
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

Honors Theses Ogden Honors College

4-2022

LED Enhancements to the MIMIR Animatronic Figure LED Enhancements to the MIMIR Animatronic Figure

Collin J. DeVillier

Follow this and additional works at: https://repository.lsu.edu/honors_etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
DeVillier, Collin J., "LED Enhancements to the MIMIR Animatronic Figure" (2022). Honors Theses. 440.
https://repository.lsu.edu/honors_etd/440

This Thesis is brought to you for free and open access by the Ogden Honors College at LSU Scholarly Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of LSU Scholarly Repository. For
more information, please contact ir@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/honors_etd
https://repository.lsu.edu/honors
https://repository.lsu.edu/honors_etd?utm_source=repository.lsu.edu%2Fhonors_etd%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=repository.lsu.edu%2Fhonors_etd%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/honors_etd/440?utm_source=repository.lsu.edu%2Fhonors_etd%2F440&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ir@lsu.edu

LED Enhancements to the MIMIR Animatronic Figure

by

Collin J. DeVillier

Undergraduate honors thesis under the direction of

Dr. Shuangqing Wei

Department of Electrical and Computer Engineering

Submitted to the LSU Roger Hadfield Ogden Honors College in partial fulfillment of

the Upper Division Honors Program.

April 2022

Louisiana State University

& Agricultural and Mechanical College

Baton Rouge, Louisiana

2

TABLE OF CONTENTS

TABLE OF FIGURES .. 3

INTRODUCTION .. 4

Definitions .. 4

CHAPTER I: MIMIR ANIMATRONIC .. 5

Background ... 5
Legacy Animatronic Figures .. 5

Current Animatronic Figures ... 6

A Future of Animatronic Figures .. 7

Objective .. 8
Concept Overview ... 8
Movement Profile Overview ... 8

Computer Vision System .. 9

Speech Recognition System .. 10

Safety System Overview ... 12

System Integration .. 13

CHAPTER II: LED ENHANCEMENTS ... 14

Introduction ... 14

LED Hardware ... 14
Microcontroller Analysis .. 14
LED Placement ... 15

Changing Modes ... 16

Software ... 16
Custom Color Library ... 16

LED Eye Modes .. 17
ROS Additions ... 19

Future Considerations .. 19

Conclusion ... 20

APPENDIX A ... 21

APPENDIX B ... 35

3

TABLE OF FIGURES

Figure 1:Animatronic Abraham Lincoln developed by the Walt Disney Company [4] 5
Figure 2: Na'vi Shaman from Disney's Animal Kingdom theme park in Orlando, Florida [5] 6
Figure 3:Vyloo, Disney's interactive animatronic figures located at Disney's California

Adventure theme park in Anaheim, California [6] ... 7
Figure 4: Computer vision system flowchart. Dotted lines represent ROS connections. 10
Figure 5: Speech recognition system flowchart, including eyelid randomizer. Dotted lines

represent ROS communication. .. 12
Figure 6: Wiring diagram for LED eye system. ... 15

Figure 7: Flowchart for LED eye system. ... 18

Table 1: Servo listing with corresponding system that controls the servo's movement. 9

Table 2: Key phrases that will trigger the MIMIR animatronic figure to speak and move. 11
Table 3: List of topics, publishers, and subscribers for the MIMIR animatronic figure. 13
Table 4: LED Eye modes and descriptions. .. 19

Table 5: Subscriber additions for LED eye modes. .. 19

https://lsumail2-my.sharepoint.com/personal/cdevi16_lsu_edu/Documents/5.%20Senior%20Year/CollinDeVillier.Thesis.docx#_Toc100211048
https://lsumail2-my.sharepoint.com/personal/cdevi16_lsu_edu/Documents/5.%20Senior%20Year/CollinDeVillier.Thesis.docx#_Toc100211049
https://lsumail2-my.sharepoint.com/personal/cdevi16_lsu_edu/Documents/5.%20Senior%20Year/CollinDeVillier.Thesis.docx#_Toc100211050
https://lsumail2-my.sharepoint.com/personal/cdevi16_lsu_edu/Documents/5.%20Senior%20Year/CollinDeVillier.Thesis.docx#_Toc100211050
https://lsumail2-my.sharepoint.com/personal/cdevi16_lsu_edu/Documents/5.%20Senior%20Year/CollinDeVillier.Thesis.docx#_Toc100211054

4

INTRODUCTION

 The MIMIR animatronic figure is robotic character developed as part of Louisiana State

University’s capstone design program. To fulfill the thesis requirements of the LSU Ogden

Honors College, LED lights were added to the robotic system to enhance the character’s

storytelling abilities.

First, definitions of relevant terminologies are provided. Next, the background and

objectives of the MIMIR animatronic figure are discussed. A detailed description of the MIMIR

animatronic is provided, along with a description of the LED additions. Following, a description

of the design and analysis of the LED system is provided. Finally, a description of the future

applications of the system is provided, along with the system’s code.

Definitions

 Animatronic – a robotic system designed to tell a story. Animatronic figures are often

found in theme parks and in the film and television industry.

 Theme Park – “an amusement park in which the structures and settings are based on a

central theme [1].”

 Themed Entertainment – “the creation of an artificial environment where various

elements bring to life a thematically driven story for immersing visitors in a strongly identified

or branded setting [2].” Themed entertainment is inclusive of theme parks, museums, escape

rooms, or other physical environments.

5

CHAPTER I

THE MIMIR ANIMATRONIC

Background

Legacy Animatronic Figures

 Animatronic figures have been used in the themed entertainment industry for the last fifty

years. The term “animatronic” is a derivative of Audio-Animatronic, the name trademarked by

the Walt Disney Company to describe their new line of robotic characters in the middle of the

twentieth century [3]. Walt Disney Imagineering, formerly known as WED Enterprises,

developed the first Audio-Animatronic human for the 1964 New York World’s Fair [4]. The

animatronic character featured was Abraham Lincoln, who delivered the Gettysburg Address to

guests at the fair. In the decades since, animatronic characters have increased in complexity.

