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a b s t r a c t

For a graph G, let γ : V (G) → {1, . . . , |V (G)|} be a one-to-one function. The bandwidth
of γ is the maximum of |γ (u) − γ (v)| over uv ∈ E(G). The bandwidth of G, denoted b(G),
is the minimum bandwidth over all embeddings γ , b(G) = minγ {max{|γ (u) − γ (v)| :

uv ∈ E(G)}}. In this paper, we show that the bandwidth computation problem for trees
of diameter at most 4 can be solved in polynomial time. This naturally complements the
result computing the bandwidth for 2-caterpillars.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The graph terminology used here will follow West [8]. Let G be a graph. For x ∈ V (G), let d(x) denote the degree of x in
G and let ∆(G) be the maximum degree among all vertices in G. Let

γ : V (G) → {1, . . . , |V (G)|}

be a one-to-one function. The bandwidth of γ , denoted b(γ ), is themaximum of |γ (u)−γ (v)| for uv ∈ E(G). The bandwidth
of G, denoted b(G), is the minimum bandwidth over all embeddings γ . That is,

b(G) = min
γ

{max{|γ (u) − γ (v)| : uv ∈ E(G)}}.

The diameter of a graph G, denoted diam(G), is the greatest distance between any two vertices in G. The local density,
ρ(G), is defined as

ρ(G) =


max
G′

|V (G′)| − 1
diam(G′)


where G′ is taken over all connected subgraphs of G. Considering the vertices receiving the largest and smallest labels among
those in G′ yields the well-known lower bound b(G) ≥ ρ(G) [8].

k-Caterpillars are the trees obtained from paths by appending edge-disjoint paths of lengths at most k. For k = 1, they
are simply referred to as caterpillars.

For caterpillars [5,7], there exist polynomial time algorithms to find the bandwidth. For 2-caterpillars [1], the bandwidth
is known to be the local density, which can be computed in polynomial time. On the other hand, the bandwidth computation
problemhas been shown to be NP-complete for 3-caterpillars [6]. Formore results related to bandwidth and bandwidth-like
problems, the interested reader can turn to surveys [2,4].

Let T be the family of trees such that every leaf is within distance 2 of a root vertex r . Caterpillars are the trees obtained
from paths by appending leaves, while T is the family obtained from stars by appending leaves.While the bandwidth equals
local density for 2-caterpillars [1], this is not the case for T . Fig. 1 shows an optimal numbering of a tree T in T having
bandwidth 4, but ρ(T ) = 3. Thus a different method is needed to compute the bandwidth of trees in T .

E-mail address:mark.bilinski@gmail.com (M. Bilinski).

0012-365X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2012.03.006

http://dx.doi.org/10.1016/j.disc.2012.03.006
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:mark.bilinski@gmail.com
http://dx.doi.org/10.1016/j.disc.2012.03.006


1948 M. Bilinski et al. / Discrete Mathematics 312 (2012) 1947–1951

Fig. 1. Optimal numbering of a tree T ∈ T where b(T ) ≠ ρ(T ).

Fig. 2. Tree with root r labeled using the algorithm in Lemma 2.1.

An important step in our algorithm is to show that the bandwidth problem for T is equivalent to a version of the classic
optimization problem partition. partition takes n positive integers and asks if they can be partitioned into two sets that
have the same sum. While partition is NP-complete [3], our algorithm runs in polynomial time thanks to a difference in
input size. We show that the bandwidth computation problem can be solved in polynomial time if and only if a version of
partition can be solved in polynomial time based instead on the size of the tree.

2. Our bandwidth problem is a partition problem

The following technical lemma implies that the bandwidth problem for T is equivalent to a partition problem.

Lemma 2.1. If T ∈ T , with r the root of T and C the set of neighbors of r, then b(T ) ≤ k if and only if:

(1) ∆(T ) ≤ 2k
(2) |V (T )| ≤ 4k + 1
(3) C has a partition (C1, C2) such that:

(3a) |C1| ≤ k, and |C2| ≤ k
(3b) |C1| + |C2| + |D1| ≤ 3k, and |C1| + |C2| + |D2| ≤ 3k, where Di is the set of children of Ci for i = 1, 2.

