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ABSTRACT 

 

 The fungicide 2,6-dichloro-4-nitroaniline (DCNA) is applied to crops grown in areas near 

both freshwater and saltwater bodies and it can enter the surface waters where it is susceptible to 

photolysis; limited information is published on the photodegradation of DCNA.  It has been 

shown that the salinity of seawater can influence both the overall rate of degradation of 

chemicals and impact the distribution and types of photoproducts generated during the 

photodegradation processes of a pesticide.  The photodegradation of DCNA was measured in 

distilled water, artificial seawater, estuarine water, and phosphate buffer to determine the degree 

of differences in the degradation rate in various matrices.  The brominated analogue 2,6-

dibromo-4-nitroaniline (DBNA) was measured identically to determine the impacts of other 

halogens on the degradation process.  Solutions of DCNA and DBNA at a concentration of 1 

ppm were prepared and irradiated for 24 hours in an Atlas SUNTEST XXL+ photochamber that 

mimics the wavelength distribution and intensity of sunlight.  Dark controls were run 

simultaneously.  Samples were withdrawn at 0, 2, 4, 6, 12, and 24 hours and analyzed for 

residual DCNA or DBNA using an Agilent 1260 Infinity High Performance Liquid 

Chromatograph.  The formation of ions such as nitrate, nitrite, bromide, and chloride were 

measured using a Thermo Dionex ICS-5000+ Ion Chromatograph.  The half-life of DCNA in 

distilled water was calculated to be 7.62 ± 0.094 hours and 7.37 ± 0.279 hours in artificial 

seawater; statistically there was no significant difference in the degradation rate through the first 

half-life.  Analysis of the quick formation of nitrite and chloride ions, and later formation of 

nitrate ions, suggests photonucleophilic substitution processes are occurring as the compound is 

degrading, followed by further degradation of nitrite to nitrate likely also due to photolysis 

processes.  Small aliphatic acids, maleic and fumaric acid, were detected after 12 hours of 



 ix 

irradiation by HPLC indicating degradation of the aromatic ring structure.  Differences in 

formation rate and decline for intermediate photoproducts were observed in seawater and 

distilled water suggesting salinity affects the rate of formation of this photoproduct.  
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CHAPTER 1: INTRODUCTION 

 

The fungicide 2,6-dichloro-4-nitroaniline (DCNA) is primarily used to prevent fungal 

spore germination on various crops, including specialty crops such as stone fruits and celery [1].  

It is the active ingredient in the fungicide Botran®, registered and trademarked by Gowan 

Company, LLC.  DCNA is commonly used in areas of coastal California as a means of 

preventing the growth and spread of fungi such as Sclerotinia sclerotiorum, otherwise known as 

pink rot, which can result in up to a 50% loss in crop yield.  DCNA is registered for use on 

specialty crops like lettuce, celery, and grapes which are grown in coastal areas such as 

Monterey County, Santa Barbara County, and San Luis Obispo County in California and also in 

Florida. The location of these crops within coastal areas suggests that DCNA may enter marine 

and estuarine ecosystems.  

DCNA is applied to crops by sprinkler irrigation, areal spray, chemigation, or dip tanks 

[1].  It has the opportunity to enter surface waters near application sites due the runoff or as drift 

from the application methods.  Because the fungicide can enter surface waters, of both natural 

freshwater and saltwater bodies, it is likely susceptible to degradation by sunlight.   

Previous research has shown that the salinity of the water can affect the degradation rate 

and half-life of a chemical [2].  The environmental fate of a chemical is highly dependent upon 

the major degradation processes and the environment in which it is found.  Lab studies typically 

use buffered distilled water for photolysis experiments, which does not take into account the 

potential affects salinity may have on the photodegradation of a chemical when it enters marine 

or estuarine waters as opposed to freshwater.   

Research on pesticides such as pentachlorophenol (PCP), 3,4-dichloroaniline (DCA), and 

hydroxychlorothalonil suggest that photonucleophilic substitution can be a major degradation 
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process in water for chemicals that are susceptible to this process.  PCP and DCA were both 

analyzed in buffered, distilled water and artificial seawater, (Instant Ocean®), to measure the 

difference in degradation rates [2].  In artificial seawater a longer half-life was reported for PCP 

than measured in distilled water however a similar half-life was measured for DCA in both 

distilled water and artificial seawater.  While PCP appeared to be affected by the salinity of the 

water, DCA did not leading to the conclusion that the degradation of a compound in freshwater 

and seawater is unique to the characteristics of a particular compound. 

 Limited information on the photodegradation of DCNA is published in literature.  The 

purpose of this investigation was to determine if there is a difference in photodegradation rate for 

DCNA in seawater versus freshwater.  Since DCNA is often used in coastal areas, especially 

central and southern coastal California and areas in Florida, determining if it degrades differently 

in marine ecosystems can be important in assessing if there is a risk to marine organisms.  If it 

does degrade differently in seawater then in studies typically submitted by pesticide registrants in 

support of pesticide registration or reregistration that simulate freshwater ecosystems, the risk of 

exposure to marine organisms may be over or underestimated.   
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CHAPTER 2: LITERATURE REVIEW 

2.1. Salinity and Seawater  

The salinity of water plays a key role in the world’s aquatic chemistry, especially when 

one considers that 97% of water on Earth is saline water [3].  Roughly 90% of the ocean has a 

salinity value ranging from 34.3 ppt to 35.1 ppt; the mean temperature of the world’s ocean is 

3.25°C with a mean salinity of 34.72 ppt.  The major ions within surface seawater include, Na+, 

K+, Mg++, Ca++, Cl-, Sr++, F-, Br-, SO4
=, HCO3

-, and B(OH)3 with trace amounts of the elements 

cadmium, cobalt, copper, and cesium.  Silicon is a minor constituent of seawater; bound to 

oxygen, it is given the name silica and is an important nutrient and cycle within seawater.  

