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ON APPROXIMATION RATES FOR BOUNDARY CROSSING

PROBABILITIES FOR THE MULTIVARIATE BROWNIAN

MOTION PROCESS

SHAUN MCKINLAY AND KONSTANTIN BOROVKOV*

Abstract. Motivated by an approximation problem from mathematical fi-
nance, we analyse the stability of the boundary crossing probability for the

multivariate Brownian motion process, with respect to small changes of the
boundary. Under broad assumptions on the nature of the boundary, including
the Lipschitz condition (in a Hausdorff-type metric) on its time cross-sections,
we obtain an analogue of the Borovkov and Novikov (2005) upper bound for

the difference between boundary hitting probabilities for close boundaries in
the univariate case. We also obtained upper bounds for the first boundary
crossing time densities.

1. Introduction and Main Results

Let W = {W t = (W
(1)
t , . . . ,W

(m)
t )}t≥0 be the standard m-dimensional Brow-

nian motion process, W 0 = 0. For a fixed T < ∞, let G be the class of open sets
G ⊂ (0, T )× Rm (the first component representing time), with (0,0) ∈ ∂G.

In a number of applied problems (one notable example being barrier options’
pricing), one needs to compute the probability

P (G) := P((t,W t) ∈ G, t ∈ (0, T ))

for W to stay within a given set in the time-space G during the time interval
(0, T ). It is well known that that can be done by solving the respective boundary
value problem for the heat equation in m dimensions (see e.g. Section 4.3C in [10]
for a discussion of the univariate case and [15] for an efficient numerical scheme
for computing P (G) for cylindric sets G). However, even in the univariate case,
a closed form expression for the probability P (G) is only available in a few spe-
cial cases, the most famous one being when G is specified by a one-sided linear
boundary. There is vast literature devoted to different approaches to computing
boundary crossing probability and first hitting time densities for the univariate
Brownian motion. For a recent bibliography of the published work on that topic
see e.g. [9].
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Much less was done in the multivariate case. A number of studies have consid-
ered the probability

px(C) := P
(
x+W t ∈ C, t ∈ (0, T )

)
≡ P ((0, T )× (C − x)), x ∈ C,

when C ⊂ Rm is a cone, the simplest form of which is defined as follows. For
y ∈ Rm\{0}, let θ(y) be the angle between y and the point (1, 0, . . . , 0) ∈ Rm. A
cone of angle α ∈ (0, π) is defined as Cα := {y ∈ Rm : 0 < θ(y) < α}.

It was apparently F. Spitzer who was the first to consider the probability px(Cα)
in the two-dimensional case. In [17], he gave an integral transform for the function
px(Cα). This probability was later computed explicitly in [8].

More recently, the case m ≥ 3 has been considered for “generalised cones”
defined as follows. If D is a proper open connected subset of the unit sphere Sm−1

in Rm, the generalised cone CD generated by D is the set of all rays emanating
from the origin 0 and passing through D. Under some technical restrictions on D,
a representation for px(CD) as an infinite series involving confluent hypergeometric
functions and eigenfunctions of the Lapace-Beltrami operator on Sm−1 was given
in [4]. This result was later strengthened in [1], where the same analytic formula
was shown to hold for a larger class of generalized cones. An alternative technique
based on the reflection principle was used in [13] to compute px(C) in case of
“wedges” C.

In the case of general G ∈ G, a possible approach to approximate evaluation of

P (G) in nontrivial univariate cases is to approximate G with another set G̃ ∈ G
for which the computation of P (G̃) is tractable. For instance, when

G = {(t, x) : t ∈ (0, T ), g−(t) < x < g+(t)}, (1.1)

where g−(t) < g+(t) are smooth enough continuous functions, one could use a G̃
of the same nature but with piece-wise linear boundaries g̃± approximating g±,

respectively. Recall that, for such boundaries, the problem of calculating P (G̃)
reduces (by conditioning on the process’ values at the times where the boundaries’
have their “junction points”) to calculating the values of k-dimensional normal
CDFs. For more detail on this technique see e.g. [16], and for a similar approach
in the case of the so-called generalised Daniels’ boundaries [5], see e.g. [3] and refer-
ences therein. The same technique was also used in [18] to compute the boundary
crossing probabilities for a class of diffusion processes which can be expressed as
piecewise monotone (not necessarily one-to-one) functionals of a standard Brown-
ian motion.

To justify the use of such approximations, however, one must provide bounds

for the approximation error |P (G) − P (G̃)|. In the univariate case, rather tight
bounds of such type were obtained for the one-dimensional Brownian motion [3]
and then extended to time-homogeneous univariate diffusions process [6].

The aim of this note is to extend the outlined approximation approach to the
multivariate case and provide bounds for approximation errors. Our results below
are also of interest for the theory of boundary value problems for parabolic partial
differential equations.

