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ABSTRACT 

 Dimensionless space provides a tool for analyzing the behavior of complex systems 

described by mathematical relationships. The limited application of dimensionless 

variables in numerical reservoir simulation and experimental design motivated the 

development of a complete set of dimensionless scaling groups. Inspectional analysis 

yielded 8 dimensionless groups completely describing the flow system. Further analysis of 

fluid interaction reduced the number of dimensionless groups to 7. 

 The newly developed dimensionless equations and groups were used for analytical and 

numerical reservoir characterization, quantifying the behavior of differential and difference 

equations employed in fluid flow in three-dimensional porous media.  

 The behavior of the dimensionless scaling is demonstrated for breakthrough time in an 

immiscible displacement in three dimensions. Numerical simulations were designed in 

dimensionless space and converted to dimensional space using several approaches. The 

resulting estimates of stability limits, numerical dispersion, and regime boundaries were in 

excellent agreement.  

 The application of the dimensionless groups to upscaling was investigated using 

designed reservoir simulations to estimate dimensionless regions corresponding to 

different flow regimes. Analytical development, simulation runs and literature data were in 

good agreement. This application demonstrates the potential benefits of the proposed 

dimensionless groups for upscaling, sensitivity analysis, stability analysis, and reservoir 

characterization. 
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CHAPTER 1 

INTRODUCTION 

 Advances in computing and its low cost led to the introduction of numerical methods 

in all fields of engineering. Petroleum engineers have always relied heavily on numerical 

models, especially when reservoir management has to consider complex geologic settings 

and recovery processes. Analytical methods, although easy to use, cannot account for the 

reservoir complexity and time-varying boundary conditions. As a result numerical methods 

are now the de facto standard, providing reservoir models for management decision-

making. 

 Sensitivity studies, history matching with production forecast and reservoir 

development optimization are common applications of reservoir simulations. They usually 

involve large numbers of runs. Two factors contribute to quality of a reservoir study - 

geology and physics. A good sensitivity study should 

�� Estimate contribution of geological uncertainty (spatial property distribution) 

�� Estimate physical parameters and determine optimum drive mechanism 

�� Minimize the effect of numerical dispersion on results 

 

 Evolution of a numerical reservoir model begins with a geological model – a 

description of bounding surfaces and spatially distributed flow properties outlined using a 

discrete grid. The geologic model is static. In creating the geological model, the modeling 

team focuses on flow-related geologic features of the reservoir, capturing those essential 

for accurate estimation of flow behavior. Because subsurface data are typically sparse, 

tools such as geostatistics are often used to create plausible models of geologic property 

distributions within the geological framework.  

 Because numerical simulations are dynamic, they demand much greater computing 

resources compared with the static geologic models. Geologic models have finer resolution 

and higher block counts compared with simulation models; therefore geomodels can 

seldom be used in numerical simulations. They are upscaled to obtain a simulation model. 

If the geomodel is upscaled correctly, the simulation model is an adequate representation 
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of reservoir geology and computationally efficient enough to enable multiple runs to 

optimize reservoir development.  

 Computational resources and modeling techniques are constantly improving. Available 

CPU speed doubles approximately every 18 months. This means that larger and larger 

simulation models can be considered. Given this, is it necessary to upscale at all?  

 Historically, geological models have always been larger than flow models. Geologists 

do not have to worry about the computational demands of dynamic models, and they are 

therefore free to build large static models.  Furthermore, geologists often include all the 

features they expect to affect the flow behavior of the model, regardless of the scale of the 

feature. Hence, reservoir engineers will continue to need efficient and accurate methods for 

upscaling and numerical reservoir characterization. 

 Recent research (Li and Beckner, 1999; Cao and Aziz 2001; Col and Muggeridge, 

2001) suggests that upscaling is most accurate if coarsening of the grid follows physical 

behavior observed on the fine resolution model. Rather than considering only porosity and 

permeability, upscaling should be based on physical driving force in each fine-scale 

section of the reservoir. Identification of drive mechanisms and resulting recovery 

traditionally utilized some form of dimensionless numbers making the results comparable 

between different scales.  

 Identification of drive mechanisms on the reservoir scale and gridblock scale for 

simulation optimization purpose requires numerical reservoir characterization methods 

independent of scale; these methods should consider the differential and difference 

equations that govern flow in porous media. This form should be able to provide the 

following: 

�� Flow characterization independent of scale 

�� Reduction of number of runs needed to quantify the reservoir behavior 

�� Ability to estimate numerical behavior independent of scale 

Engineers commonly form dimensionless scale groups based on experience. However, for 

groups to be true scaling parameters, the differential equations governing the flow should 

be considered. Parameters in dimensionless differential equations called dimensionless 

scaling numbers meet the three requirements outlined above.  
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 Some developments already exist (X-direction by Dake, 1977 and Lake 1989; Z-

direction by Hagoort, 1980; X-Z system, Shook, 1992). No consistent development in three 

dimensions has been presented. This work provides mathematically succinct form of 

differential equation developed through Inspectional Analysis (IA). A total of 8 scaling 

groups are developed. Only 7 of them are shown to completely describe the flow. 

 The contribution of this work is that we can now use 7 dimensionless rather than more 

than 30 dimensional variables to analyze local and global reservoir flow and gridding 

effects. This improves simulation design and sensitivity studies by reducing the number of 

simulation runs needed to characterize any given reservoir. Observations on response 

behavior of dimensionless differential equations can be used to construct reservoir flow 

regime maps. Flow regime maps and analytical observations can now be used to optimize 

upscaling either through the use of pseudo-functions or uplayering.  
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CHAPTER 2 

LITERATURE SURVEY 

2.1. Important concepts for dimensionless numerical reservoir description 

 To properly characterize and scale a numerical model, one must consider several 

aspects contained within either the physics or the spatial/temporal differentiation. These 

are: 

1. Scalability of physical effects. Scaling laws have to be developed on the 

reservoir/fluid system that recognizes general flow behavior including balance of 

viscous, capillary and gravity forces. It should also account for flow effects (flow 

regimes) that those forces introduce at the initial scale and the effect of 

extrapolation to the scale of interest.  

2. Scalability of boundary conditions. Scaling laws have to introduce dimensionless 

scaling for initial conditions and enable scaling of production response to enable 

comparison and extrapolation between different scales. 

3. Scalability of reservoir shape. Scaling laws have to enable comparison between 

same-shape reservoirs at different scale and account for error if the shape changes 

between the scales. 

4. Compatibility with existing simulation tools to make the analytical scaling laws 

applicable on the numerical model. Factors such as grid geometry and temporally 

distributed output should be used in a development and boundary condition setting.  

5. Numerical and physical dispersion must be taken into an account at any 

particular scale, together with additional dispersion introduced by the change of 

scale. 

To compare the flow effects at different scales, scaling intervals presented in table 2.1 will 

be accepted and used throughout the work. 

Table 2.1. Accepted scale intervals 

Scale Geometry Size 
Small Core size 10-1 - 100 m 
Mid Inter-well 102-103 m 

Large Reservoir 104-105 m 
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2.2. Grids 

 Numerical reservoir description starts with the definition of the grid. Mattax and 

Dalton (1990) provide an in-depth overview of the grid types in general. Even though the 

possibilities for gridding are vast, two types of non-radial grid geometries are accepted as 

industry standards – rectangular Cartesian geometry (RCG) and non-rectangular corner 

point geometry (CPG).  

 Rectangular Cartesian grid is the oldest and the simplest one, still commonly used in 

simulation practice today (Narayanan et al, 1999, White et al., 2000). Nonrectangular grid 

systems have been introduced in early seventies (e.g. Hirasaki and O’Dell, 1970, Sonier 

and Chaumet, 1974) in an orthogonal or near orthogonal curvilinear form to reduce the 

spatial truncation error. Orthogonal non-rectangular grid remains the standard for industry 

accepted mapping and geocellular-geological modeling tools such as ZMap™, 

StrataMap™, Stratamodel™. Further development in mitigating the impact of intricate 

sedimentary features and faults lead to the introduction of full CPG where a gridblock is 

represented by geometrically completely independent 8 corner-points cube 

. Goldthorpe and Chow (1985), and Kydland et al (1988) who in a way introduced CPG 

used vectorial approach to determine the inter-block transmissibility. Peaceman (1996) 

presented the alternate solution by using harmonic integration. Harmonic integration is a 

simpler and more accurate method of determining the transmissibility, and according to 

Peaceman it could incorporate the sub-grid permeability anisotropy.  

 The effect of fine scale anisotropy after upscaling can be observed if the coarse scale 

flux is compared to a streamline trend in a fine scale grid. Fine scale distribution of 

permeability distorts the streamlines, so the resulting flux might be offset from the one 

suggested by local pressure field between large block centroids. White and Horne (1987) 

suggested the use of full permeability tensor to account for the offset in streamlines due to 

local sub-grid heterogeneity. Numerical simulation tools offered by vendors are not 

equipped to handle tensor permeability input, hence the upscaled grid geometry has to 

accommodate for the anisotropy offset by proper choice of corner points or proper 

grouping of gridblocks (similar to zonation work of Li et al, 1999) in order to align the flux 

with the centroid-to-centroid vector. 
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2.3. Scaling 

 Scaling is a procedure of extrapolation of results obtained at one scale to another, 

usually from a small-scale laboratory observation to a large-scale process. Historical 

developments in the field of fluid mechanics and dynamics point to dimensionless numbers 

as a mean of comparison. Two succinct and apparently different methods for obtaining 

dimensionless numbers can be found in the general fluid flow literature. General fluid 

dynamics literature such as Johnson (1998) and Fox and McDonald (1998) suggests 

Dimensional Analysis (DA), whereas petroleum related authors such as Shook et al, 1992, 

rely more on the Inspectional Analysis (IA). 

 Buckingham (1914) published the breakthrough work on dimensional analysis as a 

reply to Tolman’s publication earlier that year. His Pi Theorem is stated to be the basis 

(Johnson, 1998) for later solution of Navier-Stokes equation and development of 

dimensionless numbers such as Reynolds’ number, Freud’s number etc. Ruark (1935) has 

published an improved method called Inspectional analysis, based on the brief description 

in Bridgman’s book on Dimensional Analysis.  

 Dimensional analysis is based on the assumption that physical events and processes 

must be independent of the measurement scale units. It handles the mathematical portion 

of the development of the physical relation between the physical variables once the 

equation satisfies the following form: 

),...,( 321 neeefe �            (2.1) 

where e1 is the dependent parameter and e2, e3,…en are n-1 independent parameters. Each 

of the dependent parameters is a product of primary dimensions or 

��
i

a
i

iPe             (2.2) 

Where Pi denotes primary dimension and ai denotes the exponent. Functional relationship 

between dependent parameters can mathematically be expressed in the equivalent form as 

0),...,,( 321 �neeeeg            (2.3) 

where g is an unspecified function making the conversion to dimensionless form easier. 

Two steps have to be performed to determine the needed number of dimensionless groups. 

The first step is determining the total number of primary dimensions designated as r. The 
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second step involves determining the number of repeating parameters designated as m. To 

determine m we need to determine the rank of the following dimensional matrix: 

 

              
                        

    

1

12

1312111

nrr

n

aa

a
aaaa

m

�

��

�

��           (2.4) 

According to Buckingham, the dimensionless form of the equation has to satisfy the 

following functional form 

0),...,,( 321 �
�mnG ����           (2.5) 

where n-m denotes the minimum number of independent dimensionless groups (p) needed 

to specify the dimensions of all the parameters e1,e2, e3,…en. The algorithm of the 

dimensional analysis is presented in Figure 2.1. 

 
Figure 2.1. Principle algorithm for Dimensional analysis 

 Inspectional analysis is the extension of dimensional analysis, where a final 

dimensionless formulation is tested against the variables from which it has been developed. 

Since in the dimensional analysis we obtain only dimensionless groups without the 

governing equation (has to be obtained experimentally) and inspectional analysis is based 

on the existing differential equation with acting boundary it is a simpler and preferred 
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method in petroleum related literature. Since inspectional analysis is a parameter rather 

then dimensions procedure it can produce dependent dimensionless scaling groups. To 

remediate, Shook et al (1992) proposed writing the dimensional matrix for dimensionless 

groups in a form 

 

log
 
log

 log
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 log

 2

1

1
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e
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��

�

�
�

�

�

�

         (2.6) 

Where aij is the exponent of any primary dimension ei included in the group �i. They 

suggested that reduction in number of dimensionless groups and the final succinct form 

can be achieved by minimizing the rank of the matrix. 

 Rapoport and Leas (1953) first published a work on scaling a linear waterflood. 

Rapoport (1955) continued the work on scaling conditions, this time including both 

capillary and gravity effects to aid design and interpretation of small-scale multi-phase 

flow in porous media. His work does not include dimensionless groups per se but rather an 

overview of accepted comparison procedure to enable scalability. Geertsma et al. (1956) 

introduced the DA and IA into the linear 2-D scaling. His work resulted in 3 independent 

variables, 6 dependent variables and 12 similarity groups needed to compare flow between 

scales.  

 Craig et al (1957) focused on gravity segregation in frontal drives. They neglected the 

diffusion in the DA/IA and reduced the number of scaling groups to 4. Perkins and Collins 

(1960) presented a full 3-D development with 5 dimensionless groups describing the flow. 

Inconsistencies in boundary conditions while formulating dimensionless groups and lack 

of appropriate full-length inspectional analysis lead to the later development published by 

van Daalen and van Domselaar (1972) to return to curvilinear flow with crossflow and 

repeat the scaling procedure. The result was 6 scaling groups in a quasi 2-D system, similar 

to the latest development by Shook et al. (1992). 

 Most of the work in the area of scaling that included DA/IA considered a 

homogeneous isotropic system to simplify the development. Carpenter et al., (1962) 

experimentally validated the Rapoport’s (1955) scaling procedure on a heterogeneous 
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multi-layer system. Craig et al. (1957) included the heterogeneity in their study on gravity 

segregation and scaling. Study by van Daalen and van Domselaar (1972) relied also on 

simplified heterogeneity description, however heterogeneity itself was not represented as a 

similarity group.  

 Several attempts were made to characterize the reservoir heterogeneity in 

dimensionless form. Li and Lake (1996) were the first to include true dimensionless 

heterogeneity in the scaling process. Flow was characterized using Shook’s dimensionless 

scaling numbers and development extended for scaling the anisotropic environment by 

defining heterogeneity numbers. Heterogeneity was, however characterized only in two 

dimensions. 

2.4. Two-phase dimensionless numbers in literature 

 There is a variety of dimensionless numbers published in petroleum literature and 

based on the flow system they can be divided in two groups – single-phase and two-phase 

systems. Single-phase systems are used in pressure-test analysis; where inspectional 

analysis enables transformation to dimensionless space for any given set of given 

boundary conditions. Once dimensionless, the adequate solution for a diffusivity equation 

can be found. Several textbook authors have tackled non-dimensionality; Lee (1989), 

Earlougher (1977) and Sabet (1991) to name the few. The later in his book presents an 

excellent overview of the single-phase systems and solutions.  

 Unlike single-phase systems where the primary concern is a pressure distribution and 

the pressure response, two-phase systems are primarily focused on two-phase flow effects 

such as breakthrough time, breakthrough recovery, dispersion etc. Balance of four forces is 

controlling the two-phase flow in porous media – viscous, gravity, capillary force and 

dispersion.  

 Two-phase flow in porous media has historically looked at several dimensionless 

variables in order to scale the flow behavior – each capturing a portion of behavior. 

Overview of basic dimensionless scaling numbers used for a two-phase flow is presented 

in Table 2.1. General description of the numbers in Table 2.1 can be substantiated by the 

variety of ways some of the dimensionless numbers are determined in surveyed literature. 



10 

Further insight is needed to determine the most appropriate way of formulating the scaling 

groups so that the resulting numbers will be applicable at any scale. 

 The first and the finest scale to consider is a pore-scale modeling (Moore and Slobod, 

1956, Chatzis and Morrow, 1986 etc.). Basic issue at this scale is the entrapment of wetting 

and non-wetting phase and determination of residual saturations and scaling groups that 

control them. The second scale is a medium resolution scale at which the flood front and 

resulting production behavior is observed (Dietz, 1953, Craig et al., 1957, Hagoort, 1980). 

Medium scale and large-scale (numerical models) will deal with flow property/barrier 

distribution (Peters et al., 1998, Pickup et al., 1999, Willis and White, 2000), geometry and 

effect of these factors on the observed production. 

 

Table 2.2. Overview of basic two-phase scaling dimensionless numbers 

 Variable Formulation Comment 
Dimensionless 
time pore

injected
D V

V
t �  Imposed injection 

boundary condition Boundary 
conditions/ 
response 
scaling 

Displacement 
efficiency 
(factor) reference

produced
D V

V
E �  Dimensionless 

production response 

Mobility ratio 
fluiddisplacing

fluiddisplacedM
 

 

�

�
�

Fluid-fluid-rock 
interaction effect on 
the flow behavior 

Capillary 
Number viscous

capillary
C F

F
N �  

Fluid-rock interaction, 
depicts entrapment at 
the small scale 

Physical 
effects 
scaling 

Gravity 
Number viscous

gravity
G F

F
N �  

Fluid-reservoir shape 
dependent, captures the 
effect of buoyant force 

Dip �
�

tan�N  Dip angle scaling Reservoir 
geometry 
scaling Aspect ratio 

Height
LengthN A �  Reservoir shape 

description 
 

 Residual or remaining saturations for any given rock are determined through small-

scale laboratory-determined Capillary De-saturation Curves (CDC). CDC represents 

residual saturation of a phase as a function of dimensionless capillary number. Capillary 



11 

number varies through the literature and can be based either on statistics (Lake, 1989) or 

on the empirical Representative Elementary Volume (REV). Since the process of scaling 

has to incorporate underlying physics, it is prudent to focus the literature survey on 

empirical models. 

