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Abstract

An attempt was made to make this a self-contained reading. The first three chapters 

are intended to provide the necessary background. Chapter one develops the tools 

needed from Galois Cohomology. Chapter two is a brief description of involutions, 

and in chapter three we define the notion of (linear) algebraic group, we give some 

examples and discuss some of their properties.

In chapter four, we discuss some variants of the classical Skolem-Noether theorem, 

requiring only that the subalgebra have a unique faithful representation of full 

degree over a separable closure. We verify that we can extend every isomorphism 

to the whole algebra by means of inner automorphisms, just as in the classical 

case. Examples of algebras that satisfy this condition are simple algebras and 

commutative Frobenius algebras. In chapter five, we attach involutions to our 

algebras. We show that Skolem-Noether type results hold over a separable closure 

and we discuss some descent problems. Chapter six is a study of A;-conjugacy classes 

of maximal A;-tori, the main goal of this dissertation. We are able to give explicit 

descriptions of fc-conjugacy classes in particular cases. This was done by applying 

the general formalism developed in the chapter.
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Introduction

The main objective of this dissertation is to study the /c-conjugacy class of a (fixed) 

maximal fc-torus T  in a semi-simple linear algebraic group G. It is well known that, 

over a separable closure, all maximal tori of a semi-simple algebraic group G are 

conjugate. The interesting question is, what happens over the ground field? When 

are two maximal tori T  and T' conjugate by an element of G{k) =  Gr ? To see that 

this is not a trivial question consider the following examples.

E xam ple 0.1. If G =  SL2 and k =  R, take

T i= <

r /

and
\

To =

a b

—b a

a 0

0 b

: a2 + bi2 = 1

: ab =  1

then T\(R) =  S l compact, but T^R) = Rx not compact. So 7\ and To cannot be 

conjugate over R.

E xam ple 0.2. If G = SL2 x SL2 and we take

T  =  Ty x T2

and

T  =  T2 x 7\

then T  and T' are not conjugate over R. This example is of particular interest 

because even though T  and T' are abstractly R-isomorphic, they are not conjugate 

(over R) because an inner automorphism must preserve the factors, and the factors 

are not conjugate as shown in example 0.1.

1
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Since all maximal tori are conjugate over a separable closure, the set of all maximal 

tori is parameterized by the homogeneous space G /N ,  where N  =  iVG(T) is the 

normalizer of T  in G. We have

G /N  «— ► set of maximal tori in G 

It is readily seen that this bijection commutes with the action of T, so if we want 

the set of maximal k-tori, we let T act on G and look at the fixed points. We have 

(G /N)r <— > set of maximal A;-tori in G 

If in addition we want the fc-conjugacy classes of maximal fc-tori then we look at 

the action of T on G /N  modulo G r , we have

(G /N )r /G v <— > set of fc-conjugacy classes of maximal k-tori in G 

If we consider

1 — y N - ^ + G — y G / N — >1 (1)

we can associate to it a sequence in cohomology,

Gr — > (G /N )v — y H *{k,N) (- ^ l  H \ k ,G )  (2)

By the general theory of Galois cohomology, there is a natural bijection between 

the orbit set of the group G(k) =  Gv in (G /N )r and ker{in Y- Thus the set 

of fc-conjugacy classes of maximal A:-tori is in one-to-one correspondence with 

ker(i/v)a C H x(fc, N).

In chapter 6, we define invariants on the set ker(z^)11. We show that these charac­

terize completely the elements of ker(iiv)!! in low cohomological dimension.

2
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1. Galois Cohomology

1.1 Profinite Groups. Definition and Examples
Definition 1.3. Let /  be a partially ordered set, denote this partial order by 

We say that /  is a directed set if for all ii, i2 € /  there is a j  € I  such that i l} i2 ^  j .

Example 1.4. Let X  be any set and Y  C X  a subset. Let /  =  {U C X : U D V}. 

Define U ^  V  if U 3  V, then given U and V  in /  take U n  V.

Example 1.5. Let /  =  Z \  {0} and for i, j  € /  say that i ^  j  if i \ j .  If i\, i2 6 /  

then take j  =  LCD

Definition 1.6. Let /  be a directed set, {Gj: i € /} topological groups. We say 

that the triple ( /, G{, tv- : Gj — > Gj) is an inverse system of topological groups if

1. 7r‘ = idc, for all i

2 . i ^  j  ^  m ==» on™ = n™

Definition 1.7. In the situation of definition 1.6 we define the inverse limit of 

the G f  s to be

limGi =  |( g {) 6  n Gi: ^ j )  =

We call nj (gj) =  the coherence condition.

Definition 1.8. A group G is said to be a profinite group if it is isomorphic (as 

topological groups) to some limG,, where all of the G j’s are finite and they all 

carry the discrete topology.

Theorem 1.9 ([R], p.40). The following conditions are equivalent:

1. G is a profinite group;

3
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2. G is a compact, Hausdorff group in which the family of open normal subgroups 

forms a fundamental system of neighborhoods of 1;

3. G is a compact, totally disconnected, Hausdorff group.

Example 1.10. Any finite group is trivially profinite.

Example 1.11. The p-adic integers Zp =  lim Z /p‘Z are profinite by construction.

For any field k we denote a (fixed) separable closure by ksep. Recall that ksep = 

Uief Li where {L i : i € 1} is the partially ordered set of all finite Galois extensions 

of k. If Lj D Li, then we have the restriction maps

tt/: Ga\{Lj/k) — >Gal{Li/k)

so we can form the profinite group limGal(Lj/A:).

Theorem 1.12 (Krull, [Wi] 6.11.1). With the notation as above,

Gal {ksep/k)  =  limGal(Lj/A;)

This is actually not so hard to see.

Sketch of Proof. If a  € Ga\{k3ep/k), just send it to (crlij this is “coherent” , by 

the transitivity of the reduction map. Hence it yields a group homomorphism,

/ :  Gal(fcsep/*0 — > limGa\{Li/k)

To see that /  is injective, take 1 ^  a  € Gal(fcjep/A:), then a(x) ^  x  for some 

x  e  ksep = |J i<;[Li. If x e  Li, then <Ji(x) =  a(x) ±  x. So f{x )  ^  1, i.e. f  is 

injective. On the other hand, given (crj) 6 limGal(£i/A:) we want to produce a 

a e  Gal(ksep/k).  Choose a  6  k3ep, so a  € Li for some i. Is <r(a:) =  crj(a)? Yes! This 

is unambiguous because of the coherence condition, 7if(oj) =  its image under 

nj does not change. Thus, /  is an isomorphism.

4
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In this section, T will denote & profinite group, i.e. a group that is the inverse limit of 

a system of finite groups. For the most part, we’ll be dealing with T =  Gal(ksep/k). 

An action of T on the left on a discrete topological space is called continuous if 

the stabilizer of each point is an open subgroup of T. Discrete topological spaces 

with continuous left action of T are called T-sete. A group A which is also a T-set 

is called a T-group if T acts by group homomorphisms, that is,

cr(ai • 02) = o-(ai) • <7(02) for a € T, <Xl, a2 € A.

A T-group which is commutative is called a V-module. In what follows we will 

construct the cohomology sets Hl(T, A) for i =  0,1,2.

1.2 Cohomology Sets
For any T-set .4, we set H°(r, A) to be the elements in A fixed by T, that is 

H°(r, A) =  Ar =  {a e  A: aa = a for <7 e  T}

If A is a T-group, H°(r, A) is a subgroup of A.

Let A be a T-group. A 1-cocycle of T with values in A is a continuous map

a :  T — > A

satisfying

a<rr =  ota ■ craT

where a„ denotes the image in A of a  under a. The set of all 1-cocycles of T with 

values in A is denoted Z l(T, A). We define an equivalence relation, ~ i, on the

1-cocycles as follows

Definition 1.13. Let a , /3 € Z l {T, A),

(3 3 a € Ax such that a a = a- /3C ■ aa~l V a  € T

Definition 1.14. H1(T,A) =  Zl (r, A)/ ~ i

5
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Hx(r, A) is a based set with neutral element, id a, the identity on A. If a  ~ i 0, we 

say that a  and 0  are equivalent or cohomologous. If A is a T-module, Z l(V, A) is 

an abelian group for the natural operation {a0)a =  otaQa, and H X(I\ A) inherits 

the structure of an abelian group.

If A is a T-module, a 2-cocycle of T with values in A is a continuous map

a : T x T — > A

such that

& ® r , p  ' Ckff.rp =  &tTT,pQo,T fo r  a ,  t , p e r

The set of all 2-cocycles of T with values in A is denoted by Z 2(T, A). This set is 

an abelian group for the operation (a0)a<T =  ol0%t • 0a<T. We define an equivalence 

relation, ~ 2, on the group of 2-cocycles as follows:

D efinition 1.15. Let a , a' G Z 2{r , A), a  ~ 2 if and only if there exists a map 

tp: T — > A such that

a'a<T = oipr ■ ■ otaT for all a, r  G T

a  and a' are said to be equivalent or cohomologous.

Equivalence classes of 2-cocycles form an abelian group denoted by H2(T, A).

1.3 Functoriality
Let / :  A — > B  be a homomorphism of T-sets, that is, a map such that j{aa)  =  

af(a)  for all a  G T and a G A. Note that if a G Ar , then

/(a )  =  /(era) =  a /(a )  

and thus /(a )  G B r . Hence /  restricts to a map

/° :  H°(r, A) — > H°(r, Z?)

6
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Now if A, B  are T-groups and if /  is a group homomorphism, then f °  is also a 

group homomorphism. Furthermore, there is an induced map

/ l : H 1^ ,  .4) — ► H x(r, B)

given by f l (a)a = f { a a). One important property of is that it takes the distin­

guished element of H1(r, /I) to the distinguished element of Hx(r, B).

The cohomology sets have functorial properties in T as well. If To C T is a closed 

subgroup and A  is a T-group, the action of T restricts to a continuous action of 

To, and we have the restriction map

res: H‘(r, .4) — ► .4)

for i = 0,1, 2. Recall that for H2(r, A) to make sense A  has to be a T-module.

1.4 Cohomology Sequences
For a broader discussion on cohomology sequences the reader may want to see 

[KMRT, section 28. B].

Let B  be a T-group, A  a normal T-subgroup of B, i . e .  a normal subgroup of B  

invariant under T. Set C =  B /A ,  note that it is a T-group. We have the inclusion 

map, i :  A  — > B  and the projection map t v : B  — > B/A .  These two give rise to 

the exact sequence

1 — > A - U ’ B  C  — > 1 (1.3)

Now the projection, tv :  B  — > B /A ,  induces a map of pointed sets B r — > (B /A )r . 

Let b- A  G {B /A )r , i.e. ab- A  =  b- A  Vcr e  T. The map a :  T — t .4 given by 

aa = b~l ■ ab e A  is a 1-cocycle with values in A, whose class [a] in Hx(r, A) is

7
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independent of the choice of b in b A, for

b - A = b' • A  =► b-la { b ) = b r l<T(b')

=> b'b~l = a{b'b~l)

=► b'b~l e B r

so we have a (connecting) map of pointed sets 5°: H°(r,C) — > H1(r,.4) given

by <5°(6 • A) =  [ a t ] ,  where a ff =  6_1 • a(b).

Proposition 1.16. The sequence

i  — ► Ar - A  B r A  c r A  A  H ‘ (r , b ) H x( r , c )

is exact.

Proof. Exactness at A r and at B r follow readily from the exactness of sequence 

(1.3).

Exactness at C r : Suppose the 1-cocycle aff =  b~l -a(b) G A  is trivial in Hx(r, .4), 

that is, suppose a ff =  a~L • a(a) for some a G .4. Then 6-1 • a(b) =  a-1 • cr(a), so 

cr(ba~l ) =  6a-1. Hence ba~l G B r and the coset 6.4 =  ba~lA  G B /A  is equal to 

the image of ba~1 G B r under 7r°.

Exactness at H x(r, A): If a  G H x(r, A) is in keri1, then i o a ff =  b~lab for 

some b € B. Hence aa =  i~l (b~lab) Vcr G T and a  =  5°(c) where c =  7t(6). On 

the other hand, if a  € Im<5° then there is a b € B  such that a a = i~l (b~lab) so

i lota =  iota = b~lcrb, i.e. i la  = id^. Thus, a  G keri1.

Exactness at Hx(r, B): Let P G Z l {F,B), where [/I] G kerTr1. Then

pa • A  =  b~labA for some b G B

=  b~lAab as A  is normal.

8
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so p„ = b 'a^ab  for some a a G Zl(r ,  A). Hence fi is in the same class as the image 

of [a] under i 1. So ker7rl C Im i1. But clearly Im i1 C ker 7T1. So, we have exactness

a t H ^ r .B ) .  □

Corollary 1.17. There is a natural bijection between keri1 and the orbit set of 

the group B r in C v = (B /A )r .

Proof. A  coset b- A  G C r determines the element 5°(b • /I) =  [6-1 • <r(b)] G keri1. 

It is readily seen that <5° (6 • A) =  S°(b' • .4) if and only if the cosets b • .4 and b' ■ .4 

lie in the same B r -orbit in Cr . □

Corollary 1.18. There is a natural bijection between ker7r l and the orbit set of 

the group C v in H1(r, A).

