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THE CONTINUITY OF THE SOLUTION OF THE NATURAL

EQUATION IN THE ONE -DIMENSIONAL CASE

FATIMA BENZIADI AND ABDELDJABBAR KANDOUCI*

Abstract. We consider the so-called ♮-model. this model is expressed by
a stochastic differential equation called ♮-equation, introduced in the article

”Random times with given survival probability and their F-martingale decom-
position formula” published in Stochastic Processes And their Applications.
This equation plays an essential role in this article, but its application has

been submitted to a hypothesis of continuity. Then it is important to know
under what conditions the hypothesis of continuity is satisfied. This is the
main motivation of our research, but the proof given in the present paper is
different from Song’s (which study a more general case).

1. Introduction

Firstly, we will give a description of the natural model called the one-default
model determined in [5]. For this, we define a filtered probability space (Ω,F =
(Ft)t≥0,P), an F-adapted continuous increasing process Λ null at the origin, and a
positive (P,F) local martingale N such that 0 < Zt = Nte

−Λt satisfies Zt ≤ 1, t ≥
0. Precisely, it is proved in [5] that, for any continuous local martingale Y , for
any Lipschitz function f on R null at the origin, there exist a probability measure
Q and a random time τ > 0 on an extension of (Ω,F,P), such that the survival
probability of τ , i.e., Q[τ > t|Ft] is equal to Zt for t ≥ 0. In the same last reference,
it is also shown that there exist several solutions and that an increasing family of
martingales, combined with a stochastic differential equation, constitutes a natural
way to construct these solutions, which means thatXu

t = Q[τ ≤ |Ft], 0 < u, t <∞,
satisfy the following stochastic differential equation:

(♮u) :

 dXt = Xt

(
− e−Λt

1− Zt
dNt + f (Xt − (1− Zt))dYt

)
, t ∈ [u,∞)

Xu = x

where the initial condition x can be any Fu-measurable random variable. In
actuality, this model played an important role in finance mostly in the credit
risk modeling. The remarkable property about the ♮-model is its rich system
of parameters Z, Y, f . The parameter Z determines the default intensity. The
parameters Y and f describe the evolution of the market after the default time
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τ . Such a system of parameters sets up a propitious framework for inferring the
market behavior and for calibrating the financial data. We believe that the ♮-
model can be a useful instrument to modeling financial market. In this paper, we
want to show the continuity of the process Xu

t (x) such as:

Xu
t (x) = x+

∫ t

u

Xs

(
− e−Λs

1− Zs

)
dNs +

∫ t

u

Xsf (Xs − (1− Zs))dYs , u ≤ s ≤ t

is the solution of the (♮u)-equation. Our aim is to look at the regularity of the pro-
cess (u, t, x) 7−→ Xu

t (x) with respect to all the variables u, t, x. Our fundamental
tools are the theorem of Kolmogorov and the lemma of Gronwall. We should men-
tion that, this main result given in this present paper is less general and different
from Song’s one [8], which study a more general case where there are jumps and
where the coefficients are Markovian. The paper is organized as follows: in the
next section, we prove the found results on the continuity of the stochastic flows,
i.e. the continuity of the solution of a stochastic differential equation with respect
to a parameter (which can be taken to be, of course, the initial condition). Section
3 presents the main result of this paper.

2. The Found Results on the Continuity of the Solutions of SDE

2.1. The case studied by Philipe E. Protter. This subsection is borrowed
from ([6], chapter 5). We consider a general system of equations of the form

ζxt = Hx
t +

∫ t

0

F (ζx)s−dSs (2.1)

where ζxt and Hx
t are column vectors in Rn, S is a column vector of m semi-

martingales with S0 = 0, and F is an n ×m matrix with elements (F i
α). For x

fixed, for each y we have that ζt = ζyt − ζxt is a solution of the equation

ζt = Hy
t −Hx

t +

∫ t

0

F (ζ)s−dSs (2.2)

where F (ζ̀) = F (ζx + ζ̀)− F (ζx).

Theorem 2.1. Let Hx be processes in Dn i.e. the space of processes H =
(H1, ..., Hn) where each Hi is an adapted càdlàg process (1 ≤ i ≤ n), and let
x 7−→ Hx : Rn −→ Dn be pre-locally Lipschitz continuous process. F be an n×m
matrix of functional Lipschitz operators (F i

α), 1 ≤ i ≤ n, 1 ≤ α ≤ m. Then there
exists a function ζ(t, ω, x) on R+ × Ω× Rn such that

(1) for each x the process ζxt = ζ(t, ω, x) is a solution of 2.1,and
(2) for almost all ω, the flow x 7−→ ζ(., ω, x) is continuous in the topology of

uniform convergence on compacts.

Proof. We recall the method of proof used to show the existence and uniqueness
of a solution (see [6], chapter 5, Theorem 7). By stopping at a fixed time t0, we
can assume the Lipschitz process is just a random variable µ which is finite a.s.
Then by conditioning (see [6], chapter 5, the proofs of Theorems 7, 8, or 15 for this
argument) we can assume without loss of generality that this Lipschitz constant

is non-random, and we call it θ < ∞ By replacing Hx
t with ζxt +

∫ t

0
F (0)s−dSs,
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and then by replacing F with Q given by Q(ζ̀)t = F (ζ̀)t − F (0)t, we can further
assume without loss of generality that F (0) = 0. Then for ν = λp(θ), by (see [6],
chapter 5, Theorem 5) we can find an arbitrarily large stopping time T such that
ST− ∈ S(ν) i.e. ν-sliceable, and Hx is Lipschitz continuous on [0, T ) Then by
Lemma 2 (see [6], chapter 5, preceding Theorem 7) we have that for the solution
ζ of 2.2.