Figure 1:Animatronic Abraham

Lincoln developed by the Walt Disney

Company [4]

6

Current Animatronic Figures

 In 2017, Disney unveiled their newest Audio-Animatronic, the Na’vi Shaman. This

animatronic contains 42 degrees of freedom in the head alone, making it Disney’s most complex

animatronic at the time [5]. The Na’vi Shaman is an example of the growing possibilities of

animatronic systems. The increasing complexity of the systems allow engineers and designers to

give the characters more detailed facial expressions and mobility, enhancing their ability to

immerse guests in compelling narratives.

Since the advent of the Audio-Animatronic, these robotic figures have only provided a

uni-directional method of storytelling. Animatronic figures conveyed a pre-written story to

guests; guests could not engage with an animatronic to change the animatronic figure’s narrative.

Even though these animatronic figures have become more complex in design, most animatronic

figures that reside in theme parks follow this uni-directional storytelling method. Though the last

decade has seen leaps in animatronic technologies, there remains a gap separating modern theme

parks from the influences of bi-directional storytelling.

Figure 2: Na'vi Shaman from Disney's Animal Kingdom

theme park in Orlando, Florida [5]

7

A Future of Animatronic Figures

 In 2018, Disney unveiled a new autonomous figure as they opened Guardians of the

Galaxy - Mission BREAKOUT! at Disney’s California Adventure park in Anaheim, California.

Called the Vyloo, these small animatronic figures interact with guests. When asked about the

new animatronic figures, Leslie Evans, Senior Research and Development Imagineer said, “We

were really interested in the idea of creating some little guys that could truly respond to and

interact with guests [6].”

It was recently revealed that in 2011, Walt Disney Imagineering developed an

animatronic figure called Destini that used computer vision to interact with guests. According to

Research and Development Imagineer Alfredo Ayala, the project was designed to answer the

question, “What happens when our characters become reactive and responsive to our guests [7]?”

This bi-directional form of storytelling allows guests to interact with the animatronic figures. The

motivation of this project is to build on this foundational principle and showcase a potential

future of animatronic interactions using current advancements in technology.

Figure 3:Vyloo, Disney's interactive animatronic figures

located at Disney's California Adventure theme park in

Anaheim, California [6]

8

Objective

 The objective of the MIMIR animatronic is to develop a story driven animatronic head

for the themed entertainment industry that moves to track users and verbally respond to auditory

cues. The animatronic will move its eyes, eyelids, mouth, and head. In addition, the animatronic

will use a computer vision system to track a user as they move about a room. The system will

leverage a speech recognition system to allow users to deliver specific key phrases that will

trigger the movement and speech of the animatronic system.

Concept Overview

 When a user wishes to interact with the MIMIR animatronic figure, the user will walk in

front of the animatronic and pick up an ornate bowl. The MIMIR animatronic figure will move

to follow the location of the bowl. The user will be free to walk about the entire space, and the

animatronic figure will move its head to keep eye contact with the user. The user can speak any

one of fourteen unique key phrases. Once spoken, the MIMIR animatronic figure will respond by

moving its head and speaking to the user. The key phrases can be spoken in any order and with

any frequency. Once the user completes their interaction with the animatronic figure, the user

will return the bowl to its original location.

Movement Profile Overview

 The MIMIR animatronic figure contains four distinct movement functions. The figure

can move its head, eyes, eyelids, and mouth. The servos are connected to the computer vision

system and speech recognition system in accordance with table 1.

9

Table 1: Servo listing with corresponding system that controls the servo's movement.

Servo Name System Connection

Head Yaw
Computer Vision System

Eye Yaw

Head Pitch

Speech Recognition System
Head Roll

Eye Pitch

Mouth

Left Eyelid
Eyelid Randomizer System

Right Eyelid

Computer Vision System

 The MIMIR animatronic figure leverages a computer vision system to track a unique

object. The computer vision system uses the MobileNet v2 algorithm as the basis for the model.

A custom dataset was created with images of the ornate bowl from different distances, lighting

environments, and object orientations. The dataset was trained on the MobileNet algorithm to

produce a unique mode. When the computer vision algorithm detects the bowl, it places a

bounding box around the object. An algorithm uses the bounding box to calculate the location of

the object with respect to the center of the animatronic’s head. This location, in degrees, is then

sent to the head and eye yaw servos. Then, the eye and yaw servos receive the location and move

to align with the user’s location. Figure 4 depicts a flowchart of the computer vision system.

10

Figure 4: Computer vision system flowchart. Dotted lines represent ROS connections.

 The computer vision system runs on an NVIDIA Jetson Nano, a microcontroller with an

embedded graphical processing unit (GPU) that allows for the simultaneous filtering of multiple

images. The speed of the processor reduces the delay between the user’s motion and the

animatronic figure’s reaction.

Speech Recognition System

 The MIMIR animatronic uses a speech recognition system to listen to the user’s voice.

When the user speaks a specific key phrase, the animatronic figure will respond to the user’s

prompt by moving and speaking. A microphone is embedded in the ornate bowl, allowing the

user to speak while moving about the room. This microphone is connected to a receiver that will

transmit the speech data to the speech recognition system. The MIMIR animatronic figure will

contain pre-recorded dialogue that corresponds to the subject of the user’s key phrase. The

MIMIR animatronic contains fourteen unique dialogue outputs triggered by fourteen unique key

phrases.

11

 The speech recognition system uses the PocketSphinx speech recognition model

developed by Carnegie Mellon University. This model functions offline and has been trained on

an internally developed dictionary by CMU. The speech recognition system searches user data

for specific key phrases. Each key phrase corresponds to an index number, according to table 2.

Table 2: Key phrases that will trigger the MIMIR animatronic figure to speak and move.

Key Phrase Index

“greetings stranger” 0

“how may I address you” 1

“well of wisdom” 2

“why are we under a tree” 3

“speak about the gods” 4

“where is your body” 5

“tell me about your eyes” 6

“suitable offering” 7

“glistening gold” 8

“enchanted wood” 9

“apples of immortality” 10

“sands of time” 11

“senior design project” 12

“until next time” 13

 When the user speaks the phrase, it will trigger the corresponding .mp3 dialogue file to

play, as well as the corresponding servo movements. The available servo movements for the

speech recognition system are mentioned in table 1. Figure 5 depicts a flowchart for the speech

recognition system.