First we will introduce some notation which we will need to define a Hausdorff-
type metric that proved to be the most natural one for measuring the closeness of
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the sets G and G̃ in the context of our problem. For H ⊂ [0, T ]× Rm, let

Ht := {x = (x1, . . . , xm) ∈ Rm : (t,x) ∈ H}, t ∈ [0, T ], (1.2)

be the time t section of H. For A ⊂ Rm and x ∈ Rm, let ρ(x, A) := infy∈A∥x−y∥
be the distance from x to the set A, ∥·∥ being the Euclidian norm in Rm, Ac be
the complement of A, and let

A(v) :=

{
{x ∈ Rm : ρ(x, A) < v}, v > 0,

{x ∈ Rm : ρ(x, Ac) ≤ −v}c, v ≤ 0,

denote the dilation (case v > 0) and erosion (case v < 0), respectively, of the set A
by the set B|v|(0), where Br(x) := {y ∈ Rm : ∥x − y∥ < r} stands for the open
ball of radius r > 0 with centre at x ∈ Rm.

For H ⊂ [0, T ]× Rm, let

H(v) := {(t,x) : t ∈ [0, T ],x ∈ H
(v)
t }, v ∈ R.

The Hausdorff distance between sets A, Ã ⊂ Rm is defined by

ρh(A, Ã) := inf{ε > 0 : A ⊂ Ã(ε) and Ã ⊂ A(ε)}.
It will be convenient for us to use the metric

ρH(A, Ã) := max{ρh(A, Ã), ρh(A
c, Ãc)}.

For positive numbers K,β, γ, introduce the class GK,β,γ ⊂ G of sets G satisfying
the following conditions on their cross-sections.

[G1] The following Lipschitz condition holds:

ρH(Gs, Gt) ≤ K(t− s), 0 < s < t < T.

[G2] For any t ∈ (0, T ) and g ∈ ∂Gt, there exists a ball Bβ(y) ⊂ Gc
t with β > 0

and g ∈ ∂Bβ(y).
[G3] For any t ∈ (0, T ), there exists a v0 > 0 such that

E(1 + ∥W t∥; 0 < ρ(W t, G
c
t) < v) < γv, 0 < v < v0.

Condition [G1] is a multivariate version of the Lipschitz condition on the bound-
aries g± of the curvilinear strip (1.1) in the univariate case. It is easy to see that
[G1] implies that ∂Gt is a Lipschitz continuous funtion of t in Hausdorff metric,
but the converse is not true. It turns out though that, in the multivariate case,
Lipschitz continuity of ∂Gt will not suffice for deriving the desired bounds.

Likewise, using just the Hausdorff metric ρh(Gs, Gt) for measuring the rate of
change of the sections Gt with time, also proved to be inadequate. For example,
imagine a “Swiss cheese”-type set, e.g. the unit disc with a large number of small
holes in it. The Hausdorff distance between that set and the disc can be very
small, but a change of the time section from that disc at time t to the “Swiss
cheese set” at time t + h can clearly lead to a rather high probability of the first
hitting time of ∂G during (t, t + h), making it impossible to obtain necessary for
the derivation of our results bounds for the first hitting time density (and leading
to impassable obstacles in other elements of the proof as well).

The role of [G2] is ensure that the section boundaries ∂Gt do not have “tight
outside folds”. Together with [G1], it means that, for any fixed t ∈ (0, T ), as the
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point x approaches the boundary ∂Gt, the probability that the Brownian motion
starting at x at time t will not leave G during the residual time interval (t, T )
decays as a linear function of ρ(x, ∂Gt), and it is exactly that rate of decay that is
needed for our main result (1.3). The above-mentioned linear bound follows from
the fact that the desired probability will not exceed the probability of hitting a
cone with the axis parallel to the time axis and the base of radius β on the left,
which is disjoint with G and which, due to conditions [G1] and [G2], one can
“attach” to the boundary ∂G at a point with the time component equal to t and
space component ρ(x, ∂Gt)-distant from x. The respective bound for the cone is
obtained in Lemma 2.3 below.

Condition [G3] may be a bit more technical and less transparent. Roughly
speaking, it means that the boundary ∂Gt “cannot have too many folds”. It is
only used in the proof of Proposition 2.1 establishing an upper bound for the first
hitting time density. The condition enables one to “translate” the “local bounds”
on the conditional probability that the hitting time of ∂G belongs to (t, t + h)
given the value of W t to the required bound for the unconditional probability of
the hitting time being in that interval.

The main result of the present paper is the following bound.

Theorem 1.1. If G ∈ GK,β,γ , then there exists a c = c(T,K, β, γ) < ∞ such that

P
(
G(ε)

)
≤ P (G) + cε, ε > 0. (1.3)

It turns out that, in the important special case of convex cross-sections Gt,
conditions [G2] and [G3] are superfluous. While that [G2] holds in this case for
arbitrary large β > 0 is obvious, the validity of [G3] is not hard to establish using
the Cauchy’s surface area formula that implies that the volume of the portion
of the integration region {x : 0 < ρ(x, Gc

t) < v} that lies in the spherical layer
{x : k ≤ ∥x∥ < k+1} cannot exceed cvkm−1, as demonstrated in the proof of the
following assertion.