∥ζT−∥ ≤ λp(θ, S)∥(Hx −Hy)T−∥ (2.3)

for any p ≥ 2 and some (finite) constant λp(θ,M). Choose p > n, and we have

E{sup
s<T

|ζxs − ζys | ≤ λp(θ, S)µ∥x− y∥p} (2.4)

due to the Lipschitz hypothesis on x 7−→ Hx. By Kolmogorov’s theorem (theorem
3.1 in this article) we have the result on Rn×[0, T ). However since T was arbitrarily
large, the result holds as well on Rn × Ω× R+. □
2.2. The case studied by H. Kunita. This subsection is borrowed from [4].
Let {Vk : R+ × Rd}k=0,...,m is a family of vector fields on Rd, for s > 0 et x ∈ Rd.
Let t 7−→ ξst(x) the solution of Stochastic differential equation of the form

ξst(x) = x+

m∑
k=0

∫ t

0

Vk(r, ξsr(x))dB
k
r (2.5)

where Bk is a family of standard Brownian motions. Here we are interested in the
regularity of the process (s, t, x) 7−→ ξst(x) with respect to the parameters s, t, x.
We have the The following theorem.

Theorem 2.2. There exists a random, continuous, hölder’s function in s, t, x,
with exponents γ, ρ for any γ < 1

2 and ρ < 1. Moreover we have a.s. the equation
2.5 is proved for any s, t, x and the property of the flow ξςt(ξsς) is valid for any
s, t, x.

Proof. The proof is a direct consequence of the Kolmogorov’s theorem and the
following estimation demonstrated in theorem 2.6:

E|ξst(x)− ξs̀t̀(x̀)|
p ≤ |x− x̀|p + (1 + |x|+ |x̀|)(|s− s̀|

p
2 + |t− t̀|

p
2 ) (2.6)

Given a compact χ ⊆ Rd and T > 0, the estimation 2.6 is enough to apply
the Kolmogorov’s theorem, which provides that there is a continuous Version in
(s, t, x) ∈ [0, T ]2 × χ of ξst(x) for which we have

|ξst(x)− ξs̀t̀(x̀)| ≤ ϑχ,T ,p,γ,ρ(ω)(|t− t̀|γ + |s− s̀|γ + |x− x̀|ρ) (2.7)

uniformly in s, t, x for any γ < 1
2 and ρ < 1. □

Remark 2.3. We may well call the map ξ the stochastic flow.

Lemma 2.4. For any p ∈ R, T > 0 and ε > 0, we have the inequality

E(ε+ |ξst(x)|2)p ≤ ϑε,p,T (ε+ |x|2)p (2.8)

E(ε+ |ξst(x)− ξst(y)|2)p ≤ ϑp,T (ε+ |x− y|2)p (2.9)

for any 0 ≤ s ≤ t ≤ T .

Proof. We put g(x) = (ε+ |x|2) and F (x) = g(x)p. An easy calculation gives
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∇iF (x) = 2g(x)p−1x

∇2
ijF (x) = 2p g(x)p−2(g(x)δij + 2(p− 1)xixj), i, j = 1, ..., d

and if we denote Lt = ξst(x) then, by Itô’s formula applied to the semi-martingale
F (Lt) we have

F (Lt) = F (Ls) +
d∑

i=1

∫ t

s

∇iF (Lr)dL
i
r +

1

2

d∑
i,j=1

∫ t

s

∇2
ijF (Lt)d < Li, Lj >r

dLi
r = dξisr(x) =

m∑
k=0

V i
k (r, ξsr(x))dB

k
r

d < Li, Lj >r=
m∑

k,l=0

V i
k (r, ξsr(x))V

j
l (r, ξsr(x))d < Bk, Bl >r

=
m∑

k=1

V i
k (r, ξsr(x))V

j
k (r, ξsr(x))dt

Given that < Bk, Bl >t= t if k = l = 1, ...,m and it is zero otherwise (particu-
larly if k = 0 or l = 0 because B0

t = t), therefore

F (Lt) = F (Ls) +
d∑

i=1

m∑
k=0

∫ t

s

∇iF (Lr)V
i
k (r, Lr)dB

k
r

+
1

2

d∑
i,j=1

m∑
k=1

∫ t

s

∇2
ijF (Lt)V

i
k (r, Lr)V

j
k (r, Lr)dr

Now take the expectation of this last quantity, the stochastic integral gives zero
and Ls = ξss(x) = x a.s, therefore

EF (Lt) = F (x) + 1
2

d∑
i,j=1

m∑
k=1

∫ t

s

E[∇2
ijF (Lt)V

i
k (r, Lr)V

j
k (r, Lr)]dr

To estimate the quantity inside the integral, we note that by hypothesis

|Vk(r, x)| ≤M(1 + |x|) ≤ ϑε
√
g(x)

where the constant ϑε depends on ε, then

|∇2
ijF (Lt)V

i
k (r, Lr)V

j
k (r, Lr)| ≤ ϑεF (Lr)

and

EF (Lt) ≤ F (x) + ϑε

∫ t

s

EF (Lr)dr

So we can conclude by Gronwall’s lemma (lemma 3.3 in this article) and get the
first two inequalities. For the second inequality we proceed in the same way but
this time we put Lt = ξst(x) − ξst(y). The process Lt is again a semi-martingale
and