Proof. The group C r acts on H1(r, A) as follows: For c =  b • .4 G C r and a  G 

Zl(r, .4), set c[a] =  [(3] where (3a =  6 • aa • ab~l. □

In general, this is as far as we can go with non-abelian cohomology. However if 

we have a central extension, i.e. i(A) C Z(B),  then we can go a seventh term, 

H2(r, .4). Since i(.4) C Z(B), A  is an abelian group. We can define a (connecting) 

map 51: H1(r,C) — > H2(r,.4) of pointed sets as follows:

Given 7  € H x(r ,C ) , choose a map fl: T — > B  such that f3a is mapped to 

7„ V a  6  r  and consider the function a : T x T — y A  given by

a<r,r =  Ar ' 0$T ■ (3(-1<TT

We need to prove that a  6  Z2(17, A) and that [a] does not depend on the choices 

of 7 G [7 ] and p. To see that a  6 Z2(r, A) we need to check that

’ ®(r,rp =  <̂JT,p ' Q!(r,T

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



so it is enough to see that

Q <r,r<TQfT,p ’ ° i (T,Tpa aT ,p  ~  1

this is equivalent to

a <T,r  ' 0 o a O L T , p P a  1 ' a <T,Tp ■ a a T ,p  =   ̂

which is clear since we have cancellation all over, just substituting we get

(A r • • /3“ ‘)A (ctA  ' trrifi,) ■ o0;})

K '  ( f t  ■ "ftp  ■ ft'rp) (Arp • <T1-(A)-‘f t r  ) = 1

Now if we replace 0a by ot'a0a the 2-cocycle aa,p is replaced by the cohomologous

2-cocycle a'aT ■ a a,T with

< r  =  ■ P<J°<*'TPcX ■ < r _ l

Thus, we can define <fl ([7]) =  [a], and we have:

Proposition 1.19. The sequence

1 — » /tr A B r c r - ^ H l ( r , / i)

- iI+ H ‘ (r ,B )  ^ + H l ( r , c )  - ^ H 2(r,.4 )

is exact.

Proof. We need only check exactness at H1(r,C). Suppose that for some 7 € 

Z l(T, C) and some 0 , a  as above we have

— 0O&0T ' 0at  — aa<yaT • aaT

for some aa € A, that is, 7 e  kertf1, then 0aaa l € Z l{T ,B ), call it 0'a. But then 

7  =  7r1 ([/?']). □

10

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C orollary  1 .20 . There is a natural bijection between kertfr1 and the orbit set of 

the group Hx(r,A) in H X(I\ £ ) .

Proof. Two elements of Hx(r, B) have the same image in Hx(r, C) if and only if 

they are in the same orbit under the action of Hx(r, A). □

R em ark  1.21. The group H x(r, A) acts naturally on H X(T, B) by

(o • (3)a =  Qu • f3a

1.5 Some Applications
Let’s see some applications of Galois Cohomology. Let L /k  be a finite field exten­

sion, and set G i  =  Gal(L/A;), in particular we’ll use T for Gal(ksep/k).

Lem m a 1.22. H  1(G i,L )  = {1}.

Proof. By the normal basis theorem, L is a free kG i-module. □

T heorem  1.23 (L inear Independence o f C h a rac te rs) . Let T be a monoid,

L a field, and let / i , . . .  , /„ be distinct homomorphisms T — > L * . Then the

homomorphisms / i , . . .  , /„  are linearly independent over L.

Proof. Suppose that f i , . . .  , f n are linearly dependent over L. Take a linear com­

bination

c i/i +  C2/2 H h Ckfk =  0 (1.4)

of minimal length k (after renumbering if necessary) where c, ^  0 for all i = 

I , . .. , k. Let cr, r  € T and evaluate (1.4) at cr. We get

ci/i(o-) +  c2/ 2(tf) + • • • +  ckf k{a) =  0

and multiplying this by f \  (r) we have

ci/i(<rr) +  c2/ 2(<r)/i(r) +  • • • +  ckf k{a)fi(r)  =  0

11
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so

c2( /i( r )  -  / 2( t ) ) /2(<t) +  • • • +  CfcCACr) -  f k{T))fk(a) = 0 

and since k was minimal and all the Cj’s where non-zero we must have 

fi{r)  -  / 2(r) =  / i ( r )  -  / 3(r) =  • • • =  f ^ r )  -  f k(r) = 0 

hence all the homomorphisms agree on r , which was arbitrary, i.e.

f i(r )  =  / 2(r) =  / 3(r) =  • • • =  f k{r) = 0 

but this is impossible since the f f s  were distinct. □

Lemma 1.24. H 1(G l,L*)  =  {1}.

Proof. Choose a 1-cocycle a: G i  — > L* . By theorem 1.23 the elements of G l , 

regarded as characters L* =  T — > L x, are linearly independent. Hence we may 

pick c G i  such that 6 ^ 0  where

6 =  5Z  a°a (c)
cr€GL

Apply T  eGi  to get

r(b) =  r a ara(c) =  q ^ 1 (arTO^) ra(c)
o <ZGl  o $ G l

=  a f la TaTa{c)
ereGL

= a " 1 ^ 2  a roTcr{c) =  a ~l6
o-6 G l

so a T =  br(b)~l , hence a  is cohomologous to the trivial 1-cocycle. □

Let V  be a finite dimensional A;-vector space, so V* =  Homjt(V, k).

Let =  V  <g>fc • • • ®k V  ®k V* ®k ■ ■ ■ ®k V* =  F®p ®k V s\  Elements of 

p-times ?-times

12
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are called (p, q)- tensors. Suppose that W  is also a finite dimensional A;-vector space, 

and / :  V  W  is an isomorphism. We want to construct a map — > W^p,q\

We have /* * : V ® p — ► W ® p , /* : W V,  and so (/*®, ) ~ l =  /» : V®* — > 

W*®, > Hence we get a map which, by abuse of notation,

we will also call / .

D efin ition  1.25. A (p, q) fc-object is a pair (V,x), where x  £ V ^ 'qK

D efin ition  1.26. An isomorphism of (p, g)-objects (V, x) — > (W ,y ) is an isomor­

phism of vector spaces / :  V  — > W  such that f(x )  =  y.

E xam ple  1.27. If (p, q) =  (0,0), then =  k. Take x  =  1 £ k. Our object

(k , 1) is just a vector space.

E xam ple 1.28. Suppose V  is endowed with a A;-bilinear form b: V x V — > k.

From this we get 6 : V  ® V  — > k, so (V'', b) is an object of type (0,2).

Suppose / :  (V,b) — ► (W,6'), to be an isomorphism of such (0 , 2)-objects means 

that for any u, v' € V  we must have b(v, v ') =  b'(fv, f v 1).

E xam ple  1.29. Suppose V  is a A;-algebra, and p: V x  V  — > V  gives multiplication 

in V. We get p: V  <8> V  — t V  so p € Hom*(K ® V, V) =  V  ® V*9' . Hence to get 

an algebra we need (1, 2)-tensors.

Now fix two A;-objects (V, x) and (W, y). For any cr £ G i,  we have o(v® t)  =  v® ai. 

Hence (Vl)Gl =  V ®/t k = V, similarly for W.

Now take x  £ V(p,<0 c  and y £ W(p,<,) C W ^ 'q\  and suppose that we have 

an isomorphism of L-objects / :  Vi W i  such that f (x )  =  y. Can we get an 

isomorphism of fc-objects? If not, can we measure the obstruction?

Set fff  =  a  o /  o cr-1 , A  =  Aut (V i ,x ), and aa =  f ~ l o a f .  Note that aa £ A  and

13
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a: G i  — ► A is a 1-cocycle, since

OLar =  f ~ l o arf  =  f ~ l o af o  a( f~ x o Tf )  = aa o aotT

Remark 1.30. Replacing /  by fo g  for any g G A  yields a cohomologous 1-cocycle. 

a a changes to g~l o f ~ x o a f  o ag.

If a  is the trivial 1-cocycle, then a a =  c~l oac for all a  G G l , so c~l o ffc = / -1 oa f ,

i.e. f  o c~l is a G/,-equivariant isomorphism, so ( /  o c- l )Gt : V W.

Let E ( L /k ) denote the set of isomorphism classes of A;-objects which become iso­

morphic to (V’ a:) over L. The above argument gives an injective map 

6: E (L /k )  — > H l (Gr,,.4) where .4 =  Aut(Vf,,a:).

T heo rem  1.31. 6 is a bijection.

Sketch of Proof. Choose a  € H 1(Gr,,.4). As .4 C GL(V'£,), by 1.24 we can find

/  € GL (VL) such that a a =  f ~ xoaf .  Extend /  to V[p as before and set y =  f(x ).

To show that (V, y) is a A:-object, we want to show that y G V(p,Q) (not just Vjf'q̂ ). 

It is easily seen that ay =  y, thus / :  (V i ,x ) — > (Vl , u) is an isomorphism of 

L-objects and its associated 1-cocycle is given by aa =  / - l  o a f .

For a broader discussion on this see [KMRT, p.392] or [Se2, p. 152].

If char A; ^  2, and 6 is a non-degenerate skew-form on a fc-vector space V', we define 

the symplectic group as

Sp(V, b) =  {7 G GL(K): b(v, v ') =  6(71/, 7*/)}

T h eo rem  1.32. H 1(G£,,Sp(V'£,,6)) =  {1}.

Proof. This set classifies skew-forms on V  which become isomorphic on Vl . But 

it is well-known that all non-degenerate skew-forms on V  are isomorphic. Thus 

H 1(GL,Sp(V^,6)) =  {l}. □

14
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T heorem  1.33. H ^G i,, GLJL) =  {1} for all n ^  1.

Proof. This set classifies vector space structures of V  which become isomorphic on 

L, there is only one such. □

T heorem  1.34. H 1(G£,,SL„L) =  {1}.

Proof. Consider the exact sequence

1 — > SLnL — ► G LnL L* — > 1

Looking at its associated exact sequence in cohomology we have

1 — > SLnk — > GL„ik — > k* A  H 1(G£,) SL„L) — > H l (GL, G LnL)
    '

={r> by i.24

so the sequence becomes

1 — > SLnfc —♦ GLnifc ^  k* A  H \ G l , SLnL) — * 1 

and so applying the first isomorphism theorem we have

A;* /  ker <5° =  Imtf0

But ker<J° =  Imdet0 =  k* and 5° is also surjective since the sequence is exact. 

Hence Im<5° is isomorphic to H  1(Gc, SLnL) and so H 1(G£,, SLnL) =  {1}. □

1.6 Kummer Theory
Let A: be a field, and let k D  pn be the set of n tA roots of unity, where gcd(n, char k) =  

1, and T =  Gal(A:3ep/A:). We have an exact sequence of discrete T-modules

15
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where the map n  takes x  €  k*ep to xn. Looking at the associated sequence in 

cohomology we get:

1— *** - z + k *  —>tf(r,n .)-*  H 'tr .ty
=  H m H 'tG t, /.*)

-> S i ■ ̂  ✓
={l} by i.24

Thus we have

T heorem  1.35 (K u m m er, [KMRT] 30.1). H l (T ,nn) = k * /k * n.

Proof. Just apply the first isomorphism theorem to the above sequence in coho­

mology. □

1.7 Central Simple Algebras
A finite dimensional /c-algebra A  is called a central simple k-algebra or a central 

simple algebra over k (sometimes denoted C SA  over k) provided:

1. k =  Z(A)

2. .4 has no proper 2-sided ideals.

T h eo rem  1.36 (W ed d erb u rn ). Let A be a central simple algebra over k, and 

M  be a simple (irreducible) left A-module. Then

1. D — End>i(M) is a division algebra with Z (D ) = k.

2. A  =  Mn(D) for some n.

Proof. See, for example, [Sc, Theorem 1.11] on p. 284. □

E xam ple 1.37. .4 =  M nA: is a C S A  over k.

E xam ple  1.38. Let D  be a skew field. Set k =  Z(D). Then D  is a C S A  over k.

16
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Example 1.39. Let M C M 2C be the algebra of Hamilton quaternions

/
: a, b G Ce =  <

. v

Then H is a C S A  over R, and H 0 r  C =  M 2<C.

Theorem 1.40 (Skolem-Noether, [KMRT] 1.4). Let A be a central simple 

algebra over k, and B  be a simple k-algebra. Suppose that f ,  g: B  — > A are any 

two k-algebra embeddings. Then there is ana € A* such that f(b) =  ag(b)a~l V6 € 

B.

Before proving this result we state the following immediate corollary:

Corollary 1.41. Let A be a central simple algebra over k, and let Aut(.4) denote 

the group of all k-algebra automorphisms of A, then

Aut(A) “  A*/k*

Proof. Define a homomorphism

Inn : A x/ k x — > Aut(A)

: o H  ( i  i4  axa-1)

Since A is central over k , Inn is injective. To see that Inn is surjective, let <p\ .4 — > 

A  be an automorphism, and apply the Skolem-Noether theorem with B = A, f  = 

V?, and g =  id.4. We get (p(x) =  axa~l for some a € .4X and all x  G .4, so 

<p =  Inn(a). □

In particular, Aut(M nA:) =  (GL„A:) /k*  = PGL„A;, where k x is isomorphic to the 

diagonal matrices.

Proof, (of 1.40) Let us break the proof up into two cases.

17
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Case 1: Suppose A  is split, i.e. A  =  Endfc(D) for some skew-field D.

Since A  is a C S A  over k, write A  =  M nD, where D  is a skew-field. Let S  =  

Dn (D  =  E n d ^S )). A  acts on 5  by left matrix multiplication, where the elements 

of S  are written as column vectors. We know that S  is the simple A-module. Let 

C = D B, notice that, in particular, C  is a simple algebra. We will define two 

C-module structures on S. For all d e  D, b e  B, x  £ S  we define:

Sf : (d®b)(x) = d{f{b)x)

Sg : (d ® b)(x) =  d(g(b)x)

C  being a simple algebra, all C-modules are sums of copies of the simple C-module

S. In particular, if S i and S2 are C-modules of the same dimension over k, they 

are isomorphic. Hence S / and Sg are isomorphic as C-modules, i.e. there exists 

9 : 5  — > S  such that

0 (df(b)x) = d (g{b)9(x)) (1.5)

for all d € D, b € £ , and x  € 5. So, taking b = 1 in (1.5) above, we have 

9(dx) =  d6(x), hence 0 commutes with d, i.e.