Corollary 1.2. Assume that G ∈ G satisfies [G1] and Gt is convex for any
t ∈ (0, T ). Then G also satisfies [G2] with any β > 0 and [G3] for some γ < ∞,
and so the bound from Theorem 1.1 holds true.

The next result is a trivial consequence of Theorem 1.1. We state it here because
it is the natural multivariate extension of the main bound from [3].

Corollary 1.3. Suppose G ∈ GK,β,γ . For any ε > 0, if sets G′, G′′ ∈ G are such

that G ⊂ G′ ⊂ G(ε), G ⊂ G′′ ⊂ G(ε), then

|P (G′)− P (G′′)| < cε (1.4)

for some constant c = c(T,K, β, γ) < ∞.

Remark 1.4. The form of the statement in the above assertion is somewhat differ-
ent from the one in the univariate case where we basically estimated the difference
P
(
G(ε)

)
− P

(
G(−ε)

)
. The multivariate situation is noticeably more complicated.

In particular, in m ≥ 2 dimensions, for a set G ∈ GK,β,γ it is not necessarily true

that G(−ε) ∈ GK,β,γ , even if we allow the parameters of the class GK,β,γ in the
last instance to be different from those for the one containing G. One implication
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of that observation is that, without some additional restrictive assumptions, the
estimation of P

(
G(ε)

)
− P

(
G(−ε)

)
becomes then impossible. On the other hand,

the framework of our Theorem 1.1 is quite simple and appears to be the most
natural in the multivariate setup.

2. Proofs

Without loss of generality, we can assume in this section that T = 1.
The proof is based on the same idea as in [3] and uses the total probability

formula representation (2.2) below for the difference between the probabilities
P
(
G(ε)

)
and P (G). This difference is just the probability that the Brownian

motion leaves the set G but does not leave the slightly bigger G(ε). To estimate
that difference one needs bounds for both the integrand and the “integrator” in
the integral on the right-hand side of (2.2).

First we will deal with the latter, obtaining in Proposition 2.1 an upper bound
for the density of the first hitting time of ∂G (of which the derivation relies on
Lemmata 2.2–2.6). For the former, one can expect that the integrand is O(ε),
with the coefficient of ε in the bound increasing as t approaches 1, as less and less
time will be remaining for the Brownian motion to leave G(ε). The desired bound
for the integrand will follow from Lemma 2.7 which we use to bound the tail of
the distribution of the time the Brownian motion starting at time t at a boundary
point of Gt hits a cone located outside G(ε) and “attached” to ∂G(ε) at a point
with the time component equal to t. As we already pointed out, conditions [G1]
and [G2] make it possible to use that result to bound the probability of not hitting
∂G(ε) during the residual time interval (t, 1).

For a measurable H ⊂ [0, 1]× Rm, let

τ(H) := inf{t > 0 : (t,W t) ∈ ∂H}, (2.1)

setting τ(H) := 1 when W t /∈ ∂Ht, t ∈ (0, 1). Letting τ := τ(G), τ (ε) := τ(G(ε)),
we have from the Markov property of the Brownian motion that, for ε > 0,

Dε(G) := P
(
G(ε)

)
− P (G) =

∫
(0,1)

P
(
τ (ε) = 1|τ = t

)
P(τ ∈ dt). (2.2)

The following proposition, establishing absolute continuity of the distribution
of τ and providing upper bounds for its density, is of independent interest.

Proposition 2.1. The random variable τ has density p on (0, 1) satisfying

p(t) ≤ 8m2γ


√

1
πt +

m−1
2β−Kt + 2K + 2

t , t ∈ (0,min{β/K, 1}),√
K
πβ + β+2

2t−β/K + m−1
β +K, t ∈ [min{β/K, 1}, 1).

To prove the proposition, note that, for any t ∈ (0, 1), setting τt := inf{s > t :
(s,W s) ∈ ∂G}, one has, for 0 < h < 1− t,

P(τ ∈ (t, t+ h)) =

∫
Gt

P(τ ∈ (t, t+ h)|W t = z)P(W t ∈ dz)

=

∫
Gt

P(τ > t|W t = z)P(τt < t+ h|W t = z)P(W t ∈ dz). (2.3)
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Next we will bound the two factors in the integrand on the right hand side of (2.3).
It will be convenient to use the notation

r(z) := ρ(z, ∂Gt) (2.4)

(for a fixed t). The following lemma gives a bound for the first factor.

Lemma 2.2. For t ∈ (0, 1), one has

P(τ > t|W t = z)

2r(z)
≤


√

1
πt +

2(∥z∥+r(z))
t + m−1

2β−Kt + 2K, t < β/K,√
K
πβ + ∥z∥+r(z)+β/2

t−β/(2K) + m−1
β +K, t ≥ β/K.

