bn) on the space A2

α(Bn) is given by

Pαf(z) =

∫
Bn
f(w)Kα(z, w) dvα(w),
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where

Kα(z, w) =
1

(1− (z, w))n+1+α

is the reproducing kernel for A2
α(Bn).

The group SU(n, 1) is defined to be the group of all (n + 1)× (n + 1)-matrices x of

determinant 1 and x∗J(n,1)x = J(n,1), where

J(n,1) =

 −In 0

0 1

 .

We always write x in the block form x =

 A b

ct d

, where A is an n × n matrix,

and b, c are vectors in Cn, and d ∈ C. Simple calculations show that

x−1 =

 A∗ −c̄

−b̄t d̄

 .

The fact that xx−1 = I implies

|d|2 − |b|2 = 1 (6.1)

Form now on, we write G = SU(n, 1). This group acts transitively on Bn by

x · z = (Az + b)((c, z̄) + d)−1.

If we define the subgroup K of G as

K =


 k 0

0 det(k)

 | k ∈ U(n)

 ,

then the stabilizer of the origin o ∈ Cn is K and Bn ' G/K. It follows that there is

a one to one correspondence between the K-right invariant functions on G and the

functions on Bn via

f̃(x) = f(x · 0).
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This correspondence defines an G-invariant measure on Bn which is given by (1 −

|z|2)−n−1dz. The compactness of K ensures that we can normalize this measure so

that, for any f̃ K-right invariant function on G, we have∫
G

f̃(x) dx =

∫
Bn
f(z) (1− |z|2)−n−1dz. (6.2)

Let vα(x) = (1− |x · o|2)α, then we define the vα-weighted Lp spaces on G to be

Lpα(G) =

{
F : G→ C : ‖F‖Lpα(G) :=

(
cα

∫
G

|F (x)|p (1− |x · o|2)α dx

)1/p

<∞

}

If we denote by Lpα(G)K the space of K-right invariant functions in the space Lpα(G),

then it is easy to see that Lpα(Bn) and Lpα+n+1(G)K are isometric. That is,

‖f‖Lpα(Bn) = ‖f̃‖Lpα+n+1(G). (6.3)

For s > n, the action of G on Bn defines an irreducible unitary projective represen-

tation of G on the space Hs = A2
s−n−1 by

ρs(x)f(z) = (−(z, b) + d̄)−sf(x−1 · z), (6.4)

where x =

 A b

ct d

, which also defines a representation for the universal covering

group of G. We denote the twisted wavelet transform on Hs by

#

W s
u (λ)(x) = (λ, ρs(x)u)Hs .

Let Pk be the space of all homogeneous polynomials of degree k on Cn. In the following

theorem we summarize some properties of the space of smooth vectors for ρs and its

conjugate dual space, which will be the candidate Fréchet space S for constructing

the coorbits of Lpα+n+1−sp/2(G).

Theorem 6.1. Let s > n and let (ρs,Hs) be the projective representation of G which

is defined in 6.4. The following are true:
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1. Every polynomial is a smooth vector for ρs.

2. Every smooth vector for ρs is bounded.

3. Assume v ∈ Hs, then v ∈ H∞s if and only if v =
∑

k vk , vk ∈ Pk, and for all

N ∈ N there exists a constant C > 0 such that ‖vk‖Hs ≤ C(1 + k)−N .

4. A vector φ ∈ H−∞s if and only if φ =
∑

k φk , φk ∈ Pk, and there exist N ∈ N

and C > 0 such that ‖φk‖Hs ≤ C(1 + k)N . Moreover, the dual pairing is given

by

〈φ, v〉s =
∑
k

(φk, vk)Hs .

Proof. The proof is done by noting that ρs is a unitary representation of the universal

covering group of G, so the smooth vectors are the same for both, where the smooth

vectors for ρs, as a representation, satisfy all the above properties as proved in [4] and

[6].

6.2 Bergman Spaces as Twisted Convolutive Coorbits

As before, we assume G = SU(n, 1) and (H∞s , ρs) is the subrepresentation of (Hs, ρs)

on the group G for s > n. In this section we show that Bergman spaces are twisted

convolutive coorbits of weighted Lp spaces, which allows us to discretize Bergman

spaces using the full group SU(n, 1). For this goal we need the following results

which already proved for the linear representation in [6]. The same proof will work

(with minor differences) for the projective representation case. For completeness we

will provide a full proof for each of these results.