SHORT TITLE FOR RUNNING HEADING 243

dLt =
m∑

k=0

[V i
k (r, ξsr(x))− V i

k (r, ξsr(y))]dB
k
r

d < Li, Lj >r=
m∑

k=1

[V i
k (r, ξsr(x))− V i

k (r, ξsr(y))][V
j
k (r, ξsr(x))− V j

k (r, ξsr(y))]dt

This time, it was that

|V i
k (r, ξsr(x))− V i

k (r, ξsr(y))| ≤M |ξst(x)− ξst(y)| ≤M g(Lr)
1
2

independently from ε. Therefore with the same method as before and can be
applied Gronwall wrap up. □

Lemma 2.5. For any 0 ≤ s ≤ ς ≤ t ≤ T and x ∈ Rd we have a.s

ξςt(ξsς) = ξst(x)

Proof. The previous lemma and Kolmogorov’s theorem imply that for all fixed
s, t, the application x 7−→ ξst(x) is almost surely continuous. Moreover, it is easy
to see that we can choose the family of random variables

x 7−→
m∑

k=0

∫ t

s

Vk(r, ξsr(x))dB
k
r

continuous in x, in fact

E[
∫ t

s

Vk(r, ξsr(x))dB
k
r −

∫ t

s

Vk(r, ξsr(y))dB
k
r ]

p

≤ ϑpE[
∫ t

s

|Vk(r, ξsr(x))dBk
r −

∫ t

s

Vk(r, ξsr(y))|2dr]
p
2

≤ ϑp(t− s)
p
2−1E[

∫ t

s

|Vk(r, ξsr(x))dBk
r −

∫ t

s

Vk(r, ξsr(y))|pdr] (byJensen)

≤ ϑpM(t− s)
p
2−1E[ts|ξsr(x)− ξsr(y)|pdr] (byhypothesis)

≤ ϑp(t− s)
p
2 |x− y|2 (byLemma2.4)

and therefore can still be used again Kolmogorov to obtain a continuous version
in x of the stochastic integral and show that for a fixed s ≤ ς ≤ t, the integral
equation

ξςt(x) = x+
m∑

k=0

∫ t

ς

Vk(r, ξςr(x))dB
k
r

is true for all x ∈ Rd almost surely. So if in this equation replacing x by the
random function ξsς(x) we get

ξςt(ξsς ) = ξsς +

m∑
k=0

∫ t

ς

Vk(r, ξςr(ξsς))dB
k
r

Let now ξ̂st(x) = ξςt(ξsς ) if t > ς and ξ̂st(x) = ξst(x) otherwise. the process ξ̂st(x)
satisfies the equation
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ξ̂st(x) = x+
m∑

k=0

∫ t

s

Vk(r, ˆξsr(x))dB
k
r

for any t ≥ s and any x ∈ Rd and therefore the uniqueness of the solution, we

must have that ξsr = ξ̂st(x) a.s. and hence the thesis. □

Theorem 2.6. for all p ≥ 2, 0 ≤ s ≤ t ≤ T , 0 ≤ ś ≤ t́ ≤ T , x, x́ ∈ Rd:

E|ξst(x)− ξśt́(x)|
p ≤ ϑ{|x− x́|p + (1 + |x|+ |x́|)p(|t− t́|

p
2 + |s− ś|

p
2 )} (2.10)

Proof. For brevity we consider only the case 0 ≤ s ≤ ś ≤ t ≤ t́ ≤ T , using the
previous lemma, we have:

ξśt́(x́) = x́+
m∑

k=0

∫ t

ś

Vk(r, ξśr(x́))dB
k
r +

m∑
k=0

∫ t́

t

Vk(r, ξśr(x́))dB
k
r

ξst(x) = ξsś(x) +

m∑
k=0

∫ t

ś

Vk(r, ξśr(ξsś(x))dB
k
r

Therefore
|ξst(x)− ξśt́(x)|p ≤ (2m+ 3)p−1{|ξsś − x́|p︸ ︷︷ ︸

A

+
m∑

k=0

|
∫ t

ś

[Vk(r, ξśr(x́))− Vk(r, ξśr(ξsś))]dB
k
r |p︸ ︷︷ ︸

B

}+
m∑

k=0

|
∫ t́

t

Vk(r, ξśr)dB
k
r |p︸ ︷︷ ︸

C
We used the inequality (often very useful): |

∑N
i=1 ai|p ≤ Np−1

∑N
i=1 |ai|p, which

follows from Jensen’s inequality. We will estimate the expectation of the three
terms A,B, C one by one. We start with a small additional result:

E|ξsś(x)− x|p ≤ (m+ 3)p−1

m∑
k=0

E|
∫ ś

s

Vk(r, ξsr(x))dB
k
r |p

≤ ϑpME(
∫ ś

s

(1 + |ξsr(x)|)2dr)
p
2

≤ ϑp(ś− s)
p
2 (1 + |x|p)