9 € EndD(S) =  End0 (£>”) 3  M n(L>) =  ,4 

so 9 is just left multiplication by an element of A x , say a. Again from (1.5) above

we have

a (df(b)x) = d (g(b)ax)

for all d e  D, 6 € £ , and x  € S. Taking d =  1, we get af(b)x  =  g{b)ax for all

x  € S, hence af(b) =  g{b)a for all b € B. Therefore,

af(b)a~l =  g(b) for all 6 6  B  

18
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Case 2: General Case

Consider the maps

/  ® id, g ® id : B  ® A09 — > A  ® A09 =  End*;(A)

Since B  <g> A op is simple (as B  is), we may apply corollary 1.41. By the corollary 

there exists an invertible ip G A  0  <4op such that

(gb) <8> a' =  (f(b ) ® a!) (p for all b 6 B, a! e  .4op

Setting 6 = 1 ,  one sees that /  commutes elementwise with all elements of l® .4op = 

A0**. But ip =  ip ® 1 for some a 6 .4. Setting a' = 1 yields

gb = a~l(fb)a V6 € B

□

The Skolem-Noether theorem states that every isomorphism of a simple subalgebra 

can be extended to the entire algebra in a very particular way, namely by an inner 

automorphism.

1.8 The Brauer Group
We now define an equivalence relation ~  on central simple algebras over k as fol­

lows: Let .4 = M riD  and B  = MmD', then

A  ~  B  <*=>■ D = D 'as  A:-algebras and n — m  

Denote the equivalence class of .4 as [A], then we define the product of two equiv­

alence classes to be [A] • [B] := [A ® B\, later we will write this additively, i.e. 

[A] +  [B] = [A ® B}. Let Br(A:) be the set of equivalence classes of central simple 

algebras over k. Br(A:) with this operation is actually an abelian group, called the
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Brauer group of k, the associativity of the product follows from the associativity 

of the tensor product. Br(fc) has identity [A:], and the inverse of a class [A] is the 

class of its opposite algebra [A op).

Example 1.42. If k is algebraically closed, then Br(A;) =  {0}.

Proof. Let D be a skew field, central over k. We need to show that D  =  k. Choose 

A € D, and let : D  — ► D be left multiplication by A, a A:-linear map. Since k is 

algebraically closed, i \  has an eigenvector. Call it v. So t\{v) =  av for some a e  k. 

Hence, we have the following

Av =  av <=> (A -  a)v =  0 ( t / /  0)

■$=> A — a =  0

■€=> A =  a € k

□

Theorem 1.43 (Tsen). If  k is a function field in one variable over an algebraically 

closed field, then Br(A;) = {0}.

Proof. See [Sh]. □

If L f  k is a finite field extension we define a map

_<8>* L Br(fc)— ► Br(L)

: [.4] i— ► [.4 L)

Definition 1.44. We define the relative Brauer group of a finite field extension, 

Br(L/fc), to be ker(_® jt L)-
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Note that these are the central simple algebras over k that split over L, i.e. A®*! = 

MnL. Another way to view Br(A:) is as follows

Br(ifc) =  \ jB x ( L /k )  =  limBr(L/A:)
L /k

where L /k  are all the finite separable field extensions of A:. In fact one can show 

Theorem 1.45. Br(L /k)  “  H2(Gl ,L*).

Proof. Define a vector space .4 over L with basis {aa : a  £ G l ). Hence the elements 

of A  may be written uniquely in the form ^  caaa with cc £ L. Now, given a

2-cocycle ip £ H 2(Gl , L x) we define a multiplication in .4 with relations as follows: 

aaaT = ipa.rO-aT and aac =  a(c)aa for all c £ L 

The 2-cocycle condition assures the associativity of this product. Now, denote by 

A(ip) the algebra just defined. We will state the following facts without proof. The 

proofs may be found in [J, section 8.4].

1. The algebra A{ip) is a central simple algebra over k.

2. A{ip) ®k A(<p) =  A{ip + ip) ®fc M n(k).

3. The trivial 2-cocycle yields the matrix algebra M n(k), where n =  [L: A:].

4. 4(-0) =  A(ip) if and only if ip and ip are cohomologous.

5. Every central simple algebra is isomorphic to an algebra A(tp) for some 2- 

cocycle ip G H 2(Gl ,L*).

From these (non-trivial) facts we conclude that the correspondence i p  \— > A ( i p )  

defines a group isomorphism

H 2(Gx, L x) Br(L/k)
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as desired. □

Example 1.46. Br(C/R) =  H 2(C2, Cx ) =  Z/2Z. The non-zero element of Br(C/R) 

corresponds to the 4-dimensional algebra of Hamiltonian quaternions EL

As an immediate consequence of theorem 1.45 we have:

Corollary 1.47. Br(Ik) S£ H2(I\ifcxp).

In particular, Br(A;) is always a torsion group. Hence, one can look at the n-th 

torsion of Br(fc),

nBv(k) =  {[A] € Br(fc): [A®"] = 0}

Around 1980, Suslin and Merkujev proved that „Br(A;) is generated by n-cyclic 

algebras. The interested reader may want to see [Wi, section 6.11].

1.9 Etale Algebras
Let k be an arbitrary field, kxp denote a (fixed) separable closure of A*, and T = 

Gal (kaep/ k ) be the absolute Galois group of k. Let Vo be a k-vector space. The left 

action of T on V  =  VQ ksep defined by

7 * ( u ® x )  =u<8 7 (1 ) for u € V0, x  € ksep 

is semi-linear with respect to T, i.e.

7  * (ux) =  (7 * v)j (x)  for v € V, x  € ksep

Lemma 1.48 (Galois Descent, [KMRT] 18.1). Let V be a ksep-vector space. 

I f  T acts continuously on V  by semi-linear automorphisms, then

Vr =  { v € V ' : 7  *v  — v V7 €T}
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is a k-vector space and the map

V r ® k 3ep — ► V

V ®  X  I— ► vx 

is an isomorphism of k3ep-vector spaces.

Proof. See [KMRT, Lemma 18.1] on p.279. □

Let Algjt be the category of unital commutative associative /^-algebras with k- 

algebra homomorphisms as morphisms. For every finite dimensional commutative 

A:-algebra L, let

X  (L) =  HomAigfc {L, ksep)

For any field extension F/k,  let Lp  be the F-algebra L®kF. Notice that if F  C ksep, 

then k3ep is also a separable closure of F , and every /s-algebra homomorphism 

L — >• ksep extends uniquely to an F-algebra homomorphism Lp — > ksep. Hence 

we can identify X( Lp)  =  X(L) .

Proposition 1.49. For a finite dimensional commutative k-algebra L, the follow­

ing statements are equivalent:

1. For every field extension F/k,  the F-algebra Lp is reduced, i.e. Lp does not 

contain any non-zero nilpotent elements;

2. L = Fi x • • • x Fr for some finite separable field extensions F\, - ■ • , Fr of k;

3. FfcJep =  k3ep x • • • x k3ep,

4. The bilinear form T: L  x L  — > k induced by the trace:

T(x,  y) =  TrL/k{xy) for x, y 6  L

is non-singular;
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5. card X (L )  =  dim* L;

6. cardX (L) ^  dimk L.

I f  the field k is infinite, the above statements are also equivalent to:

7. L = k[X ]/(f)  for some polynomial f  € A:[.Y] which has no multiple root in an 

algebraic closure of k.

Proof. See [KMRT, Proposition 18.3] p.281. □

A finite-dimensional commutative fc-algebra satisfying any (and hence all) of the 

conditions above is called an etale k-algebra. Notice from the first (or fourth) 

statement that etale algebras remain etale under scalar extensions.

We now use Hilbert’s theorem 90 to show how etale algebras are classified by an 

H 1-cohomology set.

The fc-algebra .4 =  k x • • • x k (n copies) is etale of dimension n. For if {ei}'l_l is 

the set of primitive idempotents of .4, any fc-algebra automorphism is completely 

determined by the images of the e/s. Thus, Auta/9(,4) is the constant symmetric 

group 5„. Proposition 1.49 shows that the etale A;-algebras of dimension n are 

precisely the twisted forms of A = k x • • • x k. Therefore we have a bijection:

H  l (k ,Sn)

- - ----------

^-isomorphism classes of etale fc-algebras of degree n

For a more detailed discussion on Etale Algebras the interested reader may refer 

to [KMRT, section 18.A].
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1.10 The p-Cohomological Dimension of a 
Profinite Group

Let p be a prime number, and let G be a profinite group.

Definition 1.50. A profinite group G  is said to be a pro-p-group if it is the inverse 

limit of p-groups, i.e. if its order is a power of p.

Definition 1.51. If G  is a profinite group, a closed subgroup H  of G  is said to be 

a p-Sylow group of G  if H  is a pro-p-group and (G : H) is prime to p.

Example 1.52. Zp =  lim Z/p"Z is a pro-p-group.

Theorem 1.53 (Sylow Theorem for Profinite Groups). Let G, G\ and G2

be profinite groups.

1. G  possesses p-Sylow subgroups.

2. If H  is any pro-p-subgroup of G, then H  is contained in some p-Sylow sub­

group ofG.

3. Any two p-Sylow subgroups of G are conjugate in G.

4 . \g \ =  nP \GP\, where G p is a p-Sylow group of G.

5. Ifh:  G \ — > G2 is a continuous surjective homomorphism of profinite groups, 

then the image of a p-Sylow group is a p-Sylow group.

Proof. See [R, p.47]. □

For a profinite group G, let Mod(G) denote the category of G-modules, and let 

Modf (G) denote the full subcategory of Mod (G) consisting of the torsion modules 

(torsion as abelian groups). If A 6 Modt(G) and p is a prime number, denote by

A(p) the p-primary part of A, i.e. those elements of A of order pn for some n. If

A(p) =  A we say A is p-primary.
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Proposition 1.54. I f  G is a pro-p-group, every simple p-primary G-module A is 

isomorphic to Z /pZ .

Definition 1.55. The p-cohoraological dimension of G , denoted cdp(G), is the 

lower bound of the set of natural numbers n satisfying:

By convention, if there is no integer n satisfying (1.6) cdp(G) =  +oc. One calls 

cd(G) =  supcdp(G) the cohomological dimension of G.

Proposition 1.56. Let G be a profinite group, let p be a prime number, and let n 

be an integer. The following statements are equivalent:

a. cdp(G) ^  n;

b. H ^G , .4) =  0 for all q > n and all p-primary A  G Modt(G);

c. H n+l(G, .4) =  0 for all simple p-primary G-modules .4.

Proposition 1.57. Let H  C G be profinite groups, and p a prime number. Then

H q{G, A){p) =  0 for all q > n and all A  6 Modt(G). ( 1 .6 )

Proof. See [R, p.200]. □

cdp(//) ^  cdp(G)

Moreover, equality holds in either of the following cases

2. H  is open in G and cdp(G) < oo

Proof. See [R, p.204]. □

Corollary 1.58. Let Gp be a p-Sylow group ofG . Then

cdp(G) =  cdp(Gp) =  cd (Gp)
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Corollary 1.59. cdp(G) =  0 <=► p  f |G|

Corollary 1.60. / /c d p(G) ^ 0 ,  oo, thenp00 divides |G|.

Corollary 1.61. If G is finite a n d p \  |G |, then cdp(G) =  oo.

Proposition 1.62. Let N  be a normal closed subgroup of a profinite group G , and 

let p be a prime. Then

cdp(G) ^  cdp(iV) + c d p(G/iV)

Proof. [R, p.209]. □
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2. Involutions

2.1 Involutions on Rings
Definition 2.63. Let R  be a ring. An involution on R  is a map a : R  — > R  such 

that for all a, b € R

1. a (a  +  b) =  a  (a) +  a(b)

2. a(ab) = cr(6)cr(a)

3. o 2(a) = a

The pair ( R , a )  is called a ring with involution.

Example 2.64. (C ,") is a ring with involution, where " denotes complex conjuga­

tion.

Example 2.65. Let R  be any commutative ring, then the transpose is an involu­

tion on M n(i2).

Definition 2.66. Let A; be a field. For a, b 6 k* define a 4-dimensional A:-algebra 

with basis 1, ei, e2, e3 by the following multiplication table:

eie2 =  e3, e2ei = - e {e2, e? =  o - l ( = a ) ,  e\ = b • 1 (= b)

This algebra is denoted by (a, b) =  (a, 6)* and called a quaternion algebra over k.

The subspace e ik + e2k +  e3k =  {x € (a, b ): x2 e  k, x k x } is denoted by (a, 6)0, 

and is called the subspace of pure quaternions. Hence we have

(a, b) =  k ■ 1 ® (a, 6)0
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Thus, if x  6  (a, b), then x  =  x0 +  xi, where xq G k and xi € (a, 6)0 are uniquely 

determined. The map

a : (a, b) — > (a, b)

X  I > X q —  X i

is a A:-linear involution, and it is called the canonical involution on the quaternion 

algebra (a, b).

E xam ple  2.67. The canonical involution on a quaternion algebra.

E xam ple 2.68. Let G be a group, and A: be a field. Let A = k[G] be the group 

algebra of G over k. The canonical involution on .4 is the Ar-linear extension of 

a: g * - + g - 1.

In the category of rings with involutions, a morphism is a ring homomorphism 

/ :  (R, a)  — » (5, r) with r( /(x ))  = f (a (x) )  for all x  € B.  If R  is a commutative 

ring, the identity is an involution. If R  is not commutative, the identity is not 

an involution. For every involution a  the fixed elements form a subring Ra = 

{a G R: a a  =  a} of R.

Remark 2.69. Let V  be a k-space, where char k ^  2, then there is a one-to-one 

correspondence between involutions on V  and idempotents on End*(V').

Proof. If e 6  Endjt(Vr) is an idempotent, associate to it 2e — id an involution on 

V. On the other hand, if r  is an involution on V, associate to it the idempotent 

i ( r  +  id). □

Definition 2.70. Let R  be a ring with involution a, and M  be a right f?-module

1. A sesquilinear mapping or a sesquilinear form  on M  is a map s: M x M  — > R  

such that
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a. s(x + y ,z)  =  s(x, z) +  s(y, z)

b. s(x, y + z ) =  s(x, y) +  s(z, z)

c. s(x, ya) = s(x, y)a

d. s(xa,y) = a(a)s(x,y)

for all x, y € M  and a  G R. The transpose as of a sesquilinear map is defined 

by as(x,y) = a(s(y,x)).