 Moore and Slobod (1956) proposed the pore doublet model. Based on the assumption 

of the well-developed Poiseuille flow in different-radii same-length capillaries it 

overestimates the amount of residual non-wetting phase. Melrose and Brandner (1974) 

discussed the pore snap-off model as the tool to model entrapment. They included contact 

angle hysteresis in their calculations. Oh and Slattery (1976) introduced sinusoidal 

geometry of the porous media. Chatzis et al (1983) used sinusoidal pore snap-off for their 

experimental work. Geometry of the model and implemented physics do not largely affect 

capillary number. Overview of small-scale capillary numbers is given in Table 2.3. 

Table 2.3. Small-scale capillary numbers 

Small scale capillary number 
Capillary number Comment Reference 

��

�

cos
1�

�

v
Nc  

Outcrop sandstone, brine-
crude system 

Moore and Slobod, 
1956 

��

�

cos
1�

�

v
Nc  

Berea sandstone, brine-
soltrol system 

Taber, 1969 

�

�1�

�

u
Nc  

Berea sandstone, brine-oil 
system 

Foster, 1973 

�� cos

���

�

�

k
Nc  

Synthetic media, distilled 
water-pure organics system 

Dombrowski and 
Brownell, 1954 

�

�1�

�

uNc  
Synthetic media, water-
pure hydrocarbons system 

Du Prey, 1973 

�

�1�

�

uNc  
Outcrop sandstone, brine-
crude system 

Erlich et al., 1974 

4.0

2

11 cos ��
�

�
��
�

�
��

��

�
	

�

�
�

�

�

S
v

Nc  
Outcrop sandstone, brine-
crude system 

Abrams, 1975 

�

�1�

�

uNc  
Berea sandstone, brine-
decane system 

Gupta, 1980 

L
pkNc

�

��
�

�

 
Outcrop sandstone, brine-
soltrol system 

Chatzis and Morrow, 
1981 
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 At the larger scale, Rapaport and Lea (1953) developed the regime indicator for scaling 

the capillary effects during a large-scale waterflood. Geertsma et al (1956) provided the 

large-scale capillary number development for both waterflood and thermal flood similar to 

the small-scale one. Craig et al., (1957) in their study on gravitational segregation 

developed a capillary number, similar to the dimensionless similarity group developed by 

Perkins and Collins (1960). The first complete analytical development published by van 

Daalen and van Doomselaar (1972) omitted the conventional capillary number, however 

included the similar scaling group. Shook (1992) repeated the procedure without the 

assumption on negligible effect of small transition zone and recorded a scaling group 

similar to van Daalen and Domselaar. List of numbers and corresponding author is 

provided in Table 2.4. 

Table 2.4. Medium/large scale capillary numbers 

Medium/large scale capillary number 
Capillary number Comment Reference 

���

��

cos121

12
1

����

��
�
�

�
�
�

�
� o

r
RL k

Lu
k

N  
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 Gravity number in surveyed literature has also varied from source to source. Even 

though the most logical choice would be the use in the case of large density difference 

(Craig et al, 1955, Hagoort, 1980), and complete abandonment in two-liquid system, 
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several authors (Pozzi and Blackwell, 1963, Peters et al., 1998) have considered the gravity 

number in two-liquid system development. Justification can be found in the aspect ratio 

and permeability dependence in some of the gravity numbers found in the surveyed 

literature. Shook et al. (1992) have directly shown the effect of dip and aspect ratio greatly 

amplify the gravity effect, as depicted in Figures 2.2.and 2.3.  
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Figure 2.2. Breakthrough recovery as a function of gravity number and aspect ratio 
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Figure 2.3. Breakthrough recovery as a function of gravity number and dip 
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Table 2.5. Gravity number in Petroleum engineering 

Gravity Number Comment Reference 

T
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2.5. Dispersion  

 When the idea of miscible displacement as a possible Enhanced Oil Recovery (EOR) 

method made its debut, several authors recognized the dispersion in the displacement as an 

important parameter in scaling the experimental data. Pozzi and Blackwell (1963) 

developed the basic scaling criteria adding the dispersion-scaling groups to those 

developed by Geertsma et al (1956) and Craig et al (1957. Warren and Skiba (1964) 

appraised the macroscopic dispersion effect on the flood performance. Perkins and 

Johnston (1965) presented a review of dispersion in different artificial porous media, with 

special attention given to scaling longitudinal and transverse dispersion. Lake and Hirasaki 

(1979) revisited the problem from the aspect of heterogeneity, analyzed dispersion and 

offered analytical solution for multi-layer system. Peters et al (1998) approached the 

problem experimentally and used dimensionless scaling numbers published by Shook et al 

(1992) to describe the scaling of dispersion in a two-layer system.  
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Figure 2.4. Concentration front as a function of Pecklet’s number 

 Rather than the change in concentration, immiscible displacement deals with the 

dispersion introduced by a local heterogeneity at a large scale and capillary/viscous forces 

at the small scale. Lake’s (1989) solution to advection-diffusion equation shown in Figure 
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2.6 can be compared to a fractional flow response curve at the production boundary as a 

function of time. Similarity in shape introduces the possibility of estimation of a dispersion 

based solely on mathematical analysis. Instead of comparison to Lake’s solution through 

spatial saturation distribution re-creation (e.g. using method by Johnston et al., 1952), we 

can look at similitude through comparison between a large-scale capillary number and 

Pecklet’s number. Assuming stationary boundary conditions (constant velocity) Pecklet’s 

number – ratio of convective to dispersive transport - can be calculated as 

D
LuN Pe

�

�

�

�
             (2.7) 

Taking the most succinct definition from table 2.3 (Shook et al, 1992), capillary number – 

ratio of capillary to viscous transport - can be defined using the following equation 

x
T

o
r

Pc k
uL

N ��

�

�

� �
�� 2            (2.8) 

Assuming that capillary-to-viscous force ratio dominates the dispersion in the immiscible 

displacement, the comparison between two numbers yields  
1�

� PePc NN              (2.9) 

Substituting 2.8 into 2.7, dispersion can be estimated as  

��

�

�

�� o
rx

Pc k
D

2

1            (2.10) 

 Once the differential is substituted by a difference, the procedure introduces another 

form of dispersion – numerical dispersion. Lantz (1971) in his work discusses the 

numerical dispersion (truncation error) introduced by finite-difference approximation of 

differential equation. Lantz has divided the total dispersion in two additive terms, physical 

dispersion D' and numerical dispersion (truncation error). Hence, the total dispersion can 

be represented as 

*' DDD ��             (2.14) 

Note that Lantz's diffusivity (dispersion) is a dimensionless number originating from 

equation 2.15 and represents the inverse of Pecklet’s number. 
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           (2.15) 

We can observe that Lantz's diffusivity is actually inverse of Pecklet number. Therefore, 

assuming that inverses of Pecklet number are additive, we can define Pecklet error number 

as  

*
* 1

D
N Pe �              (2.16) 

Where numerical truncation error D* for different spatial and temporal finite difference 

forms for miscible and immiscible cases can be found in Table 2.5. 

 

Table 2.6. Numerical dispersion estimate 
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2.6. Flow Regimes 

 Underground hydraulics and flow regime description is not limited to petroleum 

engineering only. Johnson (1998) presents the work of Ng when discussing flow regimes 

in porous media flow. Unlike petroleum related literature that looks at the flow regime at 

the large scale, Ng focuses on small-scale gas-liquid system. As depicted in Figure 2.5 Ng 

identified four flow regimes based on visual observations from flows on different sand-

packs rather than from production behavior. 
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Figure 2.5. Liquid-gas flow regimes at small scale as a function of a fluid mass-flux 
(from: Johnson, 1998) 

 
 Trickling flow regime (t) occurs when the liquid flows over the particles and gas flows 

in the remaining pore space. Pulsing flow regime (p) occurs when the gas and liquid slugs 

traverse the column alternatively. The flow channels become plugged by the liquid slugs 

which are blown off by the gas plugs. In the Spray flow regime (s) the liquid travels down 

the column in the form of droplets entrained by the continuous gas phase. The gas flow is 

turbulent. Bubble/dispersed-bubble (b/db) regimes have the gas phase flowing as slightly 

elongated bubbles. As the gas flow rate increases, the bubbles become highly irregular in 

shape. 

 Ng’s representation using liquid and gas mass-flux is a snapshot for a particular rock 

type since they do not offer a way of scaling the capillarity. Also, a global effect on the 

recovery is neglected. Lenormand et al. introduced the concept of ``phase-diagram'' in 

1988 for small-scale drainage displacements where various experiments and simulation 

were plotted in a plane with the capillary number along the x-axis and the viscosity ratio 

along the y-axis. The plot, reproduced in Figure 2.6 clearly shows that the different 
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structures they obtained divide into the major flow regimes whose region of validity in 

capillary number and viscosity ratio space is given by the plot.  

 
Figure 2.6. Flow regime map as a function of capillary number and viscosity ratio  

(from: Lenormand et al., 1988) 
 

 The boundaries of the regions were qualitatively discussed and they concluded that the 

drainage displacements where fully characterized by capillary number and viscosity ratio. 

However, it was mentioned that changing the pore size distribution of the simulation and 

the experiments resulted in translations of the boundaries but that the general shape should 

remain unchanged. The capillary number Lenormand and others used does not take into 

account the pore size distribution and a careful analysis is required to understand better this 

effect before any complete “phase-diagram” can be drawn. 

 Stable displacement has earlier been investigated by Dietz (1953). Based on the 

analysis of the flow under segregated conditions, he was able to establish the general 

dimensionless range for segregated flow in dipping reservoir. Stable range can be 

determined by  

1�� MG , 1�M , �� �           (2.17a) 

1�� MG , 1�M , �� �           (2.17b) 
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Where G is dimensionless gravity number, M is mobility ratio, b is displacement front 

angle and � is dip angle.  

 Unlike Lenormand and Ng, Li et al (1993) used an approach based on dimensional 

analysis of heterogeneity on a statistically generated numerical reservoir. Instead of flow-

regime description founded on the balance of local viscous-capillary-gravity-dispersive 

forces, they acknowledged the effect of heterogeneity only. 
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Figure 2.7. Flow regimes as a function of local and global heterogeneity 

(from Li et al., 1993) 
Even though they captured the effect of heterogeneity on a recovery, they neglected the 

force balance captured in the adopted dimensionless formulation of the flow equation. Coll 

et al (2000) approached this problem using the fractional flow equation and the 

dimensionless scaling numbers adopted from Shook et al. (1992). Their work has been in 

regional upscaling, however it can be used in determination of flow regimes. They defined 

the flow regime based on the dominant force governing the flow. The overview of ranges 

is presented in Table 2.7. 
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Table 2.7. Gravity and Capillary dominated flow regime (from: Coll et al., 2000) 
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 Compared to the work of Lenormand, Coll and others introduced the gravity number as 

another important dimensionless parameter in flow regime determination. The use of 

dimensionless numbers in Coll’s method enables general scalability of flow-regime cutoff 

values, however the approach has two case-dependent variables - � and �. They have to be 

determined by running series of simulations in both homogeneous and simple layered 

models for a case of interest.  

2.7. Upscaling 

 Upscaling is a reverse scaling process. Usually, scaling process involves extrapolation 

from a limited amount of data to cover the global behavior. Upscaling deals with abundant 

data within a frame being upscaled and averages all the values within the frame to a set of 

representative flow parameters. This way the number of gridblocks in a model is reduced 

by fore mentioned reduction in horizontal and/or vertical resolution. Goal of upscaling is to 

achieve the balance between the number of cells needed for the accurate representation of 

the reservoir and CPU time needed for calculation. 
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2.7.1. Single phase upscaling 

 Single phase upscaling scales only the absolute permeability. The simplest form of 

single-phase upscaling is pressure solver method. This method sets up a single-phase flow 

system with specified boundary conditions and then determines the value of effective 

permeability yielding the same flow rate as a fine-grid system. Results we obtain will 

depend on boundary conditions. In this case, vertical no-flow boundary condition is most 

commonly used. Christie (1996) mentions the following procedure: 

-Set up a matrix to solve 

0)( ���� pxk �            (2.18) 

Boundaries are no-flow at the side with p=1 and p=0 at the inlet and outlet respectively.  

-The effective permeability is then given by  

A
qxk x

e
��

��             (2.19) 

To evaluate all three directional permeabilities the setup is repeated for the remaining two 

directions. This approach is simple, and as reported by some authors (Begg et al, 1989, 

Christie, 1996) it results in values close to those obtained by history matching. 

 Alternatively some authors (Durlofsky, 1994, Pickup, 1992) prefer the use of periodic 

boundary conditions and full-tensor permeability. The approach is significantly more 

accurate, however most vendor simulators do not support direct input of a permeability 

tensor; hence the method is used more in academic environment. 

 Renormalization technique pioneered by King (1989) is similar to a procedure used in 

resistor network reduction. It is a stepwise procedure where very fine grid is slightly 

coarsened, then the resulting coarsened one is re-coarsened and the procedure is repeated 

until the desired resolution is reached. The method is faster, however it is less accurate. 

 Streamline method is based on the use of streamtubes derived from a single-phase fine 

grid simulation. It basically indicates the direction of fluid movement throughout the 

reservoir. Some authors, such as King (1997) use streamlines to include the effects of 

gridding in the upscaling effort. Others like Hewett and Yamada (1996) use streamlines 

bounded to grid to determine pseudo functions. Streamlines can also indicate the density of 

flow and hence point to regions in the model that need to be of finer resolution.  
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 Method of zonation has been visually performed by many and preferred by some 

engineers for a long time. The approach was to visually group the layers before the actual 

model was build and it was used to reduce the vertical resolution of the model. Testerman 

(1962) published a statistical technique to identify and describe naturally occurring zones 

in a reservoir and to correlate these between wells. This method has two steps and 

reportedly can handle crossflow. During zonation (the first step), the set of permeability 

data from the wells is divided into zones. Zones are selected in such manner that variation 

between the layers in the zone is minimized, while the variation between zones is 

maximized. The following equations are recommended: 

� � �
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W
WBR �

�             (2.22) 

Variable B denotes variance between the zones, L number of zones, indices i and j are 

summation indices for number of zones and number of layers within each zone 

respectively. R is the zonation index, indicating homogeneity when it is closer to 1.0, mi 

number of data within the zone, W is a pooled variance within zones, N total number of 

data and kI and k are averages for the zone and the whole well, respectively.  

 Once the zones have been chosen, Testerman suggests the second step - correlation 

across the reservoir. The correlation of zones between adjacent wells is based on 

comparison of the difference of the means. Zones are correlated if the difference of the 

means is less than or equal to one expected from the individual data variation or if 
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��	
 �          (2.23) 

Where kh and ki are the average of h zone of one well and i zone of another, n is a number 

of layers within the zone, � is standard deviation for the whole reservoir and z(v,p) defines 

z values for given probability level. 
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2.7.2. Two-phase upscaling 

 Unlike the single phase upscaling that only accounts for the variation in absolute 

permeability, two-phase upscaling accounts for the dispersion effect of permeability 

variation on the two-phase flow. Li et al (1999, 2000) have extended Testerman's work. 

They used residuals as a measurement of accuracy of upscaling and instead of applying it 

only for permeability they applied it independently on two upscaling properties: displacing 

front conductivity (DFC) and facieses rules (FR). Authors suggest the following to 

estimate the parameters: 
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Where R is residual function, p and � are mean and standard deviation for the uplayering 

property of interest and w is weight varying between 0 and 1. Uplayering properties, as 

defined by Li et al. are defined as: 

� �f
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Where kh is horizontal permeability, � porosity and r is discriminating rule for facies. 

Parameter a is defined as 
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          (2.27) 

Where max denotes maximum value among upscaled layers and b denotes scaling number 

varying between 0 and 1.  

 Comparison between this method and the one where variance was neglected and 

decision was made to average by keeping certain constant thickness is presented in Figure 

2.6. Li's method will preserve the geological features such as shale streaks; however, 

optimization of the method includes assigning arbitrary values such as b and r without 

clear analytical mean of determination. 
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Figure 2.8. Random lumping vs. zonation (uplayering) 

 The last method suggested by the literature is a pseudo-function model. Pseudo 

functions result from observations that by replacing the distribution of permeability with 

an average value, reservoir behavior using intrinsic relative permeability curves yields a 

result that differs from initial or downscaled. In order to remediate the behavior changes 

are made to relative permeability curves. Using pre-set boundary conditions expected at 

the time of simulation and different estimation methods, we end up with set of relative 

permeabilities called pseudo functions. They differ from the intrinsic rock curves, however 

during the simulation with boundary conditions corresponding to ones used for their 

estimation models simulating reservoir behavior supposedly yield results similar to the 

original (downscaled) case. The overview of equations for some of the methods is given in 

Table 2.8. 