The proof of Lemma 2.2 uses our next three lemmata. The main idea is that the
desired conditional boundary non-hitting probability cannot exceed the probability
of not hitting a simple “more remote” set, namely, a cone “attached from the
outside” to the “nearest” to z point of ∂Gt, with the axis parallel to the time axis
and such that its base is on the right. For that simpler boundary, the desired bound
is obtained in Lemma 2.3. This is done by reducing the problem to a univariate
straight line boundary crossing probability by a diffusion process, namely, by the
radial process of the m-dimensional Brownian bridge. To obtain the desired bound
for the latter problem, we use the comparison Lemma 2.4 and a simple reference
process (2.10), which is just an univariate arithmetic Brownian motion. For that
process, the respective bound is given in Lemma 2.5.

For u, v > 0, introduce the (possibly truncated) cones

C(v, u) := {(s,x) ∈ [0, v]× Rm : ∥x∥ ≤ u−Ks}, (2.5)

C∗(v, u) := {(s,x) ∈ [0, v]× Rm : |xi| ≤ (u−Ks)/
√
m, i = 1, . . . ,m}.

Clearly, C∗(v, u) ⊂ C(v, u).
We will slightly abuse notation by denoting by Px the distribution on the canon-

ical space corresponding to the Brownian motion process started at the point
W 0 = x ∈ Rm and keeping the notation τ(H) for the stopping time (2.1) for that
process.

Lemma 2.3. For any x,y ∈ Rm with ∥x∥ > β, we have

Px(τ(C(t, β)) > u|W t = y)

∥x∥ − β

≤


√

2
πu

+ 2
(

2(∥y∥−β)
t

+ m−1
2β−Kt

+ 2K
)+

, u ≤ t/2, t < β/K,√
2
πu

+ 2
(

∥y∥−β/2
t−β/(2K)

+ m−1
β

+K
)+

, u ≤ β/(2K), t ≥ β/K,

where x+ := max{0, x}.

Note that the above upper bounds agree at t = β/K.
To prove Lemma 2.3, we will require the following two additional lemmas. For

a univariate process X = {Xt}t≥0 and x ∈ R, set

ηx(X) := inf{t ≥ 0 : Xt = x}. (2.6)
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Lemma 2.4. Let {Wt}t≥0 be the standard univariate Brownian motion given on a
filtered probability space, {Yt}t≥0 a continuous adapted process on the same space.

Let X
(1)
t and X

(2)
t be strong unique solutions of the stochastic differential equations

(SDEs)

dX
(i)
t = ai(t,X

(i)
t , Yt)dt+ dWt, X

(i)
0 = x0, i = 1, 2,

where ai are continuous. Suppose that, for a given l < x0, one has a1(t, x, y) <

a2(t, x, y) for all (t, x) ∈ [0,∞) × (l,∞), y ∈ R. Then X
(1)
t < X

(2)
t a.s. for all

t ∈ (0, ηl(X
(1))).

The proof of Lemma 2.4 below follows the argument proving a somewhat weaker
assertion of Lemma 4 on p.120 of [7].

Proof. Define the continuously differentiable function

∆(t) := X
(2)
t −X

(1)
t =

∫ t

0

(a2(s,X
(2)
s , Ys)− a1(s,X

(1)
s , Ys)) ds, t < ηl.

Then, for all points t < ηl with ∆(t) = 0, we have that X
(1)
t = X

(2)
t , and so at

these points

∆′(t) = a2(t,X
(2)
t , Yt)− a1(t,X

(1)
t , Yt) > 0.

In particular, we have ∆(0) = 0, ∆′(0+) > 0. Therefore we can find a δ > 0 such
that ∆(t) > 0 for all 0 < t ≤ δ. Now suppose the set {t ∈ (0, ηl) : ∆(t) = 0} is not
empty. Then for t1 := inf{t ∈ (0, ηl) : ∆(t) = 0} we have ∆(t1) = 0, ∆′(t1) > 0,
and so there exists a δ1 > 0 such that ∆(t) < 0 for t ∈ [t1 − δ1, t1]. Therefore
∆(t) changes signs on the interval [δ, t1 − δ1], i.e., it takes on the value zero there,
which contradicts the definition of t1. We conclude that {t ∈ (0, ηl) : ∆(t) = 0} is
empty a.s., and since ∆(t) > 0 for sufficiently small t, ∆(t) > 0 for all t ∈ (0, ηl)
as required. □

Recall that {Wt}t≥0 is the standard univariate Brownian motion process.

Lemma 2.5. For c ∈ R and ε > 0,

P( sup
0≤s≤t

(Ws − cs) < ε) ≤ ε

(√
2

πt
+ 2c+

)
.

Proof. The probability on the left hand side above is known explicitly (see e.g.
1.1.4 on p.250 of [2]): denoting by Φ the standard normal distribution function,

P( sup
0≤s≤t

(Ws − cs) < ε) = Φ
(
c
√
t+ ε/

√
t
)
− e−2cεΦ

(
c
√
t− ε/

√
t
)

≤ Φ
(
c
√
t+ ε/

√
t
)
− e−2c+εΦ

(
c
√
t− ε/

√
t
)

≤ Φ
(
c
√
t+ ε/

√
t
)
− Φ

(
c
√
t− ε/

√
t
)
+ (1− e−2c+ε)

≤ sup
x∈R

Φ′(x)× 2ε/
√
t+ 2c+ε

= ε

(√
2

πt
+ 2c+

)
.