2. Let Z  — Z(R) be the center of R. Let A € Z satisfy Acr(A) =  1. Then a 

sesquilinear form h: M  x M  — > R  is called A-hermitian if h = \a(h), i.e. 

h(x , y) =  X(ah(x, y)) for all z, y E M. The pair (M, h) is called a A-hermitian 

module or a A-hermitian space.

Remark 2.71. If A =  1, h is simply called a hermitian form.

An involution a on a skew field D is called of the first kind if a is the identity on Z, 

the center of D. Otherwise the involution is called of the second kind. In this case 

a\Z  is an automorphism of order 2. Define Z a =  {a € Z: a a = a}. Thus Z =  Z c 

for involutions of the first kind and Z/Z*7 is a separable quadratic extension for 

involutions of the second kind. In the case of involutions of the first kind only 

A =  ±1 appear. We thus have, hermitian forms (A =  1), or skew hermitian forms 

(A =  —1). In the case of involutions of the second kind, we can assume without 

loss of generality that A =  1, and thus we have only hermitian forms.

2.2 Involutions on Central Simple Algebras
Definition 2.72. An involution on a central simple algebra .4 over an arbitrary 

field k is a map a: A  — > A  such that for all x, y G A

1. a(x + y) =  a{x) +a(y)
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2. a(xy)  =  a{y)a{x)

3. er2(x) =  x

Notice that if A  is a A:-algebra a  is not  necessarily fc-linear. However, k is stable

under a. Hence a\k  is an automorphism which is either the identity or of order 2. 

If the involution a  is such that

1. a\k  =  id, then a is said to be an involution of the first kind.

2. a \k  id, then a  is said to be an involution of the second kind.

Involutions of the first kind are divided into two types: the orthogonal type and

the symplectic type. Involutions of the second kind are called unitary or of unitary

type.

Example 2.73. For any field fc, take A  = Mn(A;) together with the transposition.

Example 2.74. There could be different involutions on Mn(A:), for example if 

n =  2, we have the involution

is an involution on M n(i2).

There is also the concept of adjoint involution which we will find particularly useful 

so we will define it here.

Let k be an arbitrary field of characteristic different from 2. Let (V, q) be a

which is clearly different from the transposition.

Example 2.75. Let (R, a) be any ring with involution, then
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quadratic space of dimension 2n  over k, where q is a non-degenerate form, and 

b is the symmetric bilinear form associated to q. We can define an (adjoint) invo­

lution 06 from the bilinear form b as follows

Definition 2.76. For any /  £  Endjk(K) define ab( f ) £ End^K ) by

°6(/) = b~l o f l ob

where b: V V * is the isomorphism induced by 6, and / 1 £ Endfc(V*) denotes 

the transpose of /  defined by mapping <p £ V* to ip o f .

Equivalently,

Definition 2.77. With the notation as above, ab is defined by the condition

% & (/)(* ). y) =  KxJiv))
for x, y £ V

In particular ab is AMinear.

We can also define the adjoint involution ah of a hermitian form h : V  x V  — > k 

defined on a vector space V  over quadratic field extension L/k .

Definition 2.78. ah is defined by the condition

H<rh{f)(x),y) =  h(x,f{y))  

for any x, y £ V  and any /  € End*(V).
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3. Linear Algebraic Groups

3.1 Definition and Examples
Let k be an algebraically closed field.

Definition 3.79. An algebraic group over k is an algebraic variety G, endowed

with the structure of a group, with distinguished element e G G, and such that the

maps defining the group structure

p.: G  x G  — ► G with p(x,  y) = xy

i: G — >G  with i(x) — x ~ l

are morphisms of varieties.

If the underlying variety is affine, then G is called a linear algebraic group. A mor­

phism of algebraic groups is a morphism of varieties which is also a homomorphism 

of groups.

Let G  be a linear algebraic group, and set A  = k[G]. The group structure of G is 

defined by algebra homomorphisms

p *: A — > .4 ®k A 

i*: A  — > A

and the identity element e is a homomorphism .4 — > k.

Example 3.80. Let G = A1 with e =  0, group law given by p{x,  y) =  x + y, and 

i(x) =  - x .  We denote this algebraic group by Ga: it is the additive group.

Example 3.81. G  =  A1 \{0} with e =  1 and group law given by p(x,  y) = xy  and 

i(x) = x~l . We denote this algebraic group by Gm or GL i*. it is the multiplicative 

group.
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If n is a non-zero integer, then <p: G m — > G m given by <p(x) = xn defines a 

homomorphism of algebraic groups. If char A; = p  > 0, and n =  pm for some m, 

then <f is an isomorphism of abstract groups but not of algebraic groups, since 

<p*: fc[Gm] — ► A:[Gm] is not surjective.

  i _
Example 3.82. View the space Mn of all n x rc-matrices as A:"e‘p. The general linear 

group G Ln consists of all n x n-matrices with non-zero determinant, together with 

matrix multiplication as group operation. We have

k [ GL n] =  k[Tij , D - lU i lj$n

where D =  det T y .  Here p.* is given by

n
p Tij =  ^  ^ (T j/, ®  Thj) 

h=l

and i'Tij is the (i, j)-entry of the matrix of (Ty)-1. The identity e sends Ty to <5y. 

Since M n is an irreducible variety, so is G Ln. It has dimension n 2 .

Example 3.83. Any closed subgroup of GL„ in the Zariski topology is a linear 

algebraic group. Here are some of them:

a. Any finite subgroup of G Ln;

b. Dn = {X = (xy) € G L „ : Xy = 0 if i ±  j} ,  the group of non-singular diagonal

matrices;

c. T„ =  {X  =  (x , j )  e  G L „: Xy =  0 if i > j} ,  the group of non-singular upper tri­

angular matrices;

d. U„ = {X = (x^) G GLn : Xy = 0 if i >  j  and x{i =  1}, the group of non-singular

unipotent upper triangular matrices;

e. SLn =  {X 6 G Ln : d e tX  =  1}, the special linear group;
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f. On = {X € GLn : X  • X* =  1}, the orthogonal group;

g. so„ = o„ n SLn, the special orthogonal group;

(  0 Id„ N
h. Sp2n =  {X e G L2n : X 1 • J  • X  = J}, where J  =  I , the sym-

\  -Id »  0 J
plectic group.

Exam ple 3.84. Let Q be a quadratic form of rank n over k , where char A: ^  2. If 

B  is a symmetric matrix representing Q, then

SO(Q) =  { X  g S L „: X 1 • B ■ X  = B )

is called the special orthogonal group ofQ. When Q is the unitary form ({1,... ,1)), 

we denote SO (Q) by SO„.

R em ark  3.85. SLn, Sp2n, and SO(Q) are examples of the so-called classical 

groups. SLn is of type An_t. Sp2n is of type Cn for n ^  2. S 0 2n is of type Dn for 

n ^  3, and S 0 2n+i is of type Bn for n ^  2. Knowing the type of group gives a lot 

of data about it. For example, the dimension of a maximal torus in a group G of 

type Tn is n, where T  = A, B, C, —

Exam ple 3.86. Let k be a field, V  an n-dimensional A;-vector space, and let h be 

a positive definite hermitian form on V. Hence for some M  6 M„ we can write 

h(v, w) = lv ■ M  ■ w for all v, w € kn 

We define the group of fc-linear automorphisms of V  preserving the positive definite 

hermitian form h, called the unitary group of h, as

U (h) = { A e M n : tA M A  = M}

In particular, if h is the standard inner product, then

\J(h) = { A e M n : tA = A - 1}
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We define the special unitary group of h as the subgroup of U (h) of automorphisms 

of determinant 1, i.e

SU (h) =  {A 6 U(h): detA  =  1}

Now we exhibit an example of a non-linear algebraic group

Example 3.87. Elliptic curves. These are closed subsets of the projective plane P 2 . 

If char k 2, 3 such a group G can be defined as the set of all x =  (xo> x \ ,x 2) 6 P 2 

such that

xoX% =  :r3 +  ax i l l  +  bxl

where a, b 6 k are such that the polynomial T3 + aT + b has no multiple roots. 

The neutral element e is (0,0,1), the point at infinity. The group operation of G is 

abelian, and is often written additively. It is such that if three distinct points are 

colinear, then their sum is e. If x = {xQ:x i , x 2) € G, then - x  =  (x0,x i, - x 2).

3.2 Diagonalizable Groups and Tori
Definition 3.88. Let G be a linear algebraic group. A homomorphism of algebraic 

groups x  '• G — ► is called a rational character of G.

The set of rational characters of G is denoted by X*(G), it has the natural structure 

of abelian group, and the operation is often written additively. One can think of 

the group of rational characters as sitting inside the group algebra ŝepfG1], i.e. 

X '(G )  C ksep[G\.

We define X,(G)  to be the set of homomorphisms of algebraic groups A: G m — > 

G. Such a A is called a multiplicative 1-parameter subgroup of G (1 — psg of G ). 

If G is commutative, then X m(G) has also a natural structure of abelian group. For 

t € G m, and A, /it € X,(G) we define

(A +  n){t) = A (t)p(t), (-A  )(t) =  A(t)_l
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Definition 3.89. A linear algebraic group G which is isomorphic over ksep to a 

closed subgroup of some group of diagonal matrices Dn is called dictgonalizable. G 

is an algebraic torus (or simply a torus) if it is isomorphic over kaep to some Dn.

Remark 3.90. In case G is diagonalizable, G is necessarily commutative and 

consists of semisimple elements.

Example 3.91. Let T  =  G m. If x  € X*(T), then x(^) =  tm for some m  € Z. 

Hence

X*{Gm) — Z

Lemma 3.92. I f  G is a connected algebraic group, then X '(G ) is torsion-free. In 

particular i f T  is an n-dimensional torus, then X ’(T) =  Zn.

Proof. If x  € X*(G), then x(G) C G m is a connected subgroup. But the only

connected subgroups of G m are {0} and G m itself. Thus for n > 0, n \  #  0 unless

X =  0. Thus, X*(G) is torsion-free.

Now, if T  is an n-dimensional torus,

T  =  G m x • • • x G m 

n times
so we have, X '{T )  S  X*(Gm)n S  Zn. □

Theorem 3.93. Let G be a linear algebraic group. The following are equivalent:

a. G is diagonalizable.

b. X '(G ) is an abelian group of finite type, its elements generate ksep[G].

c. Any rational representation of G is a direct sum of l-dimensional ones.

Proof. See [TS, Theorem 2.5.2] p.52. □
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Corollary 3.94. Let H  be a closed subgroup of the diagonalizable group G. Then 

H is diagonalizable, and it is the intersection of the kernels of finitely many rational 

characters of G.

Proof. See [TS, Corollary 2.5.3] p.53. □

Proposition 3.95. I f T  is a torus, then X*(T) x X ,(T )  — > Z is a dual pairing 

over Z.

Proof. If x € X m(T) and A € X .(T )  define (x, A) G Z by

x  (X(x)) =

then ( , ) defines a perfect pairing between X*(T) and X ,(T), i.e. any homomor­

phism X '(T )  — > Z is of the form x  1— > where x  £ -Y*(T). Similarly for

X.(T).  □

3.3 Maximal Tori
Assume G is a connected solvable linear algebraic group. Define Gu =  G fl U„, 

where Un is the group of unipotent upper triangular matrices. Thus, Gu is a closed 

normal subgroup which is nilpotent since U„ is. Moreover, there is an injective 

homomorphism of algebraic groups G/Gu — > Tn/U n. Now, since T„/Un is a 

torus, all elements of G /G u must be semisimple. Being connected, this group is a 

torus.

Definition 3.96. A maximal torus of G is a subtorus which has the same dimen­

sion as the torus S  =  G /G u.

A maximal torus is also a maximal torus in the set-theoretical sense, hence we may, 

equivalently, define a maximal torus of G to be a closed subtorus of G of maximal 

dimension.
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P ro p o sitio n  3.97. I f  G is a semisimple algebraic group over k, then any two 

maximal tori are conjugate over ksep.

Proof. See [TS, Theorem 7.2.6] p. 159. □

For a fc-torus T, we denote by X£(T) the subset of X*(T) consisting of fc-morphisms. 

We have the following:

D efin ition  3.98. A maximal torus T  is called k-split if X£(T) generates k[T], 

equivalently, if T  =* G m x • • • x G m; then T(k) = k* x • • • x k x .

We say that an algebraic group G is split if it contains a split maximal torus.
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4. Skolem-Noether Type Theorems

In this chapter k will always be an arbitrary field, B  will be a A>algebra, and A  

a central simple algebra over k  (denoted C S A  over k from now on) of degree n. 

For any A;-algebra C  and any field extension F/k  we write CV for the F-algebra 

obtained from C  by extending scalars to F, so Cp := C  F. Let ksep denote a 

(fixed) separable closure of k, and let T denote the absolute Galois group of k , i.e. 

T =  Gal {kaep/k). Recall that if A  is a /c-algebra and B  C A, then the centralizer 

of B  in A, denoted Z a{B ) ,  is the set of elements in A  which commute with every 

element of B, i.e. Z a { B )  = {x € A: xy = yx  for all y € B}.

4.1 Main Result
In this section our main goal is to extend the classical Skolem-Noether theorem 

stated in 1.40 as follows:

Theorem 4.99. Let n be a fixed (positive) integer. Suppose that B  is a k-algebra 

such that Bsep has a unique faithful representation of degree n over k3ep. Then 

all the embeddings of B  into a central simple k-algebra .4 are conjugate, i.e. if 

4>,ip: B  — >• A are two embeddings, then there exists a € A* such that tp(b) =  

a<p(b)a~l for all b € B.

Proof. Fix an embedding B  A  A  Now, let <p: B  — > >1 be any other embedding. 

We need to find an a € A* such that <p(x) = axa~l for all x  € B.

By hypothesis, we can find such an a 6 A% since A ^ p =  M n(ksep)x , and Asep 

has a unique representation of degree n.