Lemma 6.2. Assume u and v are smooth vectors for ρs. There is a constant C

depending on u and v such that

|
#

W s
u (v)(x)| ≤ C(1− |x · o|2)s/2

(
1− log(1− |x · o|2)

)
.
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Proof. Let x =

 A b

ct d

. Since smooth vectors for ρs are bounded (see Theorem

6.1), we can define C = supz,w∈Bn |u(z)||v(w)|. Now, note that

|ρs(x)u(z)| =|d̄− (z, b)|−s|u(x−1 · z)|

=|d|−s|1− (z, bd−1)|−s|u(x−1 · z)|

=|d|−s|1− (z, x · 0)|−s|u(x−1 · z)|.

Also, by (6.1) we have |d|−2 = 1 − |bd−1|2 = 1 − |x · o|2. In other words, |d|−s =

(1− |x · o|2)s/2. It follows that

|
#

W s
u (v)(x)| =

∣∣∣∣∫
Bn
v(z)ρs(x)u(z)(1− |z|2)s−n−1 dz

∣∣∣∣
≤|d|−s

∫
Bn
|v(z)||u(x−1 · z)||1− (z, x · 0)|−s(1− |z|2)s−n−1 dz

≤C(1− |x · o|2)s/2
∫
Bn
|1− (z, x · 0)|−s(1− |z|2)s−n−1 dz.

The last integral is comparable to 1− log(1− |x · o|2) (see [50, Theorem 1.12]), which

proves our assertion.

Proposition 6.3. Let α > −1, 1 ≤ p <∞, and s > n be chosen. Assume that u and

v are smooth vectors for ρs. Then
#

W s
u (v) ∈ Lpt (G) for t+ ps/2 > n.

Proof. Assume that u, v ∈ H∞s . Since for any ε > 0 the limit

lim
t→1

(1− t)ε(1− log(1− t)) = 0

where t ∈ (0, 1), one can find C1 > 0 such that

1− log(1− |x · o|2) ≤ C1(1− |x · o|2)−ε/2

for all x ∈ G. Now, for t+ ps/2 > n choose ε small enough so that t+ p(s− ε)/2 > n.

By Lemma 6.2, there is a constant C2 such that

|
#

W s
u (v)(x)| ≤ C2(1− |x · o|2)s/2

(
1− log(1− |x · o|2)

)
≤ C(1− |x · o|2)(s−ε)/2.
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Since the function x 7→ (1 − |x · o|2) is K-right invariant on G, we can write the

following integral as an integral on Bn as in (6.2)∫
G

|
#

W s
u (v)(x)|p(1− |x · o|)t dx ≤C

∫
G

(1− |x · o|2)(s−ε)p/2+t dx

=C

∫
Bn

(1− |z|2)(s−ε)p/2+t−n−1 dz.

For t + sp/2 > t + (s − ε)p/2 > n, we have (s − ε)p/2 + t − n − 1 > −1. Therefore,

the last integral is finite, and hence,
#

W s
u (v) ∈ Lpt (G) for t+ sp/2 > n.

Now we show that the twisted coorbits of the spaces Lpα+n+1−sp/2(G) generated by any

nonzero smooth vector u ∈ H∞s are well defined nonzero spaces under the assumptions

in the following theorem.

Theorem 6.4. Let 1 ≤ p <∞, and s > n. Assume that −1 < α < p(s− n)− 1. For

a nonzero smooth vector u ∈ H∞s , the coorbit space CouρsL
p
α+n+1−sp/2(G) is a nonzero

well defined Banach space.

Proof. Let us show that the nonzero smooth vector v ∈ H∞s satisfies Assumption 5.10.

