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ABSTRACT 

A computer-aided diagnostic (CAD) system that uses a unique shape-based 

classification scheme, the Ellipse-Closed Curve Fitting (ECCF) algorithm, is developed 

for digital mammogram image analysis. The system is developed to work as a post-

processing extension to a previously developed CAD system that locates and segments 

mass lesions, or tumors, found in digital mammograms into separate images. The ECCF 

system is implemented in the MATLAB mathematical scripting language and is thus 

capable of running on multiple platforms. 

The ECCF algorithm detects edges in tumor images and casts them into closed 

curve functions. Parameters for an ellipse of best fit for a closed curve function are 

computed in a way analogous to that in linear regression, where a line of best fit is 

determined to fit a set of data points. 

In addition to the shape-fitting algorithm, the ECCF system comprises several 

other independently functioning components, including auxiliary algorithms and 

techniques that perform image cropping and edge detection, employed initially to prepare 

the images for efficient processing, and self-test tools that calculate R2, area matching 

ratios, and a "shape conformity value" to determine the "goodness of fit". Output 

generated by the ECCF system for sufficiently large image sets may contain correlations 

between malignant tumors and their shape that may be captured with data mining 

techniques, the implementation of which may result in an improved integrated CAD 

system. 

 

 



 1

CHAPTER 1 - INTRODUCTION 

Breast Cancer 

Breast cancer is the uncontrolled growth of abnormal cells in the breast. As with 

other forms of cancer, breast cancer is considered to be a result of malfunctioning DNA 

due to damage or inherited mutation. Breast cancer is a disease that typically develops in 

women; however, it is also possible, although rare, for breast cancer to develop in men. 

According to the World Health Organization, more than 1.2 million people worldwide 

will learn they have breast cancer this year. The American Cancer Society estimates 

women in the United States will account for approximately 213,000 of these cases. The 

National Cancer Institute (NCI) reports breast cancer as the most common type of cancer 

among women in the US, second only to skin cancer [1]. 

Breast Cancer Statistics 

Breast cancer ranks second to lung cancer as the leading cause of death in women 

diagnosed with cancer in the US. About 41,000 women in the US are expected to die 

from the disease in 2006.[2] The number of cases of women with breast cancer has been 

increasing. In 2005, 211,240 women in the US were diagnosed with breast cancer, 

compared to ~7,522 women in 1975, which comes out to an average increase of about 

0.4% per year. However, over the last decade, due to increased awareness, screening, and 

improved treatments, the number of deaths due to breast cancer has been decreasing 

overall.[3] Figure 1.1 shows death rates due to breast cancer in comparison to other types 

of cancer over the last seven decades.    

Currently there is no cure for breast cancer, and it is also not possible to predict 

when or if a person will develop the disease. Early detection and treatment are currently 
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the only means proven to reduce breast cancer related mortality rates. It is therefore 

important for women especially to avoid the risk factors for breast cancer, monitor 

themselves for its symptoms, and get screened periodically for the disease. 

 

Figure 1.1: Age-adjusted cancer death rates of women in the US between 1930-2002. 
Overall, deaths due to breast cancer have been declining since 1990 yet it remains the 
second leading killer of women diagnosed with cancer in the US. 
 

Mammography and Breast Cancer Screening 

Mammography is the study that involves identifying structures within the breast 

to classify them as benign or malignant. A mammogram is an image obtained by using X-

rays to probe the breast. During a screening for breast cancer radiologists, or readers, 

inspect mammogram for areas that may indicate further investigation through biopsy, a 

surgical procedure from which the diagnosis and subsequent prognosis is obtained. 
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Routine mammography reduces the breast cancer mortality rate by 25% to 35% in 

asymptomatic middle-aged women. The National Cancer Institute recommends annual 

mammograms for women above 50 years of age. However, medical science is not exact. 

Readings are subject to error, thus diagnostics are not 100% accurate. Nevertheless, the 

field of mammography has benefited from continuous advances in technology over time. 

Today, two kinds of mammography are in clinical use, conventional film 

mammography and digital mammography. Each has comparative advantages and 

disadvantages with respect to the other. Despite its drawbacks, digital mammography is 

however potentially superior to film mammography particularly as it can be used along 

with CAD (computer-aided detection or computer-aided diagnostic) systems. CAD 

systems have been demonstrated as effective tools for helping radiologist identify 

malignancies in mammograms. Research activity in digital mammography and CAD 

systems is relatively new, beginning in the late 1980's. The area is now nevertheless 

recognized as an important area of research in and across a number of industrial and 

academic sites around the world. 

Basically, the goal of development in these areas is to improve the precision of 

the CAD process. In this thesis we present a CAD and an attempt to improve the 

performance of this CAD system using a tumor shape analysis algorithm. 

Chapter Outline 

The outline of the remaining portion of this thesis is as follows: Chapter 2 will 

cover aspects of breast cancer treatment. Conventional film mammography, digital 

mammography, and computer-aided diagnostic systems will be covered in Chapter 3. 

Descriptions of the CAD system developed by Sample and Tyler and the post-screening 
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shape analysis (PSA) system will be described in Chapter 4. Results and conclusions are 

presented in Chapter 5. 
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CHAPTER 2 – BREAST CANCER TREATMENT 

Risk Factors and Prevention 

As previously stated, gender is the most significant factor affecting the likelihood 

of one developing breast cancer. High blood levels of estrogen have been associated with 

breast cancer. Women are about 90 times more likely to develop breast cancer than men. 

Besides gender, age is the next most strongly correlated risk factor of breast cancer. The 

odds of a female developing breast cancer before age 39 is 1 in 209. By the time she 

becomes 40 those odds increase by almost 9-fold to 1 in 24, as can be seen in Figure 2.1. 

The US National Cancer Institute suggests that women have their first mammogram at 

age 35, every two years after age 40, and then annually after 50. 

Genetics also plays a role. Women with a personal or family history of breast 

cancer are being advised to have more frequent and even extensive examinations. It is 

usually suggested to start screening when a women reaches 10 years less than the age at 

which the relative was diagnosed with breast cancer. Exposure to radiation or various 

carcinogenic chemicals can increase the likelihood of developing breast cancer. 

Reproductive factors also play a role in the chances of developing breast cancer. Women 

that start menstruating or enter menopause later than average are more likely to get breast 

cancer. Women who have children later in life or who do not breast-feed are more likely 

to get breast cancer. Women have control over some significant risk factors of breast 

cancer in their modifiable habits. It is suggested that woman quit, or never start, smoking 

and reduce their exposure to 2nd and 3rd hand smoke as much as possible. Excessive 

alcohol consumption, more than one alcoholic beverage per day, has also been shown to 

have a positive correlation with the occurrence of breast cancer. Also women who are 
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obese are more likely to develop breast cancer. Thus a healthy diet and regular exercise 

may also decrease the risk of developing cancer. 

In some cases, knowing the risk factors can help women reduce their likelihood of 

developing breast cancer by making lifestyle choices. In cases where genetics or the 

environment creates a predisposition to the disease, women should have earlier and more 

frequent exams as well as closer monitoring for symptoms. 

 

Figure 2.1: Probability of developing invasive cancers over selected age intervals and by 
gender US populations based on cases diagnosed during 2000 to 2002. Subjects are 
cancer free at the beginning of an age interval. 1 in 24 women between the ages of 40 and 
59 are likely to develop breast cancer. The chance of developing breast cancer increases 
with age. 1 out of 8 women will develop breast cancer at some point over their life time. 
 

Symptoms  

Breast cancer may be accompanied by any of a number of symptoms. Abnormal 

lumps persisting in the breast are perhaps one of the most commonly associated 

symptoms. Skin dimpling, unusual changes in texture or skin color on the breast, change 

in the shape of the nipple, and discharge of blood through the nipple may also be 
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symptoms of breast cancer as shown in Figure 2.2. In some cases of breast cancer, 

however, there are no noticeable symptoms. In fact, half of women who get breast cancer 

experience no obvious symptoms and discover their breast cancer only after undergoing a 

medical examination.[4] Therefore, it is important for women to have periodic screenings 

for breast cancer. 

 

 

Figure 2.2: Illustrations of early signs of breast cancer. (Image originally from the 
National Institutes for Health.) 
 
Breast Cancer Screening  

Self-examinations for breast cancer are a very important part of health 

maintenance. They should be performed regularly and frequently as a first line of defense 
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against breast cancer. However, since about 50% of breast cancers go undetected by self-

examination, professional medical screenings should also be used in conjunction with 

self-examination for precaution. Breast cancer screening is a professional medical 

examination performed to check women's breasts for abnormalities such as tumors and 

cysts and identify malignancies where they exist. It is widely available in the U.S. and is 

highly recommended as it has been proven to significantly reduce fatalities due to breast 

cancer.  

Several techniques can be used to examine the breast including ultrasound, which 

uses a band of high frequency sound waves to probe the breast; magnetic resonance 

imaging, which probes the breast using powerful magnetic fields; and mammography, 

which is essentially producing X-ray photographs of the breast. Mammography will be 

discussed in more detail in Chapter 3. A screening will basically involve mammography 

or getting a mammogram, but some cases may involve all three examination methods for 

thorough investigations. In any case, the screening process is simply used to find 

abnormalities in the breast, not to obtain a diagnosis.  

Diagnosis 

A diagnosis is the process of identifying a disease by its signs, symptoms and 

results of various diagnostic procedures. The conclusion reached through that process as 

to whether a tumor is malignant (cancerous) or benign (non-cancerous) is also called a 

diagnosis. Diagnoses can only be obtained through biopsy with present technologies and 

procedures. The term biopsy refers in general to a procedure where tissue is removed for 

examination from areas in the body where cancer is suspected. There are specific biopsies 

for different sites in the body: liver, skin, bone marrow, prostate and various others. For 
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the breast alone there are several kinds of biopsies including fine-needle aspiration, 

nipple aspirates, ductal lavage, core needle biopsy, and local surgical biopsy. Each has 

comparative advantages and limitations. No method of biopsy is perfect. Sometimes 

cancers can still be missed if an ample amount of tissue is not sampled or if the tissue  is 

sampled from the wrong place altogether.  