Proof. Suppose b(T ) ≤ k. Let γ be a numbering of T with b(γ ) = b(T ). Let C1 and C2 be the sets of neighbors of r with labels
less than γ (r) and greater than γ (r), respectively. Note that |C1| ≤ k and |C2| ≤ k. Also at most 2k − |C1| neighbors of C1
have labels less than γ (r), and at most k−|C2| neighbors of C1 have labels greater than γ (r). Thus |D1| ≤ 3k−|C1|− |C2|, as
desired. Similarly, |D2| ≤ 3k−|C1|−|C2|. Since diam(T ) ≤ 4, the local density bound yields |V (T )| ≤ 4k+1 and∆(T ) ≤ 2k.

Let T ∈ T satisfying (1) and (2), and suppose a partition of the children of the root, (C1, C2) satisfying (3) exists. Let
C1 = {x11, . . . , x1n1} with d(x11) ≥ · · · ≥ d(x1n1), and let C2 = {x21, . . . , x2n2} with d(x21) ≥ · · · ≥ d(x2n2), and further
assume |C1| + |D1| ≥ |C2| + |D2|. The following algorithm produces a labeling demonstrating b(T ) ≤ k. Fig. 2 shows a tree
with root r and children partitioned as (C1, C2) that satisfies conditions (1)–(3) for k = 5. Its vertices have been labeled
according to the algorithm. Note that steps (1)–(4) assign labels 1–10, steps (5)–(6) assign labels 11–14, and steps (7)–(10)
assign labels 20 to 15.
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Algorithm. Input: k, a positive integer and T ∈ T satisfying conditions (1)–(3) for k and partition (C1, C2).
Output: γ (v) a labeling of the vertices of T into {1, . . . , |V (T )|}.
Label with the smallest unassigned value beginning with 1:
(1) At most k grandchildren, from children of x11 through children of x1n1 .
(2) x11 through x1i, where x1i is the last vertex whose child has a label.
(3) The remaining children of x1i.
(4) Up to label 2k: half of the children of x1j (rounded up), x1j, then the remaining children of x1j for j from i + 1 to n1.
(5) r .
(6) Resume (4), without the 2k restriction, for the rest of x1j and their children.
Label with the largest unassigned value beginning with |V (T )|:
(7) At most k grandchildren, from children of x21 through children of x2n2 .
(8) x21 through x2l, where x2l is the last vertex whose child has a label.
(9) The remaining children of x2l.

(10) Half of the children of x2j (rounded up), x2j, then the remaining children of x2j, for j from l + 1 to n2.

It remains to show this algorithm demonstrates a bandwidth of at most k.
Consider x1j and y, where j < i and y is a child of x1j. By Step 1 and as the x1j are sorted by degree, |γ (x1j) − γ (y)| ≤ k.
Next consider x1i and y, where y is a child of x1i. As above, if γ (y) < γ (x1i), then |γ (x1i) − γ (y)| ≤ k. Assume for

contradiction that there are more than k − 1 children of x1i with label greater than γ (x1i). Then d(x1j) ≥ k + 1 for j < i and
hence x1j has at least k children. By steps (1)–(2), i = 1. But then x11 has at least 2k children, contradicting ∆(T ) ≤ 2k. Thus
there are at most k − 1 children of x1i with label greater than γ (x1i) and hence by step (3) |γ (x1i) − γ (y)| ≤ k for any child
y of x1i.

Next consider x1j and y, where j > i and y is a child of x1j. As the label of any such x1j is centered among the labels of its
children by steps (4) and (6), |γ (x1j) − γ (y)| ≤ k for any x1j all of whose children have labels on one side of γ (r). Further
if i ≥ 2, then by construction x1j has less than k children and hence |γ (x1j) − γ (y)| ≤ k. Thus we may assume i = 1 and
x12 has children with labels both less and greater than γ (r). Note that d(x11) + d(x12) ≤ |C1| + |D1| ≤ 3k by condition (3b).
Thus in any case, |γ (x1j) − γ (y)| ≤ k, where j = 2.

By construction the x2j and their children all receive a label. By the symmetry between steps (1)–(4) and (7)–(10) in the
algorithm, |γ (x2j) − γ (y)| ≤ k for any child y of x2j.

Simple case analysis of |D1| and |D1| + |C1| shows that |γ (r) − γ (x1j)| ≤ k for any j. A similar result holds for the x2j. �

Note that the algorithm runs in time O(|V (T )|), given a partition satisfying conditions (1)–(3) and given that the children
of the root are sorted by degree. If the children are not sorted by degree, we must of course sort them, and the algorithm
runs in time O(|V (T )| log |V (T )|).