First, u is ρ-cyclic because H∞s is irreducible projective representation. Next, since ρs

is square integrable and G is unimodular, every smooth vector for ρs is ρ-admissible,

i.e., u is in the domain of the operator Aρ, which is given in Theorem 5.18. It follows

that

#

W s
u (v)#

#

W s
u (u)(x) =

∫
G

(v, ρ(y)u)Hs (u, ρ(y−1x)u)Hs σ(y, y−1x) dy

=

∫
G

(v, ρ(y)u)Hs (u, ρ(y−1)ρ(x)u)Hs σ(y−1, x)σ(y, y−1x) dy

=

∫
G

(v, ρ(y)u)Hs (u, ρ(y)−1ρ(x)u)Hs σ(y, y−1)σ(y, y−1) dy

=

∫
G

(v, ρ(y)u)Hs (ρ(y)u, ρ(x)u)Hs dy

=c2
ρ(v, ρ(x)u)Hs (u, u)Hs
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=C
#

W s
u (v)(x)

for all v ∈ H∞s . Let us show that this formula extends for all φ ∈ H−∞s . Assume that

v ∈ H∞s . By the orthogonality relation in Theorem 5.18, we have∫
G

(v, ρ(x)u)Hs (ρ(x)u, u)Hs dx = c2
ρ‖u‖Hs (v, u)Hs .

If we define η := c2
ρ‖u‖H v, then η ∈ H∞s , and hence 〈φ, η〉s is well defined for all

φ ∈ H−∞s . By Theorem 6.1, we have

〈φ, η〉s =
∑
k

(φk, η)Hs

=
∑
k

c2
ρ‖u‖H (φk, u)Hs

=
∑
k

∫
G

(φk, ρ(x)u)Hs (ρ(x)u, u)Hs dx

=

∫
G

(φ, ρ(x)u)Hs (ρ(x)u, u)Hs dx.

The interchanging of the integral and the sum is valid by Tonelli’s theorem, because

∑
k

∫
G

(φk, ρ(x)u)Hs (ρ(x)u, u)Hs dx = 〈φ, η〉s

exists. Therefore, the mapping

φ 7→
∫
G

(φ, ρ(x)u)Hs (ρ(x)u, u)Hs dx

is weakly continuous on H−∞s . Hence, the reproducing formula extends for all φ ∈

H−∞s . This shows that u is a ρ-analyzing vector.

Now, we show that the mapping (f, v) 7→
∫
G
f(x)

#

W s
u (x−1)σ(x, x−1) dx is continuous

on LPα+n+1−sp/2(G). By Remark 5.11, it is enough to show that

#

W s
u (v) ∈ (Lpα+n+1−sp/2(G))∗ = Lqsq/2−(α+n+1)q/p(G),
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where 1/p+1/q = 1. This is done by Proposition 6.3, because (sq/2−(α+n+1)q/p)+

sp/2 > n, whenever −1 < α < p(s−n)−1. Therefore, the space CouρsL
p
α+n+1−sp/2(G))

is well defined. Finally, note that
#

W s
u (u) ∈ Lpα+n+1−sp/2(G) again by Proposition 6.3,

hence it is nonzero Banach space.

Our goal now is to describe Bergman spaces as twisted coorbits generated by any

nonzero smooth vector u ∈ H∞s . First we describe Bergman spaces as twisted coor-

bits by the special ρ-analyzing vector u = 1Bn , then we show that this coorbit is

independent of the choice of u.

Theorem 6.5. Let α > −1, 1 ≤ p < ∞, and u = 1Bn. The Bergman space Apα(Bn)

is the twisted coorbit space of Lpα+n+1−sp/2(G) that corresponds to the projective rep-

resentation (H∞s , ρs). i.e., Apα(Bn) = CouρsL
p
α+n+1−sp/2(G) for α < p(s− n)− 1.

Proof. As in [6, Theorem 3.6 ], the space Apα(Bn) ⊂ H−∞s for all p ≥ 1, which is

still valid in the case of smooth vectors for ρ. The reason behind that is that the

smooth vectors for the projective representation ρs are the same smooth vectors of

the representation of the universal covering of G. So we have only to show that

for a holomorphic function f , the function f ∈ Lpα(Bn) if and only if
#

W s
u (f) ∈

Lpα+n+1−sp/2(G). To this end, assume x =

 A b

ct d

. Then we have

|
#

W s
u (f)(x)| =

∣∣∣∣∣∑
k

#

W s
u (fk)(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

(d̄)−sf(bd−1)

∣∣∣∣∣
=|d|−s

∣∣∣∣∣∑
k

fk(x · o)

∣∣∣∣∣
=|d|−s|f(x · o)|.
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As we have seen before, |d|−s = (1− |x · o|2)s/2. It follows that

|f(x · o)| = (1− |x · o|2)−s/2|
#

W s
u (f)(x)|

by the isometry in (6.3). We conclude that f ∈  Lpα(Bn) if and only if
#

W s
u (f) ∈

Lpα+n+1−sp/2(G).