Particular questions a biopsy is intended to resolve are: What's the size of the 

tumor? Is the tumor cancerous? Are lymph nodes involved? Once cancer has been found 

at a site, there is the question of metastasis, or in other words, has the cancer spread to 

other places in the body from that site and how aggressively is it spreading. The 

spreading of cancer is called metastasis. Methods used to check for metastasis are chest 

x-ray, bone scan, computed tomography (CT), magnetic resonance imaging (MRI), and 

positron emission tomography. Tumor markers are also used to trace where cancer has 

spread in the body. Data collected from biopsies is used to determine the progress of 

breast cancer, which is described in stages. The stage of breast cancer is defined in terms 

of inspected tumor size, tumor grade, hormone receptor status, HER2/neu oncogene over 

expression, and margins of resection. The TNM system is one of the most commonly 

used staging systems, accepted by the International Union Against Cancer (UICC) and 

the American Joint Committee on Cancer (AJCC). The system assesses tumors based on 

their tumor size,  

 There are four stages of breast cancer as shown in Table 2.1 In stage 0, the cancer 

is said to be in situ. That is, the cancer is only present at the site where it was first 

detected and has not spread to other places in the body. A tumor is described as stage I if 

it has spread beyond the margins into the surrounding tissue. A tumor is categorized as 
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stage II if it is invasive between 2 and 5 centimeters and has spread from the original site 

to other parts of the body. Stage III tumors have sizes greater than 5 centimeters. If a 

cancerous tumor has grown into the chest wall or spread to lymph nodes, then it is 

classified as stage IV. T category is another classification scheme used to indicate the 

development of cancer. The two classification systems are similar as they both relate to 

the size of the tumor. The chart below shows how the stage and T category relate.  

Table 2.1: Physicians use staging to indicate the size and location of a patient's cancer. 
The AJCC-TNM classification system is shown in the table above. 

 

Stage T category Tumor size ts (cm) Description 

0 T0 ts < 2 Size of tumor is less than 2 centimeters in 
diameter and is in situ. 

I T1 ts < 2 Size of tumor is less than 2 centimeters in 
diameter and has spread beyond margins. 

II T2 2 < ts <5 Size of tumor is between 2 and 5 t 
centimeters in diameter and has spread 
beyond margins. 

III T3 ts > 5 Size of tumor is greater than 5 centimeters 
in diameter and has spread beyond 
margins. 

IV T4 ts > 0 Tumor is any size, has attached to the 
chest wall and spread to the pectoral 
lymph nodes. 

 

Treatment 

A number of treatments are available for breast cancer including surgery, 

radiation therapy, chemotherapy, hormonal therapy and immunotherapy. The kind of 

treatment carried out basically depends on the stage of cancer. It is not uncommon for 

more than one kind of treatment to be used in combination. There are two types of 

surgical procedures, the lumpectomy and the mastectomy. In a lumpectomy, the tumor 

and its surrounding tissue, the margin, is removed from the breast. The second kind of 
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surgical procedure is the mastectomy, where the entire breast is removed. Lymph nodes 

are also removed in a mastectomy to determine the stage of the disease more precisely. 

As a precautionary measure, radiation therapy is usually recommended for invasive 

cancers that have spread into the surrounding tissue in addition to lumpectomy or 

mastectomy.  Radiation therapy involves using high-powered X-rays to bombard the site 

of the cancer. Radiation is intended to halt, or decrease the rate of growth, of a cancerous 

tumor by denaturing the DNA of cells.  Chemotherapy is another form of treatment that 

uses cytotoxic, or cell killing, drugs to rid cancer from the body. In some cases it is 

administered before surgery to reduce the size of the tumor. More often it is given after 

surgery to help reduce the chances of the tumor reforming. Chemotherapy is responsible 

for hair-loss during cancer treatments, although a common misperception is that hair loss 

comes as a result of other forms of therapy.  

Since breast cancer has been correlated with high levels of estrogen in the blood, 

it is thought that decreasing estrogen levels can reduce the risk of recurring cancer. Thus 

hormonal therapy is sometimes given after chemotherapy to patients in cases where 

tumors have estrogen positive receptors, which are susceptible to hormone treatment. 

Tumor cells are not attacked by the body's immune system since they are recognized as 

the body's own cells and not as foreign antigens. Immunotherapy is a form of cancer 

treatment that causes the immune system to respond to the tumor cells as if they were bad 

cells, specifically targeting them for destruction. Indicators for all these kinds of therapy 

are always changing. It has not been established which treatment works best.  Many times 

combinations of therapies are used. 
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Prognosis 

A prognosis is a prediction that entails how a patient's disease may progress, their 

expected chance for recovery and projected life expectancy post-diagnosis. The prognosis 

is based on previous health records and response to treatments. The basis for a prognosis 

is formed from statistics gathered from case studies on a particular disease. The accuracy 

of a prognosis is based on the extent of research conducted and will also depend on the 

experience and expertise of the physician(s) rendering the prognosis. Prognosis for 

women with breast cancer generally declines as the stage progresses. The odds of a 

woman living beyond 10 years after being diagnosed with breast cancer are roughly 95%, 

88%, 66%, 36%, and 7% for stages 0, I, II, III, and IV respectively. It is important to 

keep in mind, however, that a prognosis can never carry a predicted outcome for an 

individual with 100% certainty, but knowing a prognosis can help physician make 

informed decisions as to whether certain treatments are worthwhile, necessary, too 

dangerous, etc. The prognosis plays an important role in end-of-life decisions.  

Misdiagnosis in Breast Cancer Screening 

The importance of breast cancer screenings should not be underestimated. 

Increasing survival rates have been attributed to healthcare awareness campaigns and 

improving medical technologies, particularly in the U.S. Regular examinations are key to 

early detection; however, as with any examination, there exists the possibility of 

misdiagnosis due to error. The goal is to reduce error as much as possible. 

There are two categories of scientific error, systematic error and statistical error. 

A systematic error is the difference between what has been computed, estimated or  a 

measured state of something and its actual state. A systematic error is not random; it 
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arises from an unknown source and can be eliminated or resolved once the source is 

identified. Human error is an example of systematic error that can be a factor in 

misdiagnosis. Results can be mixed up or misinterpreted as the wrong type of breast 

cancer resulting in a patient receiving the wrong type of treatment.   

A statistical error is also the difference between what has been computed, 

estimated or measured state of something and its actual state. However, statistical errors 

are due to fluctuations in the measurement apparatus that are not predictable. Statistical 

errors are further subdivided into type I errors and type II errors. A type I error is also 

known as a false positive. As illustrated in the confusion matrix below, a false positive 

occurs when a hypothesis states something is true when it is actually not true. An 

example of this is when a patient receives a false alarm and is told she has cancer when 

she in fact does not. Type II errors, also referred to as false negatives, occur when the 

status of something is reported as false when it is actually true. An example of this is 

when a malignant tumor is diagnosed as benign and the patient is told that she is clear of 

cancer when she actually is not. The false negative is indicated in the upper right corner 

of the confusion matrix below. 

The performance of a diagnostic system is measured by its sensitivity and 

specificity. Sensitivity is the measure of how reliable a system is at making positive 

identifications, or, in other words, correctly identifying that which is inspected as being 

specifically that which is sought. A highly sensitive system will recognize what it is 

looking for most of the time, and rarely produce a false negative. Thus sensitivity is 

expressed as the ratio of number of true positives, TP, to the sum of true positives and 

false negatives as shown in the equation,  
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FNTP
TPySensitivit
+

=  
Eq. 1.1 

 

Specificity is a measure of how well a system can make a negative identification, 

or indicate when something inspected is not what is being sought, but something else.  A 

classification system with high specificity will rarely make the mistake of identifying 

what is being inspected as what is being sought.  Specificity is thus defined as the ratio of  

the number of true negatives, TN, to the sum of true negatives and false positives as in 

the equation, 

FPTN
TNySpecificit
+

=  
Eq. 1.2 

Figure 2.3 displays a confusion matrix, which illustrates the four possible outcomes of an 

evaluation. The results of a test performed with perfect sensitivity and specificity will all 

be either TP or TN' and never FP or FN. In actuality, no inspection method or tool can 

evaluate with perfect accuracy. Typically an instrument is considered to have acceptable 

performance if its specificity and sensitivity are above 0.90. 

In cases where cancers go undetected, or in other words, when a screening results 

in a false negative (FN), adequate treatment can be delayed, allowing cancers to advance 

to later stages where more drastic treatments may be required. More frequent 

examinations may reduce the chances of missing a malignancy, but there are issues with 

this as well. Apart from the financial aspect, (assuming cost is not a prohibitive factor, 

although it is in some cases) the possibility of having a false positive (FP) result increases 

with the number of screenings carried out. 
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Figure 2.3: The confusion matrix. A "perfect" system detects with 100% sensitivity and 
100% specificity. That is, it only makes true positives (TP's) and true negatives (TN's) in 
green and never false positives (TP's) and false negatives (TN's) in red. 
 

A study conducted by the Cancer Registry of Norway reported on Norwegian 

women who started having mammograms bi-annually near age 50 and continued having 

mammograms for 20 years had approximately a 1 in 5 chance of getting a false positive 

result at some point during the 20 years.[5] Nevertheless, one may raise the question, 

"Are the risks of getting a misdiagnosis worth having regularly scheduled examinations?" 