 The development of pseudo-function related upscaling begun with vertical equilibrium 

pseudo relative permeability proposed by Coats et al (1967, 1971). Authors proposed that 

pseudo-relative permeability is permeability weighted average of the point relative 

permeability, and is obtained by integration over the thickness of the reservoir. Important 

assumption is a vertical communication within the reservoir. 

 Jacks et al (1972) have introduced a method that calculates pseudo relative 

permeabilities based on assumption that reservoir behavior can be simulated by a 2D 

model. Since the pseudo functions are calculated at the certain flow potential they are 

called dynamic. They developed a technique that looks at the vertical saturation 

distribution, upscaling in vertical direction and that way reducing a number of cells. The 

simulation is run under conditions that are representative of those to be expected during 
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time periods to be covered. Needless to say, pseudo-relative permeabilities calculated that 

way could not be used for a prolonged simulation time period, nor could they cover a 

change in production setting such as changes in rates or additional wells. To generate the 

pseudo functions for the cross-sectional model the governing equations are applied to each 

vertical stack of fine grid blocks at a number of time steps. 

 Kyte and Berry (1975) published an improvement over Jacks' pseudo relative 

permeability model. Kyte and Berry attempted to overcome the assumption of equal 

potential in all of the vertically stacked blocks by estimating coarse grid pressures from 

fine grid pressures and using them to calculate coarse grid potential differences. These 

potential differences are then used to calculate pseudo relative permeability from Darcy's 

law. In addition to coarsening in vertical direction, this method simultaneously coarsens 

the areal grid. This is done by computing the pseudo saturations as pore volume weighted 

averages over the entire fine grid system lying within a coarse grid while evaluating 

flowrates only at the coarse grid boundary.  

 Stone (1991) published a critical overview of the previous work in the area of pseudo 

relative permeabilities. He has suggested abandoning the use of pressure potentials in the 

calculations and initiated the use of fractional flow. The method resembles the previous 

only in assumptions concerning flow through the upscaled area. To match the pressure 

level throughout the reservoir the coarse grid potential gradient is made a 

transmissibility/total mobility weighted average (accomplished by making the total pseudo 

mobility a transmissibility weighted average of the small ones).  

 There are many other methods published so far. For instance, pore volume weighted 

method, similar to Kyte and Berry method, uses a pore volume weighted method to 

calculate upscaled pressure, while Kyte and Berry use the product of effective permeability 

and thickness. Guzman et al (1994) proposed a flux weighted potential method. Hewett 

and Yamada presented a two-dimensional, semi-analytical method that does not 

specifically require calculation of streamlines. Even though this method considers two-

phase system streamlines are designed by independent fine grid single-phase run. The 

single-phase transmissibility T' of each streamtube segment is first determined from the 



27 

results of a single-phase oil-flood simulation. Overview of several different pseudo 

functions is given in Table 2.8. 

Table 2.8. General overview of pseudo functions 

Pseudo function Corresponding 
saturation Comment 
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2.8. Comment 

 In a multi-phase system each gridblock is conceptually defined by more than 30 

variables. Upscaling methods presented earlier consider only a small fraction - effective 

and relative permeability. All the upscaling methods are not only a function of 

permeability or saturation but also initial conditions, aspect ratios, flow regime, 

heterogeneity etc. One of the main limitations in upscaling is that it usually gives an 

answer with almost no indication of whether the assumptions made in derivation process 

hold. Limited attempts have been made to analyze upscaling process but so far no good 

theory exists to show that the upscaled value the validity interval for approximation.  

 In general, pseudo functions are generated for given boundary conditions (well 

placement, rate). They depend on their assigned coarse rock properties and their placement 

within the reservoir. The simplest method would be to have pseudo functions generated for 

each coarse gridblock. Since they are dependent on boundary conditions, they can be used 

only for brief period of time. Several authors (Guzman et al, 1996, Barker and Thibeau 

1996) have dealt with the evaluation and application of pseudo functions.  

 In terms of behavior Stone's method uses inconsistent set of equations when gravity 

and capillary terms are included, however it behaves better then Jacks' or Kyte and Berry's 

method. Also, it is not unusual for the last two to exert some unphysical behavior of 

pseudo relative permeability functions. For example, pressures in two sections, when 

averaged, can be the same at the coarser scale, however flow rates at fine scale are not 

equal to zero since there is a flow potential. That yields a pseudo permeability curve equal 

to infinity. There is a reported problem (Guzman, 1996) with pseudo functions being 

bigger than 1, less than zero or non-monotonic, things that can test how robust the 

simulation models are. 

 Some authors such as Peaceman (1996) have suggested normalization as a way to fix 

problems with the use of pseudo functions. The normalization is critiqued by others 

(Guzman et al., 1996), stating that re-normalization would introduce additional systematic 

error due to the artificial boundary conditions imposed on each block at each re-

normalization (e.g. no flow or constant pressure). Suzuki and Hewett (2000) have also 

recognized boundary conditions as important parameter in determining the pseudo 
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functions. They have developed a method that shifts coarsening back and forth. The 

interval that yields negative pseudo function for given boundary conditions is neglected if 

it is short, or the grid is re-coarsened if the interval is long. They have also recognized the 

importance of flow regime on the behavior of pseudo functions. Their method behaves 

well under viscous-dominated flow, however under gravity dominated flow model has a 

problem representing the local saturation history. 

 Several general observations can be drawn:  

1. Each coarse block might require its own set of pseudo functions since they depend on 

both position and heterogeneity. Having a different set of pseudo functions for every 

coarse grid block could be troublesome so the suggestion is to group coarse grids into 

several rock types, each of which has just one set of pseudo functions (or one set for each 

direction). Easier step in preventing the abundance of pseudo functions is the use of flow 

regime as a mean of grouping, similar to uplayering (Li et al, 1999). 

2. Complete fine grid model cannot be run so the logical step is to run smaller regions in 

order to generate pseudo functions. Accuracy of prediction will depend on our ability to 

estimate behavior (boundary conditions) at this given moment and position. Thibeau et al 

(1995) introduced the concept of dual scale simulation for upscaling, which decreased 

error and computation time. The prediction would be more accurate if there was an a-

priori physical mean of behavior estimate. 

3. The process of constant regeneration of pseudo functions with changes in well 

placement or rates might make them unaffordable. We should be able to run model on 

pseudo functions for longer time periods. This is possible only when there are no 

significant changes in well rates or positions. 

 To make use of dimensionless numbers in the upscaling and general scaling 

procedures, numbers have to be developed using useful boundary conditions. Perkins and 

Collins (1960) applied flow boundaries at all 3 faces, however their numbers are not 

succinct nor applicable at all scales. Geertsma et al. (1956) development provides a useful 

and complete insight, however a large total number of scaling groups for only a 1-D 

system indicates a need for a further development in terms of determining and eliminating 

dependent scaling groups and hence reducing the number of dimensionless variables. The 
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most succinct development to date presented by Shook et al (1992) has already been used 

as a base for upscaling effort by Coll and others. 

 As reported in literature (Cao and Aziz, 1999, Coll et al, 2000) upscaling schemes are 

flow regime dependent. Flow regime definition in literature is dependent on reservoir 

heterogeneity assessment and flow effects captured in flow equations. Dimensionless 

scaling effort based on the analysis of flow equations could be used to define flow regimes 

as the balance of local forces in a homogeneous system, put in a dimensionless form. Once 

heterogeneity is introduced, it will contribute to the global flow behavior, however local 

behavior will still be controlled by a set of dimensionless variables. None of the authors 

except for Lantz dealt with types of effects expected once the reservoir is discretized and 

solved using either one of accepted solution methods (IMPES, Implicit).  

 Boundary conditions imposed in the dimensionless development in all of the published 

work are not comparable to the actual simulation boundary conditions and hence the 

resulting numbers are not useful in their present form as a tool of estimation and prediction 

of model behavior. A new 3-D development is needed, with boundary conditions similar to 

those expected in numerical models, enabling better estimate of performance, scaling, and 

error prior to actual simulation run. 
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CHAPTER 3 

DIMENSIONLESS NUMBERS 

 The flow behavior to be expected in reservoir simulation models can be related to the 

dimensionless scaling groups of the partial differential equations for flow in porous media. 

This chapter presents development of the dimensionless scaling groups for application in 

analysis of reservoir simulation models.  

 Dimensionless numbers can be developed using dimensional or inspectional analysis 

(Johnson, 1998; Fox and McDonald, 1998; Shook et al., 1992). Dimensional analysis 

determines the minimum number and form of scaling groups based on the primary 

dimensions of any physical system (Fox & McDonald, 1998). These groups do not predict 

the physical behavior of the system - they simply scale it. Dimensional analysis is widely 

used in experimental design and analysis. Groups from dimensional analysis can be joined 

to form global dimensionless groups, which can be more easily interpreted physically (e.g. 

NRL by Rapoport and Lea, 1953; G reported by Dietz, 1953). Fluid dynamics researchers 

(Fox and McDonald, 1998) recommend experimentation to determine the final form of 

physically meaningful dimensionless groups. 

 Inspectional analysis uses a similar premise. However, instead of being based on the 

primary dimensions of variables the space is transformed from dimensional to 

dimensionless variable-by-variable. Shook (1992) used linear (affine) transformations, 

which works well if the grouping and elimination of translation factors is physically 

meaningful. Some dimensionless scaling groups for porous media flow are available in the 

literature (e.g. NRL, Rapoport and Leas, 1953; M and G, Dietz, 1957; Ra, Rb, Rc and Rd, 

Craig et al, 1957). The dimensionless numbers developed in this investigation will be 

compared with earlier work to ensure consistency and aid physical interpretation.  

 The model used for development of the dimensionless scaling groups is two-phase, 

immiscible flow of incompressible fluids through a porous, permeable medium with 

anisotropic permeability and density contrasts; three spatial dimensions are considered. 

Phase pressures and saturations are assigned at the center of the gridblock. Grid blocks are 

assumed to be homogeneous. Viscosity of each phase is constant, and there is no mass 

transfer between phases. Inlet and outlet velocities will be used as the boundary conditions.  
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3.1. Governing equations 

 There are several ways of writing the flow equations (Peaceman, 1977; Mattax and 

Dalton 1990). For the ease of use in stability and error analysis (Lantz, 1971; Peaceman, 

1977) the system will be described using equations 3.1a through 3.2g. The displacing 

phase is marked using index 1, so the governing equations for a three dimensional system 

of two incompressible phases are (Mattax and Dalton, 1990) 
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where  
�    phase, 1 denotes displacing and 2 displaced phase 

i    direction (x,y,z) 

u    phase velocity  

�    phase mobility 

p    phase pressure 

k    directional permeability 

t    time 
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�    porosity 

1S     displacing phase saturation 

D     elevation 

 Several assumptions can be made to simplify the further development. Because the 

phase mobility is a function of phase saturation, we can employ the Corey-Brooks’ relative 

permeability model (Charbeneau, 2000). The phase mobility of any given phase can be 

defined as  
jn

jj

jjo
jj SS

SS
�
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minmax

min
��          (3.3) 

where 

j�     mobility of phase j 

o
j�     end-point mobility of phase j 

maxmin  , , jjj SSS  current, minimum and maximum saturation of phase j 

jn     Corey’s exponent of phase j 

The relative permeability model is assumed to be independent of velocity and time; 

wettability changes are not considered. Endpoint mobility is defined using end-point 

relative permeability and viscosity as 
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k
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� �            (3.4) 

where 
o
jk     end-point permeability of phase j 

j�     viscosity of phase j 

Phase pressures are related with capillary pressure as follows: 

cPPP �� 12            (3.5) 

where 

cP     capillary pressure 
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 Capillary pressure is commonly scaled using dimensionless Leverett’s J(S1) function. 

The usual equation for scaling is 

)( 1SJ
k

P
z

C ���

�
�           (3.6) 

where 
�     interfacial tension 

)( 1SJ    dimensionless Leverett’s J-function 

The permeability used in equation 3.6 should be the one that best scales capillary pressures 

to J(S1). Vertical permeability is used in this dissertation. Several inspectional analyses 

during the development stage have shown that the general form of dimensionless equations 

is not affected by choice of either kx or ky or kz.  

 D is the elevation which may depend on X, Y and Z. Two approaches can be used to 

discretize the gridblocks and include gravity terms: coordinate system, rotation or the 

angles between block centers.  

3.1.1. Rotation approach 

 Rotation approach will rotate a point with coordinates (X, Y, Z) around X-axis and Y-

axis independently - both in a separate 2D plane. In general, rotation for an angle � in a 

two-dimensional system (depicted in figure 3.1) yields the following transformation of 

coordinates: 

�� sincos 211 TTT r
��          (3.7a)

 
�� sincos 122 TTT r

��          (3.7b) 

Where 

21  ,TT    coordinates of point of interest 
rr TT 21  ,    coordinates after rotation   

�     angle of rotation 

 Two steps perform a rotation in this three-dimensional system as presented in figure 

3.2. The first step will be rotation around Y-axis to account for tilt in X direction. This 
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rotation will translate X and Z coordinates onto Xr and Zr. Point with coordinates T(X, Y, Z) 

will therefore be rotated to Tr(Xr, Y, Zr).  

 
Figure 3.1. Point rotation in two-dimensional system 

This point is rotated around the X-axis to account for tilt in Y direction. As a result, point 

Tr(Xr, Y, Zr) becomes Trr(Xr, Yr, Zrr) or in a final notation To(Xo, Yo, Zo).  A general 3D 

rotation also includes rotation about the z-axis; no z-rotation was applied in this analysis. 

 Coordinates of the rotated point in the final position using the above notation is 

XX
o ZXX �� sincos ��          (3.8a)

 YXYXY
o ZXYY ����� sincossinsincos ���       (3.8b)  

YXYYX
o ZYXZ ����� coscossincossin ���       (3.8c) 

where 

ZYXZYX ooo ,,,,,  rotated and original X,Y,Z coordinates 

YX �� ,    X and Y direction tilt angle 

 
Figure 3.2. Rotation of the reservoir cell to accommodate for X and Y tilt 

 The vertical component of the gravity vector in the point To(Xo, Yo, Zo) is therefore  

� � � � � �YXYYX
o ZYXZRD ����� coscossincossin �����

��

     (3.9) 
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Rotation is order dependent. If the order is reversed – i.e., rotation for �X succeeds the 

rotation for �Y – the vertical component of the gravity vector can be estimated as 

� � � � � �YXXYX
o ZYXZRD ����� coscoscossinsin �����

��

    (3.10) 

The displacing phase velocity in the X direction with rotation in �X-�Y order is then 
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Similar can be done for Y direction velocity. The rotation approach is order independent in 

the Z direction. The Z direction displaced phase velocity is 
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Equations 3.11 through 3.13 can be written for the displaced density, phase pressure, 

mobility and velocity. 

 To eliminate the order-approach dependency we can separately rotate points (0, 1, 0) 

around X-axis to account for X-direction tilt and point (1, 0, 0) around Y-axis to account for 

Y-direction tilt. If rotated points are used to determine the rotation vectors, gravitational 

vector can be defined using the ex-product of two rotation vectors. Therefore, the X-

direction tilt vector becomes 

 XXt kix �� sincos
�

�
�

��          (3.14a) 

The Y-direction tilt vector can be defined as  

YYt kjy �� sincos
�

�
�

��          (3.14b) 

The cross product of corresponding vectors is the determinant of the following matrix 
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Therefore the desired gravity vector is 
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sddssd kjiD ������ coscoscossincossin
�

���

����      (3.16) 

Investigating the signs in equation 3.16 shows that the i
�

 component is negative, so if the X 

increases Z would decrease. This is a result from the coordinate system notation. 

 
Figure 3.3. Right-handed coordinate system and the system of interest 

The development is mathematically correct for a right-handed coordinate system. Note that 

negative side of X-axis of right-handed coordinate system corresponds to the positive side 

X-axis of the system on which all the previous development is made. Instead of changing 

the system, we can simply correct the difference by writing the gravity vector as 

YXXYYX kjiD ������ coscoscossincossin
�

���

���      (3.16) 

The velocities in equations 3.2a though 3.2f can be defined as  

�
�

�
�
�

�
���

	

	
�
 YXrxx g

x
pku ���� cossin1

1
11        (3.17a) 

�
�

�
�
�

�
���

	

	
�
 YXrxx g

x
pku ���� cossin2

2
22        (3.17b) 

��
�

�
��
�

�
���

	

	
�
 XYryy g

y
pku ���� cossin1

1
11        (3.17c) 

��
�

�
��
�

�
���

	

	
�
 XYryy g

y
pku ���� cossin2

2
22        (3.17d) 

�
�

�
�
�

�
���

	

	
�
 YXrzz g

z
pku ���� coscos1

1
11        (3.17e) 



38 

�
�

�
�
�

�
���

	

	
�
 YXrzz g

z
pku ���� coscos2

2
22        (3.17f) 

3.1.2. Block-center approach 

 A common gridding approach in numerical models should be investigated to 

corroborate or discard the rotation approach. Each gridblock can be assumed as horizontal 

with block centers vertically aligned as shown in figure 3.4.  

 
Figure 3.4. Tilt representation in numerical model 

 Elevation change in numerical simulations is the vertical distance between two centers 

in the direction of interest. To make the development more general, the vertical distance 

change from gridblock to gridblock can be assumed constant in X and constant in Y 

direction throughout the system. A vertical distance plane can be introduced such that all 

the block-centers fall onto the plane (figure 3.4). Rather than rotating the coordinate 

system, the elevation is computed by projecting a point onto the vertical distance plane. 