12

Figure 5: Speech recognition system flowchart, including eyelid randomizer. Dotted lines represent ROS communication.

 The Raspberry Pi microcontroller will control all servo movements using two servo hats

connected to the PWM signal pins on the microcontroller. In addition, the Raspberry Pi also

houses a function that will randomly generate an eyelid actuation. A random number function

will publish the value of a time delay between each eyelid movement.

Safety System Overview

 The MIMIR animatronic figure was designed according to ASTM F2291-21: Standard

Practice for Design of Amusement Rides and Devices [8]. This standard governs the design of

themed entertainment attractions. In accordance with these standards, a five-foot barrier will be

placed between the user and the animatronic figure. This barrier is commonly referred to as the

system’s reach envelope. Because of this requirement, a tethered operator control panel has been

designed to allow the operator to stay outside of the reach envelope when powering and

13

monitoring the animatronic figure. This operator control panel contains an emergency stop

pushbutton that will allow the operator to immediately remove power from the servo motors and

shutoff the microcontrollers in case of an emergency.

System Integration

The Robot Operating System (ROS) is used to send and receive data from the computer

vision and speech recognition systems. The ROS environment contains two major functions to

allow this communication: publishers and subscribers. A publisher is a script that can transmit

data. A subscriber can access published information and perform a corresponding action using

the received data. The communication pipeline between the publisher and subscriber is called a

topic. Multiple subscribers can subscribe to topics. The publisher and subscriber information,

along with the affected servos and message types can be seen in table 3. The

“comp_vision_angle” topic handles the information from the computer vision system. The

“random_num” topic controls the actuation of the eyelids. The “mimir_keyword” topic handles

the information from the speech recognition system.

Table 3: List of topics, publishers, and subscribers for the MIMIR animatronic figure.

Topic Name Node Type Node Name Message Type Servos Used

“comp_vision_angle”

Publisher “comp_vision”

Int16

Subscriber “servo_yaw” Head Yaw,

Eye Yaw

“random_num”

Publisher “eyelid_randomizer”

Subscriber “servo_eyelids” Left Eyelid,

Right Eyelid

“mimir_keyword”

Publisher “speech_recog”

Subscriber “dialogue_mp3”

Subscriber “servo_head_roll” Head Roll

Subscriber “servo_head_pitch” Head Pitch

Subscriber “servo_eye_pitch” Eye Pitch

Subscriber “servo_mouth” Mouth

14

CHAPTER II

LED ENHANCEMENTS

Introduction

 To add to the immersive capabilities of the MIMIR animatronic figure, LED eyes are

added to the system. These LED eyes can change colors to match the dialogue of the MIMIR

animatronic. These LED eyes will consist of four different modes, allowing the operator to alter

the parameters by which the LED eyes will change colors.

Hardware

LED Hardware

 The LED eyes use NeoPixel Rings. These lights contain 12 RGB LEDs, which can be

individually addressed. These lights were chosen due to their small, circular shape. Adafruit, the

company who developed the NeoPixel family of LED lights, also created a library for controlling

their LEDs.

Microcontroller Analysis

To control the LED lights, an Arduino Uno is used. The Arduino microcontroller is both

inexpensive and compatible with the NeoPixel LED library. When designing the power

distribution system for the MIMIR animatronic figure, the power requirements for the Arduino

were taken into consideration. According to the Arduino datasheet, a fuse in the USB port

15

connected to a computer will blow if the Arduino’s current exceeds 500mA [9]. The power load

was calculated to be 2.5W. Figure 6 depicts the wiring diagram for the LED eye system. The

LEDs are connected to pin 6 for communication, while the pushbutton is attached at pin 2.

Figure 6: Wiring diagram for LED eye system.

LED Placement

 The LED lights will be placed behind the 3D printed pupils. The eyes were printed with a

transparent ABS filament, allowing for the light to shine through the eyes. A benefit of using

transparent ABS is that the final print appears opaque. This allows the light to shine through

while obscuring the user’s view of the LED mechanism. This allows the light to appear to

emanate from a point light source.

16

Changing Modes

 For the user to switch between LED eye modes, a momentary pushbutton will be placed

on the operator control panel. The user will be able to cycle between the four different eye

modes. Once the user has decided upon the eye mode for the MIMIR animatronic, they will hold

the pushbutton for 1 second to initiate the mode. To change eye modes again, the MIMIR

animatronic figure would need to be restarted.

Software

Custom Color Library

 The lights can be programmed using an Adafruit NeoPixel library. The library offers a

method of programming the LED color using an HSV methodology. HSV, is a method of

controlling multiple aspects of the LED’s parameters, including the color’s hue, saturation, and

brightness. This offers a robustness when programming the LEDs to match the MIMIR

animatronic’s dialogue.

 In the HSV function, the hue variable has a range of 0 to 65536. Each value represents a

point on the color spectrum, moving from red to yellow to green to blue to purple. The saturation

variable represents the purity of the hue. The range is from 0 to 255, moving from grayscale to

pure. The brightness variable can be altered from 0 to 255, moving from off to complete

brightness.

Because the LED eyes needed to shift colors during the dialogue enhancement mode, a

function was written to transition between two colors’ HSV values. The function takes in seven

parameters. These parameters include the old HSV value, the new HSV value, and a time delay

to govern the speed of the transition. The code for the program can be seen below:

17

void HSV(int hue, int sat, int bright, int hue_new, int sat_new, int

bright_new, int time_delay)

{

 while(hue != hue_new || sat != sat_new || bright != bright_new) //While the

old value is not equivalent

 {

 if (hue < hue_new) //If the new hue is greater, increment

 {

 hue++;

 }

 else if (hue > hue_new) //else, decrement

 {

 hue--;

 }

 if (sat < sat_new) //If the new saturation is greater, increment

 {

 sat++;

 }

 else if (sat > sat_new) //else, decrement

 {

 sat--;

 }

 if (bright < bright_new) //If the new brightness is greater, increment

 {

 bright++;

 }

 else if (bright > bright_new) //else, decrement

 {

 bright--;