The question is fair and important.  

The pronouncement of cancer can be psychologically distressing. Perhaps even 

more traumatic is the experience of needlessly enduring breast cancer treatments, which 

are not completely harmless. Moreover, medical expenses can mount an unnecessary 

financial burden on the patient that they might not be able to recoup. Misdiagnosis also 

encumbers healthcare systems with malpractice lawsuits that adversely affect health care 

providers, their services, and ultimately the patients. 

The Norwegian study found that although 1 out of 5 women have false positive 

exams, only 93.8% of their follow-up biopsies returned true positive results for cancer. 
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Thus, the study concluded that regular breast cancer screenings are advisable despite the 

odds of misdiagnosis. Nevertheless, the aim in breast cancer screening is to perform 

diagnoses keeping the odds of missed and false detections to a minimum. In Chapter 3 we 

discuss the role technology plays in mammography.  



 17

CHAPTER 3 – DIGITAL MAMMOGRAPHY 

Film Mammography, Digital Mammography and Computer-Aided Systems 

Mammography and the quality of overall healthcare can be improved by 

technology to a great extent. Film mammography and digital mammography are 

concurrent technologies used for detecting breast cancer. Film mammography also, 

known as traditional mammography, is the conventional method that stores x-ray images 

on film as described earlier. Digital mammography developed subsequently with 

advances in computer technology and optical electronics. Digital mammography involves 

producing X-ray images of the breast and storing them directly to a machine in electronic 

form. Each has its own advantages and disadvantages, which will be described in more 

detail later. However, one of the advantages in digital mammography is that mammogram 

images can be analyzed and manipulated using computer-aided diagnostics, or CAD. 

CAD systems aid radiologists in locating malignancies in digital mammograms. They 

were first put to use in the 1990's, and they continue to develop with increasing promises 

to benefit the field of clinical mammography. 

Industrial research is primarily responsible for many of the advances seen in 

digital mammography. At present, the only CAD system approved by the Food and Drug 

Administration (FDA) for use in screening, diagnostic and digital mammography is 

ImageChecker® manufactured by R2 Technology Inc. in Los Altos, CA. ImageChecker® 

was the first CAD system approved by the FDA in 1998. Since then it has been installed 

in more than 1400 clinical sites worldwide. Two other CAD systems that have also been 

approved by the FDA are Second Look™  by CADx Medical Systems, Inc. in 

Northborough, MA and the MammoReader™ by Intelligent Systems Software, Inc. 
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Clearwater, FL. CADx Medical Systems merged with another company called Qualia 

Computing, Inc. in 2002, shortly after receiving FDA approval. However R2 Technology 

sued CADx that same year for infringing on three of its patents. CADx lost the lawsuit 

and is no longer in operation. It appears Intelligent System Software, Inc. was not 

successful in establishing a foothold in the industry after its MammoReader™ was 

accepted by the FDA in 2002. Thus R2 Technology Inc. remains standing as the sole 

industry force leading the development of technology in the area of digital 

mammography. 

Academic research also plays a significant role in the development of digital 

mammography and CAD systems. A group in the radiology department at the University 

of Chicago was one of the first to bring computer-assisted diagnostics into the clinical 

arena. In January 2005, R2 Technology and the University of Chicago Medical Center 

announced their exclusive agreement to collaborate on the development of a 

mammographic CAD workstation reference library. The multi-faceted collaboration is 

looking into a number of different aspects involving mammography including: image 

processing, image storage, CAD mark interpretation and recall through PACS (Picture 

Archiving Interface) and DICOM (Digital Imaging and Communications in Medicine) 

connectivity. [6] 

The eDiamond project is a joint effort headed by Oxford University and supported 

by IBM, Hurley and the UK government. The aim of the project is to use grid computing 

to facilitate information distribution among health centers in the UK. The hope is to 

relieve a burdened healthcare system experiencing a shortage of radiologists along with 
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an increasing patient population and improve the reliability of the diagnoses using the 

redundant systems engineering concept.[7] 

The University of California at San Diego (UCSD) is one of 38 centers in the 

United States to hold a National Cancer Institute designation as a Comprehensive Cancer 

Center. The university has several well-established programs involved in cancer research 

and is expanding. As of the spring 2005, digital mammography machines have been 

installed at two UCSD locations, the Rebecca and John Moores Cancer Center and the 

UCSD’s Breast Imaging Center in Hillcrest. The research there is promising to have far 

reaching impact on the San Diego community and beyond.[8] 

Louisiana State University (LSU) serves as home base for UniPACS (Universal 

Picture Archiving and Communication Systems). UniPACS is a software company 

focused in medical imaging and staffed with LSU researchers headed by Dr. John M. 

Tyler—former CEO and president, now vice-president of the company and professor 

emeritus of the computer science department at LSU. The company offers a suite of 

applications that allow medical images to be archived and shared securely via the 

Internet. The company's products are used in several health care centers in the southeast 

and New England area. They save cost, eliminating the need for expensive equipment 

previously required by radiologists for viewing the images.  

Sample and Tyler CAD System 

Although a CAD package from UniPACS is not yet available for commercial use, 

Professor Tyler has performed extensive academic research in digital medical image 

processing. He has developed a CAD system with one of his former doctoral students, 

Dr. John Sample. 
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 Sample's dissertation, entitled "Computer Assisted Screening of Digital 

Mammogram Images", sought to address the needs of CAD systems designed for digital 

mammography. In the thesis, Sample describes a computer-aided detection system 

comprised of algorithms he designed with Tyler to identify and outline suspected 

cancerous masses in digital mammograms. The system is self-testing and also performs 

comparative analyses of its results.9  

The Sample-Tyler CAD system displays excellent performance in identifying 

malignant tumors. Their algorithm detects masses with a sensitivity ranging from 92.8% 

to 100%. However, Sample reports in his thesis that it also misclassifies an unacceptable 

proportion of non-cancerous masses as malignant. Thus the specificity of the algorithm is 

undesirably low. In the closing statements of his thesis he proposes developing a post-

processing algorithm to help further discriminate between malignant masses and benign 

masses. 

Shape Analysis System 

Tyler suggests that tumor shape can be used as a discriminating factor. The shape 

analysis system presented here is an algorithm designed to geometrically classify the 

shapes of tumors identified in mammograms by the Sample-Tyler CAD system. This 

shape classification scheme involves approximating tumor shapes with ellipses and then 

categorizing the shapes of the ellipses based on their parameters: size, eccentricity, and 

goodness of fit. The elliptical parameters are then compared with diagnostic data for each 

tumor to determine correlations between tumor shape in order to identify and discard 

false positive verdicts rendered by the Sample-Tyler CAD system. The Sample-Tyler 

CAD system and shape analysis system will be discussed in Chapter 4 in greater detail. 
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CHAPTER 4 – TUMOR SHAPE ANALYSIS 

Introduction 

The purpose of a computer-aided diagnostic (CAD) system in digital 

mammography is to aid radiologists in identifying possibly malignant tumors in digital 

mammograms using computer algorithms. As stated in Chapter 3, all such systems are 

subject to statistical error. In this work we aim to improve the performance of a CAD 

system developed by Tyler and Sample by increasing its specificity using tumor shape 

analysis and categorization. 

Tumor Shape Analysis Premise and Methodology  

The approach to tumor shape analysis presented here involves approximating the 

shapes of tumors by fitting them with ellipses and then categorizing the tumors based on 

the dimensions of the ellipses and the closeness of the approximation. We propose that 

tumors warranting investigation are localized, globular masses (as opposed to say stringy 

objects or objects with highly irregular, concave, or angular features). Thus, the shapes of 

these masses projected onto two-dimensional images would appear round or near circular 

when segmented apart from the rest of the image.  

The Sample-Tyler algorithm performs graphical segmentation of the digital 

mammogram images. The images of the tumors it segments appear in a variety of shapes.  

Referring to the assumption that tumors suggested for biopsy tend to be round to some 

degree, and have edges that form closed curves, the tumor shape algorithm is intended to 

be used to define a criterion by which false positives generated by the Sample-Tyler CAD 

system can be identified based on shape. We refer to the tumor shape-fitting algorithm as 

the Ellipse-Closed Curve Fitting (ECCF) system. The ECCF is comprised of an algorithm 
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that performs edge detection on the overlay images produced by the Sample-Tyler CAD 

system and then attempts to fit an elliptical curve to the shape of the tumor in a way that 

is similar to regression techniques used in statistics where a simple equation is 

parameterized to fit a set of real data points. In fact, we adapt a regression analysis 

technique (R-square) to measure the closeness of the fit as well as other structural 

quantities. The output of the ECCF is in the form of text and graphic images that show 

processing of the images step-by-step.  The tumor shape algorithm can then be used post-

operatively to the Sample-Tyler CAD system to analyze tumors based on shape and then 

reject shapes that do not match the derived criteria. The aim is to increase the specificity 

of the overall detection process.  

Elliptical Quantities 

Since the structural analysis of the ECCF system is based on elliptical quantities, 

we briefly discuss the two elliptical quantities we consider, which are area and 

eccentricity. Any 2D ellipse can be completely described given its area and the ratio 

between its major and minor axes. The area of an ellipse is given as π times the product 

of its semi-major axis and its semi minor axis as shown in equation 4.1, where a and b are 

the major axis and minor axis respectively.  

abA π=  Eq. 4.1 

The eccentricity is a measure of how round or needle-shaped an ellipse is. Here we 

denote eccentricity as e and show how it is defined in terms of the semi-major and minor 

axis.  