3. Pseudo-polynomial partition algorithm

In this section, we develop an algorithm to solve the partition problem in pseudo-polynomial time. This algorithm will
then beused to solve the bandwidth computation problem forT in polynomial timebecause the input size for the bandwidth
problem is the size of tree, which is slightly larger than the input size for the standard partition problem.

First we formally define a variant of the standard partition problem.
fixed size subset sum.

Instance: a1, . . . , an,m,N non-negative integers.
Question: Is there a subset I ⊆ {1, . . . , n} such that |I| = m and


i∈I ai = N?

Note that the input size is O(n + log2 m + log2 N +
n

i=1⌊log2 ai⌋). It is easy to see that fixed size subset sum is NP-
complete and hence no known algorithm solves the problem in polynomial time based on the size of the input.

Below we give a dynamic programming algorithm that solves the problem in pseudo-polynomial time, but before we
begin, we first give a definition to make clear what is meant in this algorithm. Let I be a family of sets I ⊆ {1, .., n}. I is said
to be the lexicographically minimum set if for any J ∈ I,min{I△J} ∈ I , where △ is the symmetric difference. For example, if
I = {{1, 3, 4}, {2, 4}, {1, 2, 4}}, {1, 2, 4}would be the lexicographically minimum set. As the algorithmwill deal with finite
families of finite sets, the lexicographically minimum set is well defined.

Lemma 3.1. The problem fixed size subset sum can be solved in polynomial time based on the input size: n + m + N +n
i=1⌊log2 ai⌋.

Proof. For any I ⊆ {1, . . . , n} let a(I) :=


i∈I ai. For any two non-negative integers p, q, let

f (p, q) =


∗ if no I satisfies |I| = p and a(I) = q
{ai : i ∈ I} otherwise, where I is the lexicographically minimum set that satisfies |I| = p and a(I) = q.

Note that f (m,N) either demonstrates the partition for a positive outcome of fixed size subset sum or indicates that no
such partition exists. Below we present an algorithm which iteratively populates the two-dimensional table of values for
f (p, q) and ultimately outputs the desired f (m,N).
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Algorithm. Input: a1, . . . , an,m,N of non-negative integers.
Output: f (m,N)

if pq = 0, then

f (p, q) :=


∗ if p = 0

if q = 0 < p and there are fewer than p indices i with ai = 0
{ai1 , . . . , aip} if q = 0 < p and ai1 , . . . , aip are the first p terms with ai = 0

for p = 1, . . . ,m

for q = 1, . . . ,N
for i = 1, . . . , n

if f (p − 1, q − ai) = ∗ or f (p − 1, q − ai) = {ai1 , . . . , aip−1} with ip−1 ≥ i, then i := i + 1;
if f (p − 1, q − ai) = {ai1 , . . . , aip−1} with ip−1 < i, then f (p, q) := {ai1 , . . . , aip−1 , ai} and break;
f (p, q) := ∗;

q := q + 1;
p := p + 1;

return f (m,N).

It is easy to see that the algorithm iteratively creates a two-dimensional table of values f , where the entry f (p, q) holds
the value ∗ (for ‘False’) if there is no I satisfying |I| = p and a(I) = q, and {ai : i ∈ I} if I is the lexicographically minimum
set that satisfies |I| = p and a(I) = q. Note that initializing the first row and the first column of the table f (corresponding
to p = 0 or q = 0) takes O(n) time, and once inside the three ‘for’ loops, the ‘if’ statements and setting f (p, q) take a
combined O(1) time. Hence the running time of the above algorithm is O(n2N). Alternatively, the running time is O(x3),
where x := n + m + N +

n
i=1⌊log2 ai⌋. �

4. Our bandwidth problem in polynomial time

The characterization from Lemma 2.1 combined with the fixed size subset sum algorithm gives the following result.

Theorem 4.1. If T ∈ T , then b(T ) can be computed in polynomial time.

Proof. Let r be the root of T , and let C = {x1, . . . , xn} be the set of children of r . For i = 1, . . . , n, let ai be the number of
children of xi, and let a :=

n
i=1 ai. Let |T | = |V (T )|.