Vertical distance plane can be determined using several approaches (e.g., a plane through 3 

points). To make the rotation and block-center approach methods comparable the elevation 

needs to be increasing in X and Y direction. Assuming the plane has a zero elevation at the 

origin with angles �X and �Y introduced as in Figure 3.3 we can determine the elevation as 

a function of X and Y as  

YX YXZ �� tantan ��          (3.18) 

Rearranging the elevation and accounting for the fact that gravity vectors is pointing 

vertically downward provides the final form for the plane equation as 

RDZYX YXXYYX

��

����� 0coscoscossincossin ������     (3.19) 



39 

Therefore the velocities in equations 3.2a through 3.2f can be defined as 
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Both approaches yield same form of the equation, once the rotation-order dependence was 

removed in rotation approach. Equations 3.1a, 3.1b and 3.20a through 3.20f are the base 

equations used for the transformation to dimensionless space. 

3.2. Transformation to dimensionless space  

The previous equations describe the system of interest. In general, the rectangular system 

presented previously has a total of 20 parameters (L, W, H, �, S1r, S2r, �, uT, kx, ky, kz, �1, 

�2, �r1
o, �r2

o, P1
o, �s, �d, n1, n2) affecting 9 variables (S1, P1, P2, u1x, u2x, u1y, u2y, u1z and 

u2z). These parameters and variables comprise the system for dimensional and inspectional 

analysis.  

3.2.1. Dimensional analysis 

 Dimensional analysis considers the total number of dimensional parameters. Because 

dimensional analysis determines the minimum number of groups based on primary 

dimensions, all relevant parameters must be included in the analysis. Equations include the 

parameters L, W, H, �, (S1)n1, (S2)n2, uT, u1x, u2x, u1y, u2y, u1z, u2z, p1, p2, pC, �1, �2, ��, �1, 

�2,��, sin�X, sin�Y, cos�X, cos�Y, g, kx, ky, kz, kr1
o and kr2

o – 32 in total. This differs from 

the number obtained before: the difference is then number of elementary dimensionless 
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functions on parameters (viz., different trigonometric for angles or exponential functions of 

saturation) that have been included. If only dimensional parameters were included the 

analysis would – based on dimensionality – group dimensionless variables together. For 

example one of the groups might become S1/�X or �/n1. This would make physical 

interpretation of the groups more difficult. 

 There are 3 primary dimensions defining the parameters – length [L], mass [M] and 

time [T]. If we were to exclude trigonometric functions, saturation, porosity and relative 

permeability (which are intrinsically dimensionless) the dimensional analysis will not 

provide us with succinct groups. Therefore we consider the nondimensional groups have a 

fourth dimension with unit [N.D.]. Some of the parameters are repeating (e.g., kx, ky and kz 

or �1, �2 and ��) so the general notation can be used for discussion on primary dimensions. 

Primary dimensions (e.g. length over time for velocity) for dimensionally different 

parameters are known and can be represented as shown in table 3.1. 

Table 3.1. Primary dimensions 

S X T K u G �� �� P ��

N.D. L T 2

1
L T

L
2T

L
2T

M
 T

ML
2T

ML
3L

M  

 Some of the variables are not dimensionally independent and hence can be presented as 

a combination of others–. For example, pressure can be expressed as a combination of 

interfacial tension and velocity. To proceed with dimensional analysis it is crucial to 

determine the minimum number of independent groups. We can create a matrix 

representing parameters and their units (table 3.2). 

  

Table 3.2. Parameter dimension matrix 

   X t � �� u G S �� P ��

N.D. 0 0 0 0 0 0 1 0 0 0 

L 1 0 -2 0 1 1 0 1 1 -3 

M 0 0 0 1 0 0 0 1 1 1 

T 0 1 0 -2 -1 -2 0 -1 -2 0 



41 

All the parameters (table 3.2) can be expressed using four basic dimensions. For example, 

permeability has a dimension of [L2] so it can be written as [ND0L2M0T0]. To determine 

the fewest independent parameters we need to determine the rank of the parameter matrix. 

Parameters that have identical dimensions were again replaced with general notation (table 

3.2) because the rank of the matrix and the number of primary dimensions is not affected. 

This method is different from the one proposed by Buckingham (1914). The approach was 

adopted from Fox and McDonald (1998) who presented dimensional analysis on general 

flow in horizontal pipe.  

 The rank of the parameter matrix is 4 (shaded area in the matrix in the table 3.2). The 

number of independent dimensionless groups can is the difference between the number of 

variables and the number of independent parameters, or in this case 28. The rank of 

parameter matrix indicates the number of parameters that will be used as a basis 

throughout the dimensional analysis.  

 The following can be written for each variable  

14321 ����� i
DCBA eeeee           (3.21) 

Where 

4321 ,,, eeee   four repeating variables 

DCBA ,,,   exponents on repeating parameters 

ie     investigated non-repeating variable 

Because all the variables are a product of (at most) four primary dimensions we can write 

the following for each repeating variable in the equation 3.14 

� � � � � � � �DmCmBmAm
j

DjNjTjLjM DNTLMe ....
        (3.22) 

where  

je     repeating variable 

..,,, DjNJTJLjM mmmm  exponents on primary dimensions M, L, T and N.D., respectively 

 A similar equation can be written for non-repeating variable, except that A, B, C and D 

are set to 1. Rearrangement of equations and taking the logarithm results in the following 

matrix 
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where  

..,,, DiNiTiLiM mmmm  exponents as in eqn. 3.15, set for non-repeating investigated variable  

 The exponents A, B, C and D for all 28 investigated variables are obtained by solving 

equation 3.16; this can be done in a spreadsheet (figure 3.5). Assignment of repeating 

parameters is arbitrary – as can be observed from figure 3.5 - the choice was made to 

repeat t, P1, �p and kx. Theoretically, any 4 of the 32 parameters could have been chosen. 

However, the parameters chosen to be repeating have to be independent; otherwise the 

matrix system (eqn 3.16) cannot be solved.  

 The primary dimensions for each variable are in upper part of the matrix. For example, 

porosity is nondimensional hence the exponent for N.D. is set to 1 and exponents for mass, 

length and time to 0. Density is a combination of mass and length (M/L3) hence the 

exponent for mass is set to 1, exponent for length to –3 and remaining time [T] and non-

dimensional [N.D.] exponent to 0.  

 

 
Figure 3.5. Example solution spreadsheet for dimensional analysis 
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 Exponents A, B, C and D for each dimensionless group 	�and all remaining non-

repeating variables (marked with 1 in the matrix) are then computed using matrix algebra 

to obtain 28 dimensionless variables (table 3.3). 

 

Table 3.3. Dimensionless groups definition using dimensional analysis 
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 The development complies with Buckingham’s (1914) rules for dimensionality. Even 

though the number of variables is reduced from 32 to 28 with dimensional variables being 

replaced with dimensionless, the lack of physical explanation of the meaning of variables 

and sheer number makes them less practical.  

 Discussion on applicability can be taken further by stating that already dimensionless 

groups do not have to be included in the analysis. They could simply be added later by 

multiplying them with the group of choice since this would not change the dimensionless 

formulation. Arbitrarity in a method of choice of repeating parameters and the way of 

treating already dimensionless ones makes this method useful for experimental work but 

deeper insight and analysis of flow equations is needed to reduce the arbitrariness 

introduced by choice of repeating parameters. 
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3.2.2. Inspectional analysis 

 Dimensionless numbers obtained through inspectional analysis are generally 

considered to be more useful (Craig et al., 1957, Shook et al., 1992).  The flow equations 

are included in the analysis to improve the description of reservoir behavior. Because the 

flow equations neither alter the number of primary dimensions nor introduce new 

parameters to the system, the dimensional analysis still holds. The primary goal of the 

inspectional analysis on the expanded set of equations is to introduce the necessary 

boundary conditions. Boundary conditions can be introduced through the process of 

transformation from dimensional to dimensionless space or through later rearrangement of 

already developed dimensionless equations. To minimize possible error in development the 

chosen approach is to introduce boundary conditions before the transformation takes place.  

 Boundary conditions are defined as follows 

�� Phase pressures are assigned at the center of the system 

�� Phase saturations are assigned at the center of the system 

�� Inlet and outlet boundary conditions are defined using phase velocity 

Pressure in the displacing phase at any point is a function of a known pressure P1
o, 

viscous gradient, and gravity pressure gradient: 

gravityviscous
o PPPP ����� 11          (3.24)

 

Viscous pressure drop in any direction i can be estimated integrating viscous pressure drop 

over the length: 
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Directional velocity ui is a function of space. Mathematically succinct way of writing the 

integral in a three-dimensional space would be  
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        (3.25b) 

where  

oo kj ,    constant j and k coordinates along which the i-direction viscous 

   pressure drop is estimated 
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Notation in equation 3.25b is dropped in further and equation 3.25a is used for simplicity. 

 Assuming that pressure P1
o is given at the center of the gridblock, pressure at any other 

point with coordinates (x, y, z) for a block-centered discretization leads to  
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The corresponding equation for displaced phase is  
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 Phase pressures change from P1
o and P2

o at the center to P1 and P2 at any point. The 

gravity-capillary transition zone is a vertical effect, with the transition height related to the 

upscaled capillary pressure by  

YXwTwc gShPPSP ��� coscos)()( 12
*

������       (3.28) 

 

 The transition zone is used in conventional reservoir engineering (Dake, 1978) to 

determine the type of flow (i.e. diffuse or segregated) and estimate the production 

response. Flow in numerical models is generally diffuse and transition zone was 

considered only to assist in inspectional analysis. It can be shown, however, that these 

dimensionless numbers can be used for flow analysis on a reservoir scale. Additional 

equations help by providing a way of testing the validity of transformation. 

 Because pressures at the center are known the height of transition zone at the center is 

also known. Therefore substituting equations 3.26 and 3.27 into equation 3.28 leads to 

following formulation for the height of transition zone in any other point in the reservoir:  



46 

�
�

�

�
�

�

�

�
�

�

�
�

�

�

��
	



��
�


��

	



�
�


����

	



�
�


����

	



�
�


���

���
	



��
�


��

	



�
�


���

	



�
�


����

	



�
�


���

�
�
�
�

	




�
�
�

�



�����

��������

� �����

YXXYYX

YXXYYX

z

H

z

H rz

z
y

W ry

y
x

L rx

x

rz

z
y

W ry

y
x

L rx

x

sd
o
TsdT

HzWyLxg

HzWyLxg

dz
k
udy

k
u

dx
k
u

dz
k
udy

k
u

dx
k
u

gHgH

�������

�������

������

������

coscos
2

cossin
2

cossin
2

coscos
2

cossin
2

cossin
2

         

         

coscoscoscos

2

1

2 2
1

1

2
1

1

2
1

1

2

2

2
2

2

2
2

2

 

� � � � � � tHzWyLx ,,0,,0,,0 ����         (3.29) 

where 
o
TH    height of transition zone imposed by p1

o and p2
o 

Rearranging to account for density difference ��=(�1-�2) we get the final form as 
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 Equations 3.26, 3.27, 3.28 and 3.30 complete the set needed for analysis. Inspectional 

analysis of these equations is detailed in Appendix A.  

 Inspectional analysis yields 8 numbers formulating equations 3.1a, 3.1b and 3.2a 

through 3.2f in a following way 
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Equation 3.26 becomes  
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Similarly, for equation 3.27 
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Finally, dimensionless transition zone height is 
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The dimensionless numbers used in equations 3.31 through 3.34 are defined in table 3.4.  

Table 3.4. Dimensionless groups for incompressible two-phase three-dimensional flow 

Group Symbol Formulation 
X-direction aspect 

ratio 
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x

z

k
k

H
L

2

2

 

Y-direction aspect 
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k
k
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X-direction tilt 

number 
NTX XH

L
�tan  

Y-direction tilt 
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W
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Density number N� 
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��  

Gravity number Ng 
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rz
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gk ���� coscos1 ��  

Mobility ratio M o
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o
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Capillary number Nc 
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o
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3.3. Validity of proposed numbers 

 The last step in the development is to outline when the previously presented 

dimensionless set is physically valid and provide the analytical confirmation that set can be 

used to describe previously known dimensionless developments. 

3.3.1. Physical validity 

The assumptions made in the development are as follows 

�� Incompressible, two-phase system 

�� Constant viscosity for each phase 

�� No mass transfer between phases 
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�� Residual saturations are constant 

�� Capillary pressure is scalable through Leverett’s J(S1) function 

�� Corey-Brooks’ model for relative permeability (no capillary number dependence)  

 Lake’s (1989) overview of studies on behavior of residual saturations as a function of 

capillary desaturation curves provides the physical limit where this type of dimensionless 

description would fail. Capillary desaturation curves reach the plateau value with constant 

residual saturation when small-scale capillary number is less than �10-5. Small-scale 

capillary number is defined as 

�

�T
vc

uN �            (3.35) 

Because the small scale capillary number is already included in the large-scale one the 

limit can be set as 
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          (3.36) 

 Scaling through Leverett’s J(S1) function and Corey-Brooks’ relative permeability 

model are commonly used. If the system could not be scaled through the Leverett’s J(S1) 

function, the developed dimensionless capillary number would be lost and the scaling 

function would have to multiplied with Huk Tzr /0
1� . The generality of equation would be 

lost because the dimensionless capillary number would not be a constant for a given 

system.  

 The Corey-Brooks relative permeability model utilizing (S1D)n1 and (S2D)n2 can be 

replaced by any set of functions f1(S1D) and f2(S2D) providing that the function argument is 

dimensionless saturation defined as shown in Appendix A.  

3.3.2. Development validity in 1D 

 To further validate the development it is tested for segregated flow. Segregated flow 

(Dake, 1978) occurs when displacing and displaced front have an equal flux, capillary 

pressure is negligible, and displacement is piston-like. Gravity forces alone govern the 

vertical distribution of fluids, creating an angle � of the inclination of the fluid interface 

with respect to reservoir boundary in Z direction. The angle � is assumed constant 
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throughout the displacement Dietz (1953) showed that the interface angle and 

dimensionless groups in a tilted, homogeneous, isotropic reservoir are related by 

dG
GM

�� tan1tan �
�

�
�
�

� ��
��          (3.37) 

Where 

�    displacement front angle 

d�    reservoir tilt angle 

M    mobility ratio 

G    dimensionless gravity number 

 Mobility is defined the same way as defined in table 3.4, however gravity number 

defined differently (Dietz, 1953): 

T

d
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u
gkG ��� sin1 �

�           (3.38) 

where  

d�    dip angle 

The rest of the notation is the same as used throughout this chapter. The function �tan  in 

equation 3.37 is a measure of stability and must be negative for a stable displacement. The 

transition between a stable flow and bypassing shown in figure 3.5 in a form of water 

tongue is observed when 

0tan ��            (3.39) 

 The injection rate for the stable displacement has to satisfy the following in a 

consistent unit system  

1�
�

M
AGuq T            (3.40) 

where 

q    injection rate  

A    injection area 

Tu    total flux through the system 
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Figure 3.6 Stability as a function of front angle 

 To validate the development boundary conditions have to match. Therefore the system 

is limited to two-dimensional system with no-flow boundaries at the top and bottom of the 

zone of interest. The dimensionless flux in Y and Z direction is equal to 0 and 

dimensionless flux is equal to total flux. Equations 3.31a and 3.31b can therefore be 

rewritten to account for the change in pressure as 
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For segregated flow is that there is no transition zone; hence we eliminate intermediate 

saturations and assume the mobility ratio to be equal to end-point mobility ratio. This will 

render equations 3.41a and 3.41b in the form 

�
N
NN

uN
x
p TXg

xDRX
D

D
���

�

�
1

1          (3.42a) 

� �
�

�

N
NNN

uMN
x
p TXg

xDRX
D

D �
���

�

� 1
2

2        (3.42b)
 

Dimensionless flux in the X direction in dimensionless form is now equal to 1, providing 

the following  
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Dimensionless phase pressure difference term is 
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Rearranging the terms on the right-hand side yields 
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The left-hand side can be rearranged as a dimensionless pressure difference providing the 

following statement 
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The difference in phase pressures is defined as pseudocapillary pressure or equivalent 

height acting perpendicular to reservoir boundary in Z direction. Using the chain rule we 

obtain 
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Dimensionless direction derivative term in equation 3.47 accounts for both the 

transformation to dimensionless space effect the angle between the front and upper 

reservoir boundary at zD=1. It has the same form as the X-direction tilt number, except that 

the angle corresponds to front angle rather than tilt angle. Hence 
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XTX
D
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Assuming no transition zone the pressure difference partial derivative becomes 

 � �
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DD N
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�� 12           (3.49) 

If we substitute terms in equations 3.49 and 3.48 in the equation 3.47 the form of the 

stability criteria takes shape as presented in equation 3.50.   
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Assuming that �Y=0 and �X =�d (hence NTX=Nd) 
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Equation 3.51 resembles equation 3.37 proposed by Dietz. If we force the system to be 

isotropic  

2

2

H
LNRL �            (3.52) 

Dietz assumed the flux in X direction to be equal to total. To compare dimensionless 

spaces, we need to accommodate for the difference in scaling procedures. From 

development presented in Appendix A  

TxxTDietz u
L
Huuu ���

*
11          (3.53) 

Where 

TDietzu    total flux per Dietz (1953) 

xu    flux in X direction  

*
11xu    dimensionless space transform 

Once the following transformation is performed, assuming that �s=0 equation 3.51 takes 

the same form as equation 3.37 therefore validating the development. Due to similarity 

between systems, behavior of dimensionless system with flow in X direction can be 

accounted for the same way as described by Dietz, which validates analytically the 

presented development.  