2
1

2

2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=
b
ae  

Eq. 4.2 
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For a circle, the major and minor axes are equal lengths. If the major and minor axes are 

the same length, then the quotient 2

2

b
a  is 1, subtracted from 1 gives zero. Thus, a circle 

has zero eccentricity. As an ellipse becomes more needle-shaped the minor axes length of 

an ellipse a  approaches zero and the eccentricity e approaches 1. By approximating the 

shapes of tumors with ellipses, the ECCF system can then use the area and eccentricity of 

the ellipses to quantify tumor shape.  

MATLAB Implementation  

The shape analysis algorithm was implemented in MATLAB. MATLAB has a 

number of capabilities that make it suitable for digital image processing. The MATLAB 

application operates on a variety of platforms: DEC Alpha, HP 9000, IBM RS/6000, PC 

& MAC, Open VMS, SGI (Silicon Graphics), and SUN Sparc. All diagnostics presented 

in this thesis research were implemented in MATLAB and performed on a PC equipped 

with a 1.6 GHz- Intel Pentium processor and 512 MB of RAM. MATLAB's built-in I/O 

functions support a number of video, text, audio and image formats including JPEG, PNG 

and TIFF. The medical images are in a format using Lossless-JPEG compression or 

LJPEG. The LJPEG format is not supported by MATLAB; however, the images are 

converted from LJPEG format to TIFF format as described in Appendix A. The TIFF 

images are then read into MATLAB. In MATLAB, images are represented as two-

dimensional matrices allowing low-level image analysis and manipulation using 

MATLAB's efficient matrix and vector computations. MATLAB also has graphics and 

visualization capabilities that make useful for rendering scientific and engineering 
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graphics quickly and easily. Lastly, MATLAB is programmable; it has a mathematical 

scripting language, which we have used to implement an automated shape analysis 

system that takes advantage of the functions and features just described. 

Overview Sample Tyler CAD System 

The Sample-Tyler CAD system is designed to detect regions in digital 

mammograms that may possibly be tumors. The digital mammograms for this work are 

taken from actual patient cases stored in the DDSM (Digital Database for Screening 

Mammography (DDSM), at the University of South Florida) 

(http://marathon.csee.usf.edu/Mammography/Database.html). The digital mammograms 

have already been classified as normal, cancerous or benign. Sample and Tyler used the 

database as a test bed for their CAD system. The system is quite accurate. It performs 

with sensitivity above 0.928 (or 92.8%). However, it returns an average of 36.6 FP's per 

image, which is undesirable. So the goal is to develop an algorithm that reduces the 

number of false positives it detects to increase the CAD systems specificity. 

Figure 4.1 shows a flow diagram of the Sample-Tyler CAD system. Input patient 

cases are represented on the left by the numbered by panes. Each pane contains a set of 4 

digital mammogram images belonging to one patient. There are two views for each 

breast: left medial lateral oblique (L-MLO), right medial lateral oblique (R-MLO), left 

cranial caudal (L-CC), right cranial caudal (R-CC). The Sample-Tyler CAD system, 

represented at the center of the diagram, processes the digital mammograms and 

generates output shown in the green and yellow areas on the right:  

 

  



 25

 

 

 

Figure 4.1: Schematic of the Sample-Tyler CAD system (center). The algorithm takes 
digital mammograms from patient cases as input, displayed as numbered panes on the left 
and produces images containing areas where suspected cancerous tumors have been 
marked. 
 

1. Four text files (represented in the green area of the diagram). Each file 

contains one integer indicating the number of suspected areas in the breast 

detected by the algorithm for each mammographic view. NL-MLO, NR-MLO, 

NL-CC, and NR-CC represent the integers in each text file corresponding to 

left medial lateral oblique, right medial lateral oblique, left cranial caudal, 

right cranial caudal view respectively.  

2. Four sets of images (represented in the yellow area of the diagram). 

Each set of images corresponds to a different mammographic view: left 
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MLO, right MLO, left CC, right CC. The number of images in each set 

depends on the number of cancers detected for each mammography view. 

Each image contains a single detection indicated here by the red dot.  

To conserve disk space, the images are reduced in color depth to 1-bit (stored in 

monochrome black and white) as well as reduced in width and height (maintaining the 

aspect ratio of the original digital mammogram image it was taken from).  

Overview of Ellipse-Closed Curve Fitting (Extending the Sample-Tyler CAD 
system)  
 

The shapes of the tumors detected by the Sample-Tyler CAD system have various 

multi-diametered shapes the outlines of which are closed curves. As stated earlier in the 

premise, we suspect true positive tumors are more likely to have round or elliptical 

shapes. The ellipse-closed curve fitting (ECCF) system was developed to serve as a post-

screening component to perform shape analysis on the overlay images generated by the 

Sample-Tyler CAD system. The ECCF system is comprised of several sub-components, 

represented in the blue rectangle in Figure 4.2. The subcomponents are organized in the 

diagram in three divisions: pre-processing, curve-fitting, and fit evaluation. Overlay 

images from Sample-Tyler system, framed in yellow borders, enter the ECCF system as 

indicated by the red arrow. Each sub-component performs a particular operation on the 

overlay images. The green arrows point to the output of the ECCF system. The item in 

the top right corner represents an ASCII file generated by the ECCF system, which 

contains several columns of data calculated by the ECCF system- including the ratio 

between the areas of the tumor and the ellipse that has been fitted to it, the eccentricity of 

the fitted ellipse and the R-square of the regression. Each of these subcomponents will be 

discussed in more detail in the following sections. 
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Figure 4.2: Schematic of ECCF system (Ellipse-Closed-Curve Fitting) system. The ECCF 
computes in three phases pre processing, where the images are cropped and edge-
detected, curve-fitting, where the shapes of the tumor are fitted by ellipses and fit-
evaluation, where that goodness of the fit is calculated and performance information is 
output. 
 
Pre-formatting  

Image cropping 

The overlay images are initially generated with the same size and aspect ratio 

(length-to-width) of the digital mammogram it is created from. These images are 

relatively large, ~4000 × ~4000 pixels. One image alone can have a file size of 30-40 

MB. Thus the images are cropped for the sake of efficiency. Figure 4.3 shows an actual 

left mediolateral mammogram, outlined by a blue border, where the tumors detected by 

the Sample-Tyler have been marked in red. The dotted white arrows show how each 
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tumor detected appears in a separate overlay file, framed in yellow. The areas marking 

the tumors are typically a small fraction of the overlay image area ~3% of the entire 

image.  The images are cropped relieving all but a 20-pixel buffer on each side of the 

tumors. The cropped images, framed in green, can be processed with much greater 

efficiency as the search space has been reduced.  

 

Figure 4.3: Digital mammogram of the left breast mediolateral view is shown outlined by 
blue rectangle. Detected tumors indicated in red are shown in overlay images outlined by 
yellow rectangles. Cropped images are shown in green frames. The tumors are numbered 
1, 2, and 3 for future reference. 
  
Edge detection 

Only pixels defining the shape of the tumor are of interest. The algorithms used to 

approximate tumor shape operate only the pixels lying on the edge of the tumors. All 

pixels inside the edge boundary must be removed. Thus, after cropping, the next 

operation performed is edge detection. 

Digital Mammogram 
(Left Mediolateral) 

Overlay 
Images 

Cropped 
Images 1) 

2) 
3) 
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The edges in an image can be found by computing the Laplacian on that image. 

An image can be represented as a two dimensional surface ( )yxI , , where ( )yxI ,  

represents pixel intensity and (x,y) are pixel coordinates. Edges in the image exist in 

places where the intensity of the pixels is varying. More precisely, edges exist where the 

partial derivate ( )
x
yxI

∂
∂ ,  or ( )

y
yxI

∂
∂ ,  is not equal to zero. Thus edges detected can be 

detected by computing the derivative of ( )yxI ,  with respect to x and y or the gradient of 

( )yxI , , ( ) ( ) ( )
y
yxI

x
yxIyxI

∂
∂

+
∂

∂
=∇

,,, . The gradient will have negative or positive values 

at edges, but the absolute value of the gradient is the only thing of interest. We take the 

dot product of ( )yxI ,∇  with itself. Thus the edge-detected images are essentially the 

Laplacian of the original image ( )yxI , , ( )yxI ,2∇ .   

The creation of elementary and specialized arrays and matrices as well as basic 

array operators and operations are provided in MATLAB. Since digital images are 

represented in MATLAB as two-dimensional matrices, basic linear algebra operations 

and manipulations can be performed on them including: addition, subtraction, 

multiplication, transposing, left/right divide and others. We construct a gradient operator 

from these simple linear algebra operations in MATLAB to perform edge detection on 

images. We compute the Laplacian using discrete derivatives. 

 

ee IIIII Δ⋅Δ≈∇⋅∇=∇2  Eq. 4.3 
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where,  

lrdue IIIII Δ+Δ+Δ+Δ=Δ  Eq. 4.4 

ISII mu −=Δ  Eq. 4.5 

ISII T
md −=Δ  Eq. 4.6 

nr ISII −=Δ  Eq. 4.7 

T
nl ISII −=Δ  Eq. 4.8 

∆Iu, ∆Id, ∆Ir, and ∆Il, are matrices containing the values of the discrete differences 

between adjacent pixels in the "up", "down", "left" and "right" directions respectively. 

Superscript, T, indicates a transposed matrix. The variables m and n are the dimensions 

of the image ( )yxI , . Sm and Sn are circular permutation matrices described in more detail 

in Appendix C. Figure 4.4 shows an example of the three images of the cropped tumors, 

from Figure 4.3, in relation to the edge detected images.  

Ellipse Closed Curve Fitting 

 The next section entails descriptions of the ECCF subcomponent, which actually 

fits ellipses to the closed-curve outlines of the tumors. The basic objective here is to 

calculate parameters for ellipses that match the location, shape, and size of the tumors as 

closely as possible.  First, since the tumor shape is actually a constellation of points, we 

must describe the location of the tumor in a way that is non-arbitrary. We require that the 

center of the ellipse be fitted to the tumor and the center of the tumor itself must coincide. 