Organisms that reside in seawater primarily use calcium carbonate to make shells, but silica is a 

minor constituent as well.     

Oceans are not the only saline waters of the world; estuaries typically have lower salinity 

values than the oceans due to the mixing of freshwater rivers and the coastal ocean waters.  

Estuaries are, in part, classified by their salinity gradient; it is dependent upon the amount of 

freshwater input to the estuary and the tidal and wave action that is mixing freshwater with the 

input of seawater [4].  Estuaries, deltas, and lagoons are classified by river, wave, and tidal 

inputs which correlates with the freshwater and seawater gradient or stratification.  The salinity 

gradient of these coastal areas and estuaries can range from 0 ppt due to the input of freshwater 

to 35 ppt due to the input of ocean water.  The salinity within estuaries also varies temporally as 

a result of tidal action [4]. 

2.2. Photonucleophilic Substitution 

Salinity has been shown to dramatically impact certain photodegradation processes, 

especially those involving photonucleophilic substitution.  For example, pentachlorophenol 
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(PCP) showed a difference in half-life in distilled water (with buffer) compared to artificial 

seawater [2].  PCP in distilled water was reported to have a half-life of 0.9 hours and in artificial 

seawater a half-life of 2.3 hours.  However this trend does not appear to apply uniformly to all 

chemicals; in the same study Miille and Crosby reported that 3,4-dichloroaniline (DCA) 

degraded with a half-lives  of 17.2 hours and 17.3 hours respectively in distilled water and 

artificial seawater.  This apparent disparity in the effects that seawater has on a chemical’s 

photodegradation process indicates the importance of substituent effects on degradation and also 

that chemical degradation in response salinity is unique to each chemical.   

Pentachlorophenol has been reported to undergo photonucleophilic substitution as a result 

of the photodegradation process.  In this process the chlorine groups on the PCP ring are 

replaced by hydroxyl groups occurring at the meta position to the phenolic moiety on the ring, 

resulting in various measureable degradation products [2, 5, 6].  DCA also undergoes 

photonucleophilic substitution; the substitution has been reported to favor the meta position, just 

as PCP, as the first site for the substitution of the chlorine for a hydroxyl group [6].  A 

photoproduct of the degradation of DCA is 2-chloro-5-aminophenol; supporting that the first 

substitution of hydroxyl for chlorine occurs at the meta position.  Photonucleophilic substitution 

was confirmed when DCA and PCP were irradiated in a solution of 0.6 M Na36Cl.  For PCP, 

42% of the original compound was radiolabeled with 36Cl; for DCA, no 36Cl was detected [2].  

The exchange of chlorine ions appears to be unique to the chlorine-containing compound that is 

undergoing the degradation reaction within the seawater media 

Other chlorine containing compounds that have been reported to undergo 

photonucleophilic substitution of the ring chlorine for hydroxyl groups include the herbicides 

2,4-dichloro-phenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 3,4-
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dichloropropionanilide (propanil), and p-chlorophenoxyacetic acid (4-CPA) [7, 8, 9, 10].  Crosby 

also analyzed the photodegradation of halogenated benzoic acids, both chlorinated and 

brominated [11].  It was observed that hydroxyl groups, replace both chlorine and bromine on 

the ring; therefore photonucleophilic substitution can occur in differing halogenated compounds.   

The herbicide 2,4-dichlorophenyl-p-nitrophenyl ether (nitrofen) contains both chlorine 

and nitro groups.  Photodegradation products of nitrofen reported photonucleophilic substitution 

of both ring chlorine and nitro groups, which were displaced by hydroxyl groups [12].  

Nakagawa and Crosby reported p-nitrophenol and hydroquinone as two photoproducts within the 

degradation pathway of nitrofen, supporting the report of photonucleophilic substitution of the 

nitro group for hydroxyl.   

Hydroxychlorothalonil, a degradation product of the fungicide chlorothalonil, in soil, has 

been measured in golf course leachate and photodegradation is principally responsible for its 

dissipation in aquatic systems [13].  Armbrust used distilled water, sterilized pond water, a buffer 

solution, and salt solutions to determine the degradation products and rates of 

hydroxychlorothalonil.  The compound quickly degraded; ultimately losing all chlorine and 

cyano groups from the chain structure and forming small products, as shown in Figure 2.1.  In 

the presence of salts, the degradation rate of hydroxychlorothalonil was reported to be slower 

than without salts, this is similar to the degradation results of pentachlorophenol in seawater [2].  

Photonucleophilic substitution appears to be an important degradation process for 

pentachlorophenol, 3,4-dichloroaniline, and hydroxychlorothalonil [2, 13].   
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Figure 2.1.  The degradation pathway of hydroxychlorothalonil.  The degradation pathway 

includes the aliphatic acids [13]. 

Previous studies suggest that the degradation of certain pesticides such as 

hydroxychlorothalonil and pentachlorophenol ultimately result in the formation of small aliphatic 

acids such as maleic acid, succinic acid, oxalic acid, and fumaric acid [2, 13, 14].  These small 

acids are commonly formed during the photodegradation of compounds containing nitro or 

chlorinated ring structures and ultimately result in the degradation of the aromatic ring [13].   