With this estimate we have easily that

E[A] ≤ 2p−1{|x− x́|p + E|ξsś(x)− x|p} ≤ ϑp[|x− x́|p + (ś− s)
p
2 (1 + |x|p)]

By similar calculations we can also infer that

E[B] ≤ ϑp[|x− x́|p + (ś− s)
p
2 (1 + |x|p)]

E[C] ≤ ϑp(t− t́)
p
2 (1 + |x́|)p

All these estimates allow us to conclude the proof. □
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2.3. The case studied by G. Barles. This subsection is borrowed from [1].
We consider a general system of equations of the form

Js,x
t = x+

∫ t

s

θ(r, Js,x
r )dr +

∫ t

s

σ(r, Js,x
r )dWr, 0 ≤ t ≤ T (2.11)

For any (s, t) ∈ [0,T]×Rn, where T is a strictly positive real, W a d-dimensional
Brownian motion and θ : [0,T] × Rn −→ Rn ,σ : [0,T] × Rn −→ Rn×d are two
measurable, Lipschitz functions to linear increase. To demonstrate the continuity
properties of the flow, we will use the Kolmogorov’s theorem (theorem 3.1). To
do this, we must make estimates on the moments of Js,x

t . The demonstrations
are somehow technical but not difficult, it is often used the inequalities of Hölder
and Burkholder-Davis-Gundy - BDG in the More - and Gronwall’s lemma (lemma
3.3).

Proposition 2.7. Let p ≥ 1, there is a constant R, depending on T and p such
that ∀s ∈ [0,T], ∀x ∈ Rn

E[ sup
0≤t≤T

|Js,x
t |p] ≤ R(1 + |x|p) (2.12)

Proof. We demonstrated in the case n = d = 1. We start with the case p ≥ 2. We
fix s and x, we note Jt in place of Js,x

t for ease of writing. In the following R is a
constant depending on p and T whose value may change from one line to another
but which does not depend on (s, x). We have firstly,

sup
t∈[0,T]

|Jt|p ≤ sup
t∈[0,s]

|Jt|p + sup
t∈[s,T]

|Jt|p ≤ |x|p + sup
t∈[s,T]

|Jt|p

it suffices to establish the inequality E[supt∈[s,T] |Jt|p]. As we do not know a

priori if this quantity is finite or not, we introduce the stopping time ϱn = inf{t ∈
[0,T], |Jt| > n} and we take n > |x| such that ϱn > s. The inequality (a+b+c)p ≤
3p−1(ap + bp + cp) supplies estimates, for any ℓ ∈ [s,T],

|Jℓ∧ϱn |p ≤ 3p−1

(
|x|p + sup

s≤ℓ≤t

∣∣∣∣∣
∫ ℓ∧ϱn

s

θ(r, Jr)dr

∣∣∣∣∣
p

+ sup
s≤ℓ≤t

∣∣∣∣∣
∫ ℓ∧ϱn

s

σ(r, Jr)dWr

∣∣∣∣∣
p)

≤ 3p−1

(
|x|p +

(∫ t∧ϱn

s

|θ(r, Jn)|dr
)p

+ sup
s≤ℓ≤t

∣∣∣∣∣
∫ ℓ∧ϱn

s

σ(r, Jr)dWr

∣∣∣∣∣
p)

The inequality BDG leads to:

E

[
sup

s≤ℓ≤t∧ϱn

|Jℓ|p
]

≤ R

(
|x|p + E

[(∫ t∧ϱn

s

|θ(r, Jr)|dr
)p
]
+ E

[(∫ t∧ϱn

s

|σ(r, Jr)|2dr
) p

2

])
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using the Hölder inequality (p2 ≥ 1), noting p∗ the conjugate of p and q that of p
2 ,

E

[
sup

s≤ℓ≤t∧ϱn

|Jℓ|p
]

≤ R

(
|x|p + T

p
p∗ E

[∫ t∧ϱn

s

|θ(r, Jr)|pdr
]
+ T

p
2q E

[∫ t∧ϱn

s

|σ(r, Jr)|pdr
])

Furthermore, as θ and σ are linear increase, we have:

E
[∫ t∧ϱn

s

|θ(r, Jr)|pdr
]
≤ ℑpE

[∫ t∧ϱn

s

(1 + |Jr|)pdr
]

≤ R

(
1 + E

[∫ t∧ϱn

s

|Jr|pdr
])

and therefore

E
[∫ t∧ϱn

s

|θ(r, Jr)|pdr
]
≤ R

(
1 + E

[∫ t

s

sup
s≤ℓ≤r≤ϱn

|Jℓ|pdr

])
and the same inequality is valid for the term σ. As a result, we obtain:

E

[
sup

s≤ℓ≤t∧ϱn

|Jℓ|p
]
≤ R

(
1 + |x|p +

∫ t

s

E

[
sup

s≤ℓ≤r≤ϱn

|Jℓ|p
]
dr

)
where R does not depend on n. Gronwall’s lemma then gives for all n,

E

[
sup

s≤ℓ≤t∧ϱn

|Jℓ|p
]
≤ R(1 + |x|p)

We fact tender n to infinity and apply Fatou’s lemma to get:

E
[
sup

s≤ℓ≤T
|Jℓ|p

]
≤ R(1 + |x|p)

which completed the proof in the case p ≥ 2. If now 1 ≤ p ≤ 2 then 2p ≥ 2 and
Hölder inequality given

E
[
sup

s≤ℓ≤T
|Jℓ|p

]
≤
(
E
[
sup

s≤ℓ≤T
|Jℓ|2p

]) 1
2

≤ R
1
2 (1 + |x|2p) 1

2

this leads to,

E
[
sup

s≤ℓ≤T
|Jℓ|p

]
≤ R

1
2 (1 + |x|p)

This last inequality completes the proof of this proposition. □

Now, we know that the solution of a stochastic differential equation has mo-
ments of any order, we show a similar estimate for the moments of the increments
of J .
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Proposition 2.8. Let 2 ≤ p < ∞. There exists a constant R such that, for any
(s, x),(ś, x́) belonging to [0,T]× Rn,

E
[
sup

0≤t≤T
|Js,x

t − J ś,x́
t |p

]
≤ R

(
|x− x́|p + |s− ś|

p
2 (1 + |x́|p)

)
(2.13)

Proof. We fix (s, x) and (ś, x́). Trivially,

|Js,x
t − J śx́

t |p ≤ 2p−1(|Js,x
t − Js,x́

t |p + |Js,x́
t − J ś,x́

t |p)

so that we show the inequality to each of the previous two terms. Start with the

first |Js,x
t − Js,x́

t |p. There is no need to take a stopping time because the previous
proposition tells us that the expectation of the sup in t is finite. We have

sup
t∈[0,T]

|Js,x
t − Js,x́

t |p ≤ sup
t∈[0,s]

|Js,x
t − Js,x́

t |p + sup
t∈[s,T]

|Js,x
t − Js,x́

t |p

so that

sup
t∈[0,T]

|Js,x
t − Js,x́

t |p ≤ |x− x́|p + sup
t∈[s,T]

|Js,x
t − Js,x́

t |p

therefore, we are only interested in the second member of this inequality. For all
ℓ ∈ [s,T], we have

|Js,x
ℓ − Js,x́

ℓ |p ≤ 3p−1

(
|x− x́|p +

(∫ t

s

|θ(r, Js,x
r )− θ(r, Js,x́

r )|dr
)p

+ sup
ℓ∈[s,t]

∣∣∣∣∫ u

s

(σ(r, Js,x
r )− σ(r, Js,x́

r ))dWr

∣∣∣∣p
)

BDG and Hölder inequalities lead to the inequality, noting p∗ the conjugate of p,

E

[
sup

ℓ∈[s,t]

|Js,x
ℓ − Js,x́

ℓ |p
]
≤ R

(
|x− x́|p + T

p
p∗ E

[∫ t

s

|θ(r, Js,x
r )− θ(r, Js,x́

r )|pdr
]

+ E

[(∫ t

s

|σ(r, Js,x
r )− σ(r, Js,x́

r )|2dr
) p

2

])
Using again the Hölder inequality, we obtain, noting q the conjugate of p

2 ,

E

[(∫ t

s

|σ(r, Js,x
r )− σ(r, Js,x́

r )|2dr
) p

2

]
≤ T

p
2q E

[∫ t

s

|σ(r, Js,x
r )− σ(r, Js,x́

r )|pdr
]

θ and σ are Lipschitz, the previous inequality gives

E

[
sup

ℓ∈[s,t]

|Js,x
ℓ − Js,x́

ℓ |p
]
≤ R

(
|x− x́|p +

∫ t

s

E

[
sup

ℓ∈[s,r]

|Js,x
ℓ − Js,x́

ℓ |p
]
dr

)
Gronwall’s lemma then gives-changing R

E

[
sup

ℓ∈[s,T]
|Js,x

ℓ − Js,x́
ℓ |p

]
≤ R|x− x́|p
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It remains to study the term E[supt |J
s,x́
t − J ś,x́

t |p]. We assume without loss of
generality that s ≤ ś and cutting into three parts,

sup
t∈[0,T]

|Js,x́
t −J ś,x́

t |p ≤ sup
t∈[0,s]

|Js,x́
t −J ś,x́

t |p+ sup
t∈[s,ś]

|Js,x́
t −J ś,x́

t |p+ sup
t∈[ś,T]

|Js,x́
t −J ś,x́

t |p

from which we deduce that

sup
t∈[0,T]

|Js,x́
t − J ś,x́

t |p ≤ sup
t∈[s,ś]

|Js,x́
t − x́|p + sup

t∈[ś,T]
|Js,x́

t − J ś,x́
t |p

For the first term of the right side of the previous inequality, we have

E

[
sup

t∈[s,ś]

|Js,x́
t − x́|p

]
≤ 2p−1

(
E

[(∫ ś

s

|θ(r, Js,x́
r )|dr

)p]

+ E

[
sup

t∈[s,ś]

∣∣∣∣∫ t

s

σ(r, Js,x́
r )dWr

∣∣∣∣p
])

The Hölder inequality and the mark 2.12 give, using the linear increase of θ,

E
[(∫ s

s

|θ(r, Js,x́
r )|dr

)p]
≤ (ś− s)pE[ sup

ℓ∈[s,ś]

|θ(ℓ, Js,x́
ℓ )|p] ≤ RT

p
2 |s− ś|

p
2 (1 + |x́|p)