So we have to find the center of the tumor. We do that by calculating its centroid. 
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Figure 4.4: Example of tumors detected by the Sample-Tyler CAD are shown in a). Red 
arrows relate corresponding edge-detected images in b) as rendered edged-detecting 
component of the shape analysis algorithm. 
 
Centroid calculation 
 

The Cartesian coordinates of a centroid are the means of the coordinates of the set 

of vertices. Figure 4.5 contains a simple illustration of the centroid corresponding to a set 

of three points Pi, where 3,2,1=i . 

 
 

a) 

b) 

1) 2) 3) 
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Figure 4.5: Calculating the centriod, C (xc,yc), for three points ( )111 , yxP , ( )222 , yxP , 
and ( )333 , yxP  
 
If the three vertices are located at ( )111 , yxP , ( )222 , yxP , and ( )333 , yxP  then the centroid 

is a point ( )cc yxC , at which,  

3
321 xxxxc

++
=  

Eq. 4.9 

 

3
321 yyyyc

++
=  

Eq. 4.10 

 

 
In general, for any number of points N, the centroid is calculated as shown in the 

following equation:  
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Eq. 4.11 
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Eq. 4.12 

 
 

, where mi is a weighting factor generalizing the expression to apply to non-uniform 

systems. In this case all pixels are identical, 0≠= mmi . Thus, all the weights factor out 

of the expression.  
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The vertices ( )iii yxP ,  are the coordinates of the pixels forming the shape of 

tumor. ( )cc yxC ,  represents the location of the tumor and serves as a unique and non-

arbitrary point of origin for constructing the fitted ellipse.  

Mapping Cartesian coordinates to polar coordinates 

With the centroid serving as a reference position for the tumor, we now seek to 

match the size, shape, and orientation of the tumor shape with an ellipse as closely as 

possible. Just as in linear regression, where the objective is to find the linear equation that 

comes closest to fitting a collection of data points, we wish to find the equation for an 

ellipse that comes closest to fitting a constellation of points lying on a closed curve.  

To begin, our method requires a special mapping of the points on a Cartesian 

plane to a polar coordinate plane. The mapping is a bijection. All points ( )iii yxP ,  get 

mapped to exactly one point ( )iiR θ
r

 

( ) ( )iiiii RyxP θ
r

→,  Eq. 4.13 

Figure 4.6a illustrates points ( )iii yxP ,  on a Cartesian plane as well as their centroid. The 

function ( )iiR θ
r

 is obtained by calculating the vector that extends from the centroid 

( )cc yxC ,  to each point ( )iii yxP , . The corresponding angles, iθ  are computed as, 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⋅

⋅
=

xR
xR

i

i
i ˆ

ˆ
arccos r

r

θ , 
Eq. 4.14 

where x̂  is the unit vector appearing in Figure 4.6a. The arccosine is one-to-one, but not 

onto. Two points bisected by the horizontal axis x̂  and equidistant from the vertical axis 

ŷ would have the same angle, even though they are in different half planes. The problem 
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is circumvented by introducing an asymmetry where the points, ( )iiR θ
r

, in the lower half 

plane are phase shifted by 180˚. After that, ( )iiR θ
r

 is sorted to obtain a function that 

describes tumor shape as a radial function of theta exampled in Figure 4.6b. 

 

Figure 4.6: Cartesian-Polar coordinate mapping. Three points, ( )111 , yxP i , ( )222 , yxP ii , 
and ( )iii yxP 333 ,  in a) are expressed as a radial distribution in polar coordinates in b). 
 

Both representations ( )iii yxP ,  and ( )iiR θ
r

 are used to obtain the metrics calculated to 

fits ellipses to tumor shape. 

As stated in the previous section, an ellipse can be completely described in terms 

of its major axis, minor axis, orientation and position. We have to some how extract these 

quantities from our point constellation.  

First,  a major axis and orientation for the ellipse is chosen large enough to extend 

over the entire tumor shape, from end-to-end. This is accomplished by calculating a 

vector majorvr  between points on the tumor that are farthest apart as expressed in the 

equation,  

a) b)
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( ) ( )),,max( jjjiiimajor yxPyxPv −=
r  Eq. 4.15 

The norm of majorvr  serves as the length of the major axis of the fitted ellipse. The angle 

majorvr  makes with the horizontal axis x̂ , is used to compute υθ , which is used for the 

orientation of the ellipse as:  

⎟
⎟

⎠

⎞

⎜
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⎝

⎛

⋅

⋅
=

xv

xv
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major

ˆ

ˆ
arccos r

r

υθ  
Eq. 4.16 

We compute the semi-minor axis for the fitted ellipse by finding ( )iiR θ
r

min  as 

shown in Figure 4.7 b. In reference to the tumor shape, the point ( )iiR θ
r

min  is the point 

on the edge of the tumor that is closest to the centroid.  

 

 

 

Figure 4.7: a) The major axis of the fitted ellipse, majorvr , outlined in yellow, is computed 
by finding the longest distance between two points ( )iii yxP ,  and ( )jjj yxP , . b) The 
minor axis of the fitted ellipse, orvmin

r , also outlined in yellow, is computed as the 

minimum of the function ( )iiR θ
r

. 
 

a) b) 
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Constructing the fitting ellipse 

With the major axis, the semi-minor axis, the position and orientation for the 

fitted ellipse obtained; the images of the fitted ellipses are generated using: 
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Eq. 4.17 

The ellipses are constructed as a set of points ( )iii yxP ,′  from the vector υr . The variable 

i  is a real number varying from 0˚ to 360˚ in adjustable discrete steps. The vector υr  

consists of the parametric equations for which the major axis is chosen to extend across 

the horizontal axis of the image plane and the minor axis to align with the vertical axis of 

the image plane. The orientation of the ellipse is set by rotating the points ( )iii yxP ,′  in 

the plane about the center of the ellipse by υθ  as specified in the matrix ℜ . The fitting 

ellipse is the shifted by the vector ( )cc yxC ,
r

 so that its center coincides with the centroid 

of the tumor. 

Fit Evaluation 

The last subcomponent of the ECCF system measures how closely a fitting ellipse 

matches the shape of a tumor. We perform three calculations to assess how the ECCF 

system has performed:  area match ratio, R2 or the coefficient of determination (adapted 

from statistics), and a shape conformity value. These quantities will be discussed in more 

detail in the following sections. 

Area matching 

Area matching is one of comparing the sizes of the tumor to the ellipse that has 

been fitted to it. The area of the ellipse is computed directly from the equation:  
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2
baA psefittedelli
π

=  
Eq. 4.18 

The area of the tumor is computed by counting the number of pixels in the image. It is 

simply the number of white pixels in the original overlay image. 

∑
⋅

=
nm

i
tumor yxIA ),(  

Eq. 4.19 

where 1),( =yxI  if the pixel is white  and 0),( =yxI  if the pixel is black. When the ratio 

between Afitted ellipse and Atumor is close to 1, it is an indicator that the tumors are close in 

area or size.  The area match ratio is a rough indicator of the closeness of the fit.  

R-square (coefficient of determination) 

In statistics, the coefficient of determination R2 is the proportion of a sample 

variance of a response variable that is "explained" by the predictor (explanatory) 

variables when a linear regression is done. It is used as a quantitative measure of the 

"goodness of fit" of linear data. R2 is a descriptive measure between 0 and 1. The closer it 

is to one, the better the fit. The ECCF technique involves fitting the parametric and 

canonical equations of ellipses to real data points. We adapt R2 from statistics and use it 

as a means of more precisely measuring how well fitted ellipses have matched the shape 

of the tumor. We use quantity R2 as defined in Equation 4.20, 
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, where the terms Xi are the target values set and Yi fitted. We adapt the quantity R-

square for our purposes as shown in Equation 4.21. 
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here
i

X θ and )( iY θ  are iθ  is the dependent variable for corresponding profiles of the 

target and the fitted ellipse respectively. The independent variable )( iY θ is taken from a 

continuous function, the radial coordinate of the fitted ellipse given by, 

22)( yxY i ′+′=θ  Eq. 4.22 
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x and y are obtained from the parametric equation for and ellipse 
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Eq. 4.24 

By using R2 we obtain how the approximating function )( iY θ  varies with our target 

function 
i

X θ . 

Ellipse shape conformity value 

The ellipse shape conformity is another value we calculate to assess the 

"goodness of fit.”  It is a unit of pixel length, in this case pixel length, and is calculated as 
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the average of deviations of the points of the fitted ellipse ( )iii yxP ,′  from the tumor 

shape ( )iii yxP ,  as shown in Equation 4.23 and illustrated on Figure 4.8. 
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Eq. 4.25 

Figure 4.8 shows a schematic of how the ellipse shape conformity is calculated.  