We will give an algorithm that computes the bandwidth b(T ). It is motivated by the following facts. Note that
max{⌈ |T |−1

4 ⌉, ⌈∆(T )

2 ⌉} ≤ ρ(T ) ≤ b(T ) ≤ |T | − 1. Hence, by Lemma 2.1, there is a k such that max{⌈ |T |−1
4 ⌉, ⌈∆(T )

2 ⌉} ≤

k ≤ |T | − 1 satisfying conditions (1)–(3) of the lemma. The algorithm will find the smallest such k (thus finding b(T )) by
invoking the fixed size subset sum algorithm with a specific input.

First, let k := b(T ). Then, k is the smallest integer with max{⌈ |T |−1
4 ⌉, ⌈∆(T )

2 ⌉} ≤ k ≤ |T | − 1 for which the conditions
(1)–(3) of Lemma 2.1 are satisfied.

Let m := |C1|, and N := |D1|, so that |C2| = n − m, and |D2| = a − N . Hence, condition (3a) implies n − k ≤ m ≤ k and
condition (3b) implies a − 3k + n ≤ N ≤ 3k − n. Up to a reindexing of the xi’s (and the corresponding ai’s) we have that
C1 = {x1, . . . , xm}. Then, since D1 is the set of children of C1, we have that

m
i=1 ai = N , so that for these prescribed values

of k,m, and N , fixed size subset sum (a1, . . . , an,m,N) returns ‘True’. In short, because of these structural properties of the
tree, fixed size subset sum returns ‘True’ for this particular combination of k,m,N .

Thuswe create an algorithm to test different combinations of k,m,N , as we know fixed size subset sumwill return ‘True’
at least for that precise combination. Further, we need not test all combinations of these three positive integers – insteadwe
need only test them between the already mentioned finite bounds. Note that it will remain to show that only such a precise
combination resulting from the structure of T will result in a ‘True’ output from fixed size subset sumwithin this algorithm.

Algorithm. Input: T ∈ T

Output: k = b(T )

for k from max{⌈ |T |−1
4 ⌉, ⌈∆(T )

2 ⌉} to |T | − 1

form from n − k to k
for N from a − 3k + n to 3k − n

if fixed size subset sum (a1, . . . , an,m,N), then return k;
N := N + 1;

m := m + 1;
k := k + 1;

return k;
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Conversely, assume that for some k with max{⌈ |T |−1
4 ⌉, ⌈∆(T )

2 ⌉} ≤ k ≤ |T | − 1, the fixed size subset sum algorithm
returns ‘True’ with input a1, . . . , an,m,N such that n − k ≤ m ≤ k and a − 3k + n ≤ N ≤ 3k − n. This means that, up
to a reindexing of the ai’s (and the corresponding xi’s),

m
i=1 ai = N . Let C1 := {x1, . . . , xm}, C2 := C − C1, and for i = 1, 2

let Di be the set of children of Ci. Hence, |C1| = m, |C2| = n − m, |D1| = N, |D2| = a − N . Then, n − k ≤ m ≤ k implies
that |C1| ≤ k and |C2| ≤ k. Similarly, a − 3k + n ≤ N ≤ 3k − n implies that |D1| + |C | ≤ 3k, and |D2| + |C | ≤ 3k. Also, by
assumption, |T | ≤ 4k + 1 and ∆(T ) ≤ 2k, hence the conditions (1)–(3) of Lemma 2.1 are satisfied.

Thus, we have shown that starting from the value of k = max{⌈ |T |−1
4 ⌉, ⌈∆(T )

2 ⌉} and up to the value of k = |T | − 1 (if
necessary), our algorithm successively checks whether b(T ) ≤ k. At the same time, fixed size subset sum is guaranteed to
return a ‘True’ statement for some combination of k,m,N . Hence this algorithmwill return the smallest k such that b(T ) ≤ k,
which is the bandwidth b(T ).

By Lemma 3.1, the fixed size subset sum algorithm runs in time cubic in n + m + N +
n

i=1⌊log2 ai⌋. As n + m + N +n
i=1⌊log2 ai⌋ < 6|T |, each invocation fixed size subset sum runs in time O(|T |

3). Since each of the three ‘for’ loops of our
algorithm iterates at most O(|T |) times, our algorithm runs in time O(|T |

3
|T |

3) = O(|T |
6). �

It may be possible to extend this result to trees of any bounded diameter. Having that result would be very interesting,
and may have further implications for determining which classes of trees have polynomial-time algorithms for computing
the bandwidth.
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