To prove our main result in this section, which says that Bergman spaces are twisted

coorbits for weighted Lp spaces generated by any smooth vector, we need the following

theorem. It will be used in the subsequent section to generate a Banach frame and

atomic decomposition for Bergman spaces.

Theorem 6.6. Let 1 ≤ p < ∞, −1 < α < p(s − n) − 1, and let v and u be smooth

vectors. The convolution operator f 7→ f ∗ |
#

W s
u (v)| is continuous on Lpα+n+1−sp/2(G).

In particular, f 7→ f#
#

W s
u (v) is continuous on Lpα+n+1−sp/2(G).

Proof. Let F ∈ Lpα+n+1−sp/2(G) and define

f̃(x) :=

∫
K

F (xk)dk.

Then f̃ is K-right invariant function on G. Therefore, there is a corresponding f ∈

Lpα−sp/2(Bn). Now, for ε small enough such that −(s − ε)p/2 < α − sp/2 + 1 <

p ((s− ε)/2− n)− 1 whenever −sp/2 < α− sp/2 + 1 < p (s/2− n)− 1, we have

|F | ∗ |
#

W s
u (v)|(x) =

∫
G

|F (y)| |
#

W s
u (v)(y−1x)| dy

≤C
∫
G

|F (y)|(1− |y−1x · o|2)s/2|1− log(1− |y−1x · o|2)| dy

≤C
∫
G

|F (y)|(1− |y−1x · o|2)(s−ε)/2 dy

=C

∫
G/K

|f̃(y)|(1− |y−1x · o|2)(s−ε)/2 dy.

98



If we assume that x =

 Ax bx

ctx dx

 , y =

 Ay by

cty dy

, w = x · o = bxd
−1
x , and

z = y · o = byd
−1
y , then

dy−1x = d̄ydx(1− (w, z))

and

|dx|−(s−ε) = (1− |x · o|2)(s−ε)/2.

Therefore,

(1− |y−1x · o|2)(s−ε)/2 =|dy−1x|−(s−ε)

=(1− |x · o|2)(s−ε)/2 (1− |y · o|2)(s−ε)/2.

Thus,

|F | ∗ |
#

W s
u (v)|(x) =C

∫
G/K

|f̃(y)| (1− |x · o|
2)(s−ε)/2 (1− |y · o|2)(s−ε)/2

|1− (w, z)|(s−ε)
dy

=C(1− |w|2)(s−ε)/2
∫
Bn
|f(z)| (1− |z|2)(s−ε)/2−n−1

|1− (x · o, y · o)|(s−ε)
dz.

According to [50, Theorem 2.10], the operator S which is given by

Sf(z) = (1− |w|2)(s−ε)/2
∫
Bn
|f(z)| (1− |z|

2)(s−ε)/2−n−1

|1− (w, z)|(s−ε)
dz

is continuous on Lpα−sp/2(Bn) whenever−(s−ε)p/2 < α−sp/2+1 < p ((s− ε)/2− n)−

1, which is equivalent to −1 < α < p(s− n)− 1. Since

‖f‖Lp
α−sp/2(Bn) = ‖f̃‖Lp

α+n+1−sp/2(G/K) = ‖F‖Lp
α+n+1−sp/2(G),

the operator F 7→ F ∗ |
#

W s
u (v)| is continuous on Lpα+n+1−sp/2(G). The second part is

clear from the relation |F#
#

W s
u (v)(x)| ≤ |F | ∗ |

#

W s
u (v)(x)|.