The fitted ellipse is shown in red. The shape of the tumor is represented by the point set 

Pi connected by blue lines. The center of the ellipse and centroid of the tumor are 

positioned to coincide. The smaller the ellipse shape conformity value, the closer the 

fitted ellipse is to the shape of the target. An ellipse shape conformity value equal to zero 

means the target has an identical shape as the ellipse. The higher the ellipse shape 

conformity value, the more dissimilar the target shape is from the fitted ellipse.  The 

shape conformity coefficient calculated for two identical shapes would be zero.   
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Figure 4.8: The ellipse shape conformity value is calculated by comparing the shapes of 
the tumor and the ellipse that has been fitted to it by the ECCF system. The fitted ellipse 
is represented in red. The set of points connected by blue lines represent the edge of the 
tumor. The green lines represent the amount of error between the two shapes. 
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CHAPTER 5 – RESULTS AND CONCLUSION 

The ECCF system was tested on a battery of test images and then actual tumors 

generated by the Sample-Tyler CAD system. The battery of test images consisted of 

ellipses of various sizes, eccentricities and orientations generated by a testing program 

and is organized into four sets in Appendix B. Set 1 contains images of an ellipse with a 

semi-major axis of 100 pixels, a semi-minor axis of 50 pixels, rotated through 180° in 

steps of 15°. Set 2 contains test images with vertical ellipses at various eccentricities 

where the semi-major axis length is maintained at 100 pixels. Set 3 contains test images 

with horizontal ellipses at various eccentricities where the semi-major axis length is also 

maintained at 100 pixels. Tests on ellipses varying in size, with equal major and minor 

axes, appear in Set 4. An example of one test result for an ellipse with a semi-major axis 

of 100 pixels, semi-minor axis of 50 pixels, orientated at 105° off the horizontal axis 

appears in Figure 5.1. The original test image generated initially by the graphics routine 

is shown in part A.  Part B shows the edge-detected test image. In part C, the radial 

function r(θ) of the ellipse with respect to its center is plotted in blue. A fitted ellipse is 

drawn from the major and minor axes computed by the component algorithms of the 

ECCF system. The radial functions, r(θ), of the original ellipse and its fitted ellipse are 

plotted together for comparison in blue and red respectively in part D. Part E shows the 

actual 2D image of the fitted ellipse alone. Part F shows the fitted ellipse (red) plotted 

over the original ellipse (blue) for comparison. The white pixels indicate where the points 

of the fitted and original ellipse match exactly. 
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Calculated quantities - ellipse_angle_at_15.tif 
Semi-major axis (pxw) 101.5012 
Semi-minor axis (pxw) 49.8448 

Angle 103.9678 
Area of Fitted Ellipse 1.589427e+004 

Area of tumor (px) 16014.0000 
Ratio of difference in area 0.9925 

Eccentricity 0.8711 
Shape conformity (pxw) 9.596332e-001 

R-squared 0.9985 
 
Figure 5.1: Output from the ECCF system for an ellipse with 100 pixel semi-major axis 
and 50 pixel semi minor axis at an angle of 105° off the horizontal axis. The elliptical 
quantities calculated are in close agreement with the actual dimensional parameters of the 
ellipse. The shape conformity is very good, slightly less than one pixel. The R2 
calculation also indicates close agreement. 
 

The ECCF system performs satisfactorily for the test images. Figures 5.2, 5.3 and 

5.4 are demonstrations of the ECCF system output for actual tumor overlay images 

generated by the Sample-Tyler CAD system which have arbitrary shapes. 

a) b) c) 

d) e) f) 
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Semi-major axis (pxw) 16.0078 
Semi-minor axis (pxw) 4.1496 

Angle 104.4703 
Area of Fitted Ellipse 208.6852 

Area of tumor (px) 263.0000 
Ratio of difference in area 0.7697 

Eccentricity 0.9658 
Shape conformity (pxw) 1.0129 

R-squared 0.9017 
 
Figure 5.2: Output data from the ECCF system for tumor shape 1. The original tumor 
image appears in a). Part b) show the tumor after edge-detection. The radial distribution 
function ( )θr  is plotted in c). The vertical axis is in units of pixel length. The minor axis 
for the fitted ellipse is obtained from the absolute minimum of ( )θr  which is 4.149 
pixels. Tumor shape 1 is more elliptical in comparison to the tumor shape 2 and 3. This is 
reflected in the peaks appearing at close to 90˚ and 270˚. d) Shows the radial functions 
for the tumor and its fitted ellipse are in fairly closed agreement. A 2D image of the fitted 
ellipse is shown in e). f) shows an overlaying comparison of the fitted ellipse (red) with 
the outline of the tumor in (blue). The white pixels indicate exact overlap. 
 

4.1496

a) b) c) 

d) e) f) 
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Semi-major axis (pxw) 8.5440  
Semi-minor axis (pxw)  5.1330 

Angle 20.5560  
Area of Fitted Ellipse 137.7800  

Area of tumor (px) 147.0000  
Ratio of difference in area 0.9352  

Eccentricity 0.7994  
Shape conformity (pxw) 0.7877  

R-squared 0.3497  
 
Figure 5.3:  Output data from the ECCF system for tumor shape 2. The original tumor 
image appears in a). Part b) show the tumor after edge-detection. The radial distribution 
function ( )θr  is plotted in c). Tumor 2 is almost round as ( )θr  fluctuate remains roughly 
a radius of 7 pixels.  The minor axis for the fitted ellipse is obtained from the absolute 
minimum of ( )θr  which is 5.13 pixels.  d) Shows the radial functions for the tumor and 
its fitted ellipse are in fairly closed agreement. The agreement also bears out in e) and f).  
 

5.13 

a) b) c) 

d) e) f) 
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Semi-major axis (pxw) 6.8007  
Semi-minor axis (pxw) 4.2665  

Angle 107.1027  
Area of Fitted Ellipse 91.1546  

Area of tumor (px) 100.0000  
Ratio of difference in area 0.9075  

Eccentricity  0.7787 
Shape conformity (pxw) 0.7524  

R-squared 0.1989  
 
Figure 5.4: Output data from the ECCF system for tumor shape 3. Tumor 3 is also close 
to round. Its radial distribution is almost flat- similar to tumor 2.  It is however slightly 
smaller than tumor 2 with a radius of roughly 5.5 pixels. The shortest radii in the ( )θr  is 
shown to be 4.26 pixels in c). The shape conformity value reflects the agreement shown 
in d), e) and f). 
 

The purpose of the ECCF system is not intended to test for perfect roundness, as 

perfectly elliptical shapes are not of interest. It is intended to extract objective numerical 

information from arbitrary shapes for the purpose of data mining. The quantities for 

4.2665 

a) b) c) 

d) e) f) 
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tumor area and eccentricity will always be approximate. R2 and the shape conformity 

value can be used to indicate the amount a shape deviates from that of a fitted ellipse. We 

suspect that tumors that fall within some volume, or volumes, in the space spanned by the 

quantities we calculate and that the ECCF system may be trained to determine such 

volumes given data sets of significant size consisting of tumors with labeled pathologies. 

Future work would entail the construction and analysis of such data sets. 
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APPENDIX A - LJPEG-TO-TIFF CONVERSION 
 

The images we use from the Digital Database for Screening Mammography 

(DDSM) at the University of South Florida are stored in a Lossless JPEG image format- 

LJPEG. This document is a guide for converting LJPEG images from the DDSM at USF 

into the TIFF image format readable by MATLAB. JPEG is an image compression 

format commonly used to reduce the file sizes of images typically for use on the web. 

The JPEG compression scheme is lossy, that is, information is discarded from images 

during compression in order to obtain smaller image file sizes. The result is a significant 

reduction in file size accompanied by a reduction in image quality, which is however 

hardly noticeable to the human eye depending on the amount of compression performed 

on the image. 

The LJPEG format is a lossless compression scheme as it results in no loss of 

image information. It is typically used in medical, military and space imaging, high-end 

film, professional studio-quality photography, and industrial machine vision systems. 

This documentation is written for the specific purpose  of converting LJPEG 

images from the Digital Database for Screening Mammography (DDSM), at the 

University of South Florida, to TIFF for use in MATLAB. It’s detailed step-by-step to 

supplement Micheal Heath’s documentation, so that one can get up and running quickly 

and easily. 

 A table summarizing the contents of the database can be found at 

http://marathon.csee.usf.edu/Mammography/Database.html 
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Installation/Setup 

  The code is stated to be portable, but you’re probably less likely to encounter 

compilation errors if you’re running on a Unix platform. A Sun machine was used in this 

case. 

 Make a sub-directory in your home directory and change-directory to it 

  mkdir ~/heath 

cd heath 

Use ftp to download heathusf_v1.1.0.tar.gz into the heath subdirectory 

  ftp marathon.csee.usf.edu 

login: “anonymous” (without the “ ”) 

            password: (just hit enter) 

 cd pub/heathusf 

 bin (make sure you’re in binary transfer mode) 

            get heathusf_v1.1.0.tar.gz 

 bye 

Uncompress and untar the software and compile the programs by using the following 

commands:  

cd ~/heath 

gunzip -c heathusf_v1.1.0.tar.gz | tar -xvf - 

cd code 

build_heathusf 
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MATLAB can import TIFF images. So we will use Heath’s code to convert the LJPEG 

files to TIFF.  Three executables will be required for this process, “case_decompress”, 

“mkimage”, “jpeg”. 

You should find the “case_decompress” executable all ready compiled in the 

subdirectory “.../heath/code/compression”. “jpeg” should be in 

.../heath/code/compression/JPEG/PVRG/jpegdir. If it’s not do the following: 

cd ~/heath/code/compression/JPEG/PVRG/jpegdir 

 make 

You will have to compile “mkimage”. A file called “libmammo.a” is required. You will 

have to create this file in the heath/code/common subdirectory running an executable 

called build_library. 

cd ~/heath/code/common    

build_library   

Compile the mkimage using its makefile 

 cd ~/heath/code/image 

 make 

Since you’ll need to call these executables from various sub-directories you’ll want to set 

paths to the directories of these files. Edit your .login file to include the following paths 

to these executables 

setenv PATH .../heath/code/image:$PATH 

setenv PATH .../heath/code/compression:$PATH 

setenv PATH .../heath/code/compression/JPEG/PVRG/jpegdir:$PATH      

NOTE: You should replace the “...” with your home directory 
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Finally, copy “jpeg” into the same sub-directory as  “case_decompress”. 

 cd ~/heath/code/compression 

 cp ~/heath/code/compression/JPEG/PVRG/jpegdir/jpeg    . 