 }

 int color = hue*(65536/360); //Color is the actual hue value, from 0-

65536.

 eye.fill(eye.ColorHSV(color,sat,bright),0,12);

 eye.show();

 delay(time_delay);

 }

}

LED Eye Modes

 The MIMIR animatronic figure has four distinct eye modes. The first eye mode is called

the “dialogue enhancement mode.” In this mode, the eyes change color to reflect the MIMIR

animatronic figure’s dialogue. The eyes are pre-programmed and timed to the pre-recorded

18

dialogue. When the MIMIR animatronic figure is not producing dialogue, the LED eyes turn

white. The second eye mode is a “vision eye mode.” In this eye mode, the location of a user

within the camera will determine the color of the eye. As the user sweeps across the view of the

camera, the eye will change colors, from red to purple. The third LED eye mode is a “random

color mode.” In this mode, the LED eyes will change colors each time the animatronic figure

blinks. The fourth eye mode is a “rainbow mode.” In this mode, the LED eyes shift colors

through the rainbow. This color shift exists for both when the MIMIR animatronic figure is

delivering an output and when the figure is at rest. Figure 7 depicts the flowchart for the LED

eye modes.

Figure 7: Flowchart for LED eye system.

19

 Each of the eye modes is listed in table 4, along with when the eye mode is turned on.

Table 4: LED Eye modes and descriptions.

Eye Mode Description Timing

“dialogue eye mode” The LED eyes change colors to match the dialogue

output.

During

dialogue only.

“rainbow eye mode” The LED eyes iterate through the colors of the

rainbow.

Always

“random color mode” The LED eyes change colors each time the eyelids

blink.

Always

“vision eye mode” The LED eyes change colors based on the location

of the user in the camera.

When object

is detected.

ROS Additions

 Because these eye modes require certain information from the computer vision and

speech recognition systems, additional subscribers are added to ROS. Table 5 describes the

subscriber additions.

Table 5: Subscriber additions for LED eye modes.

Eye Mode Subscribes To Node Name Message Type System

“dialogue eye

mode”

“speech_recog” “dialogue_eye” Int16 Speech

Recognition

“rainbow eye

mode”

“random color

mode”

“rand_num” “rand_eye” Int16 Eyelid

Randomizer

“vision eye

mode”

“cv_angle” “vision_eye” Int16 Computer

Vision

Future Considerations

 The purpose of the LED addition was to provide an enhanced experience for users of the

MIMIR animatronic figure. In the near future, a user survey will be generated to measure the

experience that user’s have with the MIMIR animatronic. Questions on the efficacy of the LED

eyes will be added to the survey to provide a concrete analysis of the system.

20

 One of the major challenges with programming the LED eye system was the coupling of

the speech recognition and computer vision systems. The programming of the LED modes was

predicated on the implementation of the vision and speech systems, which delayed progress.

Once the MIMIR animatronic figure is complete, further testing can be done to tune the LED

parameters to provide a more immersive experience for users.

Conclusion

 The LED enhancements to the MIMIR animatronic is a culmination of the programming

knowledge and engineering experience gained over the last five years. The stated goal of the

LED enhancements was to provide a more immersive experience from users. The system

successfully contains four separate modes that communicate with the major systems of the

MIMIR animatronic. This success is evidence that a future of bi-directional, storytelling

animatronic figures is possible.

21

APPENDIX A

CODE

/*

LED Enhancements to the MIMIR Animatronic Figure

By Collin DeVillier

4.4.2022

*/

#include <ros.h>

#include <std_msgs/Int16.h>

#include <Adafruit_NeoPixel.h>

#define LED_PIN 6 //Arduino LED Pin

#define PIXELS 12 //Number of pixels in NeoPixel Ring

#define PUSHBUTTON_PIN 2 //Arduino Pushbutton Pin

Adafruit_NeoPixel eye(PIXELS,LED_PIN,NEO_GRB + NEO_KHZ800); //Creates class of

LED called eye

ros::NodeHandle nh;

boolean toggle = LOW; //Toggle button for debounce

boolean select = LOW; //Select mode for when pushbutton is held down

int eyeMode = 0; //Holds the value for the desired eye mode

int timer = 0; //Holds the number of milliseconds that the pushbutton is held

int old_color = 0; //Holds the value of the previous color for vision eye mode

int dialogue_flag = 0; //Flag for dialogue eye mode

int vision_flag = 0; //Flag for vision eye mode

int random_flag = 0; //Flag for random eye mode

//Code for dialogue eye mode callback function

void dialogue_color(const std_msgs::Int16& dialogue_msg)

{

 if ((dialogue_flag == 1) && (eyeMode == 1)); //If the eye mode is set to 1

and the dialogue flag is initiated

 {

 int dialogue_var = dialogue_msg.data; //Creates variable that holds

keyphrase index value

 if (dialogue_var == 0)

 {

 keyphrase0();

22

 }

 if (dialogue_var == 1)

 {

 keyphrase1();

 }

 if (dialogue_var == 2)

 {

 keyphrase2();

 }

 if (dialogue_var == 3)

 {

 keyphrase3();

 }

 if (dialogue_var == 4)

 {

 keyphrase4();

 }

 if (dialogue_var == 5)

 {

 keyphrase5();

 }

 if (dialogue_var == 6)

 {

 keyphrase6();

 }

 if (dialogue_var == 7)

 {

 keyphrase7();

 }

 if (dialogue_var == 8)

 {

 keyphrase8();

 }

 if (dialogue_var == 9)

 {

 keyphrase9();

 }

 if (dialogue_var == 10)

 {

 keyphrase10();

 }

 if (dialogue_var == 11)

 {

 keyphrase11();

 }

 if (dialogue_var == 12)

 {

 keyphrase12();

 }

23

 if (dialogue_var == 13)

 {

 keyphrase13();

 }

 }

}

//Code for vision eye mode callback function

void spectrum_color(const std_msgs::Int16& angle)