On the other hand, inequality BDG gives

E

[
sup

t∈[s,ś]

∣∣∣∣∫ t

s

σ(r, Js,x́
r )dWr

∣∣∣∣p
]
≤ E

(∫ ś

s

|σ(r, Js,x́
r )|2dr

) p
2


≤ (s− ś)

p
2E

[
sup

ℓ∈[s,ś]

∣∣∣σ(ℓ, Js,x́
ℓ )

∣∣∣p]
and because of the increase of σ and the estimate (1), we obtain

E

[
sup

t∈[s,ś]

∣∣∣∣∫ t

s

σ(r, Js,x́
r )dWr

∣∣∣∣p
]
≤ R|s− ś|

p
2 (1 + |x́|p)

Finally,

E

[
sup

t∈[s,ś]

|Js,x́
t − J ś,x́

t |p
]
≤ R|s− ś|

p
2 (1 + |x́|p)

Study to finish the term E[ sup
t∈[ś,T]

|Js,x́
t − J ś,x́

t |p]. Note that, for t ∈ [ś,T],

Js,x́
t = Js,x́

ś +

∫ t

ś

θ(r, Js,x́
r )dr +

∫ t

ś

σ(r, Js,x́
r )dWr

J ś,x́
t = x́+

∫ t

ś

θ(r, J ś,x́
r )dr +

∫ t

ś

σ(r, J ś,x́
r )dWr
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We have therefore, for any ℓ ∈ [ś, t]

|Js,x́
ℓ − J ś,x́

u |p ≤ 3p−1

(
|Js,x́

ś − x́|p +
(∫ t

ś

|θ(r, Js,x́
r )− θ(r, J śx́

r )|dr
)p

+ sup
ℓ∈[ś,t]

∣∣∣∣∫ t

ś

(σ(r, Js,x́
r )− σ(r, J ś,x́

r ))dWr

∣∣∣∣p
)

Using inequalities hölder and BDG, and the bound (3),and the fact that θ and σ
are Lipschitz,

E

[
sup

ℓ∈[ś,t]

|Js,x́
ℓ − J ś,x́

ℓ |p
]

≤ R

(
|s− ś|

p
2 (1 + |x́|p) + E

[∫ t

ś

|Js,x́
r − J ś,x́

r |pdr
])

≤ R

(
|s− ś|

p
2 (1 + |x́|p) + E

[∫ t

ś

sup
ℓ∈[ś,r]

|Js,x́
ℓ − J ś,x́

ℓ |pdr

])

Gronwall’s lemma applied to r 7−→ sup
ℓ∈[ś,r]

|Js,x́
ℓ − J ś,x́

ℓ |p then gives

E

[
sup

ℓ∈[ś,t]

|Js,x́
ℓ − J ś,x́

ℓ |p
]
≤ R|s− ś|

p
2 (1 + |x́|p)

which completed the proof. □

Remark 2.9. A direct application of the previous estimate and kolmogorov’s the-
orem, shows that there is a modification of process J such that the application
(s, x, t) 7−→ Js,x

t is continuous.

3. The Continuity of the Solution of the ♮-equation

This section contains two Subsections. In the first, we present the theorem of
Kolmogorov and its demonstration. In the second, we present our main result.

3.1. Kolmogorov’s theorem and its demonstration. This subsection is bor-
rowed from [6]. There are several versions of Kolmogorov’s theorem, we give here
a quite general one.

Theorem 3.1. [6]. Let (E, d) be a complete metric space, and let Ux be an E-
valued random variable for all x dyadic rational in Rn. Suppose that for all x,
y, we have d(Ux, Uy) is a random variable and that there exist strictly positive
constants ε, C, β such that

E{d(Ux, Uy)ε} ≤ C∥x− y∥n+β (3.1)

Then for almost all ω the function x 7−→ Ux can be extended uniquely to a con-
tinuous function from Rn to E.
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Proof. We prove the theorem for the unit cube [0, 1]n. Before the statement of
the theorem we establish some notations. Let ∆ denote the dyadic rational points
of the unit cube [0, 1]n in Rn, and let ∆m denote all x ∈ ∆ whose coordinates
are of the form k2−m, 0 ≤ k ≤ 2m. Two points x and y in ∆m are neighbors if
sup
i

|xiyi| = 2−m. We use Chebyshev’s inequality on the inequality hypothesized

to get

P{d(Ux, Uy) ≥ 2−αm} ≤ C2αεm2−m(n+β)

Let

Λm = {ω : ∃neighbors x, y ∈ ∆m with d(Ux(ω), Uy(ω)) ≥ 2−αm}

Since each x ∈ ∆m has at most 3n neighbors, and the cardinality of ∆m is 2mn,
we have

P(Λm) ≤ c2m(αε−β)