NOTE: “case_decompress” calls “jpeg” when it runs. The paths we included in the .login 

file allow “jpeg” to be found and executed from any subdirectory when typed in at the 

command prompt. However “case_decompress” will only be able to find “jpeg” if it’s in 

the same directory with it.  

Running the Programs 

Change directory to a directory where you have a case of images. Run case_decompress 

to decompress the files 

 case_decompress 

A LJPEG.1 file will be decompressed from each of the four LPJEG files. Convert these 

files to TIFF format using “mkimage” replacing <FILENAME> with the name of the .ics 

file you’ll find with each the case of images (example: A-0003-1.ics, A-0565-1.ics) 

mkimage –ics <FILENAME> –view LEFT_CC -tif 

mkimage –ics <FILENAME> –view RIGHT_CC -tif 

mkimage –ics <FILENAME> –view LEFT_MLO -tif 

mkimage –ics <FILENAME> –view RIGHT_MLO -tif 

You should now have 4 TIFF image files for viewing in MATLAB 

Handling TIFF Images in MATLAB 

TIFF images of can be viewed and manipulated in MATLAB.  

Start Matlab.  

Go to File -> Import Data. 
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Locate the TIFF file you wish to view. 

The Import Wizard window will appear, just click the “finish” button at the bottom. 

You should see the TIFF image as matrix in the workspace window. (You might consider 

shortening the rather long file name (e.g. A_0002_1.LEFT_CC.LJPEG.1.image.tif). For 

this example the TIFF image matrix will be renamed “X”.) To view the TIFF image enter 

the following commands into MATLAB’s command window. 

colormap('gray') 

imagesc(X)  

Imagesc() simply displays the matrix as pixel map. colormap() imposes a grayscale 

colormapping scheme on the image. 

A “figure No.” window will appear with the TIFF image inside. The image however will 

more than likely be skewed as the aspect ratio of the image is not automatically adjusted 

when it is imported into MATLAB. To correct this, go to the drop down menu figure 

window and do the following. 

 Go to “Edit” 

 Under edit select “Figure properties” 

A “Property editor – Figure” window will appear. In that widow: 

 Go to “Edit Properties for:” drop down menu at the top and click once. 

It will open down and you’ll see “Root”, “Figure”, “Axes” & “Image” options 

 Select “Image” 

 Then click the button that says “Fix axis to image” 

You should now see the TIFF image properly displayed in the “Figure No.1” window. 
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APPENDIX B 

ELLIPSE TEST SETS 

SET 1 

Dimensions 
 
pxw – pixel width (unit of length) 
px – pixels (unit of area) 
 
Angles test 
 

 
Calculated quantities - ellipse_angle_at_0.tif 

Semi-major axis (pxw) 101.0792 
Semi-minor axis (pxw) 49.5092 
Angle 87.7320 
Area of Fitted Ellipse 1.572162e+004 
Area of tumor (px) 16000.0000 
Ratio of difference in area  0.9824 
Eccentricity 0.8718 
Shape conformity (pxw) 1.491547e+000 
R-squared   0.9942 
 



 54

 
Calculated quantities - ellipse_angle_at_15.tif 

Semi-major axis (pxw) 101.5012 
Semi-minor axis (pxw) 49.8448 
Angle 103.9678 
Area of Fitted Ellipse 1.589427e+004 
Area of tumor (px) 16014.0000 
Ratio of difference in area  0.9925 
Eccentricity 0.8711 
Shape conformity (pxw) 9.596332e-001 
R-squared 0.9985   
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Calculated quantities - ellipse_angle_at_30.tif 

Semi-major axis (pxw) 101.4027 
Semi-minor axis (pxw) 49.9270   
Angle 119.2192 
Area of Fitted Ellipse 1.590502e+004 
Area of tumor (px) 16037.0000 
Ratio of difference in area  0.9917 
Eccentricity 0.8704 
Shape conformity (pxw) 8.773067e-001   
R-squared 0.9987 
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Calculated quantities - ellipse_angle_at_45.tif 

Semi-major axis (pxw) 101.2052 
Semi-minor axis (pxw) 50.0843 
Angle 137.4026 
Area of Fitted Ellipse 1.592407e+004 
Area of tumor (px) 16043.0000 
Ratio of difference in area  0.9926 
Eccentricity 0.8690 
Shape conformity (pxw) 1.539821e+000 
R-squared 0.9939   
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Calculated quantities - ellispe_angle_at_60.tif   

Semi-major axis (pxw) 101.4027 
Semi-minor axis (pxw) 49.9229 
Angle 150.7808 
Area of Fitted Ellipse 1.590374e+004 
Area of tumor (px) 16037.0000 
Ratio of difference in area  0.9917 
Eccentricity 0.8704 
Shape conformity (pxw) 8.779854e-001 
R-squared 0.9987   
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Calculated quantities - ellispe_angle_at_75.tif 

Semi-major axis (pxw) 101.5012 
Semi-minor axis (pxw) 49.6660 
Angle 166.0322 
Area of Fitted Ellipse 1.583728e+004 
Area of tumor (px) 16013.0000 
Ratio of difference in area  0.9890 
Eccentricity 0.8721 
Shape conformity (pxw) 1.017578e+000 
R-squared 0.9984   
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Calculated quantities - ellispe_angle_at_90.tif 

Semi-major axis (pxw) 101.0792 
Semi-minor axis (pxw) 49.5003 
Angle 2.2680 
Area of Fitted Ellipse 1.571879e+004 
Area of tumor (px) 15998.0000 
Ratio of difference in area  0.9824 
Eccentricity 0.8719 
Shape conformity (pxw) 1.490115e+000   
R-squared 0.9944   
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Calculated quantities - ellispe_angle_at_105.tif 

Semi-major axis (pxw) 101.5012 
Semi-minor axis (pxw) 49.8448 
Angle 13.9678 
Area of Fitted Ellipse 1.589427e+004 
Area of tumor (px) 16014.0000 
Ratio of difference in area  0.9925 
Eccentricity 0.8711 
Shape conformity (pxw) 9.596332e-001 
R-squared 0.9985 
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Calculated quantities - ellipse_angle_at_120.tif 

Semi-major axis (pxw) 101.4027 
Semi-minor axis (pxw) 49.9270 
Angle 29.2192 
Area of Fitted Ellipse 1.590502e+004 
Area of tumor (px) 16037.0000 
Ratio of difference in area  0.9917 
Eccentricity 0.8704 
Shape conformity (pxw) 8.773067e-001 
R-squared 0.9987 
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Calculated quantities - ellispe_angle_at_135.tif 

Semi-major axis (pxw) 101.2052 
Semi-minor axis (pxw) 50.0843 
Angle 47.4026 
Area of Fitted Ellipse 1.592407e+004 
Area of tumor (px) 16043.0000 
Ratio of difference in area  0.9926 
Eccentricity 0.8690 
Shape conformity (pxw) 1.539821e+000 
R-squared 0.9940   
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Calculated quantities - ellispe_angle_at_150.tif 

Semi-major axis (pxw) 101.4027 
Semi-minor axis (pxw) 49.9229 
Angle 60.7808 
Area of Fitted Ellipse 1.590374e+004 
Area of tumor (px) 16037.0000 
Ratio of difference in area  0.9917 
Eccentricity 0.8704 
Shape conformity (pxw) 8.779854e-001 
R-squared 0.9987   
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Calculated quantities - ellispe_angle_at_165.tif 

Semi-major axis (pxw) 101.5012 
Semi-minor axis (pxw) 49.6660 
Angle 76.0322 
Area of Fitted Ellipse 1.583728e+004 
Area of tumor (px) 16013.0000 
Ratio of difference in area  0.9890 
Eccentricity 0.8721 
Shape conformity (pxw) 1.017578e+000 
R-squared 0.9984   
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Calculated quantities - ellispe_angle_at_180.tif 

Semi-major axis (pxw) 101.0792 
Semi-minor axis (pxw) 49.5003 
Angle 92.2680 
Area of Fitted Ellipse 1.571881e+004 
Area of tumor (px) 15998.0000 
Ratio of difference in area  0.9824 
Eccentricity 0.8719 
Shape conformity (pxw) 1.490109e+000 
R-squared 0.9941   
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APPENDIX B 

SET 2 
Dimensions 
 
pxw – pixel width (unit of length) 
px – pixels (unit of area) 
 
Eccentricity examples for horizontal ellipses 
 

 
Calculated quantities - Ellispe_ecc_at_0.tif 

Semi-major axis (pxw) 101.0012 
Semi-minor axis (pxw) 0.4951 
Angle 90.2836 
Area of Fitted Ellipse 1.570824e+002 
Area of tumor (px) 202.0000 
Ratio of difference in area  0.7498 
Eccentricity 1.0000 
Shape conformity (pxw) 6.378707e-001   
R-squared 0.1733   
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Calculated quantities - Ellispe_ecc_at_20.tif 

Semi-major axis (pxw) 101.0111 
Semi-minor axis (pxw) 19.5040 
Angle 90.8509 
Area of Fitted Ellipse 6.189329e+003 
Area of tumor (px) 6494.0000 
Ratio of difference in area  0.9520 
Eccentricity 0.9812 
Shape conformity (pxw) 1.135740e+000 
R-squared 0.9959 
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Calculated quantities - ellispe_ecc_at_40.tif 
Semi-major axis (pxw) 101.0445 
Semi-minor axis (pxw) 39.5009 
Angle 91.7014 
Area of Fitted Ellipse 1.253919e+004 
Area of tumor (px) 12830.0000 
Ratio of difference in area  0.9771 
Eccentricity 0.9204 
Shape conformity (pxw) 1.391722e+000 
R-squared 0.9957   
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Calculated quantities - ellispe_ecc_at_60.tif 