Lemma 4.100. Let a, b € A * . I f  axa~l =  bxb~l for all x  6 B, then b =  az~l for 

some z  G Z a { B ) x .
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Proof. Well, this is a straightforward computation.

axa~l = bxb~l for all x  6 B  = >  x  =  (a~lb)x(a~lb)~l for all x e  B

= >  a~lb 6 Za {B )* ,i.e.,b =  az~l 

for somez € Z a (B )x

□

What we need to show is that we can choose 2 in such a way that a{b) =  b for all 

<y 6 T where T =  Gal(k3ep/k).  For x  £ B  we have <p(x) = axa~l for some a € -4£ . 

So (p(tr(x)) =  aa(x)a~l where a  € T. But is fc-linear, so ip(<j(x)) =  cr(ip(x)). 

Hence

aa(x)a~l =  <p(cr(x)) = cr(<p(x)) = a(axa~l) = a(a)cr(x)o-(a)_1,

so a<7(x)a-1 =  cr(a)cr(x)a(a)_ l) i.e.

a(x) = (a- l £7(a))<r(x)(a- l cr(a))_1,

so a~la(a) G Z a (B )x .

Now, to each a € T associate a continuous map c: T -> Z,\(B)X given by ca =  

a _la(a). Note that ca € Z l (k, Z 4\ (B ) X) since

CaOCr =  (a-1cr(a))a(a- l r(a)) =  a~la(a)a(a~l)aT(a) =  a _1crr(a) =  cffT 

What we want to do is show that ca =  1 V cr € T since then all embeddings of B  

into A  would be conjugate. This amounts to showing that H 1(A:, Z a {B)x ) =  {1}. 

To accomplish this we filter the algebra through its radical.

Let Z  =  Z a {B)x and R  =  Rad(Zsep). Define

U := 1 +  R  and U{n) := 1 + Rn for n  ^  1 

Let’s observe the following:
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a. C/M C U^n ^ for every n  ^  2.

If x  € UM then x  =  1 +  r n for some r  € R, but /i" C /?n_1

so x  =  l  +  r n 6 l  +  /?n C l  +  Rn~l = U^n~1̂ . Hence U^  C [/(n_1) for every

n ^  2. Note that we now have a decreasing sequence:

U = C/(1) 2 t/(2) 2 • • O  f/(n-1) D f/(n) D • • •

b. f? is nilpotent, so there exists an N  € N such that = {1} i n ^  N. Hence

the sequence in (a) above is finite, it becomes

U 2 U{2) 2 • • • 2 U(n~l) 2 U{n) 2 • • • 3 U{N~l) 2 U{N) = {1} (4.7)

c. Every u 6 U is invertible, i.e. if u =  1 mod R, there is a v such that uv =  1.

Proof. Let u € U, we have

-1  =  (1 -  u) £ ( i  -  u)i -  5 2 a  -  v y
j=1 j=I

= j r a - u y - u j r ( i - u y - f ^ ( i - u y
j=i i = i  j = i

hence —1 =  —u ^ ( l  — u)j , i.e. 1 =  u ^ ( l  — u)3. So take
j=i j=i

v =  ^ ( 1  -  u)3 
j=i

Lem m a 4.101. ^  i2n/f2n+1 /o r every n ^  1
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Proof. Define a map $ :  — > i2n/iT*+l by $(u) =  u — 1. To see that $  is a

homomorphism just note that

$(uv) =  uv — 1 =  (u — 1) +  (v — 1) — (u — l)(v — 1)

=  (u — 1) +  (v — 1) — (u — l)(u  — 1)

=  $(u) +  $(*>) — $(u)<&(u)

and $(u)$(t;) G R 2n C Hence $(uv)  =  $(u) +  Now we ask, what is

the kernel of $? Well, ker$  =  { u £  : $(u) G /2n+l} so

ker$  =  {u G f/^n): tT^T  G /?n+l}

=  {u G f/(n): uG  1 +  Rn+l}

=  { t i 6 ( / w : u G l / (n+1)}

=  fji.n+1)

so ker$ is exactly U(n+l).

To see that $  is a surjection, for any 0 /  f  G Rn/ R n+l pick 1 + r G  f/(n) and we

have $(1 +  r) =  (1 +  r) -  1 =  r. Hence $  induces an isomorphism £

ft7-Rn+l. □

Lem m a 4.102. ITit/i the same notation as above, H 1(k, U) =  0.

Proof. From lemma 4.101 we get the exact sequence

{/<"*+1) ^  ^ ( m )  R m / R m + 1

Now Rm/ R rn+l is just a vector space over ksep, so it is isomorphic to k f fp where M  =  

dimti(.p (Rm/R m+l). In terms of linear algebraic groups this is just the additive 

group G0, which by the additive version of Hilbert’s Theorem 90, is cohomologically 

trivial, i.e. H1(fc, Ga) =  0. So looking at the H1 part of the associated sequence
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in cohomology we see:

H x(Jfc, £/("»+1)) — ► H X(A;, U W )  — > H  x(fc, / T / f l m+l) =  H X(A;, G a) =  0 

Also note that H x(fc,f/(Ar)) =  0, since t / (Ar) =  {1}, so from 4.7 we have

0 =  H l (k, U W )  -* H x(fc, ^ - D )  Hx(fc, t / ^ )  -» H l (jb, £7)

which gives H x(fc, U ^ )  =  0 Vn >  1. Hence, in particular, when n  =  1 we have 

H x(A:,C/)=0. □

Now we put together all the information we have gathered so far. What we have is

U Gm,z G m>z/R

and we look at the H x part of the associated sequence in cohomology 

H x(fc, U) -> H x(fc, G m,z ) -  H l (k, G mtZ/R)

by lemma 4.102, H x(fc,£/) =  0 and we also have H l (k ,G m^ / R )  =  0. Hence we 

have succeeded in “pinching” H l (k, G myZ) in between two cohomologically trivial 

objects, so H l (k ,G miz) is trivial. We have shown that ca =  1 for all a  G T. So all 

embeddings of B  into A  must be conjugate, and this proves theorem 4.99. □

4.2 Examples
To effectively illustrate the result obtained above let us consider a couple of exam­

ples.

E x am p le  4.103. If B  is simple, then we are in the situation of the Skolem-Noether 

theorem.

E x am p le  4.104. We can take B  to be an etale algebra of degree n.

Before we see some more examples let’s define the term Frobenius algebra. A very 

detailed discussion on Frobenius Algebras may be found in [CR, Chapter IX].
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Definition 4.105. A finite dimensional algebra A  over a field k is called a Frobe­

nius algebra if the left A-modules aA  and {Aa)* are isomorphic.

Definition 4.106. Let 5 be a subset of a finite dimensional algebra A  over k. The 

left annihilator i(S)  of S  is defined as

£(S) = { a€  A : aS = 0} 

whereas the right annihilator r(S) of S  is defined as

r(S) =  {a € A: Sa  =  0}

The following theorem establishes the equivalence of several characterizations of 

Frobenius algebras.

Theorem 4.107. Let A be a finite-dimensional k-algebra. Then the following state­

ments are equivalent:

1. A is a Frobenius algebra.

2. There exists a non-degenerate bilinear form / :  .4 x .4 — > k which is asso­

ciative, in the sense that f{ab,c) = f(a,bc) for all a,b,c € .4.

S. There exists a linear function X € .4* whose kernel contains no left or right 

ideals different from zero.

4. For all left ideals L and right ideals R in A we have

i(r(L))  =  L, and (r(L): k) + (L: k) =  (.4: A:); 

r{i{R)) = R, and {i{R): k) + {R: k) = {A: k.)

Proof. See [CR, p.415]. □

Lemma 4.108. Let A /k  be a Frobenius algebra with associative bilinear form f .  

Let 0 ^  I  £  A  be an ideal. Then I x  =  {x € A: f (b , z) =  0 V6 G 1} is also an ideal.
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Proof. Let a £ A  ,b £  71 . We need to show that ab £ 7X. Let c 6 / ,  then note 

that ca € 7, since 7 is an ideal. Thus, we have

/(c , ab) =  f(ca, b) =  0

Hence ab £ I x . □

Proposition 4.109. / /  B has a unique faithful representation of degree n over 

ksep, then B  is a Frobenius algebra.

Proof. Suppose B  has a unique faithful representation of degree n over ksep. Then 

B * also has a unique faithful representation of degree n over ksep. Take a basis 

for B*, B* =  AB. If there is a non-trivial ideal 7 £ kerA, then (B/7)* C B*. A 

contradiction. So A =  0. Thus, B is a Frobenius algebra. □

The converse is not true in general, but we have

Proposition 4.110. I f  B  is a commutative Frobenius algebra, then B  has a unique 

faithful representation of degree deg B over k3ep.

Proof. Suppose first that B is a commutative Frobenius algebra, equipped with 

form / ,  which is local. Let M  be its maximal ideal. Let V  be a faithful B-module 

with dim V =  dim B, then V  =  B. For v £ V, define

Iu =  Anna(t;) =  {x £ B : xv  =  0}

We need to check that there exists a non-zero vector v £ V  for which Iv = 0. So, let 

0 ^  v £ V  be such that dim /„ is minimal. We want to show that this dimension, 

in fact, has to be zero. Suppose /„ ^  0, then 0 /  C  B is an ideal and hence 

If- C M ,  which in turn implies that M L C =  h -  Now, let n denote the
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nilpotency index of M .  Notice that M n 1 • M  — 0, so M n 1 C A4X. This follows 

since if x  € M n~l , and y  €  M ,  then

f ( x ,y )  = f ( l , x y )  = / ( 1, 0) =  0

Thus, 0 /  M n~l C M L C Iv for all v. So, 0 #  M n~l C ( \  h  =  her (B  — > EndfcV') 

which is a contradiction since V  is a faithful B-module. Therefore, if B  is a (com­

mutative) Frobenius algebra which is local, then B  has a unique faithful represen­

tation. Moreover, if B  is any commutative Frobenius algebra, we can write

B  =  B x x • • • x Br

where each Bi is a local algebra. Let d  € Bi ( i  = 1 ,.. .  , r) be the corresponding 

idempotents. If V  is a faithful fl-module with dim V  =  dim B, we can decompose

V  =  © -- j Vi where VJ =  eiV for each i  — 1 ,.. .  ,r . Hence each Vi contains a

faithful Bj-module, and so dim \ \  ^  dimBj for each i  = 1 ,. . .  , r. But,
r r

y ]  dim \ \  =  dim V — dim B  =  ^  dim Bi
i=i t=i

so dim K =  dim 5 , for each i. Hence V  is the regular representation. This finishes 

the proof of the proposition. □

This proposition provides us with a vast array of examples since:

a. Every semi-simple algebra over a field is a Frobenius algebra.

Just take f{a,b) =  Tr(a6), a non-degenerate associative form.

b. For any finite group G, its group algebra A  =  &[(?] over any field k is a Frobenius

algebra.

Define a linear function A on >1 by

A( H a90] =Ql
\S 6 G  /
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where 1 is the identity element of G. Suppose that for some a € A, Aa is in 

ker A. In particular we have

A(</'la) = 0 V « /6 G

But since X(g la) is the coefficient of g in a, we must have a =  0. Similarly, 

we can show that aA € ker A implies a = 0. Thus, A  is a Frobenius algebra.

Exam ple 4.111. The group algebra of any abelian group.

E xam ple 4.112. Let B  be a local non-commutative Frobenius algebra. Let M  be 

its maximal ideal. If B / M  is a field, then B  has a unique faithful representation 

of degree deg B.

Proof. Let V  be a faithful B-module of degree degB. For v € V  define Iv = 

Anns (v). Since V  is a faithful B-module, /„ =  0. Hence

i.e we can write 1 =  £ )ua„ for some av € If-. Thus, there is a u € V  such that 

av $ M .  Hence av is an invertible element, since B / M  is a field. We also have 

av € If-, which together with av being invertible implies that 1 € thus B = If-

R em ark  4.113. Unlike in the proposition, there is no hope to generalize from the 

local non-commutative case. Commutativity is required in the proposition.

If we look at the representations of 53 : 6 =  2(1)2 +  1(2)2, so we have two 1- 

dimensional representations, <C+ and the signature C _, and we have a 2-dimensional 

representation, which we will call V. We have

V

and /„ = 0. Therefore, V  is the regular representation. □

C[53] =  C x C x M2C — > C+ © C_ © V  © V
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But note that x =  2C+ ® 2C_ ® V  is a faithful representation different from the 

regular representation.

R em ark  4.114. If B  is an algebra with no central idempotents other than 0 and 

1, then B  is not necessarily local.

There is an underlying problem in theorem 4.99.

Question: What are the conditions for the existence of an embedding of B  in .4? 

If B  is a commutative Frobenius algebra, then the answer is given in [KM, Propo­

sition 3.4]. Here we will consider the case where B  is a simple fc-algebra.

Let k be a field, let 5  be a simple fc-algebra of degree d, and let .4 be a CSA 

over k of degree n. Denote by E  the centralizer of B, Z(B). It is evident that a 

necessary condition for the existence of an embedding B  *-► .4 is that there exist 

an embedding B  D Z ( B ) =  E  *-> A. If E  .4, then E  C Z,\{E) =  .4' C .4 and 

Z a (E) is a CSA over E.

Case 1: E  = k, i.e. B  is a CSA over k.

\  \

local. In fact, B /Rad B  =  k x k and B  has two maximal ideals,

Just take, for example, B <

. 0 c
i \

a b

and

R =
(

\

a

0

hence not local.

4.3 Embedding Simple Algebras
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Recall that if B  is a CSA over k and B  <-> A, then B  <g> Z A(B ) ^  A, and so 

[Za{B)\  =  [A] -  [.B] G Br (k) (See Chapter 2, Cor 8.4 in [Ke]).

P ro p o sitio n  4.115. There is an embedding B  t-> A if and only if [A]—[B] G Br (k) 

is representable by an algebra of degree r =  n/d.

Proof If there is an embedding B  c-> A, then B  ® Z A(B) =  .4, and so [Z A(B )] = 

[.4] — [B\ G Br(A:) of degree n/d. On the other hand, if [A] — [B\ G Br(fc) is 

represented by an algebra [T] of degree n/d, then [A] — [B] = [T\ G Br (k) and so 

A =  B  <g> T, i.e. B  is a subalgebra of A. □

Case 2: General Case, i.e. B  a simple A:-algebra (with center possibly larger than k).