 

3.4. Discussion 

 Three-dimensional system is represented using 8 dimensionless variables. If the 

interaction of fluids is analyzed rather than behavior of individual phase, dimensionless 
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system is reduced to 7 variables. Density number in that case plays no role since it is used 

to scale the behavior of each individual phase. Remaining 7 numbers fall into three 

separate groups. These are 

�� Aspect numbers 

�� Tilt numbers 

�� Physical numbers 

3.4.1. Aspect number 

 Reservoir aspect ratio is the most versatile number in the set. Several physical 

meanings can be assigned. The first meaning is the most commonly used in scaling. It is 

effective or heterogeneity scaled aspect ratio (L/H). The second meaning can be observed if 

number is rearranged in a following form 
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Where 

u    corresponding directional velocity 

�p    imposed pressure difference 

t    time 

Equation 3.54 indicates that the aspect ratio besides the reservoir aspect scales the velocity 

as well. Aspect number represents the time ratio for a fluid to flow vertical distance H and 

horizontal distance L if the same pressure difference is applied. Hence the second meaning 

is the relative flow capacity of the medium in vertical and horizontal direction. 

 The third meaning used in this research can be observed if the number is rearranged 

using the following approach 
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Where 

A    flow area 
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Fv    viscous force in corresponding direction 

Hence, the aspect number represents the viscous force ratio occurring in horizontal and 

vertical direction yielding the equal flux across the equal flow area. This explanation will 

later be used in analytical determining of the flow regimes. 

3.4.2. Tilt number 

 Tilt number is a pure geometric factor and can be rearranged as 

'
'
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�        (3.56) 

Where 

L’, H’   projection of corresponding rotated dimension 

As a result the tilt number represents the measure of rotation of the system. When 

multiplied with other numbers it scales their representative meaning from horizontal-

vertical to longitudinal-transverse accounting that way for a tilt.  

3.4.3. Gravity number 

 Gravity number is a ratio of gravity and viscous effects and has so far been assigned 

either using potential or time approach. For a non-tilted reservoir with length L and height 

H, pressure difference due to buoyancy is equal to 

Hgpg ����� �           (3.57a) 

The potential difference across the reservoir due to viscous forces can be written as  
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Corresponding gravity number (Shook et al, 1992) is therefore  
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This gravity number indicates the expected behavior that gravity effects are larger in 

thicker reservoirs. If time is used as a reference, time necessary for the fluid to be moved 

across the reservoir as a result of buoyancy is 
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Similarly, time to move the fluid across the reservoir due to viscous forces can be defined 

as 

T
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Lt �            (3.59b) 

Resulting gravity number (Pozzi and Blackwell, 1963) is 
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         (3.60) 

Time-defined gravity number indicates that buoyancy effect is more pronounced in longer 

and thinner reservoir. Peters et al (1998) experimentally studied this apparent paradox and 

concluded that both numbers are valid within a given endpoint mobility ratio domain.  

 For a favorable mobility ratio (M<1), viscous and gravity forces oppose (water under-

runs oil) each other and as a result shorter and thicker medium gave better production 

response. Unfavorable mobility ratio experiments (M>1) had viscous and gravity forces 

acting in the same direction (water over-runs oil) so the longer and thinner reservoir gave 

better production response. 

 Development presented in this chapter is based under the assumption that 

dimensionless scale numbers should be independent - however, true independence can 

only be achieved thru combination of appropriate scaling numbers (equation 3.51). Hence 

the conclusion of contribution of gravity forces has to be tied with contribution of other 

numbers.  

3.4.4. Capillary number 

 To be able to compare effects and perform the analysis in terms of flow regimes 

capillary and gravity number have to be comparable. Link between the buoyancy and 

capillary effect is achieved using  
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If Leverett’s J(S1) term in equation 3.62 is taken out and remaining terms introduced in 

equation 3.61 the capillary number becomes a ratio of capillary imbibition velocity and 

horizontal velocity or 

v

g
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z
c u

u
kHu

kN �

��

�

���          (3.63) 

 

 The development presented here uses the most general set of flow equations. Lack of 

dependence between the numbers and non-dimensionality enables the comparison between 

different shapes and scales. The proposed set is more general and more useful for analysis 

of the governing forces than the previous developments.  

 An analytical example shows the ease of manipulation with boundary conditions in 

dimensionless form. Preliminary analysis of figure 3.4 permits a stipulation that some care 

will have to be taken in terms of representation of gravity and tilt numbers during 

discretization. Finally, finite differences equation in dimensionless form can now be tested 

using published approaches for stability (Peaceman, 1977; Aziz and Settari, 1979) and 

error (Lantz, 1971) making analysis easier and results more general. 
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CHAPTER 4 

ANALYTICAL APPLICATION 

 Dimensionless numbers are used for analysis and scaling of experimental results. Most 

studies have been in one spatial dimension, and two-dimensional are often reduced to one-

dimensional using pseudofunctions (Lake, 1989). Dimensionless space simplifies analysis 

and representation of results. To show the ease of developments and visually verify the 

developed dimensionless system the Dietz stability criteria is extended to 3D. 

 Inspectional analysis of 3D difference equations and development of fractional flow 

equation for a 3D dimensionless space can be used to improve reservoir characterization 

for numerical simulation. These developments, in conjunction with existing work in the 

area of stability, provide dimensionless criteria for numerically stable displacement. 

Numerical dispersion is estimated using a similar approach.  

 The accuracy of upscaling depends on the grouping and averaging based on local flow 

regimes. Explicit flow-regime cutoffs do not exist so dimensionless equations are used to 

estimate the extent of particular flow regimes in the dimensionless space. Comparison with 

small number of published global flow-regime cutoffs leads to a global flow regime map. 

This map guides the dimensionless ranges for the simulations in chapter 5. 

 

4.1. Segregated flow in three dimensional system 

 The system is now extended in three spatial dimensions. No-flow boundaries are at the 

top and bottom of the zone of interest. The dimensionless flux in Z-direction is equal to 0 

and the sum of dimensionless fluxes in X- and Y-direction is equal to total flux. Equations 

3.31a and 3.31b can therefore be rewritten to account for the change in pressure as 
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Again, flow is assumed to be piston-like and the mobility ratio to be equal to end-point 

mobility ratio. Equations 4.18a and 4.18b become 
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Dimensionless flux in the X direction in dimensionless form is now equal to uTxD, 

providing the following  
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Rearranged, dimensionless phase pressure difference term can be written as 
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The difference in phase pressures is the pseudocapillary pressure or equivalent height 

acting perpendicular to reservoir boundary in Z direction. Using the chain rule we obtain 
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Accounting for the front angle and transformation to dimensionless space effect the angle 

the front plane closes with boundary at zD=1 in X-direction becomes  
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Assuming no transition zone the pressure difference partial derivative becomes 
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If in equations 4.24 and 4.23 are substituted in the equation 4.22 the form of the stability 

criterion is 
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Rearranging the equation 4.10 explicitly for the front angle provides 



60 

 

TX

TxDRX

TXg

TxDRX

TXg

x

uN
NN

uN
NN

M
�� tan

1
tan

��
�

�
��
�

�
��

��        (4.9a) 

Similarly, for the Y-direction, 
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Applying Dietz’s reasoning we obtain the following 
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Both equations can now be multiplied by qT and corresponding dimensionless velocity 

component. 
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Left-hand side in equations 4.11a and 4.11b is qX and qY respectively. Total rate on the 

right-hand side can be expressed using the following  

HWuq TT �            (4.12) 

Height H multiplied by width W is flow area in Z direction. For flow in X- and Y-direction 

qT – uT relationship should be transformed using appropriate flow area.  To keep the left-

hand side in equations 4.9a and 4.9b negative and maintain segregated flow (the Dietz 

(1953) criterion based on geometric arguments), the limit on flow rate becomes 
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Returning to dimensional space yields the critical injection rates for X- and Y-direction as 
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 The difference between standard Dietz and presented equations is the tilt in two 

directions accounted for in 3D, rather than dip used in the original 2D Dietz’s system. If 

the system is re-aligned to account for maximum angle, cosine terms will disappear. 

Remaining trigonometric term would include dip in original form sin(�D) same as in 

chapter 3. This term would be contained only in the dipping direction. Horizontal direction 

would have the sine function equal to zero hence the Dietz type of analysis could not be 

applied.  

 Aligning the system with the dip is not always possible so a novelty - two tilts in the 

gravity component governing the flow in a 3D dimensionless system and additional aspect 

ratio and tilt number – can now be visually tested. If the dimensionless numbers are 

developed correctly, canceling out the variables contained in dimensionless numbers 

should show that the behavior is scaled properly using proposed dimensionless numbers 

(equations 4.12a and 4.12b). 

 

 Two directional stability criteria (equations 4.14a and 4.14b) provide four separate 

stability cases. Conceptual schematics of displacing fluid front for these cases are shown in 

figures 4.1 through 4.4.  
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��
critxx qq � , 

crityy qq �  

Flow is stable in both directions. 

Displacement front becomes a 

plane with X- and Y- direction 

differentials equal to tan�X and 

tan�Y respectively.  
Figure 4.1. X stable, Y stable 

 

 

��
critxx qq � , 

crityy qq �  

Flow is stable in Y- direction. X-

direction flow exhibits unstable 

behavior. Front in X-direction 

forms a water tongue. Stability in 

Y-direction dictates a constant Y-

direction derivative along the 

front (tan�Y).  

 

 

 

 
Figure 4.2. X unstable, Y stable 

 

 

��
critxx qq � , 

crityy qq �  

Flow is stable in X- direction. 

Similar as in previous partially 

stable system, Y-direction front 

forms a water tongue. X-direction 

derivative is constant along the 

front and equal to tan�X. 
 

Figure 4.3. X stable, Y unstable 
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��
critxx qq � , 

crityy qq �  

Flow is unstable in both 

directions. As a result, directional 

derivatives are not constant in 

either direction. They become a 

function of position along the 

front. Water tongue will form in 

both directions. 

 

 
Figure 4.4. X unstable, Y unstable 

 

 These observations together with equations 4.14a and 4.14b can be used for visual 

verification of the validity of 3D dimensionless system. Three assumptions have to be 

made for simulation purposes: 

�� Injection from point source - well is connected to a most bottom gridblock 

�� Production from surfaces away from a source – production wells are connected 

to a face of interest instead of usual linear sink 

�� Steady-state incompressible flow, vertical equilibrium 

These assumptions make the flow from the injection point to production face linear. The 

system streamlines become linear fairly close to the source point and observed front 

stabilizes at rates suggested by equations 4.14a and 4.14b.  

 

 Model used for verification needed rotated 3D Cartesian system. To allow for rotation 

in ECLIPSE, system used cornerpoint geometry to accommodate for tilt angles while 

maintaining the gridblock faces perpendicular. Length, height and width of the gridblock 

are the same. 

 Gravity stable displacement in figure 4.5 is indicated by a straight-line front at the edge 

of the model. To accent the stable and unstable direction, the shape of front is marked with 

additional line. Displacement was stable in both directions if the rates were at or below 

critical rate. A slight increase in rate in one direction leads to instability in the form of 
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water-tongue. Displacing fluid saturation snapshots for different stability cases are 

presented in figure 4.5. 

 
Figure 4.5. Water front from numerical simulation cases (M=0.5)  

 Visual inspection of saturation distribution aided in validating the critical rates and also 

provided the proof that in a 3D system each of the directions can be dominated by different 

flow regime – i.e. one direction can exhibit gravity stable flow while another can be 

unstable.  

 

4.2. Fractional flow equation in dimensionless space 

 Several authors presented the fractional flow equations in one-dimensional space 

(Dake, 1978; Lake 1989). Boundary conditions for analysis in three dimensions are 

different. Flow occurs in all three directions and flowing fractions may differ by direction. 

Directional total fluxes are defined as 

xDxDTxD uuu 21 ��           (4.15a) 

yDyDTyD uuu 21 ��           (4.15b) 

zDzDTzD uuu 21 ��           (4.15c) 

where  

TzDTyDTxD uuu ,,   total dimensionless velocity in X, Y and Z direction, respectively 

 From boundary conditions imposed during the development sum of directional 

dimensionless velocities is a total flux or in dimensionless form 

1��� TzDTyDTxD uuu           (4.16) 

Phase velocities in X-direction from chapter 3 in dimensionless form are 
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Total velocity term from equation 4.1a can be rearranged in a form of 

xDTxDxD uuu 12 ��           (4.18) 

Material balance for two-phase system dictates 

DD SS 12 1��            (4.19)
 

Substituting equation 4.18 in 4.17b and rearranging yields 
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Equation 4.3a can also be rearranged to take the following form 
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If equations 4.7 and 4.6 are subtracted fractional flow equation becomes  
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Knowing that dimensionless pressure differentials can be related as 
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After rearranging, the equation 4.22 is 
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Fractional flow in the reservoir in the X-direction of the dimensionless space at any point 

xD,yD,zD is  

TxD

xD
xD u

uf 1
1 �            (4.25) 
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Where xDf1  is the fractional flow in X-direction in dimensionless space. Substituting 

equation 4.25 in equation 4.24 yields
 

� � � � � �

� �
TXg

D

D
cTxDn

D

RX
n

D

RX
n

D

RX
TxDxD NN

x
SJNu

S
MN

S
MN

S
Nuf �

�

�
�

�
��

�
�

�
�
�
�

	

�

 1

111
1 221 11

   (4.26)
 

Rearranging for fractional flow and generalizing the notation provides the final equation in 

the following form 
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Development can be repeated for remaining two directions. Resulting fractional flow 

equations in Y- and Z-direction are 
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The constant component AD is estimated as 

� �
� � � � 21

1

11

1

1 n
D

n
D

n
D

D SSM
SMA

��

�          (4.28) 

To verify the development the system can be reduced to one dimension. Assuming the total 

flow is only in X direction uTxD becomes equal to 1. Equation 4.27a reduces to 
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To compare the developed equation with already existing equation 4.29 is transformed 

form dimensionless space to dimensional. X-direction velocity is scaled using  

Txx u
L
Huu ��

*
11           (4.30) 

Neglecting the Y-direction tilt and applying the transform from equation 4.30, equation 

4.29 becomes
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Equation 4.47 is the same as presented in literature (Dake, 1978; Lake 1989) validating the 

development. To make the equation similar to those in the 1D space we made the 

assumption of only one angle mapping the contribution of Z-direction effects on the flow 

in X-direction. This might be true for simple conceptual studies. Petroleum reservoirs are 

geologically complex so – similar to reasoning made for 3D segregated flow- flow is not 

always aligned with the direction of largest angle (dip). The system presented here 

accounts for all the effects. 

 The dimensionless approach presented enables more general behavior analysis. Total 

number of variables is reduced from more than 30 to 7 hence simulation design can be 

improved by reduction in number of necessary runs. Since the system is dimensionless, 

any reservoir having the same value of dimensionless variables will exhibit the same 

behavior.  

 Several references exist for a 1D fractional flow development utilizing dimensionless 

numbers - Lake (1989) for X-direction only and Hagoort (1980) for Z-direction only. Both 

one-dimensional developments assumed pseudo-vertical equilibrium hence the only 

resulting dimensionless numbers are gravity and capillary number. Derivation approach 

was not identical so referenced numbers do not match. As a result the system in 2D scaled 

by directly accepting individual equations would not be consistent. The system presented 

here is unique since it is applicable in 3D and the most succinct since the reduction in any 

dimension is achieved simply by dropping the dimension of interest.  

 Fractional flow equation in 3D space can also be used for stability and error analysis in 

reservoir simulations. Using the transforms presented in previous sections equation 3.31a 

from Chapter 3 can now be rearranged in a form of 
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This is the three-dimensional convection equation in dimensionless space written in terms 

of fractional flow. 

 

4.3. Numerical reservoir characterization 

 Dimensionless numbers have so far been used to scale the behavior from laboratory 

measurements to a particular reservoir of interest (Rapoport, 1954; Craig et al, 1957; van 

Daalen and van Domselaar, 1972). Inspectional analysis presented in Appendix A shows 

that the general form of equations is preserved during the transformation from dimensional 

to dimensionless space. Similitude between equations and lack of dimensionality makes 

analytical dimensionless groups an ideal tool for general observations on flow behavior.  

 Numerical simulations are based on spatial and temporal discretization of differential 

flow equations. Flow equations in dimensionless and dimensional form are of similar order 

and shape. Therefore if both are written in the same discrete manner a comparison between 

dimensional and dimensionless difference equations can provide an accurate way to 

determine numerical dimensionless groups.  

 The number of parameters in dimensional difference equation is much larger than for 

the dimensionless case. Therefore, if the difference equation in dimensionless form is used, 

any estimate in terms of stability, error and regimes governing the flow can be related 

through numerical dimensionless groups. This approach would provide a screening test for 

the discretization scheme and enable the a priori estimate of the behavior of the model. 

 Inspectional analysis on general difference equations is discussed in Appendix B. 