Where the the constant c = 3nC .Take α a sufficiently small so that αε < β. Then

P(Λm) ≤ c2−mδ

Where δ = β − αε > 0. The Borel-Cantelli Lemma then implies
P(Λm infinitely often) = 0. That is, there exists an m0 such that for m ≥ m0

and every pair (u, v) of points of ∆m that are neighbors,

d(Uu, Uv) ≤ 2−αm

We now use the preceding to show that x 7−→ Ux is uniformly continuous on ∆
and hence extendable uniquely to a continuous function on [0, 1]n. To this end, let
x, y ∈ ∆ be such that ∥x− y∥ ≤ 2−k−1. We will show that d(Ux, Uy) ≤ c2−αk for
a constant c, and this will complete the proof. Without loss of generality assume
k ≥ m0 . Then x = (x1, ..., xn) and y = (y1, ..., yn) in ∆ with ∥x − y∥ ≤ 2−k−1

have dyadic expansions of the form

xi = ui +
∑
j>k

aij2
−j

yi = vi +
∑
j>k

bij2
−j

where aij , b
i
j are each 0 or 1 and u,v are points of ∆k which are either equal or

neighbors. Next set u0 = u, u1 = u0 + ak+12
−k−1, u2 = u1 + ak+22

−k−2, · · · . We
also make analogous definitions for v0, v1, v2, ... Then ui−1 and ui are equal or
neighbors in ∆k+i each i, and analogously for vi−1 and vi. Hence

d(Ux(ω), Uu(ω)) ≤
∞∑
j=k

2−αj

d(Uy(ω), Uv(ω)) ≤
∞∑
j=k

2−αj
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and moreover

d(Uu(ω), Uv(ω)) ≤ 2−αk

The result now follows by the triangle inequality. □
The following subsection is the heart of our article. To show our main result,

we need the following lemmas:

Lemma 3.2. [7]. Let a(t) be a non-negative right-continuous increasing (extended
real-valued) function on R+. Set

C(t) = inf{s : a(s) > t}, t ∈ R+

Then C(t) is a non-negative right-continuous increasing function on R+, and is
called the right-inverse function of a(t). For t ∈ R+,C(t) < +∞ if and only if
t < a(∞) = lim

t−→∞
a(t). Set

a−(t) = a(t−) = lim
s↑↑t

a(s), t > 0 (such that s ↑↑ t means s −→ t, s < t),

C−(t) = C(t−) = lim
s↑↑t

C(s) = inf{s : a(s) ≥ t} = sup{s : a(s) < t}, t > 0

a(0−) = a(0), C(0−) = C(0).

Then we have

a−(C−(t)) ≤ a−(C(t)) ≤ t , t ∈ R+

and

a(C(t)) ≥ a(C−(t)) ≥ t ,t < a(∞)

Lemma 3.3. [2]. Let (a, b) ∈ R2 with a < b, φ and ψ : [a, b] −→ R non-negative

continuous functions, such that ∃ρ ∈ R+, ∀t ∈ [a, b], φ(t) ≤ ρ +
∫ t

a
φ(s)ψ(s)ds.

Then

∀t ∈ [a, b], φ(t) ≤ ρ exp

(∫ t

a

ψ(s)ds

)
3.2. The main result. This subsection is the heart of our article. In our model,
we show the continuity of the solution of the ♮-equation by applying the theorem
of Kolmogorov presented in the previous subsection and lemma of Gronwall such
that we take ε = p and β = p− n with p > 0. We have for u ≤ s ≤ t:

Xu
t (x) = x +

∫ t

u

Xs

(
− e−Λs

1− Zs

)
dNs +

∫ t

u

Xsf (Xs − (1− Zs))dYs

We know that the quantity f (Xs − (1 − Zs)) is bounded because f is a Lipschitz

function, but as we do not know a priori if the quantity
(
− e−Λs

1−Zs

)
is finite or not,

we introduce the stopping time τn = inf{t, 1−Zt <
1
n}. Therefore, we assume the

process X̃ instead of X:

dX̃t = X̃t(−
e−Λt

1− Zt∧τn

dNt + f (X̃t − (1− Zt))dYt)

such as X̃t = Xt, ∀t ≤ τn, n ∈ N.
We denote At = X̃u

t (x)−X̃u
t (y) and we apply Itô’s formula to the process |At|p,

we find:
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A = X̃x − X̃y

dAt = d(X̃x
t − X̃y

t )

d|At|p = p|At|p−1dAt +
|At|p−2

2 p(p− 1)[d < At, At >]

Such as

dAt = d(X̃x
t − X̃y

t )

dAt = (X̃x
t −X̃

y
t )

(
− e−Λt

1− Zt∧τn

)
dNt+[X̃x

t f (X̃
x
t −(1−Zt))−X̃y

t f (X̃
y
t −(1−Zt))]dYt

Noting

Vt(X̃
x
t ) = X̃x

t f (X̃
x
t − (1− Zt))

Vt(X̃
y
t ) = X̃y

t f (X̃
y
t − (1− Zt))

So

d|At|p = p|At|p−1dAt +
|At|p−2

2
p(p− 1)d < At, At >

and

d|At|p

= p|At|p−1dAt +
|At|p−2

2
p(p− 1)

[
(X̃x

t − X̃y
t )

2

(
− e−Λt

1− Zt∧τn

)2

d < N,N >t

+ (Vt(X̃
x
t )− Vt(X̃

y
t ))

2d < Y, Y >t +2(X̃x
t − X̃y

t )

(
− e−Λt

1− Zt∧τn

)
× (Vt(X̃

x
t )− Vt(X̃

y
t ))d < N, Y >t

]
By lemma of Jacod (see [3], page 128,129), there always exists a process G, such
that: C11dG = d < N,N > , C22dG = d < Y, Y > and C12dG = d < N, Y > with