We conclude our section with the following main result.
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Theorem 6.7. Let 1 ≤ p < ∞ and −1 < α < p(s − n) − 1, and let v ∈ H∞s be

a nonzero smooth vector. The Bergman space Apα(Bn) is the twisted coorbit space

of Lpα+n+1−sp/2(G) via the projective representation (H∞s , ρs). That is, Apα(Bn) =

CovρsL
p
α+n+1−sp/2(G) for α < p(s− n)− 1.

Proof. Assume u = 1Bn . By Theorem 6.6, we have Apα(Bn) = CouρL
p
α+n+1−sp/2(G).

We will show that the twisted coorbit CovρsL
p
α+n+1−sp/2(G) does not depend on the

analyzing vector v, by applying Theorem 5.17. First, according to Theorem 6.6, the

operators f 7→ f#
#

W s
u (v) and f 7→ f#

#

W s
v (u) are continuous on Lpα+n+1−sp/2(G).

Next, we show that
#

W s
u (φ)#

#

W s
v (u) = C

#

W s
v (φ) for all φ ∈ H−∞s . For f ∈ H∞s , we

can use the orthogonality relation in Theorem 5.18 to get
#

W s
u (f)#

#

W s
v (u) = C

#

W s
v

(f). To extend this relation to the dual of the smooth vectors, it is enough to show

that

φ 7→
∫
G

〈φ, ρ(x)u〉 〈ρ(x)v, u〉 dx

is weakly continuous. Same argument, as in the proof of Theorem 6.4, can be made

to show our claim. Therefore, the twisted coorbit spaces CovρsL
p
α+n+1−sp/2(G) are all

equal to the space Apα(Bn).

6.3 Discretization on Bergman Spaces

In this section we generate a wavelet frame and an atomic decomposition of Bergman

spaces depending on the coorbit theory, where this discretization would work for all

projective representations with s > n, including the non-integrable cases. Also, we

have more freedom in choosing the wavelet u. That is we show that any nonzero

smooth vector is a good candidate to generate a Banach frame and an atomic decom-

position for Bergman spaces.
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Theorem 6.8. Assume that 1 ≤ p < ∞, s > n, and −1 < α < p(s − n) − 1. For

a nonzero smooth vector u for ρs, we can choose ε small enough such that for every

Uε-well spread set {xi}i∈I in G the following hold.

1. (Twisted wavelet frame) The family {ρs(xi)u : i ∈ I} is a Banach frame for

Apα(Bn) with respect to the sequence space `pα+n+1−ps/2(I). That is, there exist

constants A,B > 0 such that for all f ∈ Apα(Bn) we have

A‖f‖Apα(Bn) ≤ ‖{〈f, ρs(xi)u〉}‖`p
α+n+1−sp/2(I) ≤ B‖f‖Apα(Bn),

and f can be reconstructed by

f = (
#

W s
u)−1S−1

1

(∑
i

#

W s
u (f)(xi)ψi#

#

W s
u (u)

)
where {ψi} is any Uε-BUPU with suppψi ⊂ xiUε.

2. (Atomic decomposition) There exists a family of functionals {γi}i∈I on Apα(Bn)

such that the family {γi, ρs(xi)u} forms an atomic decomposition for Apα(Bn)

with respect to the sequence space `pα+n+1−ps/2(I), so that any f ∈ Apα(Bn) can

be reconstructed by

f =
∑
i

γi(f) ρs(xi)u.

Proof. We show that the assumptions of Theorem 5.22 are satisfied. Under the condi-

tions on p and s, the twisted coorbit of Lpα+n+1−ps/2(G) is well defined and u satisfies

Assumption 5.10 as we have seen in Theorem 6.4, and it is equal to Apα(Bn). Since

u is smooth vector for Hs, and H∞s is continuously embedded in its dual H−∞s , the

vector u is ρ - and ρ∗-weakly differentiable. According to Theorem 6.6, the mappings

f 7→ f ∗ |
#

W ρ(Eα)u (u)| and f 7→ f ∗ |
#

W u (ρ∗(Eα)u)|
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are continuous on Lpα+n+1−ps/2(G). Therefore, we can choose ε small enough such that

the family {ρs(xi)u} forms a frame and an atomic decomposition for Apα(Bn) with

reconstruction operators that are given in Theorem 5.22.
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