We have E  — > Endfc(L) =  M n(fc), for any maximal fc-algebra L satisfying k C 

E  C L C A. Hence Z \in(E) is a matrix algebra over E, in fact, a central simple 

algebra over E. Set C  =  G m>2Mn(£)/G m and C -  G m ZMj E)/Gm,E- Consider

0 — > C — > Aut (M„, E) Aut (E) — > 0 (4.8)

We also have the exact sequences,

0 — > G m — > ^ m ,z Mn{E) — > C  — y 0 (4-9)

G mE/G m (4.10)

From 4.9 we get an induced map in cohomology

H > ( * , C ) H 3(fc,Gra)
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The set H 1(fe, C) classifies embeddings E  A  A, and the image of 5l consists of 

algebras containing E. If we extend scalars to E  we have another exact sequence 

of pointed sets,

0 — ► G m — ► G m E —-> G rn i. /G m — > 0 (4.11)

From (4.10) we get an associated sequence in cohomology;

If /3 e  Z l (k,C), let 7 e Z l (k ,C ) be the image of 3. Then there is a natural 

bijection between the fiber of

h 1(jfc.c) - A h l (k ,€ )

over [7 ] and the orbit set of the group

(C7) r acting on H l {k, G mtE/ G m)

From sequences (4.10) and (4.11) we get a commutative diagram

H 1(fc, C) 

/*

0

I
Br (E /k)

H 2(fc, G m)

+ H 2(A:,Gm,£ )H  1(k,C)

1
H 2(k ,G m<E/ G m) =  H 2(k ,G myE/ G m)
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The maps /* and it are defined by

/ • ( [ E A A ] )  = {ZA(<pE)}

T heorem  4.116. There exists an embedding E  A if and only i f  the class of 

A ®  E  in Br (E) is represented by the class of a central simple algebra N  of degree 

deg A/[E  : *].

Proof The only if part is clear. To prove the other direction, choose [T] € H 2(Ar, G m), 

then [T ® E] € H 2(fc, G mi£). Now T  ® E  contains E, so it comes from H  1(k, C). 

On the other hand, it goes to zero in H 2(fc, G m,£ /G m) so it is in the image under 

/" of some [c] G H 1(/:,C). Hence 51 ([c]) =  [T] + [d] for some [d] € Br(£'/fc). But

is transitive so, if we take a representative a  € Z l(fc,C) of[c],and/3 € Z l(k ,G miE /G m) 

a representative of [d], then a/?-1 € Z l (A:,C) since (4.10) is a central extension. 

Now, since 51 is a homomorphism,

the action

H  l {k,C) A h  l {k ,c )

Thus we obtain our original class. □

52

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



5. Algebras with Involutions

In this chapter B  will always be a fc-algebra with involution a, and .4 a C SA  over 

k of degree n with involution r  central over k or over a quadratic extension of k 

if r  is of type II (unitary). Given two embeddings / ,  g : (B, a) — > (A , r ) we wish 

to know whether there exists a ip E Aut(.4, r) such that the diagram,

(B ,a) (A , t )

{B,o)  ------> (A ,r)
9

commutes, i.e. we want to classify embeddings which are in the same conjugacy 

class.

Let X  be the set of all embeddings of (B, a) into (A , t ). So, if f  € X ,  then /  is a 

homomorphism of B  into A with f o a  = r o f .  The automorphism group of (.4,r) 

is the group scheme over k given by

Aut(A, t )(R) =  { a e  A ut(4 ® f i ) : a o r  =  r o a }  

for any commutative Ar-algebra R. For any algebra with involution (.4, r) we define

f/(A,r) =  {u € G m,A : UT(u) = 1}

Using the Skolem-Noether theorem, one sees that there is an exact sequence

0 — > U(.4,r) n  Gm — >■ U(A,r) — > Aut (.4, r)  — > 0 (5.12)

To shorten the notation let us set G =  Aut(.4, r). Hence G acts on X  naturally, 

by composition. Let T =  Gal{ksep/k).  Let’s fix /  G X r , i.e. f  is a A:-embedding of 

(B, a) into (A, r). We will adopt the notation G f  for the G-orbit of /  and Gf for
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the stabilizer of /  in G. Hence

Gf = S tab c / =  {<̂  € G : y? o /  =  /}

=  {u € Za(/(B)) : ur(u) =  1} /  (Gm n U(a,t))

=  {u  €  Z a (£ )  : u t (u) =  1} /  (G m n  C/(.4,r))

the latter by identifying B  with its image under / .  We also have,

G f  = OrbitG{f) = { ip o f  \ i p £ G }

It is well-known that if two elements are in the same G-orbit, then their respective 

stabilizers are conjugate. We have the exact sequence of pointed sets

1 — > Gf ^  G —U G f  — > 1

ift i— ► ip

<p 1— ► <pof

And we look at its associated sequence in cohomology

 ► Gr = G{k) — > (G f f  — > H \ k , G f ) — ► H l {k,G) (5.13)

Recall from 1.17 that the orbit set of G{k) in (G /)r , i.e. the A:-conjugacy classes of 

elements of (G /)r are in a natural bijection with ker ^H 1(A:,G/) H 1(A:,G)^.

So what we will do is study ker $  in order to better understand the fc-conjugacy
n

classes of elements of (G/ )  .

Let us assume for now that r  is an involution of the first kind on .4. Set U =  

C/(4 r) =  { u 6  G m,A: ur(u) = 1} and G =  Aut (A , r ), which we shall identify with 

U /{± 1 } .  Then Gf = U(Z,T)/ {±1}, where Z =  ZA(B) and we have the sequences 

of pointed sets,
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and

1 — ► {±1} — > U(z,r) — ► Gj  — ► 1

From these we get

H * (* ,% .,))  ------ > H*(*,£f) ------ >

"

H l (k ,G f ) H l (k,G) -------> H ^ A u t A )

i  I4'
H 2(fc, {±1}) ===== H 2(fc, { ± 1 } ) ------ > H 2(fc,Gm)

In particular, note that we must have keri3 C H 1(A:, U(z ,t))- So, if H x{k,U(z,r)) =  

{1}, then keri3 =  {1} and hence all the embeddings of (B ,a)  into (.4, r) must be 

conjugate.

Lemma 5.117. The connecting homomorphism

5l : lV-{k,G) — >• H 2(fc, {±1}) 

sends the class of (A ' ,t ') to the class of [A!] -  [.4] in Br (k).

Proof. This follows from the well-known fact that

H l (fc,Aut(A)) A t f ( J l , G m)

is given by [/I'] ■— > [.4'] — [A]. □

Lemma 5.118. Let k be a field of characteristic different from 2. Let Z  be a k- 

algebra with involution r .  I f  a € Zfep is fixed by the involution, then a =  r{b)b for 

some b G

Proof Let’s break the proof up into two cases.

Case 1: Z  is semisimple.

55

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



We can decompose Zsep as

(M ni X M nj) x • • • X (M n,., x M „,) X M m, x • • • M mr 

Note that the involution could come from a hyperbolic, symplectic, or an orthogo­

nal form. In case the involution comes from a hyperbolic form, there is no problem 

since there is only one such. If the involution comes from a symplectic form, it is 

well known that there is only one symplectic form over any given degree. The only 

problem would be an orthogonal involution, but over a (fixed) separable closure, 

again, there is only one. Now on the “pairs” above what we have is essentially the 

exchange involution, so an element is fixed if and only if it has the form {x,xl) for 

some x. But we can write this as

(x ,  x l) =  (1 , x £) ( x ,  1) =  r  ( (x ,  1)) (x ,  1) 

and clearly (x ,  1) 6  Z3ep.

Case 2: Z  any fc-algebra.

We know that Zsep/ Rad Zaep is semisimple. By the first case, there is a € Zsep 

such that a =  T(bi)b\ (mod R adZsep). We need to show that we can “lift” this 

partial approximation from the radical all the way up to Zsep. We proceed a la 

Hensel. Suppose that a =  T(bn )bn (mod (RadZiep)n) and we’ll show it for n -I-1. 

Suppose bn+1 =  bn +  c for some c G (Rad Zaep)n yet to be determined. Now, we 

need a = r(6n+l)6n+l (mod (Rad Z3ep)n+l). Thus, let us see what we need:

T{bn+i)bn+l = r(bn + c)(bn + c)

=  (rbn + rc)(bn + c)

=  r(bn)bn +  r(6n)c +  r(c)6n +  r(c)c

=  a - r  + r(bn)c -I- r(c)6n +  r(c)c
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The latter equality is for some r 6 (Rad Z,ep)n since a = r(6„)6n (mod (Rad Z3ep)n). 

Note that r(c)c €  (RadZjep)2n, so for n ^  1, r(c)c =  0 (mod (RadZsep)n+l). 

Hence, what we need is to be able to solve the congruency

r(bn)c + r{c)bn =  r (mod (Rad Zsep)n+l)

for c. Note that

1. r(bn)c + r(c)6n is fixed by r.

2. Since bn is invertible,

i bn: (RadZsep)n — ► (R adZ sep)n 

(left multiplication by 6n) is an isomorphism.

Thus, it is enough to see that

r = s + r(s) (mod (Rad Z3ep)n+l)

for some s € (RadZsep)n. But, since char A: ^  2, we can just take s = \  to solve 

the latter. □

Proposition 5.119. Let (B , a ) and (A , r ) be as above. Suppose that B  has a 

unique faithful representation of degree deg .4 over ksep. Then any two embeddings 

of (B, a) into (A , t ) are conjugate over k3ep, i.e the action o fG  on X  is transitive.

Proof. Let / ,  g: (£ , a) — > (A ,t ) be two embeddings. If we “forget” about the 

involutions we know that by theorem 4.99 there exists an a 6 -4x such that f (x )  = 

ag(x)a~l for all x  € B.  Is this compatible with the involutions? There’s only one
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way to  find out. For x  G B  we have

ag(ax)a~l =  f(irx)

=  r ( fx )

=  r(ag(x)a~l)

~  T(a~l)T(gx)r(a)

= T(a~l)g(ax)r(a)

so ag((Tx)a~l =  T(a~l )g(ax)r(a), hence g(ax) =  a~lT(a~l)g((Tx)r(a)a so z =  

r(a)a G Za (B) =  Z. Now write r(a )a  =  r(b)b with b G Zfep (in general 6 is not 

rational over A:). Then u =  ab~l G G and ug(x)u~l =  /(x )  for all x. □

Corollary 5.120. Let f :  (B , a ) — > (A , r ) be a fixed embedding, and let

Gf = {tpe  A u t{A,r): t p o f  = f }  

then 5.119 tells us that the cohomology set H  1(k,Gf) classifies the embeddings 

<p: {B,a)  — > (A ' . t') where (A' ,r ') are algebras with involution isomorphic to 

(A , t ) over k,ep. The embeddings <p: {B,cr) — ► ( .4, r) are classified by 

ker (ifl: H l [k,Gf)  — > H '(k ,  Aut (4, r))) 

where i: Gf  — > Aut (A, r) is the inclusion map.

Lemma 5.121. Let (A , r ) be a C S A  over k with involution, and e G .4 an idem- 

potent such that e +  r(e) =  1. Set B  =  ke +  fcr(e). Then U(b,t) =  Gm and 

Za{B)  =  Ze  +  Zr(e).

Proof, (i) Recall tha t Ub =  {u € G m B : ut(u)  =  l} . Let u G U(b,t) and write 

u  =  ve +  wr(e), where v, w G ksep. The condition ut(u) =  1 is equivalent to 

VW =  1, SO U(b,t) =  G m
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(ii) Certainly, e and r(e) belong to Z a (B) ,  hence Z a (B)  D Ze  +  Zr(e).  So, in 

particular Z a {B)  =  (W x W op, r) for some W. Now, take any element zie+z27-(e) € 

Ze + Zr(e),  we must show that it commutes with every element of B  = ke + kr(e) ,

Example 5.122. Let (̂ 4, r)  be a C S A  over k of even degree 2n with involution 

r . Then there is at most one (/(,!,,.)(Ar)-conjugacy class of idempotents e e  A  such 

that e +  r(e) =  1.

Proof. Let B  =  ke + kr(e). Note that Bsep has only one representation of degree 

2n that is self-dual; this is enough to guarantee that G acts transitively on X . So 

we can use corollary 5.120. Now Z  =  Z a (B) decomposes as F  x Y'  with the two 

factors interchanged by the involution, so U(a,t) — G m Z- We have

but this is clear since e and r(e) commute with each other. □

If an element lies in ker(is), then it is also in ker<F. Since we have equality in the

bottom row, this element must come from H x(fc, U^zj)) which is trivial. □

59

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



6. Conjugacy Classes of Maximal fc-Tori

6.1 General Results
Let G be a semi-simple (linear) algebraic group defined over a field k. Let G be its 

universal cover, and let T  C G be a fixed maximal fc-torus.

It is well-known that over a separable closure of k all maximal tori are conjugate. 

We are interested in determining which maximal fc-tori of G are ^-conjugate to a 

fixed maximal torus T.  To this effect, we will develop a general set-up to enable 

us to study fc-conjugacy classes. We will mainly use the tools provided by Galois 

Cohomology. In the case where G =  U{A,a), where (A,a)  is a central simple algebra 

with involution, we can make this general set-up more explicit. This case is essen­

tially the general case when G is a classical simple group, by virtue of a theorem 

of Andre Weil in [We, p.597].

Let N  =  N g{T) =  ( i 6 G :  x T x~ l C T} denote the normalizer of T  in G, let 

Z  =  Zg(T) denote the centralizer of T  in G, and let W  — W(T)  = N / T  denote 

the Weyl group of G relative to T, a finite group.