2.3. Nitrite, Nitrate, and Dissolved Nitrogen in Seawater 

 The formation and degradation of nitrate and nitrite as a result of photolysis is 

particularly important.  Photonucleophilic substitution processes that occur with compounds that 

have a nitro group on their ring structure commonly result in the nitro group being substituted by 

a hydroxyl group [15, 16].  This leaves a displaced nitro group which can be measured as nitrite 
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by ion chromatography [17].  The photolysis of nitrate and nitrite is not limited to distilled water 

lab conditions or freshwater samples, it is important in seawater as well.   

 The formation of nitrite from nitrate has been observed in seawater, as well as in 

laboratory samples in pure water via thermal reactions [18, 19].  In seawater, the regeneration of 

nitrate and nitrite ions seemingly takes a different route than it takes in pure water and the ions 

more than likely originate from photosynthetic processes of marine organisms. 

Nitrite is an intermediate in the nitrogen cycle, which is particularly important in aquatic 

systems [18].  Nitrate and nitrite are both subject to photolysis in seawater, which often results in 

the formation of hydroxyl radicals; the photolysis of nitrite and nitrate is shown in Figure 2.2 

[18, 19, 20].  

 

Figure 2.2.  Nitrite and nitrate photolysis reactions.  The reactions commonly form hydroxyl 

radicals in water [18, 19]. 
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Hydroxyl radicals are the most reactive of the free radicals produced in natural waters, 

both freshwater and seawater [21].  The free radicals within the water react with “scavengers,” 

such as bromine ions in seawater or other organic pollutants that also can be found in both 

freshwater and seawater.  Hydroxyl radical concentrations measured in seawater are lower than 

that measured in freshwater samples due to the reaction of bromine ions and the free radicals in 

seawater [20]. 

 The production of nitrates and nitrites from fertilizer and pesticide degradation contribute 

to the nitrogen in these systems; therefore understanding the ways in which nitrate and nitrite act 

in seawater compared to freshwater is imperatively important.  Nitrogen is an important nutrient 

in both freshwater and seawater.  In marine systems, nitrogen is usually the limiting nutrient 

preventing algal growth [22].  While nitrogen is an important nutrient to living things there has 

been an increase in the global nitrogen flux particularly due to human causes, which includes the 

high use of pesticides throughout the world. The reaction between oxygen and nitrogen gas 

typically results in nitric acid, which dissociates to nitrate in natural waters and makes up the 

majority of the fixed nitrogen found in seawater [3].       

2.4. Photoproducts 

In both the degradation PCP and DCA, a difference in the measured amount of 

photoproduct in distilled water, Instant Ocean®, and seawater solutions were observed [2].  The 

major degradation product of PCP is tetrachlorophenol; DCA is 3-chloroaniline.  In distilled 

water, various isomers of tetrachlorophenol were measured to be 0.8% of the photoproduct, 

while in seawater it was measured to be 6.1%; 3-chlorophenol showed similar results of 2.0% in 

distilled water and 5.0% in seawater [2].  While it is known that photonucleophilic substitution is 

responsible for the degradation of these products, the changes in the amount of detectable 
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photoproduct in different media suggests that salinity can play a role in not just the rate of 

degradation but also the rate of formation and the amount of photoproduct formed.  This aspect 

becomes highly relevant if different amounts or types of these photoproducts are formed in 

marine systems that are toxic to marine organisms.  

2.5. Irradiation in Aquatic Systems 

Obviously, light of appropriate wavelengths must be present for photodegradation to 

occur, however light does get attenuated by natural waterbodies depending upon the 

characteristics of the water.  A significant amount of the radiation striking waterbodies of the 

earth’s surface is reflected, however a significant portion penetrates water as well.  In the open 

ocean, 73% of the surface light penetrates the first 1 cm of water.  This is reduced to 44.5% at 1 

meter and to 22.2% at 10 meters. By 100 m only 0.53% of surface light is available.  Near shore, 

much of the surface light is absorbed within the first few meters of ocean water [23].   

Sunlight differentially penetrates water based upon wavelength and the depth of 

penetration is dependent upon the clarity of the water.  Certain wavelengths of light are absorbed 

before others.  Red light is absorbed within the first 5-10 m, orange light is absorbed between 10-

15 m, yellow is absorbed between 15-25 m, green is absorbed between 30-50 m, blue is absorbed 

between 60-100 m, and violet light is absorbed within 10-30 m [24].   

Light penetration is unique to the type of water body, streams in the Pacific Northwest do 

not receive much light due to the dense forests, larger streams of higher stream orders receive 

more light because there is typically less tree cover, and large rivers, which are typically fairly 

turbulent, have some surface light penetration but the light does not reach far depths [25].   
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2.6. DCNA as a Fungicide  

 Botran® is registered to Gowan Company, LLC since 1993 [26].  DCNA is the active 

ingredient in the fungicide Botran 5F®, and is used for controlling Sclerotinia, Botrytis, and 

Botryospaeria sp. [27, 28].  Boots Co., Ltd, now Bayer CropScience, first introduced the 

fungicide before being trademarked and registered with Gowan [26].  Botran® is registered for 

use in western states such as California, Washington, Idaho, and Oregon; southern states such as 

Arizona, Texas, Oklahoma, Louisiana, Arkansas, Missouri, Mississippi, Alabama, Tennessee, 

Kentucky, Georgia, North Carolina, and Florida; and Hawaii.  It is currently not pending 

registration in any other states.  Botran® is used on crops such as lettuce, sweet potatoes, onions, 

garlic, and celery, and it is registered for use on grapes west of the Rocky Mountains.   