Comparison with Appendix A shows that inspectional analysis kept the form of the 

difference equations and that related dimensionless groups are obtained. Unlike analytical 

groups used to quantify global behavior, numerical groups can be calculated to enable 

estimate for each gridblock on local, regional and global scale by applying the appropriate 

L, W and H (see Appendix B).  

 

4.3.1. Numerical stability analysis and time step length 

 Numerical simulation solves differential equations through substitution of differential 

by difference equations. Three independent cases could be considered for each of the 



69 

 

independent variables. Spatial differences can be downstream, center-in-distance or 

upstream approximation, whereas differentiation in time can be explicit, center-in-time and 

implicit. Peaceman (1977) presents simplified general analysis for all nine resulting cases.  

 Implicit and center-in-time schemes are considered stable (Peaceman, 1977, Aziz and 

Settari, 1979). Further investigation focuses on the explicit differentiation approach. The 

case of interest is fully explicit sequential scheme  (e.g., UTCHEM, Saad, 1989).   

 Any computation scheme is considered stable if the effect of an error made in one stage 

of computation does not propagate into larger error in later stage of computation. 

Peaceman (1977) suggests the use of von Neumann criteria for stability analysis. The 

method in three dimensions consists of writing the error in a Fourier series with a form 
� � yiryiqxipmm

KJI eee ����
�

1
,, ��          (4.33) 

Where  
m

KJI ,,�    error introduced at time step m and gridblock I, J, K 

�    amplification factor 

rqp ,,    number of gridblocks in X, Y, Z direction (upstream positive and 

    downstream negative)  

i     imaginary component � �1�  

 The output error in a linear equation can be obtained by solving the linear equation 

using the error as the unknown. Amplification factor � between two time steps is obtained 

by introducing the error term from equation 4.1 in the linear difference. Stable system is 

inferred if � satisfies the following 

11 ��� �            (4.34) 

 Appendix B presents the inspectional analysis of finite difference equation. Because 

the dimensional and dimensionless equations must have the same form, analysis of 

stability and error can be performed in dimensionless space. 

 Fractional flow is a function of displacing phase saturation and a set of dimensionless 

numbers (equations 4.27a through 4.27c). If the chain rule is applied equation 4.32 

becomes  
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If differentials in equation 4.35 are substituted with differences, 
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    (4.36) 

Coefficient z marks the time step at which the non-linear fractional flow term is being 

estimated. If z is set to m the mobility will be estimated at the current time step so the 

method tested for stability corresponds to explicit procedure. If z is set to m+1, we can test 

the stability requirements for the fully implicit sequential procedure.  

 To test the stability of explicit procedure equation 4.32 is written in a difference form 

as 
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  dimensionless fractional flow chord estimated in Z-direction 
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Introducing the error term equation 4.12 becomes  
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If non-linear term is estimated correctly the amplification term becomes 
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Using the criteria from equation 4.34 the stability interval is determined from 
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Right-hand side of the term or minimum time-step is easy to accommodate for - tD has to 

be greater than zero. The left-hand side or the maximum time-step can be expressed as 
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 Analysis of equation 4.41a shows that the minimum value of timestep occurs when 

exponential terms become equal to 2. By bounding the arguments equation 4.41a takes the 

following form 
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The maximum time step size for stable run at any point in time m is equal to minimum 

value of �tD estimated from equation 4.14a for all the gridblocks in the system. If the time 

step is larger than minimum, gridblocks (i, j, k) with (�tD)i,j,k larger than chosen �tD 

become a possible source of instability.  

 If dimensionless numbers in equation 4.41 are estimated locally �xD, �yD and �zD 

become equal to one. As a result, dimensionless time difference becomes equal to 

gridblock pore volume per unit time.  
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 Similar dimensionless solution could be obtained by using existing stability analysis 

and inspectional analysis procedure provided in Appendix B. However, surveyed literature 

usually excludes gravity and capillary effects to simplify the development.  

 Purpose of this study is to provide the tool that scales all the variables affecting the 

flow and resulting effects on the numerical model. Therefore, rather than combining 

observations and repeating inspectional analysis, the stability analysis is repeated including 

all the effects in the dimensionless space.   

 

4.3.2. Numerical dispersion 

 Whenever a differential equation is replaced by a difference equation replacement 

introduces a truncation error. Truncation error mathematically originates from neglecting 

the high order terms. Lantz (1971) gave the truncation error a physical meaning. To 

illustrate the method of quantifying numerical dispersion, he considered the convection-

diffusion equation in the following form 
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Where 

DC     dimensionless concentration 

D     dispersion coefficient 

DD xt ,    dimensionless time and distance, respectively 
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To compare the convection-diffusion equation to the two-phase flow equation, Lantz used 

the frontal advance equation. Frontal advance equation can be written as 
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If the source is assumed at the origin of coordinate system and upstream mobility is used, 

frontal advance equation can be written in a form of Taylor’s series as 
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Where 

� �DD tx ,�   high-order error term 

 

 High order error term in equation 4.22 is usually neglected therefore equation 4.22 is 

similar to equation 4.20. As a result, truncation error can therefore be estimated as a 

numerical equivalent to dispersion as 
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Lantz verified this solution to the convection-dispersion equation using well-known 

solution to the equivalent convection-diffusion equation (Koonce et al, 1965; Lake, 1989; 

Charbeneau, 2000). Lantz’s estimation of the truncation error for different differentiation 

scheme is presented in table 2.6 in Chapter 2. 

 Dispersion in porous media is a directional property so modified approach has to be 

taken in a three-dimensional space. Equivalent general solute transport equation for this 

problem (Charbeneau, 2000) can be written as  
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Where  

C     concentration 

zzyyxx DDD ,,   X, Y and Z direction dispersion coefficients 

zyx vvv ,,   X, Y, Z direction advection velocity  
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 To estimate the numerical dispersion by analogy to the solute transport equation, the 

fractional flow equation for a three-dimensional system can be written as 
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Expanding the equation 4.47 around xD, yD, zD using Taylor’s series and eliminating high 

order terms provides the following equation 
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The result is similar to the solution proposed by Lantz, except the directionality of the 

numerical dispersion indicated by the directional dimensionless fractional flow. The 

fractional flow derivative is a function of saturation and contains saturation derivative of 

J(S1D) (see equations 4.27a through c). Literature suggests that gravity and capillary effects 

tend to smooth the saturation front.  

  Overview of the numerical dispersion for upstream weighted mobility is presented in 

table 4.1. 

Table 4.1. Numerical dispersion in three-dimensional anisotropic media 
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 Even though the implicit formulation is unconditionally stable, results in table 4.1 

show that the error for implicit formulations is always larger than for explicit formulations. 

Implicit simulators obtain this stability at the expense of increased smoothing or numerical 

dispersion. Indeed, the stability criteria are equivalent to requiring that the numerical 

dispersion is nonnegative. For explicit formulations, large timesteps cause negative 

numeric dispersion, which results in instability. On the other hand, if the time step size is 

too large in implicit formulations, the dispersion increases (smoothing the front and 

reducing accuracy) but the model remains stable.  

 Similar to physical dispersion, numerical dispersion in 3D system is a tensor and 

depends on fractional flow derivative term.  

 

4.4. Numerical flow characterization 

 Most recent work in the upscaling recognizes flow regimes as an important parameter 

in reduction of upscaling error. To analyze the flow behavior in dimensionless space 

fractional flow equation in dimensionless form (equations 4.27a through 4.27c) is 

expressed using the following general notation  
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Where  

i    direction (X, Y or Z) 

f1D    directional fractional flow in dimensionless space 

AD, AGi, ACi  dispersive, directional gravity and capillary component, respectively 

To simplify analysis equation 4.49 can be re-written as 
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Dispersive component is defined as in equation 4.28. 

 

 Three general flow regimes can be considered based on the balance of forces. Balance 

of gravity and capillary forces depends on J(S1D) and saturation derivative term. The 
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capillary function J(S1D) function derivative is always nonpositive; hence the saturation 

derivative sign controls whether the capillary and gravity effects offset (negative 

derivative) or enhance each other (positive derivative). For maximum gravity-capillary 

effect equation 4.49 can be re-written as 
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Ideal viscous flow would have AD terms cancel. However, viscous flow in this work is 

treated as any flow where increase in rate does not affect the recovery. Minimum 

requirement for viscous dominated flow is therefore 
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Gravity dominated flow is a flow with a single gravity tongue and will occur if capillary 

effects are negligible, hence 

D

D

D

D
CiGi i

S
S
SJAA

�

�

�

�
��

1

1

1 )(         (4.53a) 

This will reduce the equation 4.51 to 

� �� �GiDDi AAf �� 11          (4.53b) 

To be gravity dominated requirement from equation 4.52 becomes the opposite. 

Maximizing gravity and minimizing viscous forces requires 
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Similarly, for a capillary dominated flow when 
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Requirement from equation 4.52 in this case becomes 
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Equation 4.51 is therefore reduced to  
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 Beside these three regimes, an additional flow regime can be defined if capillary and 

gravity forces are in balance. Capillary-gravity (CG) equilibrium requirement is 
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Overview of these requirements is provided in table 4.2. 

Table 4.2. General flow regime requirements 
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 Petroleum reservoirs have upper and lower no-flow boundary. The regime limits can 

take less general form if the following is assumed: 

�� u1zD and u2zD are equal to zero at the upper and lower boundary 

�� inlet and outlet pressures are constant with respect to time 

�� Dimensionless system enables analysis in two dimensions 

 Gravity term and capillary terms in table 4.3 become equal to gravity number and 

capillary number divided by the displaced phase mobility or 
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 Two additional observations can analytically be made for a viscous dominated flow. 

Dimensionless pressures in viscous dominated regime become equal so equations 3.31a, 

3.31b, 3.31e and 3.31f can be rearranged as  
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Dividing equations 4.57a and 4.57b yields 
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Assuming that pressure gradients and imposed flux are kept constant, increase in aspect 

ratio would result in an increase in vertical crossflow velocity. Two limits can therefore be 

set: 

�� 1��RXN , viscous crossflow equilibrium 

�� 1��RXN , no viscous crossflow 

 

 Further simplification can be done if the mid-range saturations are neglected and 

mobility ratio is used to scale the behavior. In this case variables of interest become aspect 

ratio and simplified gravity and capillary coefficient in the final form of 
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Literature survey on these general requirements (Zhou et a., 1993) provided observations 

on the following global ranges 

�� Fayers and Muggeridge’s work (1990) is used as a lower limit, suggesting the 

transition from viscous to gravity stable flow in the interval 
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� � � �2 , 2.01/ ��MN g . The upper limit for transition can be set as 

� � 51/ ��MNg  according to work by Pozzi and Blackwell (1963) and Insoy 

and Skjaeveland (1990).  

�� Analysis of Ahmed et al.’s work (1988) sets the capillary-to-viscous transition 

zone in the range of � � � �6,2.01/ ��MN g . Work of Yokohama and Lake (1981) 

lowers the upper boundary to � � 1.41/ ��MNc . 

�� Du Prey (1978) and Schechter et al (1991) studied the interplay between gravity 

and capillary forces. Analysis of both works puts the transition zone within the 

interval � �5,2.0/ �gc NN  

Viscous dominated flow observation can according to Zapata et al (1980) be quantified 

into following regions 

�� 01.0�RXN - no vertical crossflow 

�� 100�RXN - viscous equilibrium 

Shook has shown that when NRX>2 the flow becomes in vertical equilibrium Overview of 

flow-regime limits is presented in table 4.3. 

Table 4.3. General flow-regime limits 

FLOW REGIME RXN  
1�M

N g  
1�M

Nc  

Gravity dominated >2 >5 <5
1�M

N g  

Capillary dominated >2 <5
1�M

Nc  >5 

No communication <0.01 Viscous 
dominated Viscous equilibrium >100 <0.2 <0.2 

 

Ranges from literature can be used to plot a broad flow regime map depicted in figure 4.6. 

Suggested limits and proposed flow-regime map are based on published sensitivity studies 

usually involving one pronounced effect. Surveyed systems were mostly layered with 

displacement ranging from immiscible to miscible. Experiments involved both laboratory 
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and virtual floods. No uniform designed simulation or laboratory report was available 

systematically capturing all the effects on the same system.  

 

 
Figure 4.6. Broad-range flow regime map 

 Following can be conclude from existing experimental results:  

�� Gravity and capillary effect mirror each other at NRX<2 and Ng and Nc �5. 

Transition zone between them is Capillary-Gravity equilibrium, where both gravity 

and capillary effects could be neglected (��=0 and Pc=0).  

�� If NRX is larger than 2 then the change in vertical permeability doesn’t change 

recovery hence the system is in vertical equilibrium. 2D X-Z system can be 

replaced by 1D X-direction system. 

�� Once Ng and Nc �0.2 the system is viscous dominated. The vertical crossflow is a 

function of vertical permeability. For extremely small NRX (<0.01) vertical 

permeability and hence crossflow is negligible. Inversely, for large NRX (<0.01) 

vertical permeability is large hence the system is in viscous equilibrium. 

 

4.5. Discussion 

 Dimensionless development in this and chapter 3 for Dietz stability criteria – has 

shown that proposed numbers predict the behavior well. Comparison to original Dietz’s 
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work proves that Buckingham’s � theorem also applies once the system is already 

dimensionless. The only difference is that a combination of dimensionless groups forms a 

new scaling group. Hence, instead of using one single group such as tilt number or gravity 

number a joint scaling group should be used for proper scaling. This answers the gravity 

number paradox imposed by Peters et al (1993). Gravity number scales viscous and 

capillary forces however the aspect ratio scales the spatial interplay. If used jointly (i.e. in 

equations 4.10a and 4.10b) with the mobility ratio then the system behavior is scaled 

properly. 

 Fractional flow equation developed in dimensionless space can be re-scaled back to 

dimensional. Lack of dimensionality makes it ideal tool for analysis of numerical stability, 

reliability and error. Inspectional analysis shows that the dimensional difference equation 

can be transformed the same way as the differential – hence further work in the area can be 

done in dimensionless space.  

 Analytical solution for solute transport equation in 3D space with comparable 

boundary condition could not be found. A possible way to study effects of independent 

groups is numerical sensitivity study where the results are compared to fine-grid small-

time step reference run. 

 Difference equation analysis revealed the fourth meaning of aspect ratio scaling group - 

dimensionless transmissibility. Observation on trigonometric function contained in gravity 

number made during the development of base equations was justified in the differentiation 

scheme. If gridblocks are aligned vertically, trigonometric term in numerical gravity 

number is lost. The only remaining term is contained within the numerical tilt number.  

 Using the similarity between dimensionless differential and difference equation, 

analytical boundaries for flow regimes are set. Flow regime map is constructed based on 

observations from the literature on global trends. Assumptions made for constructing the 

map helped generalizing, however for practical application on the gridblock scale 

heterogeneity effect should be taken out.  Gridblocks do not have sub-grid heterogeneity; 

by definition, this heterogeneity is contained in effective properties. Similar uncertainty 

exists with the use of mobility ratio rather than the mobility at intermediate saturation. To 
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verify validity and create a more accurate map on the gridblock scale further numerical 

experimental work must be done.  
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CHAPTER 5 

EXPERIMENTAL APPPLICATION 

 Dimensionless numbers scale flow behavior and identify flow regimes. Boundary 

conditions are often difficult to generalize in 3D. In 2D, Shook (1992) treats edges of the 

upscaling reservoir as wells and imposes desired pressure and saturation gradients. In 3D, a 

reasonable approach is to model the well as a linear source/sink 

 The case study presented in this chapter examines upscaling by considering flow 

regimes. Dimensionless breakthrough time was used as the diagnostic response. 

Dimensionless breakthrough time defined as the fraction of the mobile, displaced phase 

that has been recovered when the fractional flow of the displacing phase is one percent. 

The initial saturation of displacing phase was equal to connate saturation. The model was 

3D. Response curves of the case study were visually inspected to determine flow regimes. 

Flow regimes are defined as follows: 

�� Viscous dominated flow regime occurs at high viscous pressure drops ku /� when 

further increases in rate do not change the breakthrough recovery. 

�� Gravity dominated regime is regime where displacing phase flows as a stable tongue. 

�� Capillary dominated regime occurs when the flow is faster in lower than higher 

permeability area. 

The models analyzed in this chapter were for homogeneous isotropic media. Flow regimes 

were determined by interpreting inflection points in breakthrough time plotted as a 

function of dimensionless scaling groups. Effects of the shape of relative permeability 

curves and Leverett’s J(S1) function were not studied.  

5.1. Verification of 3D scale numbers 

 Fractional flow equations in X- and Y- direction of dimensionless space are 
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The coefficients are defined as in chapter 4. If all dimensionless groups are identical, the 

fractional flow is necessary the same. This behavior can be used to scale a set of 

simulations in a general way. Rather than looking at the possible interval of all variables, a 

set of dimensionless simulations can examine system scaling and flow regimes.  

5.2. Dimensionless simulation design 

 Dimensionless groups can simplify design of reservoir simulation studies. Rather than 

varying more than 30 variables, we can describe the behavior by using only 7 

dimensionless. Varying these seven groups will assess the full range of system variability; 

it is far easier to do a sensitivity study in 7 dimensions than in 30. To illustrate, a 2-level 

full factorial with 7 factors is perfectly feasible (128 simulations), whereas one would not 

consider a full factorial study with 30 factors � �930 102 � . 