{

 if ((vision_flag == 1) && (eyeMode == 2)) //If eye mode set to two and

vision flag initiated

 {

 int new_color = (angle.data - 20)*(18/7); //Sets value from 0-360

 HSV(old_color,255,255,new_color,255,255,1); //Sets to new color from

previous color

 old_color = new_color; //Update old_color flag to equal to the current

color

 }

}

//Code for random eye mode callback function

void random_color(const std_msgs::Int16& time_delay)

{

 if ((random_flag == 1) && (eyeMode == 3)) //If eye mode equal to three and

random flag initiated

 {

 int sleep = time_delay.data;

 int spectrum[] = {0,30,60,90,120,150,180,210,240,270,300,330}; //Sets

values of different colors

 int index = random(0,12); //Chooses random number from 0 to 11

 HSV(spectrum[index],255,0,spectrum[index],255,255,1); //Random number

chooses index for color

 delay(sleep); //Sleeps for the published value

 }

}

ros::Subscriber<std_msgs::Int16> dialogue_eye("mimir_keyword",

&dialogue_color); //Sets dialogue_eye subscriber

ros::Subscriber<std_msgs::Int16> vision_eye("comp_vision_angle",

&spectrum_color); //Sets vision_eye subscriber

ros::Subscriber<std_msgs::Int16> random_eye("random_num", &random_color);

//Sets random_eye subscriber

void setup()

24

{

 eye.begin(); //Initate LED eyes

 pinMode(PUSHBUTTON_PIN, INPUT_PULLUP); //Pushbutton pin initalization

 /*EYE MODE SELECTION

 The operator will press the pushbutton to cycle through the available eye

modes:

 RED -- DIALOGUE EYE MODE

 YELLOW -- VISION EYE MODE

 WHITE -- RANDOM EYE MODE

 BLUE -- RAINBOW EYE MODE

 To select an eye mode, the pushbutton should be held for 1 second.

 Once the selection has been made, the LEDs will flash three times in the

 corresponding mode color before starting the sequence.

 For the rainbow mode, the sequence will start immediately, for the other

modes,

 the corresponding subscriber will be initialized.*/

 while (select == LOW) //While pushbutton hasn't been held for 1 second

 {

 if ((digitalRead(PUSHBUTTON_PIN) == HIGH) && (toggle == LOW)) //if button

was pressed, but previous state was off...

 {

 delay(100); //debounce

 if (digitalRead(PUSHBUTTON_PIN) == HIGH) //if pushbutton is still high

 {

 eyeMode++; //increment eyeMode

 if (eyeMode == 1)

 {

 HSV(0,255,0,0,255,255,1); //turn eyes from off to red -- Dialogue

Eye Mode

 }

 if (eyeMode == 2)

 {

 HSV(0,255,255,60,255,255,1); //turn eyes from red to yellow --

Rainbow Mode

 }

 if (eyeMode == 3)

 {

 HSV(60,255,255,180,255,255,1); //turn eyes from yellow to white --

Random Mode

 }

 if (eyeMode == 4)

 {

 HSV(180,255,255,240,255,255,1); //turn eyes from white to blue --

Vision Mode

 }

25

 if (eyeMode == 5) //Reset eyeMode

 {

 eyeMode = 0;

 HSV(240,255,255,0,255,0,1); //turn eyes from blue to off

 }

 while(digitalRead(PUSHBUTTON_PIN) == HIGH)

 {

 timer++; //increment timer

 delay(1); //count every millisecond

 if (timer >= 1000) //after 1 second

 {

 if (eyeMode == 1)

 {

 for (int i = 0; i <= 3; i++) //blink red three times

 {

 HSV(0,255,255,0,255,255,1);

 delay(250);

 HSV(0,255,255,0,255,0,1);

 }

 dialogue_flag = 1; //turn dialogue mode flag on

 }

 if (eyeMode == 2)

 {

 for (int i = 0; i <= 3; i++) //blink yellow three times

 {

 HSV(60,255,255,60,255,255,1);

 delay(250);

 HSV(60,255,255,60,255,0,1);

 }

 vision_flag = 1; //turn vision mode flag on

 }

 if (eyeMode == 3)

 {

 for (int i = 0; i <= 3; i++) //blink white three times

 {

 HSV(180,255,255,180,255,255,1);

 delay(250);

 HSV(180,255,255,180,255,0,1);

 }

 random_flag = 1; //turn random mode flag on

 }

 if (eyeMode == 4)

 {

 for (int i = 0; i <= 3; i++) //blink blue three times

 {

 HSV(240,255,255,240,255,255,1);

 delay(250);

 HSV(240,255,255,240,255,0,1);

 }

26

 }

 select = HIGH; //If pushbutton held for 1 second, turn select on,

exiting loop

 }

 }

 timer = 0; //If button held for less than 1 second, reset timer

 toggle = HIGH; //When button released, turn toggle on.

 }

 if ((digitalRead(PUSHBUTTON_PIN) == LOW) && (toggle == HIGH)) //If

toggle on and button released

 {

 toggle = LOW; //Turn toggle off

 }

 }

 }

 nh.initNode(); //Initializes ROS Serial node for Arduino. Occurs once.

 if (dialogue_flag == 1) //If dialogue mode chosen, turn subscriber on.

 {

 nh.subscribe(dialogue_eye);

 }

 else if (vision_flag == 1) //If vision mode on, turn subscriber on.

 {

 nh.subscribe(vision_eye);

 }

 else if (random_flag == 1) //If random mode on, turn subscriber on.

 {

 nh.subscribe(random_eye);

 }

}

void loop()

{

 nh.spinOnce();

 delay(1);

 while (eyeMode == 4) //If eye mode is set to rainbow mode, play sequence

 {

 rainbowEye();

 }

}

/*rainbowEye loops through the colors of the Rainbow using HSV function.

The delay can change the speed at which the colors loop.*/

void rainbowEye()

{

 for(int i=0; i<3276; i++)

 {

 int color = i*20;

27

 eye.fill(eye.ColorHSV(color,255,255));

 eye.show();

 delay(3);

 }

}

/*HSV is a function that takes in arguments for two separate hues,

saturations, and

brightnesses. The first three variables are the current HSV values. The second

three

variables are the new HSV values. The time delay sets how fast the transition

will be.

Hue has a range from 0 - 360 (the position on the color wheel.)