 In 1961, DCNA was registered for use in the United States [1].  A registration standard 

was completed in 1983 and the Environmental Protection Agency (EPA) issued a Reregistration 

Eligibility Decision (RED) in 2006.  Throughout the United States, over 200,000 pounds ai of 

DCNA is applied annually.  DCNA has a low percent of crop treated for all crops except for 

celery; 40-60% of celery is treated with DCNA.  The maximum application rate for DCNA is 4 

lb ai/acre per year for all crops with the exception of potatoes (7.5 lb ai/acre/year) and celery and 

fennel (5 lb ai/acre/year) [1].   

 In the United States, celery is grown in California, Texas, Florida, and Michigan.  

Roughly 75% of the celery grown in the United States is grown in California where it is grown 

year-round.  Over 98% of the celery grown in California is within central and southern coastal 

regions.  Celery is susceptible to pink rot, Sclerotinia sclerotiorum, especially in coastal areas 

and this can cause significant loss of crop yield (5-50%).  Crater rot, Rhizoctonia solani, also 

affects celery in coastal California; this fungus is long-lived in soil and can result in 100% loss of 
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crop.  Botran® is used for the control of pink rot and crater rot in coastal California on celery 

plants.   Chlorothalonil is the primary fungicide used to control both pink rot and crater rot on 

celery; DCNA is used in significant quantities, 44,841 lb ai applied to crops in 1997, as a 

secondary fungicide in controlling the fungi [29].   

 United States Department of Agriculture (USDA) reports pesticide usage on basis of  

crop distribution, state, and year through the National Agriculture Statistics Service, however 

specific amounts of pesticides used are not reported in this system [30].  The State of California 

has an extensive system for reporting pesticide usage by location and amount.  Data obtained 

from these sites includes an unlisted amount of DCNA applied to tangerines in Florida in 2011.  

In 1997 in North California 30,800 lbs of DCNA was applied and 10,900 lbs applied in 1999.  

This number decreased from 1997 to 2005; in 2005, Northern California applied 4,100 lbs of 

DCNA to grapes and 5,100 lbs of DCNA to grapes throughout the state.  DCNA is also applied 

to head lettuce in California; in 1994 20,400 lbs of DCNA was applied to lettuce as opposed to 

the 5,200 lbs applied in 2005, and much of the lettuce crops were located within the central and 

southern coastal areas of California [30].   

Figure 2.3 is a map obtained from the California Farm Bureau Federation of various areas 

in California showing the crops that are grown in different regions.  This figure shows the major 

crops grown in different areas of California.  In many of the coastal counties, crops that DCNA 

is approved for use on are grown; including celery, grapes, and lettuce [31].   
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Figure 2.3.  Various crops grown throughout California by region, including many of the crops 

DCNA is approved for use on throughout the state [31].   
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 Pesticide Use Reports (PUR) from the California Department of Pesticide Regulation 

report many coastal counties in California as areas applying DCNA to crops such as celery, head 

lettuce, and leaf lettuce [32].  DCNA application, by pounds, in counties such as Monterey, Santa 

Clara, San Benito, and Ventura are shown in Figures 2.4-2.7.  San Luis Obispo, Santa Barbara, 

Los Angeles, Orange, Santa Cruz, San Mateo, Kern, Fresno, Riverside, and Solano Counties also 

apply DCNA within their county borders.  While DCNA is commonly applied to celery, head 

lettuce, and leaf lettuce within the coastal counties, it also is used on grapes in some of the same 

areas; for example, in 2010 DCNA was applied to grapes in Monterey County [32].   

 

Figure 2.4.  The amount of DCNA applied to celery, head lettuce, and leaf lettuce crops (in 

pounds) in Monterey County, CA from 2010-2013 [32]. 
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Figure 2.5.  The amount of DCNA applied to celery, head lettuce, and leaf lettuce crops (in 

pounds) in Santa Clara County, CA from 2010-2013 [32].   

 

 

Figure 2.6.  The amount of DCNA applied to celery, head lettuce, and leaf lettuce crops (in 

pounds) in San Benito County, CA from 2010-2013 [32].   
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Figure 2.7.  The amount of DCNA applied to celery, head lettuce, and leaf lettuce crops (in 

pounds) in Ventura County, CA from 2010-2013.  Less than 40lbs was used annually on head 

lettuce [32].   

 

 The fate of DCNA in the environment is dependent on where it is applied and what type 

of waterbody the fungicide enters.  It can contaminate surface water during application or enter 

surface water due to runoff [27].  DCNA is highly toxic to freshwater fish, while it is moderately 

toxic to freshwater invertebrates based on acute exposure studies [1].  No information was 

available on the acute or chronic toxicity information on marine or estuarine fish or invertebrates 

or chronic toxicity information on freshwater fish or invertebrates.  
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1. Chemical Reagents and Materials 

Analytical grade 2,6-dichloro-4-nitroaniline (DCNA) and 2,6-dibromo-4-nitroaniline 

(DBNA) were obtained from Aldrich Chemical Company (St. Louis, MO).  Sodium nitrate, 

sodium nitrite, sodium chloride, sodium bromide, maleic acid disodium salt hydrate, succinic 

acid disodium salt, and oxalic acid were used as standards and obtained also from Aldrich; 

fumaric acid was obtained from Fluka (St. Louis, MO).  Potassium phosphate dibasic 

(anhydrous) was obtained from Mallinckrodt Chemical Company (Paric, KY).  All solvents used 

were high performance liquid chromatography grade (HPLC); water was obtained from J. T. 

Baker (Center Valley, PA) and acetonitrile was obtained from Fisher Scientific (Pittsburgh, PA).  