 The range for gravity number was determined from analysis of gravity-stabilized 

displacements in dipping systems (chapter 4). Ranges for directional groups (NR and NT) 

were within the range needed to determine the vertical equilibrium. Mobility ratio was 

determined in a similar manner, aiming to encompass effects of both favorable and 

unfavorable mobility ratio. Along with capillary number, this completes the specification 

of the flow system (table 5.1). Five levels are used to aid in detection of flow regimes; a 

two-level factorial would not be adequate for regime mapping. For 7 dimensionless 

variables and 5 levels, the total number of simulations required is 125,7857
� . 

Table 5.1. Dimensionless design in 3D 

Dimensionless variable ranges 
Ng NRX NRY NTX NTY M Nc 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 
1 1 1 1 1 1 1 
5 5 5 5 5 5 5 
10 10 10 10 10 10 10 
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 Dimensionless design takes each separate dimensionless component and decomposes it 

to primary, dimensional variables. To do the decomposition, some of the dimensional 

variables have to be assigned using physically reasonable values. Shook (1992) verified 

that dimensionless groups for 2D systems are not dependent on choice of fixed variables. 

That verification need not be repeated in 3D. Because of the large number of simulations to 

be run, the size of each numerical model was kept small, with 10 gridblocks in X-, Y- and 

Z-direction. Fixed values are presented in table 5.2. 

Table 5.2. Overview of fixed dimensional design parameters 

Fixed dimensional parameters 

NX NY NZ kx (mD) ky (mD) kz (mD) �2
o (cp-1)

10 10 10 300 500 40 1 
kr1

o n1,n2 ���(kg/m3) S1r S2r �Z (m) ��

0.5 3 250 0.3 0.3 1 0.3 
 

 Because there are seven independent dimensionless groups, we can freely specify 7 

dimensional variables. The remaining dimensional variables are set consistently with the 

value required by the dimensionless design. Some of the groups contain similar values – 

for example group NRX and NTX both contain length L. This indicates that for a fixed height 

H every time the NRX changes, the angle in trigonometric term contained in NTX will need 

to be recalculated (table 5.3).  

 

Table 5.3. Estimated dimensional variables in 3D 

Dimensional design 
Ng NRX NRY NTX NTY M 

uT/(cos�X cos�y) �X� �Y� �X tan �x� �Y tan �y� �1�

8.36 0.87 1.12 0.1 0.1 5.00 
1.67 1.94 2.50 0.5 0.5 1.00 
0.84 2.74 3.54 1 1 0.50 
0.17 6.12 7.91 5 5 0.10 
0.08 8.66 11.18 10 10 0.05 
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 A similar observation holds for the Y-direction, so each direction requires 25 separate 

cases. Total of 625 different angle-length combinations is calculated resulting in 625 

separate grids. Knowing all the possible combinations of angles, total velocity uT is 

estimated for all 5 values of gravity number (3125). Total velocity as defined in Appendix 

A and Chapter 4 consists of three components. However, because the flow is directional, 

dimensionless flux component in X- and Y-direction (uTxD and uTyD) are set to 1 for X- and 

Y-direction injection. 

 All runs used relative permeability and capillary pressure data for Berea Sandstone 

(Oak et al., 1990). Capillary pressure was scaled to obtain the Leverett’s J(S1) function. 

Relative permeability curves were fitted to a Corey model. Exponents for both phases were 

3. Leverett’s J(S1) function was fitted to the following equation  

� � 0265.019735.0)( 25.0
11 ���� DD SSJ        (5.1) 

Where S1D is normalized saturation of displacing phase. 

 Each of the 78,125 simulation runs was performed for duration of 1 PV of injection. 

Breakthrough time was estimated from each simulation by linear interpolation. This 

provided pore volumes injected at the time the displaced phase fractional flow reached 1 

percent, considered being a breakthrough point.  

 

5.3. Analysis 

 Dimensionless groups were analyzed to determine points where the response curve 

changes shape: this may be convergence of trends for distinct physical systems, slope 

changes, or inflection points. Inspection of the recovery plots and physical interpretation of 

dimensionless groups guided flow regime identification. 

 A typical recovery curve is presented in figure 5.1. Dimensionless breakthrough time is 

plotted as a function of gravity number and aspect ratio. Two flow regimes can be 

identified, gravity dominated (G) and viscous dominated zone (V). The upper bound of the 

viscous regime occurs at lower gravity number where response curve changes shape. The 

transition zone presented in chapter 4 was interpreted as intermediate zone between two 

trends (figure 5.1.)  
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Figure 5.1. Breakthrough recovery as a function of aspect ratio for X-direction injection 

 Similarity between equations 5.2a and 5.2b is reflected in the near-identical responses 

if the scaling groups are kept constant for both flow directions. Dimensionless fractional 

flows in X- and Y-direction are in that case equal for any given dimensionless time. 

Identical behavior is in this case identified through single response (breakthrough time) for 

a range of aspect ratios and gravity and tilt numbers. To simplify comparison and examine 

the aspect ratio and tilt number in the Y direction, Nc was set to zero. Lack of capillary 

pressure does not denote miscible displacement because interfacial tension is still 

manifested in the relative permeability curves. 

 For the equal mobility ratio and NgNT/NR flow responses were similar (figures 5.1 and 

5.2). Response curves for injection in X- and Y-direction had identical transition zone 

intervals and dimensionless time (breakthrough time recovery efficiency). Error in 

breakthrough time between all similar cases in X- and Y- direction was less than 3%. This 

difference is attributed to errors caused by linear interpolation between the coarse time 

steps used in the numerical models. 

V G T
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Figure 5.2. Breakthrough recovery as a function of aspect ratio in Y-direction 

 Mobility ratio affected the flow as expected from analytical flow regime boundaries 

presented in Chapter 4. To illustrate the dependence, figure 5.3, a plot of dimensionless 

time as a function of gravity number for different mobility ratios, has upper transition zone 

boundary (beginning of gravity dominated flow regime) marked with circles.  
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Figure 5.3. Effect of mobility ratio on the flow regime 

Inflection point 
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 If transition value of gravity number is determined from figure 5.3 for each mobility 

ratio and scaled using 1/(M+1) approach all the values for Ng/(M+1) become 

approximately 0.5. This differs from suggested cutoff in the literature (�5). Figure 5.3 is 

plotted for high tilt angle in the direction of flow (NTX=10). If the behavior is scaled using 

NTXNg/(M+1) than the gravity effect in X-direction is scaled properly according to equation 

5.2a and the upper boundary of transition zone becomes equal to 5.  

 Individual recovery cases for favorable and unfavorable mobility ratio are shown in 

figures 5.4 and 5.5. Analysis reveals the relative insensitivity of dimensionless time on 

change in tilt below certain value of tilt number (�5) for unfavorable mobility ratio. If tilt 

number is below 0.5 the effective decrease in recovery is fairly small. A large change in 

gravity number is needed to observe the change in system behavior. The reason is fairly 

large denominator (M+1).  

Effect of Mobility Ratio and tilt number 
(NRY=0.1 NRX=1, Nc=0.1, M=10, NTY=0.1)
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Figure 5.4. Unfavorable mobility effect on response curves 

 Opposite can be shown for a favorable mobility ratio. The breakthrough recovery will 

be more sensitive to change in gravity or tilt number for (M+1) is fairly small with 

maximum value of 2. Figure 5.5 shows that change in either tilt or gravity number always 

results in change of breakthrough recovery. No equilibrium range could be observed. The 

scaling of complete recovery curves one on top of another is not possible. To illustrate this 
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the dimensionless time can be read for unfavorable case and randomly selected values of 

Ng=1 and NTX=1. Dimensionless time is approximately 0.36 for scaling group 

NTXNg/(M+1) value of 0.091. For favorable mobility ratio an equivalent tilt for the same 

gravity number and NTXNg/(M+1) would be �13.6. Dimensionless time would in this case 

be higher than 0.7 if extrapolated from figure 5.5. Explanation for this behavior can be 

found in theory presented by Dietz (1957).  

Effect of Mobility Ratio and tilt number 
(NRY=0.1 NRX=1, Nc=0.1, M=0.5, NTY=0.1)
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Figure 5.5. Favorable mobility effect on response curves 

 

 Several different runs in X-direction were plotted as slices to investigate the effect of 

aspect ratio. Figure 5.6 compares responses for different aspect ratio on each slice. Slices 

are drawn in 3D for the different tilt number. Analysis of figure 5.6 reveals that after a 

certain aspect ratio (�5) a vertical equilibrium is reached. Vertical equilibrium is indicated 

by a small change in breakthrough recovery with increase in aspect ratio.  

 Tilt number effect and therefore gravity effect in X-direction is more pronounced at 

lower aspect ratios. This reflects the more limited vertical flow capacity in systems with 

small dimensionless aspect ratios. Response curves for tilt number are shifted in Ng 

direction with an increase in aspect ratio. For this set of response curves, viscous regime is 

indicated by point where all recovery curves for each slice converge. The regime cutoff 
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points depend on aspect ratio as well, as predicted in Chapter 4 so one should use the 

aspect ratio as well to assess the effects of gravity-driven crossflow. 

 

 
Figure 5.6. Interplay of aspect ratio and gravity number for different tilt numbers 

 

 Similar can be shown for Y-direction. Analysis of the effect of both aspect ratios 

revealed that after reaching the value of 5, further increase in either one of aspect ratios 

had almost no effect on breakthrough recovery. Hence the aspect ratio of 5 is set as a lower 

boundary for the vertical equilibrium. As a result if both aspect ratios are larger than five, 

Z-direction can be eliminated using VE calculations. Change in mobility did not affect VE 

observations– similar to 2D interpretation by Shook (1992).  

 All models were homogeneous and isotropic. Capillary number and spatial saturation 

derivative affect the details of the capillary regime. Large spatial saturation derivatives and 

small capillary number will yield similar behavior as small capillary number and large 

saturation derivative. Spatial saturation derivative depends on saturations in adjacent 

gridblocks. This nonlinear behavior complicates study of the effects in the capillary 

NTY=10

NRY=0.1

Nc=0.1 
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dominated regime. Interplay between gravity and capillary effect needs further 

investigation. 

 Interplay of X- and Y- direction aspect ratios has shown that the behavior of the system 

can be strongly directional. One aspect ratio can indicate vertical equilibrium while the 

other can indicate no communication due to permeability assigned to the gridblock of 

interest. This, and the possibility of different directional physical effects (gravity, capillary) 

can justify directional relative pseudofunctions approach (Guzman, 1995). Gravity in each 

direction should be scaled using the appropriate tilt number. The resulting flow regime is 

also a function of tilt number. 

  

5.4. Flow regimes and application in upscaling 

 Ranges for flow regimes agree with those individually reported in literature. In 

particular:  

�� Transition zones are hard to determine from coarse gridblock study 

�� Flow regimes depend on intermediate saturation and therefore relative permeability 

curvature and assigned J(S1) curve. Sensitivity to these parameters was not studied. 

�� The nature of boundary conditions does not allow direct testing of some directional 

effects (e.g., simultaneous flow in X-, Y- and Z-direction) 

  Additional observations made in this chapter can be used to re-plot the local flow 

regime maps on the gridblock scale. Corrected map is presented in figure 5.7. Recovery 

curves were created and flow behavior interpreted for particular cases. Regime cutoffs are 

similar in terms of gravity and capillary flow regime boundaries. Viscous flow regime 

boundary is set to be equal to 0.5. Vertical equilibrium (VE) occurs when aspect ratio is 

higher than 5 and is seemingly independent of gravity and capillary number. Gravity and 

capillary dominated regime limit is a function of aspect ratio, decreasing as the aspect ratio 

decreases.  

 This study utilized Berea sandstone relative permeability and capillary behavior. 

Comparison with 2-D work by Shook et al. 1992) shows that the VE boundary has 

changed. This might be a result of different relative permeability curves, however 

sensitivity study on changes in rock data was not performed. Flow regime map as 
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presented in this work provides the tool for determining the flow regime in each direction 

for any given gridblock. Because pseudo functions are regime dependent (Coll et al., 2000; 

Cao and Aziz, 1999) awareness of flow regime in each direction enables the choice of 

optimum upscaling method. Keeping the coarse gridblock in the same flow regime yields 

the same response if directional aspect groups are kept the same. 

 
Figure 5.7. Corrected flow regime map for X-direction 

 Generality for any given set of relative permeability and J(S1) might not be possible, 

therefore simulation design similar to one shown here for the individual case. Ranges from 

sensitivity study are in agreement with those available in literature and can be used to 

guide the design. Rather than using a wide range of static variables as in the study, the 

range might be narrower. For example, the use of constant width and length of the 

gridblock and assuming kx=ky=10kz yields small change in aspect ratio and tilt number 

throughout the reservoir. With mobility of the system known, a simple 6 factorial 

dimensionless design could be used to assess the full possible range of recovery behavior. 
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As suggested by most recent literature and newly developed dimensionless system, 

proper upscaling requires two steps: 

�� Quantify the heterogeneity and chose the upscaling approach 

�� Run a set of design simulations to determine actual flow regime set based on 

reservoir rock relative permeability and J-function.  

The effect of heterogeneity can be quantified by the approach of Li et al (1993) depicted in 

figure 2.7. If the dimensionless heterogeneity of a chosen coarse gridblock falls within the 

limits of Buckley – Leverett region, appropriate regime-dependent pseudo function can be 

selected for upscaling. To determine the best cutoff a set of simulations is run for given 

relative permeability/capillary conditions and responses monitored on a gridblock scale. 

Resulting cutoffs are valid for a given rock type. The variables determining cutoffs are 

gravity and capillary components of dimensionless fractional flow equation (section 4.4).  

 If recoarsening keeps heterogeneity out of Buckley-Leverett region, Li and Beckner 

(1999) approach presented in chapter 2 can be applied. Analysis of fractional flow equation 

in dimensionless space presented in chapter 4 reveals that Li and Beckner also upscale 

based on the flow regime.  

 

 This example illustrates benefits of dimensionless reservoir characterization. Large 

number of dimensional variables makes a sensitivity study too difficult to perform. 

Dimensionless approach reduces number of parameters to be verified and hence enables 

faster analysis and readily scalable results. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 Dimensionless systems of equations have many benefits, especially the general 

applicability at all scales and the ease of extrapolating behavior. Mathematical 

development, experimental work and observations from most recent literature lead to 

following conclusions: 

1. Inspectional analysis on the general flow equation provided the most succinct form 

of dimensionless numbers. Numbers developed in 2D systems so far have similar 

general form. The form of dimensionless differential equation and flux 

normalization in 3D changes because of the change of scaling direction.  

2. Buckingham’s � theorem is applicable on the dimensionless system as well. Rather 

than using the individual numbers for directional scaling, effects need to 

incorporate groups of numbers describing the physical effect in desired direction. 

3. Analytical developments in dimensionless space are simpler (e.g., Dietz in 2D 

space). However, Buckingham’s theorem states that, in general, a dimensionless 

group rather than individual number scales each effect.  

4. If dimensionless groups are used, designed reservoir simulations can provide more 

general results with fewer models. Special care has to be taken when assigning 

dimensional variables to form a dimensionless group – unphysical dimensional 

variables will result in questionable results. 

5. Numerical results have shown that for petroleum reservoirs with no-flow 

boundaries on top and bottom, scaling in Z-direction provides better scaling tool 

because with Z-scaling the form of equations in X- and Y-direction is the same. Any 

effect observed in 2D system (XZ or YZ) can be scaled to 3D (XYZ). 

6. Flow regimes can be defined using dimensionless numbers. Good agreement 

between experimental and literature available cases has shown that the flow 

regimes are dependent on proposed groups.  

7. Upscaling can be chosen using flow regime maps. This approach should reduce 

unphysical behavior of upscaled parameters and improve accuracy of responses. 

Flow regimes depend on the relative permeability curve shape as well as the 
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endpoints, complicating scaling of the results.  The suggested approach is to 

develop a flow regime map using the relevant relative permeability and capillary 

pressure curve(s). 

 Even though the dimensionless simulation design significantly reduced the number of 

simulations needed to capture the system behavior, this study was confined to a 

homogeneous system. This is due to large number of simulations – even in dimensionless 

space - needed to statistically capture the effects of stochastically generated porous media. 

 

Based on observations from this study the following can be recommended: 

1. Laboratory 3D floods. This would provide physical proof of mathematically 

developed groups. Large number of examples exists in literature for 2D, strongly 

directional systems – however numerical observations on directional dependence 

need to be empirically verified. 

2. Introduction of stochastic heterogeneity on defined flow regime intervals to 

separately study effects of upscaling in viscous, gravity and capillary dominated 

region. A single regime study on a narrower interval of physical and directional 

numbers rather than general study would provide numerical insight in flow regime 

dependence on heterogeneity. 

