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Abstract

The tail of a sequence {Pn(q)}n∈N of formal power series in Z[q−1][[q]], if it exists,

is the formal power series whose first n coefficients agree up to a common sign with

the first n coefficients of Pn. The colored Jones polynomial is link invariant that

associates to every link in S3 a sequence of Laurent polynomials. In the first part of

this work we study the tail of the unreduced colored Jones polynomial of alternat-

ing links using the colored Kauffman skein relation. This gives a natural extension

of a result by Kauffman, Murasugi, and Thistlethwaite regarding the highest and

lowest coefficients of Jones polynomial of alternating links. Furthermore, we show

that our approach gives a new and natural proof for the existence of the tail of the

colored Jones polynomial of alternating links.

In the second part of this work, we study the tail of a sequence of admissible

trivalent graphs with edges colored n or 2n. This can be considered as a general-

ization of the study of the tail of the colored Jones polynomial. We use local skein

relations to understand and compute the tail of these graphs. Furthermore, we

consider certain skein elements in the Kauffman bracket skein module of the disk

with marked points on the boundary and we use these elements to compute the

tail quantum spin networks. We also give product structures for the tail of such

trivalent graphs. As an application of our work, we show that our skein theoretic

techniques naturally lead to a proof for the Andrews-Gordon identities for the two

variable Ramanujan theta function as well to corresponding new identities for the

false theta function.

vii



Chapter 1
Introduction

In [7] Dasbach and Lin conjectured that, up to a common sign change, the highest

4(n+ 1) (the lowest resp.) coefficients of the nth unreduced colored Jones polyno-

mial J̃n,L(A) of an alternating link L agree with the first 4(n + 1) coefficients of

the polynomial J̃n+1,L(A) for all n. This gives rise to two power series with integer

coefficients associated with the alternating link L called the head and the tail of

the colored Jones polynomial. The existence of the head and tail of the colored

Jones polynomial of adequate links was proven by Armond in [4] using skein the-

ory. Independently, this was shown by Garoufalidis and Le for alternating links

using R-matrices [8] and generalized to higher order stability of the coefficients of

the colored Jones polynomial.

Let L be an alternating link and let D be a reduced link diagram of L. Write

SA(D) to denote the A-smoothing state of D, the state obtained by replacing each

crossing by an A-smoothing. The state SB(D) of D is defined similarly. Using

the Kauffman skein relation Kauffman [17], Murasugi [28], and Thistlethwaite [33]

showed that the A state (respectively the B state) realizes the highest (respectively

the lowest) coefficient of the Jones polynomial of an alternating link. In chapter 2,

we extend this result to the colored Jones polynomial by using the colored Kauff-

man skein relation 4.2. We show that the n-colored A state and the n-colored B

state realize the highest and the lowest 4n coefficients of the nth unreduced colored

Jones polynomial of an alternating link. Furthermore we show that this gives a

natural layout to prove the stability of the highest and lowest coefficients of the
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colored Jones polynomial of alternating links. In other words we prove that the

head and the tail of the colored Jones polynomial exist.

Let S
(n)
B (D) be the skein element obtained from SB(D) by decorating each circle

in this state with the nth Jones-Wenzl idempotent and replacing each place where

we had a crossing in D with the (2n)th projector. It was proven in [3] that for

an adequate link L the first 4(n + 1) coefficients of nth unreduced colored Jones

polynomial coincide with the first 4(n+1) coefficients of the skein element S
(n)
B (D).

In chapter 3, we study a certain skein element, called the bubble skein element, in

the relative Kauffman bracket skein module of the disk with some marked points,

and expand this element in terms of linearly independent elements of this module.

Then we use the bubble skein element in the study of the tail of 85 considering the

skein element S
(n)
B (D) obtained from an alternating diagram of 85. The knot 85 is

the first knot on the knot table whose tail could in not determined directly by the

techniques developed [3].

In chapter 4, we extend the study of the tail of the colored Jones polynomial

that we started in the previous chapter to study the tail of quantum spin networks.

