1-1-1992

The separation of zeros for functions with compact spectrum

Ricardo Estrada
Universidad de Costa Rica

Follow this and additional works at: https://repository.lsu.edu/mathematics_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Mathematics at LSU Scholarly Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Scholarly Repository. For more information, please contact ir@lsu.edu.
Note

The Separation of Zeros for Functions with Compact Spectrum

RICARDO ESTRADA

Escuela de Matemática, Universidad de Costa Rica,
San José, Costa Rica

Submitted by R. P. Boas

Received June 11, 1991

1. INTRODUCTION

The f be a real-analytic function defined on \mathbb{R}. Define the number $M := M(f)$ as follows. If the zeros of f are bounded on the right or the left, let $M := \infty$. Otherwise, the zeros can be arranged as a two-sided sequence $\{a_n\}_{n \in \mathbb{Z}}$ with $a_n \leq a_{n+1}$ and with $\lim_{n \to \pm \infty} |a_n| = \infty$. Then we set

$$M = M(f) := \sup_{n \in \mathbb{Z}} (a_{n+1} - a_n).$$

(1)

Recently Walker [1,2] proved that if f is the Fourier transform of a square-integrable f supported in $[-\sigma, \sigma]$, then $M(f) > \pi/\sigma$. He also asked whether a similar result holds when f is the Fourier transform of a Schwartz distribution supported in $[-\sigma, \sigma]$. The purpose of this note is to show that in this case $M(f) \geq \pi/\sigma$, and in fact $L(f) \geq \pi/\sigma$, where $L(f)$ is defined to be ∞ if the zeros of f are bounded on the right or on the left and as

$$L(f) := \lim_{|n| \to \infty} \sup (a_{n+1} - a_n)$$

(2)

when the zeros extend to ∞ in both directions.

The function $f(x) := \sin \sigma x$, the Fourier transform of $(1/2i)(\delta(x - \sigma) - \delta(x + \sigma))$, is an example where $L(f) = M(f) = \pi/\sigma$. The function $xJ_0(x)$, the Fourier transform of $2iu(1 - u^2)^{-3/2}$ on $(-1, 1)$, provides an example where $(a_{n+1} - a_n) < \pi/\sigma$ for each n. Thus the result $L(f) \geq \pi/\sigma$ cannot be improved.
2. The Main Result

Our main result is the following.

Theorem. Let f be a function whose Fourier transform is a distribution supported in $[-\sigma, \sigma]$. Then

$$M(f) \geq L(f) \geq \pi/\sigma. \quad (3)$$

Proof. Let $f(x) = \hat{g}(x) = \mathcal{F}\{g(u); x\} = \langle g(u), e^{iux} \rangle$, where $g \in \mathcal{D}'(\mathbb{R})$ with supp $g \subseteq [-\sigma, \sigma]$. Let $\varepsilon > 0$ and $\phi \in \mathcal{D}(\mathbb{R})$ with supp $\phi \subseteq [-\varepsilon/2, \varepsilon/2]$. Then the convolution $g * \phi$ is smooth and supported in $[-\sigma - \varepsilon, \sigma + \varepsilon]$.

According to the result of Walker, applied to $g * \hat{\phi} = f\hat{\phi}$, it follows that $M(f\hat{\phi}) \geq \pi/(\sigma + \varepsilon)$. But clearly $M(f) \geq M(f\hat{\phi})$ and thus $M(f) \geq \pi/(\sigma + \varepsilon)$ for each $\varepsilon > 0$. Letting $\varepsilon \to 0$, we obtain $M(f) \geq \pi/\sigma$.

Next, let us show that $L(f) \geq \pi/\sigma$. First, observe that if p is any polynomial, then pf is also the Fourier transform of a distribution supported in $[-\sigma, \sigma]$, namely, of $p(i d/du) g(u)$. Therefore, $M(pf) \geq \pi/\sigma$ for any polynomial p.

If the zeros of f are bounded to the right or left, then $L(f) \geq \pi/\sigma$ trivially, so suppose that the zeros form a two-sided sequence $\{a_n\}_{n \in \mathbb{Z}}$, with $a_n \leq a_{n+1}$. Let $\varepsilon > 0$ and find N such that

$$a_{n+1} - a_n \leq L(f) + \varepsilon, \quad \text{for } |n| \geq N. \quad (4)$$

Let p be a polynomial having zeros at the points $a_{-N+1} + (j/m)(a_N - a_{-N+1})$, for $j = 1, 2, \ldots, m-1$, where $m \in \mathbb{N}$ is chosen large enough to guarantee that $(a_N - a_{-N+1})/m < L(f)$. It follows that $M(pf) \leq L(f) + \varepsilon$. Thus $\pi/\sigma \leq L(f) + \varepsilon$, and the result follows.

References