3. Further numerical study can be done on the effect of dimensionless groups on 

numerical dispersion, stability and reliability. Extension could be made on effects 

of different flow regimes on numerical behavior of the model, and visualization and 

use of these dimensionless groups for reservoir studies. 
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APPENDIX A 

INSPECTIONAL ANALYSIS  

1. Governing equations 

Flow of two incompressible phases in a homogeneous anisotropic three-dimensional 

system accounting for the tilt in X and Y direction can be described using  
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2. Transformation to dimensionless space 

Following are linear transformations from dimensional to dimensionless space:  
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Where  
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ijk or       transform k for phase i in direction j 

Substituting in the equations A.1 through A.5 we obtain the following set of equations 
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3. Inspectional analysis 

After the presented initial substitution we need to multiply equations with scale factors of 

choice to obtain the final form of the dimensionless system. At this stage scale factors are 

arbitrary, however the form of the equation should be preserved. Even though the usual 

approach is scaling in x-direction, the form of gravitational vector in velocity equations 

indicates that the best way to scale velocities is using a z-direction. Therefore 
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 The total of 82 dimensionless groups will result from the transformation to 

dimensionless space. These groups are marked using a red box with the group number 

assigned (e.g.        ). The next step is to assign the values for the groups. Two separate 

steps will follow. The first step is primary elimination of groups that violate the form of 
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original equation by assigning them to be equal to 0 or 1 for additive or multiplicative 

groups, respectively. The second step is secondary substitution. The resulting remaining 

groups cease to be arbitrary, and should be assigned using parameters of equations, 

following the process of primary elimination. The process of secondary substitution is still 

based on arbitrary transformation factors chosen to translate dimensional to dimensionless 

space. Careful choice and inspection of transformation factors will be needed to achieve 

physically meaningful set of dimensionless numbers. Overview of arbitrary (0,1) and non-

arbitrary (NA) parameters is given in table A.1. 

Table A.1 Overview of arbitrary and non-arbitrary dimensionless groups 

�� � �� � �� � �� � �� � ��
 

1 1 15 NA 29 NA 43 -½ 57 0 71 -½ 
2 1 16 NA 30 NA 44 NA 58 NA 72 0 
3 1 17 0 31 NA 45 NA 59 -½ 73 NA 
4 1 18 NA 32 NA 46 -½ 60 NA 74 -½ 
5 1 19 NA 33 -½  47 -½ 61 NA 75 0 
6 1 20 0 34 0 48 NA 62 -½ 76 NA 
7 1 21 1 35 NA 49 -½ 63 -½ 77 NA 
8 1 22 NA 36 1 50 0 64 NA 78 -½ 
9 NA 23 0 37 NA 51 NA 65 NA 79 NA 
10 NA 24 1 38 -½ 52 1 66 NA 80 NA 
11 0 25 NA 39 0 53 NA 67 -½ 81 -½ 
12 NA 26 0 40 -½ 54 -½ 68 0 82 -½ 
13 NA 27 NA 41 0 55 0 69 NA   
14 0 28 NA 42 NA 56 -½ 70 NA   
 
 The process of primary elimination begins with arbitrary assignment of spatial 

transformation factors. It is convenient to have the spatial transformation yield numbers 

between 0 and 1; we therefore choose following transformation factors: Lx �
*
1 , Wy �

*
1 , 

Hz �
*
1 . This transformation implies that parameters x2

*, y2
* and z2

* are equal to 0. As a 

result groups 33, 38, 40, 43, 46, 47, 49, 54, 56, 59, 62, 63, 67, 71, 74, 78, 81, 82 become -

½.  

 To maintain the form of equations we assign groups 1 through 8, 21, 24, 36 and 52 

equal to 1. Further analysis shows that groups 11, 14, 17, 20, 23, 26, 28, 34, 39, 41, 50, 55, 
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57, 68, 72 and 75 violate the form of equations. Since these groups are additive their value 

is set to zero.  This makes u1x2
*, u1x2

*, u1x2
*, u1x2

*, u1x2
* and u1x2

* equal to 0. 

 Groups 31 and 51 will determine the scaling of the pressure. The value for these factors 

is arbitrary, so the value of pressure at the center for displacing phase (group 35) will be set 

to 0. This provides us with oPP 1
*

12 � . Since the group 28 is equal to 0, we can determine 
oPPP 1

*
12

*
22 �� .  

 Capillary, viscous and gravity forces direct the flow. Because of the relevance for 

vertical equilibrium calculations (in which capillary and gravity forces balance in the 

vertical direction), the Z direction is chosen for scaling purposes. Also, more complete 

analysis shows that easiest to scale for the combinations of trigonometric functions arising 

from the rotation. Hence, 

Tz uu �
*

11            (A.13a) 

Tx u
H
Lu �

*
11            (A.13b) 

 Ty u
H
Wu �

*
11            (A.13c) 

1

*
21

*
11

rx

T

k
HuPP
��

�

��           (A.13d) 

Groups 30 and 31 are saturation related groups. By assigning the S11
* to 1-S1r-S2r and S12

* 

to S1r we get the Corey-Brooks’ representation of relative permeability. S1 is current 

saturation in the system. Term S11
* is a movable displaced phase saturation, later in the text 

marked as �SM. The usual representation of dimensionless time is pore volumes injected. 

Our representation is movable pore volumes injected; hence the time can be defined as 

T

M

T

M

q
HWLS

u
HSt �����

�
���

�
��         (A.14) 

Group 35 will be assigned to 0 yielding oPP 1
*

12 � . Since the capillary pressure is 

determined as a difference in phase pressures, initial values contained in the group 52 have 

to be scaled similar way. Hence we assign *
1

*
12

*
22 PPP ��  where P1

* is the minimum 

pressure that the whole system of blocks is scaled on. 



117 

 This concludes the primary arbitrary elimination. The remaining groups are not 

arbitrary any more so they need to be determined through the process of secondary 

elimination. The following is the set of remaining dimensionless groups, together with the 

group from which they originate. 
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These 32 groups once introduced make the previous set of flow equations completely 

dimensionless. Flow equations can be written in dimensionless form as 
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 4. Redundancy elimination 

 Some of the groups obtained through inspectional analysis recur and the rest are not 

independent making it possible and desirable to perform further reduction of the 

dimensionless groups. Groups 18 and 23 are omitted at this point since they do not affect 

the general form and are only included for the ease of later analysis.  

 All the dimensionless groups are multiplicative hence if logarithms are taken it is 

possible to translate this system to a system of linear equations. After setting up the 

coefficient matrix, linear algebra further reduces the number of dimensionless groups. We 

need to determine the rank of the following matrix: 
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log ���
-2 2 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   log L 

log���� 1 -1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 -1 0 0 0 0   log H 
log���� -2 2 -2 1 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0   log W 
log���� 1 -1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 -1 0 0 0 0   log kx 
log���� 0 2 -2 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   log ky 
log���� 0 -1 1 0 0 1 1 0 1 1 0 0 0 1 0 0 -1 0 0 0 0   log kz 
log���� 0 2 -2 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   log �r1�
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To simplify the estimate, similar groups have already been taken out. After elementary 

matrix operations and additional inspection, the minimum set of nonredundant 

dimensionless groups is determined to be  
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The description of final dimensionless numbers, accepted symbol and equations are listed 

in table A.2. 

Table A.2. Dimensionless groups and description 

Group Symbol Equation 

X-direction aspect ratio NRX 
x

z

k
k

H
L

2

2

 

Y-direction aspect ratio NRY 
y

z

k
k

H
W

2

2

 

X-direction tilt number NTX XH
W

�tan  

Y-direction tilt number NTY YH
L

�tan  

Density number N� 
1�

��  

Gravity number Ng 
T

YX
o

rz

u
gk ���� coscos1 ��  

Mobility ratio M o
r

o
r

2

1
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Capillary number Nc 
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o
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kHu
k ��� 1  

 

Process of elimination provided us with group 
2�

�� . This group was eliminated, since this 

group can be written as 
�

�

N
N
�1

. Dependent dimensionless groups appearing in equations 

A.1a through A.5 can therefore be estimated using the following set of equations 
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1
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gN�24�       65 

RXN�25�       66 
M�26�       69 

RYN�27�       70 

M�28�       73 
M�29�       76 

TXN�30�       77 

gN�31�       79 

TYN�32�       81 

 Development of dimensionless groups using an inspectional analysis needs only the 

elementary set of equations. Two-phase incompressible system is completely defined with 

equations A.7a through A.10. Minimum set of groups needed for complete dimensionless 

description are those numbered 1 through 31. Equations A.11a through A.12 are 

developed from the set of base equations. They are included in the analysis for the purpose 

of verification of scaling process and to ease the elimination of redundancy.  

 Redundancy is a result of consistent scaling. Consistent scaling means that all the 

variables are scaled to dimension and phase of choice rendering redundancy to be 

directional or physical. Directionally redundant group is the one used to scale the behavior 

of both phase fluxes for the same direction. Examples for directional redundancy are 

groups NRX and NTX for X- and NRY and NTY for Y-direction flow. Lack of directionally 

redundant groups in Z-direction shows that Z-direction was used for scaling. Physical 

redundancy occurs due to scaling of both phase fluxes to a common physical denominator 

(e.g. end point mobility of displacing phase or density difference). Examples of physical 

redundancy are N� and M.  

 Scaling through inspectional analysis introduces both redundancies at the same time. 

As a result dimensionless groups are not independent. For example group �3 is a 

combination of �2 and �28. Purpose of inspectional analysis is to provide minimum number 
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of dimensionless groups. As a result mixed dependencies have to be recognized and 

separated. Separation provides the final set of independent dimensionless groups. 
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APPENDIX B 

DIFFERENCE EQUATION ANALYSIS 

Saturation can be expressed in dimensionless form using the following form of 

normalization 
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Once the saturation is dimensionless, velocities from equations 3.2a through 3.2f can be 

substituted in equations 3.1a and 3.1b providing with common form of flow equation used 
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Since the system has no mass transfer between phases, material balance dictates 

DD SS 12 1��            (B.3) 
Mobility for phase ‘i’ can be expressed through end-point mobilities using Corey-Brooks’ 

model as 

� � in
iD

o
rii S�� �            (B.4) 

Displacing phase is the wetting phase, hence the pressures can be related through capillary 

pressure as 

)( 1221 Dc SJ
k

pPpp �
�����         (B.5) 
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To simplify notation observation on general form of differential and hence difference 

equation is utilized. The form is 

PizPiyPixSi CCCC ���          (B.6) 
Where coefficient CS is change in saturation and CP are changes in pressure in 

corresponding directions for phase ‘i’. Difference equation coefficients for displacing 

phase become 
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Similar, displaced phase coefficients are 
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 To set the difference variables in dimensionless form we need to chose the 

normalization variable. Let L, W and H become scaling parameters for space. Each spatial 

coefficient can be multiplied by corresponding directional scaling parameter in the form of 

L2/L2, W2/W2 and H2/H2 for respective X-, Y- and Z-direction. Complete equation is 

afterwards multiplied by H2 to scale in Z direction.  

 Velocity is defined the same way as in Appendix A. If the whole equation is multiplied 

by uT�H saturation coefficient for displacing phase becomes 

� �n
kjiD

n
kjiD

T
S SS

H
utC ,,1

1
,,11   �

��
�

�
�        (B.15) 

 

 Coefficient for pressure in X-direction is initially multiplied with L2/L2. This operation 

introduces dimensionless 1/�xD
2 in a form of 1/(�x/L)2. Remaining portion (1/L2) becomes 

a directional part of aspect number. Existing permeability in X-direction is multiplied with 

(kz/kz) estimated at the same point (i, j, k) as the pressure in the CPz. In order to obtain the 

remaining portion of aspect number the whole equation is multiplied with H2. As a result, 

unused parameter (1/H2) in CPz coefficient disappears. Aspect ratio in CPy is obtained in the 

similar manner.  

 Multiplication with uT�H results in the final form of the difference equation 

coefficients. Similar procedure is repeated for the displaced phase. To obtain the correct 

difference notation for displacing phase subscripts in equations B.17, B.16, B.17 and B.18 

should be changed from 1 to 2 for pressure and saturation terms.  

 Following are the difference equation coefficients for the displacing phase 
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 Difference groups corresponding to dimensionless groups from Appendix A are 

enumerated and marked with separate boxes. Groups 1, 8, 15 and 22 are spatially 

differentiated aspect ratios. Groups 2, 5, 9 and 12 are dimensionless pressure differentiated 

in X-direction. Similarly groups 16, 19, 23, 26 and 29, 32, 35, 38 are dimensionless 

pressure differentiated in Y- and Z- direction respectively.  

 Same principle applies to dimensionless capillary pressure. Dimensionless pressure 

consists of capillary number and Leverett’s J(S) function. Differentiation of Leverett’s J(S) 

function is simple. Groups 3, 6, 10, 13 are capillary number differentiated in X-, groups 17, 

20, 24, 27 in Y- and groups 30, 33, 36, 40 in Z-direction.  

 Tilt and gravity number corrected for density form a single gravity group in each 

direction. Groups 4, 8, 11, 14 represent gravity effect in X-, groups 18, 21, 25, 27 in Y- and 

groups 31, 34, 37 and 41 in Z-direction. Some similarity with dimensionless gravity 

numbers can be observed however transform of variables and assignment of H, W and L 

needs to be discussed further in order to explain the trigonometric functions from Chapter 

3. To simplify the similarity discussion, focus is kept on the 2D geometrical problem. 

Schematic of 2D differentiation is presented in figure B.1.  

 
Figure B.1. 3D Difference scheme slice at a given ‘j’ slice 

One of the gravity terms is difference of groups 4 and 7. This difference is 
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Rearranged, this difference becomes 
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Difference can be multiplied by unity (�xD/�xD) and rearranged as 
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Figure B.1 shows that (zi+1,j,k-zi,j,k)/�x can be replaced by sin �X. Gravity number is defined 

using group in Z-direction. Hence the difference of groups 11 and 14 can be written as 

� �
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zzgk
z

T
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      (B.22) 

Term �z is the distance between two centers of blocks used to estimate the distance change 

in Z-direction. Again, figure B.2 shows that term (zi,j,k+1-zi,j,k)/�z can be replaced by 

cos(�x). Hence the gravity difference term in Z-direction becomes 

� �
�

�
��

kg
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z
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         (B.23) 

Accounting for the difference in trigonometric function using the tilt number, gravity 

difference term in X direction becomes 
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�
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�� iTXg

D
gX NN

N
x

 
�

        (B.24) 

 An interesting case is when gridblocks are vertically aligned. In that case term (zi,j,k+1-

zi,j,k)/�z becomes equal to 1. Term (zi+1,j,k-zi,j,k)/�x becomes tan(�X), so the equation B.24 

remains accurate. However, gravity number doesn’t contain the trigonometric term. It 

becomes 

T

z
o

r
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gkN ��
�

�� 1          (B.25) 
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 Similar analysis can be done for both phases and in three dimensions. Geometrically, 

term (zi,j,k+1-zi,j,k)/�z in equation B.22 becomes cos(�x)cos(�Y) and term (zi+1,j,k-zi,j,k)/�x in 

equation B.21 becomes sin(�x)cos(�Y). To analyze the results in dimensionless form on a 

gridblock basis it is not necessary to explicitly determine each angle. Explicit estimate 

could be done applying basic geometric transforms, however much easier way is the direct 

determination of dimensionless groups from difference equations. To determine gravity 

number we can use equation B.23. Hence gravity number is 

� �
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kg z
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N

�

�
�

�

�          (B.26) 

Tilt in X-direction is therefore 
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Similarly, tilt in Y-direction is 
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 Scaling variables L, W and H can theoretically be any number. However, the ranges 

should be between �x and Lreservoir for L, �y and Wreservoir for W and between �z and 

Hreservoir for H. Three separate behavioral cases can be studied in dimensionless space: 

�� Local behavior can be observed if L=�x, W=�y and H=�z. This sets the aspect 

ratio to aspect ratio of a gridblock. Resulting gravity number and tilt number 

will also be at the gridblock scale. Elements �xD, �yD and �zD become equal to 

1. This is useful for observations on time-step length and error estimates for the 

particular gridblock. 

�� Global behavior can be observed if L, W and H are set to respective reservoir 

values. In this case observations on stability and behavior of numerical method 

are replaced by observations on gridblock contribution on general behavior of 

the reservoir. One of the examples of use of global numbers is designed 

simulation with purpose of determining best recovery regime and 

corresponding rates or scaling outcrop to reservoir behavior. 
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�� Regional behavior can be observed if intermediate values are used for L, W and 

H. Regional behavior is useful in characterizing local flow regimes and 

upscaling (Coll and Muggeridge, 2001). Local flow regimes occur as a result of 

local heterogeneity and its distribution.  

 Let the scaling be local with L=�x, W=�y and H=�z. Transmissibility in dimensional 

system for rectangular isotropic system is 

x
x k
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�           (B.29a) 

x
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x
x k
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If X- and Y-direction transmissibility is normalized with respect to Z-direction, the 

following is gained 

xk
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x
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�'           (B.30a) 
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T
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1'�zT            (B.30c) 

Normalized transmissibility in dimensional is equivalent to reciprocal aspect ratio in 

dimensionless space. The difference between the two indicated in equations B.30 through 

B.30c are scaling terms (�z/�x) and (�z/�y). Scaling terms missing in normalized 

transmissibility terms are introduced when spatial variables x, y and z were transformed to 

dimensionless space. 

 To conclude the discussion remaining variables need to be examined. Velocity (volume 

throughput per area in Z-direction) should always follow the volume indicated by L, W and 

H for equations B.15 through B.16 to remain consistent. Unlike development for 

differential equation, pressure in difference equation doesn’t need to be rescaled to a fixed 

pressure since pressure difference rather than pressure itself becomes a variable of interest. 
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Any consistent addition in normalization process is taken out when differences are 

calculated. 
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