Since all maximal tori are conjugate over a separable closure, the set of all maximal 

tori is parametrized by the homogeneous space G/N.  So we have

GJN <— > set of maximal tori in G 

It is readily seen that this bijection commutes with the action of T, so if we want 

the set of maximal A:-tori, then we let T act on G and look at the fixed points. We 

have
p

(G/N)  <— y set of maximal fc-tori in G 

If in addition we want the A;-conjugacy classes of maximal A:-tori then we look at 

the action of Gr =  G(k) on G/N.  We have
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(G/N)r /G r <— > set of A;-conjugacy classes of maximal fc-tori in G 

It is this latter relation that we want to exploit. We will use Galois Cohomology to 

understand and give explicit descriptions of these A>conjugacy classes in particular 

examples. As a starting point, consider the exact sequences

N  W  — ► 1 (6.14)

G — > G / T  — > 1 (6.15)

G — > G / N  — > 1 (6.16)

From sequence 6.16 above we get the associated sequence in cohomology:

Gr — > (G /N)r — ► H l (Jt, N) {̂ t  H G) (6.17)

By the general theory of Galois Cohomology there is a one-to-one correspondence 

between the orbit set of Gr in (G / N )r , namely (G /N)r / G r and ker(i,v)3. First 

note that this kernel sits inside of H 1(fc, N).  By the remarks just made, ker (i,v)3 

is in one-to-one correspondence with the k conjugacy classes of maximal fc-tori. 

We thus want to study ker(ijv)# to better understand and be able to compute 

fc-conjugacy classes of maximal tori.

One of the invariants we are interested in arises when considering the sequence in 

cohomology associated to sequence (6.14). We have

W r —4 H X(A:,T) — > H l {k,N)  H l {k,W)  (6.18)

We will want to study those classes in H x(fc, N)  that are taken by 7r3 to zero in 

H l (fc, W).  Note that ker(i'r)3 is contained in these. By abuse of notation, we de­

note by 7r3: ker(ir)3 — > H X(A:, W)  the restriction of 7r3 to ker (i r )a.

If we consider the covering map p: G — > G and its kernel, ker p, we have the exact 

sequence
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Recall that ker p is a finite abelian group. Let T  be the inverse image of T  under 

the covering map p , i.e. T  =  p~l {T). Note that kerp C T, so we have:

1 — ► ker p — > T  -£-> T

and we obtain the commutative diagram

kerp ■ ■ ■ kerp

1

'I 1’
T  ------> G

and looking at its associated sequence in cohomology we have

H l (A:,T) — — ¥ H  l (k,G) 

=  H 2(k, kerp)

sl

H 2(A:,ker p)

We can restrict ourselves to studjdng ker(i11) since W  =  N / T  is finite. 

P ro p o sitio n  6.123. With notation as above ker(ia) C kerd1.

Proof.

[5] G ker(is) => is[5] =  e

=> (dl o i9)[5] =  e

=> dl [S] =  e since the diagram commutes 

=» [S] € kerd1
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Proposition 6.124. I f  in addition we have H 1(k,G) =  0, then equality holds, i.e. 

ker i3 =  ker 5l .

Proof. Let [5] G ker Sl, so <5: [5] =  e and hence (61 o i3) [5] =  e, but there is only 

one element in each fiber since =  0. Hence i3[S] =  e, i.e. [S] G keri11. □

We are interested in this relation since <P has the extra structure of being a group 

homomorphism. It is known that the condition H l (k, G) =  0 holds for all classical 

groups and some exceptional groups when cd (k ) ^  2. For this see [BPl] and [BP2]. 

We will record what we have shown as a theorem for future reference.

Theorem 6.125. ker{irY/W^k) is in one-to-one correspondence with the set of 

k-conjugacy classes of maximal tori S  with 7t3(S) =  e, where 7T3 is the restriction 

of n* to ker ( ir )9-

The preceding formalism can be applied very effectively (to describe A:-conjugacy 

classes) in the case where G is the unitary group of an algebra with involution. 

Later we will see that in this case we can interpret the map 7r3 in terms of etale 

algebras.

This generalizes the work of Kariyama in [Ka] for classical groups split over k. We 

will see that in this situation we can always associate to any torus T  a certain class 

of etale algebras with involution.

Example 6.126. Let k be a field with char k /  2, and let G =  SO(q) be the 

special orthogonal group of a non-degenerate quadratic form q on a vector space 

V  of dimension 2n over k. For G =  SOfa) we have G =  Spin(q) a connected 

two-sheeted covering and thus kerp =  Z/2Z. These yield the exact sequence 

1 — ► Z/2Z  — ► Spin {q) - A  SO fa) — > 1 

Let T  C G be a (fixed) maximal fc-torus. Then, we can associate to T  the etale
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algebra E  = E r  =  Z ed̂ v)(T) consisting of fc-endomorphisms of V  that commute 

with T  equipped with the involution u, induced by the adjoint involution of q. If 

F  =  E u, the subalgebra of elements of E  fixed by the involution v, then d im F  = 

^ d im F  as we will see in 6.139, and we can write E  =  F [ X \ / ( X 2 — D) for some 

D  € F*.  Viewing E  this way we realize v  as X  \— > —X.  Also we may recover T  as 

the kernel of the norm map from the multiplicative group of E  to the multiplicative 

group of F.

T  = Ue/ f — ker{Ne/ f '- G m<E — > Gm,r)

Notice that now we have two exact sequences involving T,

1 — > Z/2Z — > T  — > T  — > 1 (6.19)

and

1 — > T  — > G m,£ G m f  — > 1 (6.20)

The exact sequence (6.20) induces an isomorphism

H l ( k , T ) * F * / N E/F{E*)

With this identification it has been shown in [BKM] that

J 1: H 1(/c, T)  — > Br(fc) (6.21)

is given by 6l (°) =  CorF/k{a, D). With all this information we get a commutative 

diagram

H  1{k,T)  H 2(A:,Z/2Z)

'1 1'

F * / N b/ f(E*)   y Br(k)
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Note that here W T =  Autk(E, v), the ^-automorphisms of E  that commute with 

v, and so we get a surjective map

fc-conjugacy classes of maximal fc-tori S  with (E s , u) =  (Eue / f , u)

{a G F * / N e/ f{E* ): Cor (a, D) = 0 } / W r 

For this map to be injective we need H 1(A:, Spin(<7)) =  0. We will give necessary 

conditions for this in theorem 6.140. This takes care of SO(g) for the moment. We 

will come back to it in the next section.

L em m a 6.127. Let L / k  be a quadratic field extension, let E  D L be an etale 

algebra over k equipped with an involution a (of any kind), such that a\L is non­

trivial (<=^ LC\Ea =  k), and let F  =  E a. Consider V  =  E  as a finite dimensional 

L-vector space. For b € F x define hi,: E  x E  — > L by hb(x,y) =  Trg/L (bxa(y)). 

Then hb is a hermitian form on E  (with respect to a)  invariant under U E / f  = 

{u € G mtE: ua(u) =  l} .

Proof. Let x, y 6 E, a, (3 G L , and u G UE/E be arbitrary. To show that hb 

is a hermitian form on E  we need to show that ahb(x, y ) =  hb{y,x) and that 

hb{ax,(3y) =  ahb(x,y)a(fi). This is a straightforward computation that we do as 

follows:

ahb{x,y) = a h s /L  {bxa{y))

= TrE/L (a{bxa(y)))

= TrE/L {ycr{x)(r{b))

= TrE/L (bycr(x))

=  hb{y,x)
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hb{ax,/3y) =  ahb(Py,ax)

=  ^TrE/L (b/3ya(ax))

=  a  (/3TrE/L (6j/(r(ax)))

=  tfT rE/ L ( f o /< 7 ( a x ) M /3 )

=  TtE/ l  {baxo(y)) a(0)

=  aT rE/L (bxa{y)) a{(3)

=  ahb{x,y)a((3)

So hb is a hermitian form. To see that it is invariant under U e / f  n o t e

hb(ux, uy) =  T r E/L {buxa(uy))

= TrE/L (bxa(y)ua(u))

=  hb{x,y)

□

R em ark  6.128. To talk about Tre/l we need E  free over L. If L is a field, there 

is no problem. If L =  k x k, then E  =  Ee + Ee* and the involution * interchanges 

the idempotents, so these idempotents have the same rank. This essentially says 

that E  is free over L.

Recall that a non-singular hermitian form h on a finite dimensional vector space V  

defined over a quadratic field extension L of a field k with non-trivial automorphism 

i, yields the adjoint involution ab on End^^ defined by the relation

K x , f { y ) )  = h{ah(f) (x),y)

for /  6 End^y and x, y € V.  In particular, ab{ot) = i (a ) for a  € L, so ah is an 

involution of the second kind.
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E xam ple 6.129. Let G =  SU(h) (=  SU(V,h)), the special unitary group of a 

hermitian form h defined on an L-vector space, where L is a quadratic field exten­

sion over k.

Question: W hat are the maximal A;-tori for G =  SU(h)?

Well, we would like to use the same machinery as in the previous example, but 

SU(/i) is simply-connected unlike SO (9), i.e. SU(h) =  SU{h) so we take a different 

approach. If we have an etale algebra E / k  as in the lemma above, then

C laim  6.130. Ue/ f is a maximal k-torus.

Proof. We claim that over the algebraic closure of k we must have (G vn,&) —

Ue/f • To see this, consider the map

(Gm,#)” — > UE/f

t — (t 1 , 2̂) • • • > fn) 1  ̂(̂ 1) f 1 > t'2i t-2 ’ ' ' ' ’ n̂’ )

The map tp is clearly surjective and

ker ip =  {t € (G m>£)n : =  (1, . . .  , 1)}

=  {t 6 (G m,£;) : =  1 Vi = 1 , . . .  , n}

=  {1}

To see that it is a homomorphism note that

¥>(ts) =  • • • , tn̂ n) — ) • • • > tnSni Sn t n )

=  ( ^ l ^ l i  ^1 ^ 1  i • • • 1 t n S n :  )

— (̂ 1)̂ 1 >••• )(®t>®l >••• 1 Sn,Sn )

=  < (̂t)¥>(s)

Hence Ue / f  is a fc-torus, and moreover it is maximal for dimensional reasons. □
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r*
For the etale algebra E  we may take E  =  Et  =  Endr (V  <g>jt ksep) and this algebra 

comes equipped with the adjoint involution cr̂ .

It is easy to calculate H 1(fc, Ue / f ) from the exact sequence

1 — > U e / f  — > Gm, e  — ► Gm,F — > 1 

Its exact sequence in cohomology yields H l (fc, U e / f )  — F* / N e / f { F * ) -  If h, is of 

rank n, then W(k)  =  Aut*(F, a) = A n tL(E,cr), where Autfc(F,<r) is the group of 

^-automorphisms of F  that commute with the involution a, i.e.

Autjt(F, cr) =  {q € Autfc(F): a  o a  =  a o a}

and

A u t^ F , a) =  {a e A u t^(F ): a  o a = a o a}

L em m a 6.131. Keeping the same notation as above. If  h is of rank n, then

W r =  Aut k{F,a) =  Ant i (E ,a)

Proof. The first isomorphism is clear. The isomorphism between the automorphism 

groups is given by the restriction map,

Res: Aut£,(F,a) — ► A u t^ F ,a)

taking /  to f \F .  This is clearly a homomorphism. To see that it is injective, note 

that if Res(/) =  idp, then Res(/) fixes pointwise both L and F. Hence it fixes 

F  L, but E  = F  ®k L since dim/k (F  L) =  2n =  dim* E  and F  ®it F C E. 

Thus /  =  idff. It is also clear that every A:-automorphism of F  extends uniquely 

to a unique L-automorphism of E. □

L em m a 6.132. I f T  C SU(h) is a maximal k-torus, then T  =  U e / f  for some etale 

algebra E  over k, and h =  /i^ t for some b € F x.
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Proof. We can associate to T  the etale algebra Er  =  Endr(Vr ksep)r of endo- 

morphisms fixed by the action of T, together with the adjoint involution a h ,  where 

ksep denotes a fixed separable closure of k and T =  Ga\(ksep/k).  It is worth noting 

here that (E r , <?h) C (End V, ah.)- We want to show that

T  i— > Er

induces a set bijection. Thus, giving an explicit correspondence between maximal 

tori and a class of etale algebras with involution, namely, n-dimensional subalgebras 

(E,Oh) of (End V, ah). If T  is a maximal fc-torus, then it is preserved by the action 

of T, so we have our T  C 2?t k„ep. Moreover, T  C SU(/i), so T  C U e / f -  Since 

T  is maximal equality must hold. In the other direction, if (E , ah) is a subalgebra 

of (End V , a h )  just take T  =: U e / f , which we’ve already shown to be a maximal 

fc-torus.

Furthermore, we’ll say that Er  is “/i-admissible” if h =  /i£T,6 for some b £ F x. 

Recall that

a  det h — det{h(ei,ej)) -N L/k{Lx ) where ( / i ( e , - , e . , ) ) i s  the Gram matrix of h 

with respect to an arbitrary basis (e i,. . .  ,e„).

b  The determinant of a hermitian form h: L x L — > k is an invariant modulo the 

norms of L over k.

C laim  6.133. det hE,b =  N F/k{b) • disc(F/A;)

Proof. Notice that we can decompose E  as a tensor product E  = F  L. From F  

we pick up, basically, TrE/L (xy) and from L we get H L where H l {x , y ) =  xy. □

Claim 6.133 finishes up the proof of lemma 6.132. □
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We have seen that H l (fc,U e / f ) —  F *  / N e / f ( E x )  and so the natural map

H l (k,UE/F) — ►H1(Ar,SU(/i))

is given by a i— > ha(x,y)  =  h(ax,y)  where a e  F x / N e / f ( E x ) .

Remark 6.134. ha(x,y)  and h(ax,y)  have the same determinant.

Proposition 6.135. The set of k-conjugacy classes of maximal tori S  with (E s , 

(EuE/F,crh.) is in one-to-one correspondence with

{ a z n l {k,UE/F) I W r -.ha * h }

Proof. Just consider the commutative diagram:

W r

H ^ U e / f )  =  H H ^ U e / f )  

i

F * / N e/ f (E x) ------ ► HVfc.SU(h))

H l {k,N)

□

Example 6.136. Let G =  SU(h) (= SU(V, h)) where h is a hermitian form over 

a skew-field D/k .  Let T0 C G be a fixed maximal A>torus. Associate to T0 the 

algebra Er0 = ^EndDv'(^o)- Let F  be the algebra consisting of elements fixed by 

the adjoint involution o>,. Let N  =  Ng (Tq) denote the normalizer of T0 in G and 

W  =  W(Tq) =  N/Tq denote the Weyl group of To.