Semi-major axis (pxw) 101.1002 
Semi-minor axis (pxw) 59.5000 
Angle 87.4489 
Area of Fitted Ellipse 1.889813e+004 
Area of tumor (px) 19146.0000 
Ratio of difference in area  0.9870   
Eccentricity 0.8085 
Shape conformity (pxw) 1.398127e+000 
R-squared 0.9938   
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Calculated quantities - ellipse_ecc_at_80.tif 

Semi-major axis (pxw) 101.1781 
Semi-minor axis (pxw) 79.4997 
Angle 86.6003 
Area of Fitted Ellipse 2.526978e+004 
Area of tumor (px) 25478.0000 
Ratio of difference in area  0.9918 
Eccentricity 0.6186 
Shape conformity (pxw) 1.161083e+000 
R-squared 0.9871   
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Calculated quantities - ellispe_ecc_at_100.tif 

Semi-major axis (pxw) 101.5800 
Semi-minor axis (pxw) 99.4995 
Angle 163.7060 
Area of Fitted Ellipse 3.175258e+004 
Area of tumor (px) 31814.0000 
Ratio of difference in area  0.9981 
Eccentricity 0.2014 
Shape conformity (pxw) 9.518279e-001 
R-squared -0.1608   
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APPENDIX B 

SET 3 
Dimensions 
 
pxw – pixel width (unit of length) 
px – pixels (unit of area) 
 
Eccentricity examples for vertical ellipses 
 

 
Calculated quantities – ellipse_ecc_at_100.tif 

Semi-major axis (pxw) 101.5800 
Semi-minor axis (pxw) 99.4995 
Angle 163.7060 
Area of Fitted Ellipse 3.175258e+004 
Area of tumor (px) 31814.0000 
Ratio of difference in area  0.9981 
Eccentricity 0.2014 
Shape conformity (pxw) 9.518279e-001 
R-squared -0.1608 
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Calculated quantities - ellipse_ecc_at_80.tif 

Semi-major axis (pxw) 101.1781 
Semi-minor axis (pxw) 79.4997 
Angle 86.6003 
Area of Fitted Ellipse 2.526978e+004 
Area of tumor (px) 25478.0000 
Ratio of difference in area  0.9918 
Eccentricity 0.6186 
Shape conformity (pxw) 1.161083e+000 
R-squared 0.9871 
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Calculated quantities - ellipse_ecc_at_60.tif 

Semi-major axis (pxw) 101.1002 
Semi-minor axis (pxw) 59.5000 
Angle 87.4489 
Area of Fitted Ellipse 1.889813e+004 
Area of tumor (px) 19146.0000 
Ratio of difference in area  0.9870 
Eccentricity 0.8085 
Shape conformity (pxw) 1.398127e+000 
R-squared 0.9938   
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Calculated quantities - ellipse_ecc_at_40.tif 

Semi-major axis (pxw) 101.0445 
Semi-minor axis (pxw) 39.5009 
Angle 91.7014 
Area of Fitted Ellipse 1.253919e+004 
Area of tumor (px) 12830.0000 
Ratio of difference in area  0.9771 
Eccentricity 0.9204 
Shape conformity (pxw) 1.391722e+000   
R-squared 0.9957   
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Calculated quantities - ellipse_ecc_at_20.tif 

Semi-major axis (pxw) 101.0111 
Semi-minor axis (pxw) 19.5040 
Angle 90.8509 
Area of Fitted Ellipse 6.189329e+003 
Area of tumor (px) 6494.0000 
Ratio of difference in area  0.9520 
Eccentricity 0.9812 
Shape conformity (pxw) 1.135740e+000 
R-squared 0.9959   
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Calculated quantities - ellipse_ecc_at_0.tif 

Semi-major axis (pxw) 101.0012 
Semi-minor axis (pxw) 0.4951 
Angle 90.2836 
Area of Fitted Ellipse 1.570824e+002 
Area of tumor (px) 202.0000 
Ratio of difference in area  0.7498 
Eccentricity 1.0000 
Shape conformity (pxw) 6.378707e-001 
R-squared 0.1733   
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APPENDIX B 

SET 4 
Dimensions 
 
pxw – pixel width (unit of length) 
px – pixels (unit of area) 
 
Size examples 

 
Calculated quantities - FittedEllipse1.tif 

Semi-major axis (pxw) 1.5811 
Semi-minor axis (pxw) 0.4243 
Angle 71.5651 
Area of Fitted Ellipse 2.107444e+000 
Area of tumor (px) 3.0000 
Ratio of difference in area  0.6505 
Eccentricity 0.9633 
Shape conformity (pxw) 0.4417 
R-squared 0.0270 
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Calculated quantities - ellispe_siz_at_3.tif 

Semi-major axis (pxw) 4.3012 
Semi-minor axis (pxw) 2.4963 
Angle 144.4623 
Area of Fitted Ellipse 3.373096e+001 
Area of tumor (px)   38.0000 
Ratio of difference in area  0.8810 
Eccentricity 0.8144 
Shape conformity (pxw) 7.037949e-001 
R-squared    -0.0778 
 



 80

 
Calculated quantities - ellispe_siz_at_5.tif 

Semi-major axis (pxw) 6.5192 
Semi-minor axis (pxw) 4.4953 
Angle   147.5288 
Area of Fitted Ellipse 9.206654e+001 
Area of tumor (px) 98.0000 
Ratio of difference in area  0.9376 
Eccentricity   0.7242 
Shape conformity (pxw) 7.635382e-001 
R-squared   0.0104 
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Calculated quantities - FittedEllipse10.tif 

Semi-major axis (pxw) 6.1847 
Semi-minor axis (pxw) 4.4984 
Angle 165.9638 
Area of Fitted Ellipse 8.740236e+001 
Area of tumor (px) 90.0000 
Ratio of difference in area  0.9707 
Eccentricity 0.6863 
Shape conformity (pxw) 6.314390e-001 
R-squared -0.1700 
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Calculated quantities - FittedEllipse25.tif 

Semi-major axis (pxw) 13.9284 
Semi-minor axis (pxw) 12.0135 
Angle 158.9625 
Area of Fitted Ellipse 535.0000 
Area of tumor (px)   0.9824 
Ratio of difference in area    0.5060 
Eccentricity   0.6863 
Shape conformity (pxw) 7.374562e-001 
R-squared   -0.1978 
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Calculated quantities - FittedEllipse50.tif 
Semi-major axis (pxw) 26.3154 
Semi-minor axis (pxw) 24.4981 
Angle 165.6997 
Area of Fitted Ellipse 2.025314e+003 
Area of tumor (px) 2042.0000 
Ratio of difference in area  0.9918 
Eccentricity 0.3652 
Shape conformity (pxw) 7.266679e-001 
R-squared -0.3214 
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Calculated quantities - FittedEllipse100.tif 

Semi-major axis (pxw) 51.5606 
Semi-minor axis (pxw) 49.4990 
Angle 160.1593 
Area of Fitted Ellipse 8.017973e+003 
Area of tumor (px) 8026.0000 
Ratio of difference in area  0.9990 
Eccentricity 0.2799 
Shape conformity (pxw) 8.175284e-001 
R-squared -0.193 
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Calculated quantities – FittedEllipse300.tif 

Semi-major axis (pxw) 151.5404 
Semi-minor axis (pxw) 148.3266 
Angle 156.0567 
Area of Fitted Ellipse 7.061506e+004 
Area of tumor (px) 71260.0000 
Ratio of difference in area  0.9909 
Eccentricity 0.2049 
Shape conformity (pxw) 1.462284e+000 
R-squared 0.0466 
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APPENDIX C – THE CIRCULAR PERMUTATION MATRIX S 
 
The circular permutation matrix S is a matrix that when multiplied with a matrix M 

results in a circular permutation of the elements in M. The direction in which the 

elements in M are shifted depends on whether M is left multiplied or right multiplied by 

S or its transpose ST. For example, 

 
right.  thecolumn to one Min  elements shifts=MS  
left.  thecolumn to one Min  elements shifts=TMS  

row. one up Min  elements shifts=SM  
row. onedown  Min  elements shifts=MST  

 
Elements shifted out of the bounds of the matrix M are re-introduced on the 

opposite side. In other words elements leaving out right most column of M reappear in 

the 1st column of M.  Elements shifted out of bottom row of M become the top row of 

MST .   

 
The size of S must be commensurate with the size of M. Regardless of the size of 

M, S is always a square matrix of size N with ones along the upper off diagonal and a one 

in the 1st column on the bottom row of S. All other elements in S are zero. Concisely, the 

elements of S are, 

 
si,i+1 = 1 for i = 1,N-1 
sN,1 = 1 

 
For a square matrix M with dimensions 4×4, S is constructed as, 
 

S  = 

0001
1000
0100
0010

 

 
, for M 5×5,  
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S  = 

00001
10000
01000
00100
00010

 

 
, for M 6×6, 
 

S  = 

000001
100000
010000
001000
000100
000010

 

 
...and so forth. 
 
In general, M is an m-by-n matrix. When M has rectangular dimensions two different 

circular shift matrices, Sm and Sn, of size m and n respectively are required. Sm and Sn are 

applied as follows, 

 
right. Min  elements shifts=nMS  
left. Min  elements shifts=T

nMS  
up. Min  elements shifts=MSm  
down. Min  elements shifts=MST

m  
 
, where Sm is a square matrix of size m and Sn is a square matrix of size n. 

The matrix S is useful for taking image derivatives.  

T
left SIII ⋅−=Δ  

SIIIright ⋅−=Δ  
ISIIup ⋅−=Δ  

ISII T
down ⋅−=Δ  
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