Hydrochloric acid and sodium hydroxide solution were both obtained from Fisher Scientific 

(Fair Lawn, NJ).  Instant Ocean® (Blacksburg, VA) was used to simulate seawater and mixed 

according to directions on the package.  Natural estuarine water used for photolysis experiments 

was obtained from Lake Pontchartrain at Fontainebleau State Park in Mandeville, LA.  Field and 

lab water samples were filter-sterilized prior to use using 0.22-micron cellulose acetate 

membrane filters obtained from Advantec MFS, Inc. (Dublin, CA).   Borosilicate glass 2 mL 

vials, clear vials for the photodegradation experiments and amber vials for dark controls, were 

obtained from Agilent Technologies (Santa Clara, CA).   

3.2. Rate Experiments 

DCNA and DBNA were dissolved in acetonitrile as a 1000 ppm stock solution.  A 1.0 

ppm solution for rate experiments was made from the stock solution, using various media 

including distilled water, 32 ppt artificial seawater, pH 7 0.01 M phosphate buffer in distilled 

water, and pH 7.6 8 ppt filter-sterilized estuarine water from Lake Pontchartrain.  This value was 
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below the reported solubility of 6.3 mg/L, and the solvent was less than 1% of the total volume 

[31].  Vials containing 1.0 mL of the 1.0 ppm solution were irradiated in a SUNTEST XXL+ 

photochamber and were removed at regular intervals for analysis (t = 0, 2, 4, 6, 12, and 24 

hours).  Dark controls of DCNA and DBNA were run simultaneously.  Residual DCNA and 

DBNA in solution were measured using an Agilent 1260 Infinity High Performance Liquid 

Chromatograph.  DCNA and DBNA in solution were analyzed with photodiode array detection 

at 380 nm using a water and acetonitrile gradient mobile phase and a ZORBAX C-18 Eclipse 

Plus Analytical 4.6x150 mm 5-micron column. 

The SUNTEST XXL+ photochamber irradiance was set at an irradiance control of 300-

400 nm with a daylight filter system over a 24 hour time period.  The phase length was 60 

minutes with an energy output of 65 W/m2.  The temperature was set to 20°C, and the relative 

humidity was set to 20%.  Each hour of exposure is equivalent to approximately 1.8 hours of 

exposure to June summer solstice sunlight at 30°N latitude [33]. 

The photodegradation of DBNA was measured to determine if halogens other then 

chlorine would impact the rate of degradation.  Photonucleophilic substitution has been 

previously reported for compounds containing chlorine; using a similar compound that contains 

bromine instead of chlorine can help to determine if halogens follow the same or similar 

photonucleophilic pathways and processes.  DCNA and DBNA were both irradiated in the 

photochamber and analyzed for residual product by HPLC. 

3.3. Degradation Products  

HPLC analysis using analytical conditions identical to that of the parent compounds was 

used to plot the formation and decline of the major photoproducts resulting from the degradation 
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of DCNA.  The photoproducts were measured using the same analysis conditions as the parent 

compounds but measured at 254 nm rather than 380 nm. 

A Thermo Dionex ICS-5000+ Ion Chromatograph was used to measure the formation 

and decline of chlorine, bromine, nitrate, and nitrite ions.  Analytes were separated on an AS-20 

column using an isocratic mobile phase of 95:5 water and sodium hydroxide (50% w/w) at a 0.30 

mL/min flow rate.  Standards of the ions were run along with the DCNA and DBNA samples.   

A ZORBAX SB-Aq Rapid Resolution HT 4.6x150 mm 1.8-micron column was used on 

the same HPLC as the parent compounds for the detection of the small aliphatic acids.  Standards 

of succinic acid, maleic acid, fumaric acid, and oxalic acid were run prior to the irradiated 

samples.  The mobile phase for detecting the acids was 99:1 isocratic 20 mM pH 2.0 phosphate 

buffer and acetonitrile with a 1.0 mL/min flow rate at 210 nm [34].   

3.4. Data Analysis 

At each time point (t = 0, 2, 4, 6, 12, 24 hours), the percent residual DCNA remaining in 

solution in vials were averaged and the pseudo-first order rate constant was calculated from a 

plot of the natural logarithm of the percent remaining (ln C/Co) over time, where ln C/Co = -kt, 

where k = the pseudo-first order rate constant in hr-1.  The half-life was calculated from the rate 

constant where t1/2 = ln 2/k.  One-way ANOVA was used for statistical analysis of the 

degradation rates and half-lives, using α = 0.05.  Both Proc. Mixed LS Means and Diff. LS 

Means options in ANOVA were used.  Each trial was done in triplicate, with the exception of 

DCNA in artificial seawater, DBNA in distilled water, and DBNA in artificial seawater.   
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1. Degradation Rate and Half-Life 

Both DCNA and DBNA samples were rapidly degraded in all media by simulated 

sunlight.  No degradation was observed in any dark control sample.  The degradation rate 

constants and half-lives are shown in Table 4.1.  DCNA degrades quickly, with a calculated half-

life of 7.62 ± 0.094, 7.37 ± 0.279, 5.78 ± 0.216, and 6.29 ± 0.048 hours in distilled water, 

artificial seawater, phosphate buffer, and estuarine water respectively.  DBNA degraded at a 

slightly slower rate than DCNA with calculated half-lives of 8.86 ± 0.257, 8.31 ± 0.144, 8.20 ± 

0.059, and 7.56 ± 0.181 hours in distilled water, artificial seawater, phosphate buffer, and 

estuarine water respectively.   

Table 4.1.  The calculated rate constants and half-lives of both DCNA and DBNA.  The 

degradation of the samples was measured in distilled water, artificial seawater, phosphate buffer, 

and estuarine water, as determined from HPLC analysis. 