A quantum spin network is a banded trivalent graph with edges labeled by non-

negative integers, also called the colors of the edges, and the three edges meeting

at a vertex satisfy some admissibility conditions. Skein theoretic techniques have

been used in [3] and [4] to understand the head and tail of an adequate link. It

was proven in [3] that for an adequate link L the first 4(n + 1) coefficients of nth

unreduced colored Jones polynomial coincide with the first 4(n + 1) coefficients

of the evaluation in S(S2) of a certain skein element in S2. We demonstrate here

that this skein element can be realized as quantum spin network obtained from the
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link diagram D. Hence, studying the tail of the colored Jones polynomial can be

reduced to studying the tail of these quantum spin networks. Our method to study

the tail of such graphs relies mainly on adapting various skein theoretic identities

to new ones that can in turn be used to compute and understand the tail of such

graphs. We use this structure to give natural product structures on the tail of

quantum spin networks.

The q-series obtained from knots in this way appear to be connected to classi-

cal number theoretic identities. Hikami [14] realized that that Rogers-Ramanujan

identities appear in the study of the colored Jones polynomial of torus knots. In [4]

Armond and Dasbach calculate the head and the tail of the colored Jones polyno-

mial via multiple methods and use these computations to prove number theoretic

identities. In chapter 4, we show that the skein theoretic techniques we developed

herein can be also used to prove classical identities in number theory. In particular

we use skein theory to prove the Andrews-Gordon identities for the two variable

Ramanujan theta function, as well as corresponding new identities for the false

theta function.

3



Chapter 2
Background

2.1 Preliminaries

A knot in the 3-sphere S3 is a piecewise-linear one-to-one mapping f : S1 −→ S3.

A link in S3 is a finite ordered collection of knots, called the components of the

link, that do not intersect each other. Two links are considered to be equivalent if

they are ambient isotopic. A link diagram of a link L is a projection of L on S2

such that this projection has a finite number of nontangentional intersection points

(called crossings), each of which is coming from exactly two points of the link L.

We usually draw a small break in the projection of the lower strand to indicate

that it crosses under the other strand. Reidemeister’s theorem asserts that two

links are ambient isotopic if and only if their diagrams can be transformed into the

other by a finite sequence of Reidemeister moves. See Figure 2.1.

FIGURE 2.1. The three Reidemeister moves.

A framed link is a link together with a smooth section of the normal bundle

over the link called a framing. Framed links are also considered up to ambient

isotopy. In this thesis we will deal mostly with framed links. We will assume that

link diagrams are equipped with blackboard framing. Any diagram of a link L gives

rise to a framing of L by taking a nonzero vector field that is everywhere parallel

to the projection plane of the diagram. This framing is called the blackboard

4



framing. Any arbitrary framed link can be represented by a link diagram with

the blackboard framing. Appropriate insertion of curls in the diagram adjusts the

blackboard framing of the diagram so that one can realize any framing.

2.1.1 Alternating and Adequate Links

Let L be a link in S3 and let D be an alternating knot diagram of L. For any

crossing in D there are two ways to smooth this crossing, the A-smoothing and

the B-smoothing. See Figure 2.2.

A B

FIGURE 2.2. A and B smoothings

We replace a crossing with a smoothing together with a dashed line joining the

two arcs. After applying a smoothing to each crossing in D we obtain a planar

diagram consisting of a collection of disjoint circles in the plane. We call this

diagram a state for the diagram D. The A-smoothing state, obtained from D by

replacing every crossing by an A smoothing, and the B-smoothing state for D are of

particular importance for us. Write SA(D) and SB(D) to denote the A smoothing

and B smoothing states of D respectively. For each state S of a link diagram D one

can associate a graph obtained by replacing each circle of S by a vertex and each

dashed link by an edges. In particular we are interested in the graphs obtained

by the A-smoothing state and the B-smoothing state of the diagram D. We will

denote these two graphs by A(D) and B(D) respectively.

5



FIGURE 2.3. The knot 62, its A-graph on the left and its B-graph on the right

Recall that a link diagram is alternating if as we travel along the link, from any

starting point, the crossings alternating between under and over crossings. A link

is called alternating if it possesses such a diagram. The following definition can be

considered as a generalization of the alternating links.

Definition 2.1. A link diagram D is called A-adequate (B-adequate, respectively)

if there are no loops in the graph A(D) (the graph B(D), respectively). A link

diagram D is called adequate if it is both A-adequate and B-adequate.

It is known that a reduced alternating link diagram is adequate. See for example

[22].

2.2 Skein Theory

In this section we review the fundamentals of the Kauffman Bracket Skein Modules

and introduce the skein modules that will be used for our purpose. Furthermore,

we discuss the recursive definition of Jones-Wenzl idempotent and recall some of

its basic properties. For more details about linear skein theory associated with the

Kauffman Bracket, see [19], [22], and [29].