□
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Proof of Lemma 2.3. Let B = {Bs = (B
(1)
s , . . . , B

(m)
s )}0≤s≤t be an m-dimensional

Brownian bridge process starting at x ∈ Rm at time 0 and ending at y ∈ Rm at
time t.

In order to use Lemma 2.4, we will now derive an SDE for the radial process
Ss := ∥Bs∥ of B. Recall that B satisfies the SDE

dBs =
y −Bs

t− s
ds+ dW s, 0 < s < t, (2.7)

(see e.g. p.64 in [2]) By Itô’s formula, the squared radial process has stochastic
differential

dS2
s = 2

m∑
i=1

B(i)
s dB(i)

s +mds, 0 < s < t. (2.8)

Setting ξs := Bs/Ss, we have ∥ξs∥ ≡ 1 and therefore

ξs(y) := ξsy
T ≤ ∥y∥, (2.9)

where yT denotes the transpose of y. Then, for 0 < s < t, we have from (2.7) and
(2.8) that

dS2
s = 2

m∑
i=1

B(i)
s

(
yi −B

(i)
s

t− s
ds+ dW (i)

s

)
+mds

= 2

(
Bsy

T − S2
s

t− s
+

m

2

)
ds+ 2BsdW

T
s

= 2

(
Ssξs(y)− S2

s

t− s
+

m

2

)
ds+ 2SsξsdW

T
s

= 2

(
Ssξs(y)− S2

s

t− s
+

m

2

)
ds+ 2SsdW̃s,

where {W̃t}t≥0 is a standard univariate Brownian motion, and the last equality
follows from Theorem 8.4.2 in [14].

Using the above SDE for {S2
s} and Itô’s formula with f(x) =

√
x, we have

dSs = f ′(S2
s )dS

2
s +

1

2
f ′′(S2

s )(dS
2
s )

2

=
1

2Ss

[
2

(
Ssξs(y)− S2

s

t− s
+

m

2

)
ds+ 2SsdW̃s

]
− 1

8S3
s

(2Ss)
2ds

=

(
ξs(y)− Ss

t− s
+

m− 1

2Ss

)
ds+ dW̃s, 0 < s < t.

Now introduce, for a fixed a < ∥x∥ and t0 ∈ (0, t), the reference process

Ss := ∥x∥+
(
∥y∥ − a

t− t0
+

m− 1

2a

)
s+ W̃s, s ≥ 0, (2.10)

Since ∥y∥ ≥ ξs(y) by (2.9), Lemma 2.4 implies that, for all s ∈ [0,min{t0, ηa(S)}],
one has Ss ≥ Ss a.s.
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Consider first the case t ≥ β/K and set t0 := β/(2K), a := β/2. Then, for all
u ≤ t0, one has

Px(τ(C(t, β)) > u|W t = y)

= P
(

inf
0≤s≤u

(Ss − β +Ks) > 0
)

≤ P
(

inf
0≤s≤u

(Ss − β +Ks) > 0
)

= P
[

inf
0≤s≤u

(
∥x∥+

(
∥y∥ − β/2

t− β/(2K)
+

m− 1

β

)
s+Ws − β +Ks

)
> 0

]
= P

[
sup

0≤s≤u

(
Ws−

(
∥y∥ − β/2

t− β/(2K)
+

m− 1

β
+K

)
s

)
< ∥x∥ − β

]
≤ (∥x∥ − β)

[√
2

πu
+ 2

(
∥y∥ − β/2

t− β/(2K)
+

m− 1

β
+K

)+
]

by Lemma 2.5.
Now consider the case t < β/K and set t0 := t/2, a := β −Kt/2. Then, for all

u ≤ t0, we have

Px(τ(C(t, β)) > u|W t = y)

≤ P
(

inf
0≤s≤u

(Ss − β +Ks) > 0
)

= P
[

inf
0≤s≤u

(
∥x∥+

(
∥y∥ − β +Kt/2

t/2
+

m− 1

2β −Kt

)
s+Ws − β +Ks

)
> 0

]
= P

[
sup

0≤s≤u

(
Ws−

(
2(∥y∥ − β)

t
+

m− 1

2β −Kt
+ 2K

)
s

)
< ∥x∥ − β

]
≤ (∥x∥ − β)

[√
2

πu
+ 2

(
2(∥y∥ − β)

t
+

m− 1

2β −Kt
+ 2K

)+
]
.