Saturation has a range from 0 - 255.

Brightness has a range from 0 - 255.*/

void HSV(int hue, int sat, int bright, int hue_new, int sat_new, int

bright_new, int time_delay)

{

 while(hue != hue_new || sat != sat_new || bright != bright_new) //While the

old value is not equivalent

 {

 if (hue < hue_new) //If the new hue is greater, increment

 {

 hue++;

 }

 else if (hue > hue_new) //else, decrement

 {

 hue--;

 }

 if (sat < sat_new) //If the new saturation is greater, increment

 {

 sat++;

 }

 else if (sat > sat_new) //else, decrement

 {

 sat--;

 }

 if (bright < bright_new) //If the new brightness is greater, increment

 {

 bright++;

 }

 else if (bright > bright_new) //else, decrement

 {

 bright--;

 }

28

 int color = hue*(65536/360); //Color is the actual hue value, from 0-

65536.

 eye.fill(eye.ColorHSV(color,sat,bright),0,12);

 eye.show();

 delay(time_delay);

 }

}

/*RGB is a similar function that takes in arguments for an old and new color

value, along with

a time delay. This function was never called, but it was written in case

certain color changes

were needed for the dialogue mode.*/

void RGB(int red, int green, int blue, int red_new, int green_new, int

blue_new, int time_delay)

{

 while(red != red_new || green != green_new || blue != blue_new)

 {

 if (red < red_new)

 {

 red++;

 }

 else if (red > red_new)

 {

 red--;

 }

 if (green < green_new)

 {

 green++;

 }

 else if (green > green_new)

 {

 green--;

 }

 if (blue < blue_new)

 {

 blue++;

 }

 else if (blue > blue_new)

 {

 blue--;

 }

 eye.fill(eye.Color(red,green,blue),0,12);

 eye.show();

 delay(time_delay);

 }

}

29

/*DIALOGUE MODE KEYPHRASES

 * The below keyphrase functions house the color changes with the

corresponding dialogue.*/

void keyphrase0()

{

 delay(800);

 HSV(240,0,50,240,50,255,1); //white, increasing brightness

 HSV(240,0,255,240,255,255,7); //white to blue, increasing saturation

 HSV(240,255,255,360,255,255,9); //blue to red, increasing hue

 delay(1600);

 HSV(360,255,255,360,255,50,2); //decreasing brightness

 HSV(360,255,50,360,0,50,6); //decreasing saturation

}

void keyphrase1()

{

 delay(200);

 HSV(0,0,50,0,0,255,2); //white, increaing brightness

 HSV(0,0,255,0,255,255,3); //white to red, increasing saturation

 delay(3300);

 HSV(0,255,255,120,255,255,5); //white to green, increasing hue

 delay(700);

 HSV(120,255,255,60,255,255,5); //green to yellow, decreasing hue

 delay(4000);

 HSV(60,255,255,0,255,255,15); //orange to red, decreasing hue

 delay(4000);

 HSV(360,255,255,320,255,255,10); //red to purple, decreasing hue

 delay(1700);

 HSV(320,255,255,240,255,255,5); //purple to blue, decreasing hue

 delay(2700);

 HSV(240,255,255,360,255,255,2); //blue to red, increasing hue

 delay(2800);

 HSV(0,255,255,120,255,255,9); //red to green, increasing hue

 delay(1000);

 HSV(120,255,255,140,255,255,7); //green to cyan, increasing hue

 delay(1700);

 HSV(140,255,255,140,255,50,2); //decreasing brightness

 HSV(140,255,50,140,0,50,2); //decreasing saturation

}

void keyphrase2()

{

 delay(1000);

 HSV(330,0,50,330,0,255,2); //white, increasing brightness

 delay(800);

 HSV(330,0,255,330,255,255,7); //white to pink, increasing saturation

 delay(300);

30

 HSV(330,255,255,330,0,255,4); //pink to white, decreasing saturation

 delay(500);

 HSV(0,0,255,0,255,255,4); //white to red, increasing saturation

 HSV(0,255,255,120,255,255,20); //red to green, increasing hue

 HSV(120,255,255,120,0,255,7); //green to white, decreasing saturation

 delay(800);

 HSV(60,0,255,60,255,255,12); //white to yellow, increasing saturation

 delay(3000);

 HSV(60,255,255,60,0,255,7); //yellow to white, decreasing saturation

 delay(1200);

 HSV(220,0,255,220,255,255,14); //white to blue, increasing saturation

 delay(4200);

 HSV(220,255,255,360,255,255,17); //blue to red, increasing hue

 delay(1300);

 HSV(0,255,255,0,255,50,2); //decreasing brightness

 HSV(0,255,50,0,0,50,2); //decreasing saturation

}

void keyphrase3()

{

 delay(1000);

 HSV(35,0,50,35,0,255,2); //white, increasing brightness

 delay(3600);

 HSV(35,0,255,35,255,255,3); //yellow-orange, increasing saturation

 delay(800);

 HSV(35,255,255,35,0,255,2); //decreasing saturation

 delay(700);

 HSV(240,0,255,240,255,255,3); //blue, increasing saturation

 delay(700);

 HSV(240,255,255,240,0,255,2); //decreasing saturation

 delay(800);

 HSV(0,0,255,0,255,255,4); //red, increasing saturation

 delay(2900);

 HSV(0,255,255,0,0,255,2); //decreasing saturation

 delay(1100);

 HSV(330,0,255,330,255,255,2); //purple-red, increasing saturation

 delay(1500);

 HSV(330,255,255,330,0,255,2); //decreasing saturation

 delay(3000);

 HSV(120,0,255,120,255,255,3); //green, increasing saturation

 delay(1000);

 HSV(120,255,255,120,255,50,2); //decreasing brightness

 HSV(120,255,50,120,0,50,2); //decreasing saturation

}

void keyphrase4()

{

 delay(500);

 HSV(330,0,50,330,0,255,2); //increasing brightness

31

 delay(600);

 HSV(330,0,255,330,255,255,2); //purple, increasing saturation

 delay(2400);

 HSV(330,255,255,330,0,255,2); //decreasing saturation

 delay(400);