  Rate Constant (hr-1) Half-Life (hours) Samples (n) 

DCNA    

Distilled Water 0.092 ± 0.0011 7.62 ± 0.094  3 

32 g/L Artificial Seawater 0.094 ± 0.0036 7.37 ± 0.279  7 

pH 7 0.01M Phosphate Buffer 0.120 ± 0.0046 5.78 ± 0.216  3 

Filter-Sterilized Estuarine Water 0.110 ± 0.0009 6.29 ± 0.048  3 

  

DBNA    

Distilled Water 0.078 ± 0.0023 8.86 ± 0.257  4 

32 g/L Artificial Seawater 0.083 ± 0.0014 8.31 ± 0.144  4 

pH 7 0.01M Phosphate Buffer 0.085 ± 0.0006 8.20 ± 0.059  3 

Filter-Sterilized Estuarine Water 0.091 ± 0.0021 7.56 ± 0.181  3 

* No degradation observed in dark controls. 

 

One-way ANOVA analysis showed a slight significant difference in degradation rate for 

DCNA in phosphate buffer and estuarine water then in artificial seawater or DI water, however 

these differences may be artificial as rates could have been skewed by the latest time points as 
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there was no significant difference between rates through the first half-life in any case.  The 

trends in the degradation rates for DCNA and DBNA are shown in Figures 4.1 and 4.2 for each 

of the four media.  DBNA degradation behaved similar to DCNA; no significant differences 

were observed for rates in any media except estuarine water and those were only slightly 

significant.  In both cases it is possible that indirect photolysis processes could have been 

responsible for some of the observed differences in estuarine water from the other media 

however these would appear to be minor to direct photolysis processes. 

The half-life of DCNA was observed to be shorter than DBNA, despite the similarities in 

their structures.  While they follow similar degradation trends, the difference in half-life suggests 

that the ring-halogen affects the rate of degradation.  Chlorine is a stronger electron-withdrawing 

group, which could explain why DCNA degrades faster than DBNA.  This impacts both the UV 

absorption spectrum, with DCNA having a slightly greater molar absorptivity within the sunlight  

region.  This difference could explain the slight differences in the rate.    

Both DCNA and DBNA seem to behave more similarly to 3,4-dichloroaniline (DCA) 

than pentachlorophenol (PCP) or 4-hydroxychlorothalonil; the photodegradation rate and half-

life of both DCNA and DBNA were not impacted by the salinity of the lab controlled waters, 

distilled water and artificial seawater [2, 6].  Photonucleophilic substitution reactions involving 

the chlorine moieties do not appear to be affecting the rate as they did in compounds such as 

pentachlorophenol (PCP) and hydroxychlorothalonil, where the degradation rates showed 

significant difference between distilled water and artificial seawater [2, 5, 13].  It is possible that 

the initial rate of degradation is dominated by the initial loss of nitrate rather then the initial loss 

of chlorine. 
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Figure 4.1.  The degradation rates of DCNA in distilled water, artificial seawater, phosphate buffer, and estuarine water.  While there 

is no significant difference within the first half-life, the difference is being skewed by the later data points in the following half-lives.  

Error bars represent the standard deviations of each data set.   
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Figure 4.2.  The degradation rates of DBNA in distilled water, artificial seawater, phosphate buffer, and estuarine water.  While there 

is no significant difference within the first half-life, the difference is being skewed by the later data points in the following half-lives.  

Error bars represent the standard deviations of each data set.   
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Ion chromatography data showed the immediate generation of chlorine, nitrite, and 

nitrate ions that were all detected at the two-hour time point.  Chlorine and nitrate continued to 

form over time while nitrite formed quickly and began to decline, presumably by photolysis to 

nitrate.  While the quick formation of both nitrite and chlorine ions supports that 

photonucleophilic substitution may be occurring in the degradation of DCNA, other processes 

such as direct cleavage of the substituents from the aromatic ring to generate a nitrite and 

chloride radical cannot be ruled out.  The formation of nitrate ions is generally delayed, 

compared to nitrite and chlorine.  Nitrate is likely generated as the result of direct photolysis of 

nitrite ions [18, 19].  Nitrate ions appear to be increasing as irradiation continues, while the 

amount of nitrite detected appears to be decreasing.  The formation and degradation of chlorine, 

bromine, nitrite, and nitrate ions for DCNA and DBNA in distilled water is shown in Figures 4.3 

and 4.4.   

Chlorine is a stronger electron-withdrawing group than bromine, which may explain why 

more chlorine ions were detected by ion chromatography than bromine ions and also support 

why DCNA has a shorter half-life than DBNA.  Since chlorine is a stronger electron-

withdrawing group, it would more greatly activate the ring to photonucleophilic substitution 

processes facilitating the loss of the nitro moiety.  The rate of degradation does not seem to be 

driven solely by the loss of chloride from the molecule.  The loss of nitrite from the structure 

appears to play an obvious and significant role.  Both chlorine and nitro groups are subject to 

photonucleophilic substitution [2, 12].  
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Figure 4.3.  The generation of chlorine, nitrite, and nitrate ions from the degradation of DCNA in 

distilled water. 

 

 

Figure 4.4.  The generation of bromine, nitrite, and nitrate ions from the degradation of DBNA in 

distilled water.   
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4.2. Degradation Products  

 While seawater did not appear to impact the degradation of DCNA, significant 

differences in formation and decline were observed in intermediate, unidentified degradation 

products, for both DCNA and DBNA.  Figures 4.5 and 4.6 show the formation and decline of the 

unidentified, intermediate photoproducts of DCNA and DBNA in distilled water and artificial 

seawater.  In the case of DCNA, the peak observed at 5 minutes follows the same trends in both 

seawater and distilled water; this appears to behave similarly as the peak at 6 minutes in DBNA.  