Lemma 2.3 is proved. □

Proof of Lemma 2.2. Fix t ∈ (0, 1) and z ∈ Gt. Reversing the time for the
conditional Brownian motion process, we have for t′ ∈ (0, t),

P(τ > t|W t = z) = P(W s ∈ Gs, s ∈ (0, t)|W t = z)

= Pz(W s ∈ Gt−s, s ∈ (0, t)|W t = 0)

≤ Pz(W s ∈ Gt−s, s ∈ (0, t′)|W t = 0). (2.11)

One can clearly choose a b ∈ ∂Gt such that ρ(z, b) = r(z). Then by condition
[G2] there exists a ball Bβ(c) ⊂ Gc

t with b ∈ ∂Bβ(c). Using Bβ(c) as the base for
the cone

C := (0, c) + C(t, β),

it follows from Lipschitz condition [G1] that Gt−s ⊂ Cc
s , s ∈ [0, t]. Therefore

Pz(W s ∈ Gt−s, s ∈ (0, t′)|W t = 0) ≤ Pz(W s ∈ Cc
s , s ∈ (0, t′)|W t = 0)

= Pz−c(τ(C(t, β)) > t′|W t = −c). (2.12)



276 SHAUN MCKINLAY AND KONSTANTIN BOROVKOV

Since ∥−c∥ ≤ ∥z∥ + r(z) + β, we immediately obtain the bounds stated in
Lemma 2.2 from Lemma 2.3 with

t′ = u :=

{
t/2, t < β/K,
β/(2K), t ≥ β/K. □

Now we will turn to bounding the second factor on the right hand side of (2.3).
Recall the definition (2.4) of r(z).

Lemma 2.6. For t ∈ (0, 1), z ∈ Gt, one has

P(τt < t+ h|W t = z) ≤ 2m exp

(
r(z)K

m
− r(z)2

2hm

)
, h ∈ (0,min{r(z)/K, 1− t}).

Proof. We will again use cones and reduction to univariate boundary crossing
problems. For h from the specified interval, setting Φ(x) := 1− Φ(x), we have

P(τt < t+ h|W t = z) ≤ P(τ(C(h, r(z))) < h)

≤ P(τ(C∗(h, r(z))) < h)

≤ 2mP( sup
0≤s≤h

(W (s) +Ks/
√
m) ≥ r(z)/

√
m)

= 2m

∫ h

0

r(z)/
√
m√

2πs3/2
exp

(
−(r(z)/

√
m−Ks/

√
m)2

2s

)
ds

(2.13)

= r(z)

√
2m

π
er(z)K/m

∫ h

0

s−3/2 exp

(
− r(z)2

2sm
− K2s

2m

)
ds

≤ r(z)

√
2m

π
er(z)K/m

∫ h

0

s−3/2 exp

(
− r(z)2

2sm

)
ds

= 4mer(z)K/mΦ(r(z)/
√
hm) (2.14)

≤ 2m exp

(
r(z)K

m
− r(z)2

2hm

)
, (2.15)

where (2.13) follows from Kendall’s formula (see e.g. relation 2.0.2 on p.295 of [2]),
(2.14) follows by making the substitution u = r(z)/

√
sm, and (2.15) follows by

using the bound Φ(x) ≤ 1
2e

−x2/2, x > 0. The lemma is proved. □

Proof of Proposition 2.1. Suppose that t < β/K. Then from (2.3) and the bounds
derived in Lemmas 2.2, 2.6, we have

P(τ ∈ (t, t+ h)) =

∫
Gt

P(τ > t|W t = z)P(τt < t+ h|W t = z)P(W t ∈ dz)

≤ 4m

∫
Gt

(√
1

πt
+

2(∥z∥+ r(z))

t
+

m− 1

2β −Kt
+ 2K

)
× r(z) exp

(
r(z)K

m
− r(z)2

2hm

)
P(W t ∈ dz)

= 4m

((√
1

πt
+

m− 1

2β −Kt
+ 2K

)
I1 +

2

t
(I2 + I3)

)
, (2.16)
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where

I1 :=

∫
Gt

r(z) exp

(
r(z)K

m
− r(z)2

2hm

)
P(W t ∈ dz),

I2 :=

∫
Gt

r(z)∥z∥ exp
(
r(z)K

m
− r(z)2

2hm

)
P(W t ∈ dz),

I3 :=

∫
Gt

r(z)2 exp

(
r(z)K

m
− r(z)2

2hm

)
P(W t ∈ dz).

Set

Z := r(W t)1{W t∈Gt},

where 1E is the indicator of event E. Then, for u(x) := xexK/m−x2/(2hm), we have

I1 = EZ exp

{
ZK

m
− Z2

2hm

}
=

∫ ∞

0

u(x)dν(x),

where ν(x) is the distribution function of Z. Integrating by parts and using the
bound ν(x) < γx, x ∈ (0, v0), from [G3], we obtain

I1 = [ν(x)u(x)]∞0 −
∫ ∞

0

ν(x)du(x) = −
∫ ∞

0

ν(x)du(x)

=

∫ ∞

0

ν(x)

(
x2

hm
− xK

m
− 1

)
exp

(
xK

m
− x2

2hm

)
dx

<
1

hm

∫ ∞

0

ν(x)x2 exp

(
xK

m
− x2

2hm

)
dx =

1

hm

(∫ v0

0

+

∫ ∞

v0

)
(· · · ) dx

<
1

hm

(
γ

∫ ∞

0

x3 exp

(
xK

m
− x2

2hm

)
dx+

∫ ∞

v0

x2 exp

(
xK

m
− x2

2hm

)
dx

)
= γhm

∫ ∞

0

s3esK
√

h/m−s2/2 ds+
√
hm

∫ ∞

v0/
√
hm

s2esK
√

h/m−s2/2 ds

= 2γhm+ o(h),

where the second last relation follows by making the substitution s = x/
√
hm.