Claim 6.137. Er0 is an etale algebra.
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Proof. Let X*{Tq) denote the character group of To. Over a separable closure, we 

may break up V  as

K « ,=  ©
xex-(To)

Note that Vx =  0 for most x  € X (T q) and if V* ±  0, then dimV^ =  1. Hence 

dim V = dim E,  and so we have Eaep = k3ep, an etale algebra. □

C laim  6.138. UEtq =  Tco

Proof. Clearly, T0 C UeTq s o  by maximality, equality must hold. □

L em m a 6.139. Let A be any central simple algebra over k of even dimension, 

equipped with an involution a, and E  C A a maximal etale algebra stable under 

a. Let F  be the subalgebra of E  consisting of elements fixed by the involution a. 

Then, dim F  =  5 dim E.

Proof. It is enough to show this over a separable closure of k. Now, an involution

can be either of the first kind, i.e. orthogonal or symplectic; or of the second kind,
/  . . \  /

i.e. unitary. Say dim E = m  =  2n. Let S  =
0 In .

, and H
- I n 0

(we use H  since it is a hyperbolic quadratic form). Define
\

0  In 

V In 0

as{^) — S  lx lS , <j h {x ) = H  lx lH  and e(x,y) = (yl, x l) 

Note that over a separable closure ksep of k we have

( A ® k s,a)  =  <

(Mm, a s)  if a  is symplectic 

(Mm, aff) if a  is orthogonal 

(Mn x Mn, s ) if a  is unitary

Case 1: a  is of the first kind.

If a  is of the first kind, note that over a separable closure,
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E  =  {diag(xt,. . .  , x„, y i , . . .  , yn)}

We can also see that

&h (diag(xj,. . .  , xn,y i , . . .  ,yn)) =  d iag (y i,... ,yn,XL,... ,x„)

and

as  (diag(xi,. . .  , x n, y i , . . .  ,yn)) =  d iag(y i,... ,yn, x u . . .  ,x n)

Thus if F  consists of elements fixed by the involution, then

F  = {diag(x!,... ,xn,x i , . . .  ,x n)}

Therefore, dim F = £ dim E.

Case 2: a  is of the second kind.

If a  is of the second kind, note that over a separable closure, E  =  B  x B, and 

since e(x, y) =  (yl, x t) if an element is to be fixed by the exchange involution, then 

it must have the form (x, xf), so F  =  {(x,x£): x € B},  but this is isomorphic to 

one copy of 5 ,  and hence dim F = ^ dim E. □

Note that we have two exact sequences:

1 — > To — > G m £ - A  G m F — > 1 

From this we get the sequence in cohomology

 > E* — ► F x — ► H ^ T o )  — > 0

the first isomorphism theorem yields H 1(/c,T0) =  F * / N e/ f {Ex) and the second 

exact sequence we’ll use is

1  > G m,F  ► G m E  > To — >■ 1

The first map is just the inclusion and the second map sends x to xcr/,(x)_ l, where 

Oh. is the adjoint involution associated to our hermitian form h. The associated 

sequence in cohomology is

 ► 0 — ► H l (k,T0) — > H 2{k,F)  — ► H 2{k,E)

which yields an isomorphism H 1(fc, T0) =  Br (E/F) .  Thus we have found an iso-
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morphism F x / N E/ F(E x) = Br (E/F) .  This isomorphism can be given explicitely 

by

a G F * /N e/f{E*) CorE/F(a, M) 

where E  = F[t]/(t2 -  M)  for M  G F x . Thus we have found two equivalent ways 

to study the conjugacy class of maximal tori isomorphic to To over the algebraic 

closure, k.

6 .2  cd  (r*) iS 2
In the previous section we established the commutativity of the diagram:

H 1(fc,T) ------ ► HVfc.G)

I i
H \ k , T )  -? ->  H  l (k,G)  

j ' l  !<■

H 2(A;, kerp) -------  H 2(fc, kerp)

and we proved in proposition 6.123 that ker(i#) C ker<Sl. In proposition 6.124 we 

showed that equality holds provided H x(k, G) =  0. This is of interest as 61 has the 

added advantage of being a group homomorphism. For this equality we need:

Theorem 6.140 (E. Bayer-Fluckiger, R. Parimala). Let k be a perfect field 

o/cd(Tfc) ^  2. Let G /  trialitarian form be a semisimple simply connected classical 

group defined over k. Then H  1(k,G) =  0.

Theorem 6.141 (E. Bayer-Fluckiger, R. Parimala). Letk be a perfect field of 

virtual cohomological dimension ^  2, and let G be a semisimple, simply connected 

group of classical type, or of type G2 or F4. Then the natural map,

H ‘(fc.G)—> n Hl(fc„,G)
V
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is injective, where v runs over the orderings of k and where kv denotes the real 

closure of k at v.

Notice that theorem 6.140 is a special case of theorem 6.141. This is because the 

product on the right hand side is an empty product and the map being injective 

is equivalent to H}(k,G)  collapsing, i.e. H l {k,G) = 0.

There is one situation worth noting here. If G itself happens to be simply con­

nected then G =  G, and we have H  1(k,G) =  H l (fc,G) =  0 and so ker(i#) =  

kerd1 =  H  1(k,T).  This is the case when, for example, G =  Sp2n, SLn, or SU(h). 

If A: is a field of cohomological dimension at most 2. We have the following im­

provements to our results.

In example 6.126 we get a bijection

{a G F * / N e/f {E*): Cor (a, D) =  0} / W v

- — 
fc-conjugacy classes of maximal fc-tori S  with (E s ,u ) = (Eue/f , u)

In example 6.129 we have

H '( k ,U e/F) / W r

-  -  4» . _   —

fc-conjugacy classes of maximal fc-tori S  with (Es, — {EluE/F,ahE b)

On lemma 6.132, the hermitian forms h are completely determined (classified) by 

their determinant (which lives in k x / N l/ic(L*)). Hence if cd(Tfc) ^  2, the admissi­

ble algebras {E, a) are precisely those with
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d e thE,b = disc(F/k)  (mod N L/k(Lx ))

On proposition 6.135 if cd(r*;) ^  2, then SU(/i)) =  0, i.e. ail hermitian 

forms are isomorphic. Hence the extra condition that ha = h in the proposition 

disappears, and we have

H  l (k,UB/ F) / W r 

A;-conjugacy classes of maximal tori S  with (Es.ct/,) =  (EuE/F,ah)

6.3 Examples
Now we will illustrate our results with some examples, specifically for k = ¥q, the 

finite field of q elements where q =  pm and p is an odd prime number, for k a 

finite extension of Qp, the field of p-adic numbers, and for k = R, the field of real 

numbers.

We shall consider the case where G =  SO(Q), where Q is a non-degenerate 

quadratic form of rank 2n over k.

E xam ple 6.142. Let k = Fq the finite field of q elements, where q =  pm is a 

prime power. Let G = SO(Q), and T  C G a maximal torus. We want to study 

k e r ^ :  H 1(F ,,T ) — ► H l (F ,,G )j, but since quadratic forms over finite fields 

are classified by their determinant, we have H 1(F,,G ) =  {0}, and so k e r = 

H  l (¥qtT).

We know that we can associate to each maximal torus T  an etale algebra Er  with 

involution a. We denote by F  those elements of E  that are fixed by the involution, 

i.e. F  =  E a. Now with the notation as before, T  = U e / f  — ker (iV: G mifi — > G m F) 

then H 1(F ,,T ) =  F x / N ( E X). Notice that the norm map of finite field extensions 

and of etale extensions is surjective, hence, in this case H X(Fq,T)  =  {0}, so S  and
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T  are conjugates over Fq if and only if (Es, cr) — (Er , cr). Thus it is enough then to 

count the isomorphism classes of algebras with involution (Es,cr) such that there 

exists an embedding Ue/f ^  SO(Q).

To this end, let P(n ) be the set of partitions of n. There is a canonical one-to-one 

correspondence

{ Etale algebras F  of degree n} <— > P(n)

This correspondence can be given explicitly by

F  =  F p - t  X • • • X Fp»r i — ► { ^ l i  • • • > r ir }

For fixed F, we choose D € F * / F * 2 and set E  = F[t\/(t2 — D). Recall that E

comes equipped with the involution a  that sends t to —t.

If Ue/ f can be embedded into SO(Q), then Q =  Tr/r/fc(aa;cr(.T)) for some a £ f x 

and conversely.

Notice that if x = u + tv

det (TrF/fc(aa:o’(x))) =  det (TTF/k(a(u2 -  Dv2)))

=  Np/k(a)2 • dp/k ■ Np/ki—D) ■ dp/k 

= N F,k ( -D )  (mod F x2)

so there exists an embedding Ue/ f c_> SO(Q) if and only if Np/k( - D )  = detQ.

Note as well that F * / F * 2 = (Z/2Z)r and with this identification

N  : (Z/2Z)r —-> Z/2Z
r

( A  Dr) ^ Y . D* <m o d 2 )
1=1

so there are 2r_l choices for D as | ker N\ =  2r_l. Thus the total number of k- 

conjugacy classes is then given by

peP(n)

where £(p) is the length of the partition p.
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E xam ple  6.143. Let A; be a finite extension of Qp, where p is a prime number. 

We have

H^fc.T) —^  Hl (*,<?)

ill
Br(fc)

and we have already seen in (6.21) that <Jl is given by a <— > Cor(a, D).

If F  is a field, the corestriction map induces an isomorphism

Cor: Br(F) Br(fc) 

and we also have an injection B r(F /F ) ^  Br(F). Thus if (Es,cr) — {EF,cr), then 

S  and T  are fc-conjugates.

If F  is not a field, let F  =  Fy x F2 x • • • x Fr x Fr+t x • • • x Fr+S where each F, is 

a field for i =  1 ,.. .  , r, and let

E  = Ei x E2 x • • • x Er x (Fr+i x Fr+l) x • • • x (Fr+S x Fr+J) 

where F j/F j is a quadratic field extension for i =  1 , . . .  r.

We know that
r

i = l
r

and each F * / N e</Fi {E*) a  Z/2Z, so F x/ N e/f ( E x ) “  J J Z /2 Z . We have the
«=i

corestriction map

Cor : (Z/2Z)r — > Z/2Z
r

(arr, . . .  ,arr) i— > (mod 2)
j=i

Wr acts on ker (Cor) by permuting the coordinates. By theorem 6.125, there is a 

one-to-one correspondence
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ker Cor/W r

fc-conjugacy classes of maximal fc-tori S with (Es, a)  =  (Er,  &)

E xam ple  6.144. Let k =  R. In the case where k =  R a torus T  must be of the 

form T  =  S r x (G miR)s, where S  is defined by the equation x 2 + y 2 = 1. We call T  

a torus of type (r, s). Thus the etale algebra corresponding to a torus of type (r, s) 

is E  =  C  x (R x R)4, and F  =  C  x Rs. In this case we shall describe directly the 

kernel o fH 1(R,T) — >■ H 1(R,SO(Q)).

P ro p o sitio n  6.145. Let Q be a quadratic form of rank 2n, and let 0  =  £ sgn(Q). 

.4 torus T  of type (r, s) with r + s = n can be embedded into SO(Q) if and only if 

r ^  \a\ and r =  a (mod 2).

Proof. If T  can be embedded into SO(£?), then there exists

a =  (ai, q 2, • • • , a r , a r+l, a r+2, • .. , a r+i) € F, 

such that Q is of the form

Q(x) =  TrF/R(axx) =  T rc /i^ azx ) ® (1 ,- l ) s

=  (an, q2). . .  , a r) ® (1,1) © (1,-1)*

So a  =  sgn(ai, a 2, . . .  , a r ) ^  r  and we also have r  =  a  (mod 2) since the signature 

and the dimension of a quadratic form always have the same parity. The converse 

also holds since we can choose (aj, a 2, . . .  , a r) as above so that it has the needed 

signature. □

P ro p o sitio n  6.146. With the same notation as above. I f r  ^  \a\, then the number 

of conjugacy classes of tori S  C SO((J) with S  = T  is 1 +

78

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Proof. We may assume without loss of generality that a ^  0 since we can always 

replace Q by —Q without changing SO(Q). Now we have

F X/ N(E*)  = Hl (R,r) —► Hl (R,SO(Q))

sending a to [Tr(a6arx)j. But

[Tr(a6xx)] = [(atifii, a 2# 2, . . .  , a rPr) ® (1,1) © (1, -1)"] =  [Q]

if and only if

( a i A ,  a 2/32, . . .  , a Tflr) -  (Qi, at2, . . .  , a r)

Now we can always write

m-times (r-m)-times

(qi ,  a 2, . . .  ,Qr) -  - l , . r .  , - 1 )

If we choose j  l ’s from the m l ’s to form /3, we must have j  ^  m, and m - j  ^  r — m. 

Thus we must have

2 m  -  r ^  j  ^  m

But notice that <r =  2m — r, so in terms of a we have

. . a + r

and hence the number of conjugation classes of tori of type (r, s) is the number of 

possible f s  which is ^  — a  +  1 =  Tjy ~ +  1. Notice that this is always an integer 

since r  and cr have the same parity. □

P ro p o sitio n  6.147. The total number of R-conjugacy classes ofR-tori is

([■=£] +  !)([»=£] + 2 )
2
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Proof. To get all the conjugacy classes we need to sum over all possible r ’s. These 

are the ones satisfying a  ^  r ^  n and r  =  a  (mod 2). Now since r =  a  (mod 2) 

we must have r  — a =  2k for some k , that is, k = Let M  =  [^f2] • We have

Total Number of Conjugacy Classes =  ^  1 +  °
&

r=(7 (mod 2)<r r̂^n
\r

fc=0

(M + 1)(M +  2)

□

Notice that if a =  n, then T(R) is compact. If n =  a +  1, then r = a and so 

=  1. We call this case the Lorentz case.
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