This product appears to form the at nearly the same proportion and at the same rate in both 

distilled water and artificial seawater, and also degrade at the same rate.  However, the peak at 8 

minutes in DCNA appears to be significantly affected by seawater, presumably the salinity.  In 

artificial seawater, the amount of the unidentified product at 8 minutes appears form at double 

the amount than it forms in distilled water.  By 12 hours of irradiation, much of the product has 

been degraded in both distilled water and artificial seawater, and by 24 hours of irradiance the 

product is no longer detected.  Therefore, the amount of product formed appears to be affected 

by salinity but the product appears to still degrade quickly in both media.  The peak at 9 minutes 

in DBNA samples appears to follow a similar trend to the peak at 8 minutes in DCNA. 

Similar to the generation of chlorine and bromine ions mentioned in Chapter 4.1, the 

intermediate photoproducts of DCNA appear to form at higher relative amounts based upon peak 

area than those of DBNA however this can only be confirmed after the identity of the products is 

verified, since it is likely that different compounds will have different molar absorptivities and 

respond differently to UV detection. 
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Figure 4.5.  The unidentified intermediate photoproducts of the degradation of DCNA in distilled 

water and artificial seawater.  Peak number refers to HPLC retention time.   

 

 

Figure 4.6.  The unidentified intermediate photoproducts of the degradation of DBNA in distilled 

water and artificial seawater.  Peak number refers to HPLC retention time.  
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While the degradation of the parent-compounds in distilled water and artificial seawater 

was similar to the degradation of 3,4-dichloroaniline (DCA), the formation and degradation of 

the intermediate products behaves similarly to pentachlorophenol (PCP).  As mentioned in 

Chapter 2.4, the major photoproduct of PCP was identified to be tetrachlorophenol.  In distilled 

water, 0.8% of the product was measured to be tetrachlorophenol while in artificial seawater 

6.1% of the product was tetrachlorophenol.  This also applies to DCA.  The major photoproduct 

of DCA was 3-chloroaniline; 2.0% of this product was measured in distilled water and 5.0% was 

measured in artificial seawater [2].  It is possible that a similar process may be occurring also for 

DCNA and DBNA.  This can only be confirmed through the identification of degradation 

products. 

 At 12 hours of irradiation, small amounts of the aliphatic acids maleic and fumaric acid 

were detected in DCNA samples.  As observed in the photodegradation of PCP and 

hydroxychlorothalonil, the same small aliphatic acids appear to be the terminal degradation 

products of compounds likely to undergo photonucleophilic substitution [2, 13, 14].  The 

formation of these products late in the degradation pathway indicates that substituents are 

initially lost from the ring and that ultimately the aromatic ring itself if further degraded. 

  



 28 

CHAPTER 5: CONCLUSIONS 

 
 The rate of degradation and half-life of DCNA does not appear to be affected by the 

salinity of water.  When measured in distilled water, artificial seawater, phosphate buffer, and 

estuarine water, no significant difference in degradation was measured within the first half-life.  

The same trends are observed in the degradation of DBNA.   

 Immediate generation of both chlorine and nitrite ions, detected by ion chromatography, 

suggests that photonucleophilic processes may be occurring however other processes cannot be 

ruled out.  The later generation of nitrate ions supports the further photolysis of nitrite ions 

forming nitrate.  Hydroxyl radicals generated in this latter process may further contribute to the 

degradation of the parent compound and subsequent degradation products.  Bromine ions were 

generated immediately as well, but not to the same degree as chlorine ions.  This is possibly due 

to the fact that chlorine is a stronger electron-withdrawing group than bromine, as well as 

supporting that DCNA has a shorter calculated half-life than DBNA. 

 Two unidentified intermediate photoproducts were detected in the degradation of DCNA 

and DBNA analysis by HPLC.  The peak at 5 minutes in DCNA samples does not appear to be 

affected by the salinity of the water, however the peak at 8 minutes does appear to be 

significantly affected by the salinity of the water.  The 8-minute peak nearly doubles in 

concentration when irradiated in artificial seawater as compared to distilled water.  DBNA 

follows similar trends with analogous photoproducts detected at 6 minutes and 9 minutes.   

 While the salinity of water does not appear to affect the overall rate of degradation of 

DCNA, it does affect the generation of the photoproducts.   
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https://www.agilent.com/cs/library/applications/5989-1265EN_low.pdf
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APPENDIX – SUPPLEMENTAL DATA 

 

 
 

Figure A.1.  The structure of 2,6-dichloro-4-nitroaniline (DCNA). 

 

 

 

 
 

Figure A.2.  The structure of 2,6-dibromo-4-nitroaniline (DBNA). 
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Figure A.3.  UV spectrum for DCNA. 

 

 
 

Figure A.4.  HPLC spectrum for DCNA in distilled water at t=0 hours. 12.604 minutes at 380nm.   
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Figure A.5.  HPLC spectra for DCNA at t=2 hours. (1) Shows the decrease in concentration of DCNA, retention time 12.672, at 380 

nm. (2) Shows the formation of the photoproducts at 5.492 minutes and at 8.466 minutes at 254 nm.   
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Figure A.6.  HPLC spectra for DCNA at t=4 hours. (1) Shows the decrease in concentration of DCNA, retention time 12.660, at 380 

nm. (2) Shows the formation of the photoproducts at 5.488 minutes and at 8.475 minutes at 254 nm.   
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Figure A.7.  HPLC spectra for DCNA at t=6 hours. (1) Shows the decrease in concentration of DCNA, retention time 12.672, at 380 

nm. (2) Shows the formation of the photoproducts at 5.487 minutes and at 8.469 minutes at 254 nm.   
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Figure A.9.  HPLC spectra of DCNA at t=12 hours. (1) Shows the decrease in concentration of DCNA, retention time 12.603, at 380 