Using [G3] and following the same steps as above, we conclude that

I2 < 2γhm+ o(h).

Finally, it is even simpler to show that I3 = o(h).
Then, from (2.16), we have

P(τ ∈ (t, t+ h)) < 8m2γh

(√
1

πt
+

m− 1

2β −Kt
+ 2K +

2

t

)
+ o(h).

It follows that τ has an absolutely continuous distribution specified by a density
p satisfying

p(t) ≤ 8m2γ

(√
1

πt
+

m− 1

2β −Kt
+ 2K +

2

t

)
, t ∈ (0,min{β/K, 1}).
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Now consider the case when t ≥ β/K. Then, from (2.3) and the bounds derived
in Lemmas 2.2, 2.6, we have

P(τ ∈ (t, t+ h)) =

∫
Gt

P(τ > t|W t = z)P(τt < t+ h|W t = z)P(W t ∈ dz)

≤ 4m

∫
Gt

(√
K

πβ
+

∥z∥+ r(z) + β/2

t− β/(2K)
+

m− 1

β
+K

)
× r(z) exp

(
r(z)K

m
− r(z)2

2hm

)
P(W t ∈ dz)

= 4m

[(√
K

πβ
+

β

2t− β/K
+

m− 1

β
+K

)
I1 +

I2 + I3
t− β/(2K)

]
,

and therefore, for t ∈ [β/K, 1),

P(τ ∈ (t, t+ h)) ≤ 8m2hγ

(√
K

πβ
+

β + 2

2t− β/K
+

m− 1

β
+K

)
.

As above, it follows that τ has density p satisfying

p(t) ≤ 8m2γ

(√
K

πβ
+

β + 2

2t− β/K
+

m− 1

β
+K

)
, t ∈ [min{β/K, 1}, 1).

Proposition 2.1 is proved. □

As we pointed our in the outline of the idea of the proof of Theorem 1.1, we
will also use the following lemma that provides a bound for the integrand on the
right hand side of (2.2).

Lemma 2.7. For x ∈ Rm and 0 < r < ∥x∥, we have

Px(τ(C(t, r)) > t)

2(∥x∥ − r)
≤


√

1
πt +

m−1
2r−Kt +K, t < r/K,√

K
πr + m−1

r +K, t ≥ r/K.

Proof. Similarly to the proof of Lemma 2.3, we will reduce the problem to a
univariate straight line boundary crossing problem and then use the comparison
Lemma 2.4 to obtain the desired bound for the latter problem.

Denote by R = {Rs}s≥0 an m-dimensional Bessel process started at ∥x∥ at
time 0. One can stipulate that

Rs =

√(
∥x∥+W

(1)
s

)2
+
(
W

(2)
s

)2
+ · · ·+

(
W

(m)
s

)2
, s ≥ 0,

and so

Px(τ(C(t, r)) > t) = P( inf
0≤s≤t

(Rs − r +Ks) > 0). (2.17)

As is well-known (see e.g. p.148 in [14]), R satisfies the SDE

dRs =
m− 1

2Rs
ds+ dW̃s, s > 0, R0 = ∥x∥,

{W̃s}s≥0 being a standard univariate Brownian motion process.
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Consider first the case t < r/K and let

Rs := ∥x∥+ m− 1

2r −Kt
s+ W̃s, s ∈ [0, t/2].

Then, by Lemma 2.4, we have Rs ≥ Rs a.s. for all s ∈ [0,min{t/2, ηr−Kt/2(R)}]
(cf. (2.6)). From here, (2.17) and Lemma 2.5, one has

Px(τ(C(t, r)) > t) ≤ P
(

inf
0≤s≤t/2

(Rs − r +Ks) > 0
)

= P
(

inf
0≤s≤t/2

(
∥x∥+ m− 1

2r −Kt
s+ W̃s − r +Ks

)
> 0
)

= P
[

sup
0≤s≤t/2

(
W̃s−

( m− 1

2r −Kt
+K

)
s
)
< ∥x∥ − r

]
≤ 2(∥x∥ − r)

(√
1

πt
+

m− 1

2r −Kt
+K

)
.

Now consider the case t ≥ r/K and let

Rs := ∥x∥+ m− 1

r
s+ W̃s, s ∈ [0, r/(2K)].