 HSV(60,0,255,60,255,255,2); //yellow, increasing saturation

 delay(2400);

 HSV(60,255,255,60,0,255,2); //decreasing saturation

 delay(8000);

 HSV(0,0,255,0,255,255,3); //red, increasing saturation

 delay(2000);

 HSV(0,255,255,0,0,255,2); //decreasing saturation

 delay(5500);

 HSV(120,0,255,120,255,255,3); //green, increasing saturation

 delay(6500);

 HSV(120,255,255,0,255,255,5); //green to red, decreasing hue

 delay(2500);

 HSV(0,255,255,0,255,50,2); //decreasing brightness

 HSV(0,255,50,0,0,50,2); //decreasing saturation

}

void keyphrase5()

{

 delay(500);

 HSV(230,0,50,230,0,255,2); //increasing brightness

 delay(1000);

 HSV(230,0,255,230,255,255,5); //blue, increasing saturation

 for (int i = 0; i <= 2; i++) //pulsing blue color

 {

 HSV(230,255,255,230,255,100,13); //decreasing brightness

 HSV(230,255,100,230,255,255,13); //increasing brightness

 }

 delay(200);

 HSV(230,255,255,120,255,255,7); //green, decreasing hue

 delay(1000);

 HSV(120,255,255,120,255,50,2); //decreasing brightness

 HSV(120,255,50,120,0,50,2); //decreasing saturation

}

void keyphrase6()

{

 delay(500);

 HSV(180,0,50,180,0,255,2); //increasing brightness

 HSV(180,0,255,180,255,255,2); //white, increasing saturation

 delay(1400);

 for(int i = 0; i <= 3; i++) //rainbow for two iterations

 {

 for(int j = 0; j<=360; j++)

32

 {

 int color = j*(65536/360);

 eye.fill(eye.ColorHSV(color,255,255));

 eye.show();

 delay(2);

 }

 }

 delay(100);

 HSV(0,255,255,0,0,255,2); //decreasing saturation

 delay(6000);

 HSV(120,0,255,120,255,255,4); //green, increasing saturation

 delay(3000);

 HSV(120,255,255,280,255,255,12);//green to blue

 delay(2500);

 HSV(300,255,255,360,255,255,6); //blue to red

 for (int i = 0; i <= 21845; i++)

 {

 int color = 3*i;

 eye.fill(eye.ColorHSV(color,255,255));

 eye.show();

 }

 HSV(360,255,255,360,255,50,2); //decreasing brightness

 HSV(360,255,50,360,0,50,2); //decreasing saturation

}

void keyphrase7()

{

 delay(500);

 HSV(0,0,50,0,0,255,2); //increasing brightness

 delay(6400);

 HSV(35,0,255,35,255,255,2); //yellow, increasing saturation

 delay(1000);

 HSV(35,255,255,35,0,255,2); //decreasing saturation

 HSV(0,0,255,0,255,255,2); //red, increasing saturation

 delay(1100);

 HSV(0,255,255,0,0,255,2); //decreasing saturation

 HSV(120,0,255,120,255,255,2); //green, increasing saturation

 delay(1200);

 HSV(120,255,255,120,0,255,2); //decreasing saturation

 HSV(340,0,255,340,255,255,2); //purple, increasing saturation

 delay(1500);

 HSV(340,255,255,340,255,50,2); //decreasing brightness

 HSV(340,255,50,340,0,50,2); //decreasing saturation

}

void keyphrase8()

{

 delay(500);

 HSV(35,0,50,35,0,255,2); //increasing brightness

33

 delay(1200);

 HSV(35,0,255,35,255,255,2); //yellow, increasing saturation

 delay(16000);

 HSV(35,255,255,35,255,50,2); //decreasing brightness

 HSV(35,255,50,35,0,50,2); //decreasing saturation

}

void keyphrase9()

{

 delay(500);

 HSV(120,0,50,120,0,255,2); //increasing brightness

 delay(1200);

 HSV(120,0,255,120,255,255,2); //green, increasing saturation

 delay(16500);

 HSV(120,255,255,120,255,50,2); //decreasing brightness

 HSV(120,255,50,120,0,50,2); //decreasing saturation

}

void keyphrase10()

{

 delay(500);

 HSV(0,0,50,0,0,255,2); //increasing brightness

 delay(1000);

 HSV(0,0,255,0,255,255,2); //red, increasing saturation

 delay(18500);

 HSV(0,255,255,0,255,50,2); //decreasing brightness

 HSV(0,255,50,0,0,50,2); //decreasing saturation

}

void keyphrase11()

{

 delay(500);

 HSV(340,0,50,340,0,255,2); //increasing brightness

 delay(1000);

 HSV(340,0,255,340,255,255,2); //red, increasing saturation

 delay(12000);

 HSV(340,255,255,340,255,50,2); //decreasing brightness

 HSV(340,255,50,340,0,50,2); //decreasing saturation

}

void keyphrase12()

{

 delay(500);

 HSV(120,0,50,120,0,255,2); //increasing brightness

 delay(2200);

 HSV(120,0,255,120,255,255,2); //green, increasing saturation

 delay(1000);

 HSV(120,255,255,120,0,255,2); //decreasing saturation

 delay(3600);

34

 HSV(350,0,255,350,255,255,2); //pink, increasing saturation

 delay(1000);

 HSV(350,255,255,350,0,255,2); //decreasing saturation

 delay(2500);

 HSV(30,0,255,30,255,255,2); //yellow, increasing saturation

 delay(1000);

 HSV(30,255,255,30,0,255,2); //decreasing saturation

 delay(2000);

 HSV(220,0,255,220,255,255,2); //blue, increasing saturation

 delay(1200);

 HSV(220,255,255,220,0,255,2); //decreasing saturation

 delay(2500);

 HSV(300,0,255,300,255,255,2); //purple, increasing saturation

 delay(2000);

 HSV(300,255,255,300,0,255,2); //decreasing saturation

 delay(2700);

 HSV(0,0,255,0,255,255,2); //red, increasing saturation

 delay(2500);

 HSV(0,255,255,0,0,255,2); //decreasing saturation

 delay(2000);

 HSV(0,0,255,0,0,50,2); //decreasing brightness

}

void keyphrase13()

{

 delay(500);

 HSV(37,0,50,37,0,255,2); //increasing brightness

 delay(1000);

 HSV(120,0,255,120,255,255,2); //green, increasing saturation

 delay(1500);

 HSV(120,255,255,120,0,255,2); //decreasing saturation

 delay(800);

 HSV(37,0,255,37,255,255,3); //yellow, increasing saturation

 delay(2200);

 HSV(37,255,255,37,255,50,2); //decreasing brightness

 HSV(37,255,50,37,0,50,2); //decreasing saturation

}

35

APPENDIX B

MIMIR DIALOGUE

Keyphrase 0: “greetings stranger”

And hello to you weary traveler. What wisdom have you come to seek?