nm. (2) Shows the degradation of the photoproducts at 5.432 minutes and at 8.390 minutes at 254 nm.   
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Figure A.10.  HPLC spectra for DCNA at t=24 hours. (1) Shows the decrease in concentration of DCNA, retention time 12.660, at 380 

nm after 24 hours of irradiation. (2) Shows the degradation of the photoproduct at 5.415 minutes and that the other product is no 

longer measurable after 24 hours of constant irradiation, measured at 254nm.     
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Figure A.11.  HPLC spectrum for DCNA at t=0 in artificial seawater at 380nm.   
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Figure A.12.  HPLC spectra of DCNA at t=2 hours in artificial seawater. (1) DCNA degradation at 2 hours of irradiation measured at 

380nm. (2) The formation of the products at 5.398 minutes and at 8.383 minutes measured at 254nm.   
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Figure A.13.  HPLC spectra of DCNA at t=4 hours in artificial seawater. (1) DCNA degradation at 4 hours of irradiation measured at 

380nm. (2) The formation of the products at 5.371 minutes and at 8.364 minutes measured at 254nm.   
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Figure A.14.  HPLC spectra of DCNA at t=6 hours in artificial seawater. (1) DCNA degradation at 6 hours of irradiation measured at 

380nm. (2) The formation of the product at 5.380 minutes and the degradation of the product at 8.387 minutes measured at 254nm.   
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Figure A.15.  HPLC spectra of DCNA at t=12 hours in artificial seawater. (1) DCNA degradation at 12 hours of irradiation measured 

at 380nm, at 12.375 minutes. (2) The degradation of the products at 5.233 minutes and at 8.172 minutes measured at 254nm.   
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Figure A.16.  HPLC spectra of DCNA at t=24 hours in artificial seawater. (1) DCNA degradation at 24 hours of irradiation measured 

at 380nm. (2) Shows the degradation of both products is no longer measureable after 24 hours of constant irradiation measured at 254 

nm. 
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Figure A.17.  UV spectrum for 2,6-dibromo-4-nitroaniline (DBNA). 

 
 

 
 

Figure A.18.  HPLC spectrum of DBNA at t=0 hours in distilled water.13.248 minutes measured at 380 nm. 
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Figure A.19.  HPLC spectra of DBNA at t=2 hours. (1) The degradation of DBNA after 2 hours of irradiation at 13.284 minutes at 

380nm. (2) Shows the formation of photoproducts of the photodegradation of DBNA at 6.514 minutes and 9.937 minutes measured at 

254nm.   
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Figure A.20.  HPLC spectra of DBNA at t=4 hours. (1) The degradation of DBNA after 4 hours of irradiation at 13.269 minutes at 

380nm. (2) Shows the formation of photoproducts of the photodegradation of DBNA at 6.515 minutes and 9.928 minutes measured at 

254nm.   
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Figure A.21. HPLC spectra of DBNA at t=6 hours. (1) The degradation of DBNA after 6 hours of irradiation at 13.031 minutes at 

380nm. (2) Shows the formation of photoproducts of the photodegradation of DBNA at 6.204 minutes and 9.623 minutes measured at 

254nm.   
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Figure A.22.  HPLC spectra of DBNA at t=12 hours. (1) The degradation of DBNA after 12 hours of irradiation at 13.268 minutes at 

380nm. (2) Shows the photoproducts of the photodegradation of DBNA at 6.502 minutes and 9.939 minutes measured at 254nm.   
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Figure A.23.  HPLC spectra of DBNA at t=24 hours. (1) The degradation of DBNA after 24 hours of constant irradiation measured at 

380nm. (2) Shows that no photoproduct of the degradation of DBNA exists after 24 hours measured at 254nm.  
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Figure A.24.  HPLC spectrum of DBNA at t=0 hours in artificial seawater.  13.269 minutes at 380nm.   
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Figure A.25.  HPLC spectra of DBNA at t=2 hours in artificial seawater. (1) The degradation of DBNA after 2 hours of irradiation at 

13.259 minutes at 380nm. (2) Shows the formation of  one photoproduct of the photodegradation of DBNA at 9.921 minutes measured 

at 254nm.   
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Figure A.26.  HPLC spectra of DBNA at t=4 hours in artificial seawater. (1) The degradation of DBNA after 4 hours of irradiation at 

13.248 minutes at 380nm. (2) Shows the formation of photoproducts of the photodegradation of DBNA at 6.470 minutes and 9.916 

minutes measured at 254nm.   
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Figure A.27.  HPLC spectra of DBNA at t=6 hours in artificial seawater. (1) The degradation of DBNA after 6 hours of irradiation at 

13.232 minutes at 380nm. (2) Shows the formation of photoproducts of the photodegradation of DBNA at 6.465 minutes and 9.888 

minutes measured at 254nm.   
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Figure A.28.  HPLC spectra of DBNA at t=12 hours in artificial seawater.  (1) The degradation of DBNA after 12 hours of irradiation 

at 13.266 minutes at 380nm. (2) Shows the degradation of photoproducts of the photodegradation of DBNA at 6.494 minutes and 

9.923 minutes measured at 254nm.   

 

 

  



 56 

(1) 

 
 

 

(2) 

 
 

Figure A.29.  HPLC spectra of DBNA at t=24 hours in artificial seawater. (1) The degradation of DBNA after 24 hours of irradiation 

at 13.277 minutes at 380nm. (2) Shows the degradation of photoproducts of the photodegradation of DBNA, with only a small amount 

of the product at 6.500 minutes remaining.   
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