Then, by Lemma 2.4, we have Rs ≥ Rs a.s. for all s ∈ [0,min{r/(2K), ηr/2(R)}],
and so from (2.17) and Lemma 2.5, a similar derivation yields the bound

Px(τ(C(t, r)) > t) ≤ 2(∥x∥ − r)

(√
K

πr
+

m− 1

r
+K

)
,

as required. □

Now we can complete the proof of Theorem 1.1. The integrand on the right
hand side of (2.2) has the form

P
(
τ (ε) = 1|τ = t

)
=

∫
∂Gt

P
(
τ (ε) = 1,W t ∈ dz|τ = t

)
=

∫
∂Gt

Pz

(
W s ∈ G

(ε)
t+s, s ∈ (0, 1− t)

)
P(W t ∈ dz|τ = t).

(2.18)

For any z ∈ ∂Gt, by [G2] there is a point y such that Bβ(y) ⊂ Gc
t and z ∈ ∂Bβ(y).

Clearly, Bβε(y) ⊂
(
G

(ε)
t

)c
, where βε := β−ε (we assume without loss of generality

that ε < β/2), and so G
(ε)
t ⊂

(
Bβε(y)

)c
. By condition [G1], we then also have

G
(ε)
t+s ⊂ G

(ε+Ks)
t ⊂

(
Bβε−Ks(y)

)c
=
(
(0,y) + C(1− t, βε)

)c
s
, s ≤ βε

K
,
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using notation (2.5). Therefore, since ∥z − y∥ − βε = ε, one has from Lemma 2.7
that

Pz

(
W s ∈ G

(ε)
t+s, s ∈ (0, 1− t)

)
≤ Pz−y(τ(C(1− t, βε)) > 1− t)

≤ 2ε


√

1
π(1−t) +

m−1
2βε−K(1−t) +K, 1− t < βε/K,√

K
πβε

+ m−1
βε

+K, 1− t ≥ βε/K.

Now it follows from (2.2) and (2.18) that

Dε(G) ≤ 2ε

∫ 1−βε/K

0

(√
K

πβε
+

m− 1

βε
+K

)
p(t) dt

+ 2ε

∫ 1

1−βε/K

(√
1

π(1− t)
+

m− 1

2βε −K(1− t)
+K

)
p(t) dt

≤ 2ε

(√
K

πβε
+

m− 1

βε
+K

)
+ 2ε

∫ 1

0

p(t) dt√
π(1− t)

.

Here∫ 1

0

p(t) dt√
π(1− t)

≤
√

2

π
+

∫ 1

1/2

p(t) dt√
π(1− t)

≤
√

2

π
+ 8m2γ

√
2

π

(√
K

πβ
+ 2(β + 2) +

m− 1

β
+K

)
=: c∗,

where the second inequality follows by assuming without loss of generality that
β/K < 1/2 and applying the second bound from Proposition 2.1. Recalling that
βε ≥ β/2, we conclude that

Dε(G) ≤ 2ε

(
c∗ +

√
2K

πβ
+

2(m− 1)

β
+K

)
.

Theorem 1.1 is proved. □

Proof of Corollary 1.2. Condition [G2] is clearly satisfied (with arbitrary large
β > 0) due to the convexity of Gt, so we only need to verify [G3].

We can assume without loss of generality that there exists a δ > 0 such that
Bδ(0) ⊂ (∂G)0 (for otherwise it is easy to see that, in view of [G1], one has
P (G) = 0 and the whole problem becomes trivial).

Consider first the case t > t0 := δ/(2K) (assuming that t0 < 1).
Introduce the sequence of spherical layers Ck := Bk(0)\Bk−1(0), k = 1, 2, . . .

As the cross-section Gt is convex, it follows from Cauchy’s surface area formula
(see e.g. Theorem 5.5.2 on p.56 in [11]) that the ((m − 1)-dimensional) surface
area of ∂(Gt ∩Bk(0)) does not exceed the surface area of Bk(0) which is equal to
km−1ωm−1, where ωm−1 is the unit sphere area.

Therefore, again using the convexity of Gt, it follows that, for any ε > 0, the

volume of Vk :=
(
Gt\G(−ε)

t

)
∩ Ck does not exceed εkm−1ωm−1. As the maximum
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value of the density of W t on Vk less than or equal to the density’s value on
∂Bk−1(0), we conclude that

E(1 + ∥W t∥;W t ∈ Gt\G(−ε)
t ) =

∞∑
k=1

E(1 + ∥W t∥;W t ∈ Vk)

≤ εωm−1

(2πt)m/2

∞∑
k=1

(1 + k)km−1e−(k−1)2/2t

≤ γε

for some γ = γ(m, t0) < ∞, as we only consider t ∈ (t0, 1).
Now turn to the case t ∈ (0, t0). By [G1], for such t one has Bδ/2(0) ⊂ Gt.

Choosing v0 := δ/4 (which we can assume to be less that one without loss of
generality), one can employ the same argument as above but with the spherical
layers Ck := Bk+δ/4(0)\Bk−1+δ/4(0), k = 1, 2, . . . , making use of the observation
that the maximum value of the density of W t on the “innermost layer” C1 is
bounded for t ∈ (0, t0). The corollary is proved. □
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