Keyphrase 1: “how may i address you”

What is my name? Some call me the God of Wisdom. I am keeper of knowledge and guardian of

the secrets of the nine realms. I know all and I see all. I am the custodian of memory and broker

between dreams and reality. What is my name? I am MIMIR! What other knowledge do you

seek?

Keyphrase 2: “well of wisdom”

Before me lies a well that contains limitless wisdom. I drink from this well daily in order to

maintain access to the world's knowledge. This well also provides nourishment to the world tree,

Yggdrasil.

Keyword 3: “why are we under a tree”

Ah yes, your memory fades, doesn't it? You have traveled a great distance to stand beneath the

great ash tree, Yggdrasil. It is this tree, with its cathedral of glowing roots that gives life to the

nine realms. Before me lies one of three wells that provides nourishment to the great tree. It is I

who guards this well of infinite wisdom. Any more questions?

36

Keyword 4: “speak about the gods”

Well, there are two races of gods. The Aesir are the gods of Asgard. The Vanir are the gods of

Vanaheim. These gods often clash, waging wars against one another. After one such skirmish,

Hoesir, an old Aesir god, was placed in charge of the Vanir in hopes of brokering a peace.

Keyword 5: “where is your body”

Hoesir, an Aesir god, was placed in charge of the Vanir. I was appointed as counsel to Hoesir.

Over time, the Vanir grew tired of Hoesir’s tenure as ruler of the Vanir. As punishment, the

Vanir thought fit to cut my head off. Odin, king of the Aesir, brewed a benevolent concoction of

herbs and restored my consciousness. It is through his kindness that I speak to you today. Do you

have any other questions?

Keyword 6: “tell me about your eyes”

Oh, you mean these beauties. (Pause as Mimir's eyes shimmer). Odin, king of the gods, also

sought wisdom from my well. As guardian of the well, I struck a deal with Odin. In exchange for

a taste of these divine waters, I requested that Odin bring me two orbs fashioned from the great

rainbow bridge called the Bifrost. Having replaced my eyes with the orbs of the Bifrost, I was

able to see into dimensions beyond our own.

Keyword 7: “suitable offering”

A choice lies before you. You may choose from four items: a bar of gold, an basket of apples, a

bundle of wood, or a bowl of sand.

37

Keyword 8: “glistening gold”

You have chosen glistening gold from the ground below. I cannot accept this gift, for gold

belongs to the dwarves of Svartalfheim. Their craftsmanship is unmatched in the nine realms.

Keyword 9: “enchanted wood”

You have chosen wood cut from the enchanted forests of Jotenheim. I cannot accept this gift, for

these enchanted trees belong to the giants. The giants should not be trifled with.

Keyword 10: “apples of immortality”

You have chosen apples picked from the tree of immortality. I cannot accept this gift, for these

apples belong to Idunn, goddess of rejuvenation. These apples provide immortality to the gods.

Keyword 11: “sands of time”

You have chosen the sands of time. I am most grateful for this gift, for you see, I am an old man

and merely want to share my tales with travelers on their journey.

Keyword 12: “senior design project”

Ahem. My name is MIMIR, and I wanted to take a moment to praise the remarkable efforts of

these five engineering students. In many ways their unparalleled creativity is matched only in

their magnificent engineering ability. As the god of wisdom, I know all and I see all. And I see

no greater feat of excellence than the handsome devil that speaks before you. That is all.

38

Keyword 13: “until next time”

And farewell to you kind seeker. May you find joy and peace in your journeys ahead.

39

REFERENCES

[1] merriam-webster.com, "theme park," Merriam-Webster, [Online]. Available:

https://www.merriam-webster.com/dictionary/theme%20park. [Accessed 2022].

[2] T. Skees, "Themed Entertainment, the basics," The Designer's Creative Studio, 2 November

2020. [Online]. Available: https://www.designerscreativestudio.com/blog/Themed-

Entertainment-the-basics. [Accessed 2022].

[3] D23, "Audio-Animatronics," D23, [Online]. Available: https://d23.com/a-to-z/audio-

animatronics/. [Accessed 2022].

[4] D23, "The Birds, Beasts, and Beauty of Disney's Audio Animatronics Characters," D23,

[Online]. Available: https://d23.com/audio-animatronics-disneyland-magic-kingdom-walt-

disney-world/. [Accessed 2022].

[5] IEEE, "Na'vi Shaman," [Online]. Available: https://robots.ieee.org/robots/navishaman/.

[Accessed 2022].

[6] M. Panzarino, "Disney has begun populating its parks with autonomous, personality-driven

robots," TechCrunch, 8 February 2018. [Online]. Available:

https://techcrunch.com/2018/02/08/disney-has-begun-populating-its-parks-with-

autonomous-personality-driven-robots/. [Accessed 2022].

[7] One Day at Disney (Shorts) - Alfredo Ayala: R&D Imagineer. [Film]. United States: Walt

Disney Studios, 2019.

[8] ASTM International, "Standard Practice for Design of Amusement Rides and Devices,"

[Online]. Available: https://www.astm.org/f2291-21.html. [Accessed 2022].

[9] Arduino, "Arduino Uno Rev3," [Online]. Available: http://store-

usa.arduino.cc/products/arduino-uno-rev3. [Accessed 2022].

	LED Enhancements to the MIMIR Animatronic Figure
	Recommended Citation

	[Thesis Title]