C =

(
C11 C12

C21 C22

)
being a symmetric nonnegative matrix, and the choice of the latter is arbitrary,
then

d|At|p = p|At|p−1dAt +
Ap−2

t

2
p(p− 1)

[(
(X̃x − X̃y),Vt(X̃

x
t )− Vt(X̃

y
t )
)

×

 − e−Λt

1− Zt∧τn

0

0 1

×
(
C11 C12

C21 C22

)
×

 − e−Λt

1− Zt∧τn

0

0 1


×
(

X̃x
t − X̃y

t

Vt(X̃
x
t )− Vt(X̃

y
t )

)]
dGt

We denote

WT
t =

(
(X̃x − X̃y),Vt(X̃

x
t )− Vt(X̃

y
t )
)

M =

 − e−Λt

1− Zt∧τn

0

0 1

( C11 C12

C21 C22

) − e−Λt

1− Zt∧τn

0

0 1


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Wt =

(
X̃x

t − X̃y
t

Vt(X̃
x
t )− Vt(X̃

y
t )

)
So

d|At|p = p|At|p−1dAt +
Ap−2

t

2 p(p− 1)[WT
t MWt]dGt

|At|p = |x− y|p +
[∫ t

u

p|As|p−1dAs +

∫ t

u

p(p− 1)

2
Ap−2

s WT
s MWsdGs

]
E[|At|p] = |x− y|p + E[

∫ t

u

p|As|p−1dAs] + E[
∫ t

u

p(p− 1)

2
Ap−2

s WT
s MWsdGs]

E[|At|p] ≤ |x− y|p + E[
∫ t

u

p(p− 1)

2
Ap−2

s WT
s MWsdGs]

E[|At|p] ≤ |x− y|p + E[
∫ t

u

p(p− 1)

2
Ap−2

s ms|Ws|2dGs]

such that

M =

(
b11 b12
b21 b22

)
and m = |b11|+ |b12|+ |b21|+ |b22|

So

E[|At|p] ≤ |x−y|p+E[
∫ t

u

p(p− 1)

2
Ap−2

s ms((X̃
x
s −X̃y

s )
2+(Vs(X̃

x
s )−Vs(X̃y

s ))
2)dGs].

But f is a lipschitz function, then there exists a real positive constant K, so

|Vs(X̃x
s )− Vs(X̃

y
s )|2 ≤ K|X̃x

s − X̃y
s |2

Therefore

E[|At|p] ≤ |x− y|p + E[
∫ t

u

p(p− 1)

2
Ap−2

s ms(A
2
s +K|As|2)dGs]

E[|At|p] ≤ |x− y|p + E[
∫ t

u

p(p− 1)

2
|As|pms(1 +K)dGs]

E[|At|p] ≤ |x− y|p + p(p− 1)

2
(1 +K)E[

∫ t

u

|As|pmsdGs]

We denote

a = |x− y|p

b =
p(p− 1)

2
(1 +K)

Then

E[|At|p] ≤ a+ bE[
∫ t

u

|As|pmsdGs]

to apply Gronwall’s lemma (lemma 3.3) we must use the technique of change of
time to eliminate the process G; so for this we will use the lemma 3.2 (see [7]). In
our case, putting G(s) = a(s) and we consider the stopping time

C(t) = inf{s, G(s) > t}
Such that, for t ∈ R+, C(t) <∞ if and only if t < G(∞) = lim

t−→∞
G(t) and

G(C(t)) ≥ G(C−(t)) ≥ t, t ∈ R+

In fact
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E[|At|p] ≤ a+ bE
[∫ t

u

|As|pmsdGs

]
For s, t, α ∈ R+ such that s < α

E[ sup
t≤C(α)

|At|p] ≤ a+ bE

[
sup

t≤C(α)

∫ C(α)

u

|As|pmsdGs

]
We denote

Bt = sup
t≤C(α)

|At|

Then

E[Bp
t ] ≤ a+ b E

[∫ α

u

Bp
C(s)mC(s)dGC(s)

]
E[Bp

t ] ≤ a+ b E
[∫ α

u

Bp
C(s)mC(s)ds

]
E[Bp

t ] ≤ a+ b E

[∫ C(α)

u

Bp
s msds

]
Now, we can apply the lemma of Gronwall to this last expression, we have

E[Bp
t ] ≤ a+ bE

[∫ C(α)

u

Bp
smsds

]
We take

φ(t) = E[Bp
t ]

ψ(s) = ms

a = ρ

So, we find

E[Bp
t ] ≤ a exp

(
b

∫ C(α)

u

msds

)
Eventually, if

(∫ C(α)

u
msds

)
is finite, there exist the constant C which satisfy the

condition of Kolmogorov’s lemma that is to say that C= exp
(
b
∫ C(α)

u
msds

)
.

4. Conclusion

This document contains a new and original methodological approach to the
subject in question and could therefore be a good contribution to the theory of
stochastic processes, based on a very interesting lemma of Kolomogorov. Some
difficulties have been encountered because the subject deals with a difficult area
”the stochastic differential equations”. As prospects, we try to prove the same re-
sult of the paper, but in a vectorial case; moreover, we also think of demonstrating
that the stochastic flow associated with our model will be a diffeomorphism with
multidimensional parameters on the same space, and we will investigate whether
it is possible to have the same work on manifolds.
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