6



Definition 2.2. (J. Przytycki [29] and V. Turaev [34]) Let M be an oriented 3-

manifold. Let R be a commutative ring with identity and a fixed invertable element

A. Let LM be the set of isotopy classes of framed links in M including the empty

link. Let RLM be the free R-module generated by the set LM . Let K(M) be the

smallest submodule of RLM that is generated by all expressions of the form

(1) − A − A−1 , (2) L t + (A2 + A−2)L.

where Lt consists of a framed link L in M and the trivial framed knot .

The Kauffman bracket skein module, S(M ; R, A), is defined to be the quotient

module S(M ; R, A) = RLM/K(M).

A relative version of the Kauffman bracket skein module can be defined when

M has a boundary. The definition is extended as follows. We specify a finite (pos-

sibly empty) set of framed points x1, x2, ..., x2n on the boundary of M . A band is

a surface that is homeomorphic to I × I. An element in the set LM is an isotopy

class of an oriented surface embedded into M and decomposed into a union of fi-

nite number of framed links and bands joining the designated boundary points. Let

K(M) be the smallest submodule of RLM that is generated by Kauffman relations

specified above. The Kauffman bracket skein module is defined to be the quotient

module S(M ; R, A, {xi}2n
i=1) = RLM/K(M). The relative Kauffman bracket skein

module depends only on the distribution of the points {xi}2n
i=1 among the different

connected components of ∂M and it does not depend on the exact position of the

points {xi}2n
i=1. In particular, if ∂M is connected then the definition of the relative

Kauffman bracket skein module is independent of the choice of the exact position

of the points {xi}2n
i=1. For more details see [29] and [30].

7



When the manifold M is homeomorphic to F × [0, 1], where F is a surface

with a finite set of points (possibly empty) in its boundary ∂F , one could define

the (relative) Kauffman bracket skein module of F . In this case one considers an

appropriate version of link diagrams in F instead of framed links in M . The iso-

morphism between S(M ; R, A) and S(F ; R, A) that sends a framed link to its link

diagram will be used to identify these two skein modules.

We will work with the skein module of the sphere S(S2; R, A). This skein mod-

ule is freely generated a one generator. Let D be any diagram in S2. Using the

definition of the normalized Kauffman bracket [17], we can write D =< D > φ

in S(S2; R, A), where φ denotes the empty link. This provides an isomorphism

<>: S(S2; R, A) −→ R, induced by sending D to < D >. In particular this iso-

morphism sends the empty link φ in S(S2; R, A) to the identity in R. We will also

work with the relative skein module S([0, 1]× [0, 1]; R, A, {xi}2n
i=1), where the rect-

angular disk [0, 1]× [0, 1] has n designated points {xi}ni=1 on the top edge , where

xi = (1, i
n+1

) for 1 ≤ i ≤ n, and n designated points on the bottom edge {xi}2n
i=n+1,

where xi = (0, i−n
n+1

) for n+ 1 ≤ i ≤ 2n. As we mentioned above, the relative skein

module S([0, 1] × [0, 1]; R, A, {xi}2n
i=1) does not depend on the exact position of

the points {xi}2n
i=1. However, we are making a choice for the position of the points

here because we will define an algebra structure on S([0, 1] × [0, 1]; R, A, {xi}2n
i=1)

where the position of these points is required. This relative skein module can be

thought of as the R-module generated by all (n, n)-tangle diagrams in [0, 1]× [0, 1]

modulo the Kauffman relations. In fact the module S([0, 1]× [0, 1]; R, A, {xi}2n
i=1)

is a free R-module on 1
n+1

(
2n
n

)
free generators. For a proof of this fact see [29].

The relative skein module S([0, 1] × [0, 1]; R, A, {xi}2n
i=1) admits a multiplication

given by juxtaposition of two diagrams in [0, 1] × [0, 1]. More precisely, let D1

8



and D2 be two diagrams in [0, 1] × [0, 1] such that ∂Dj, where j = 1, 2, con-

sists of the points {xi}2n
i=1 specified above. Define D1.D2 to be the diagram in

[0, 1] × [0, 1] obtained by attaching D1 on the top of D2 and then compress the

result to [0, 1] × [0, 1]. This multiplication on diagrams extends to a well-defined

multiplication on isotopy classes of diagrams in [0, 1] × [0, 1]. Finally it extends

by linearity to a multiplication on S([0, 1]× [0, 1]; R, A, {xi}2n
i=1). With this multi-

plication S([0, 1] × [0, 1]; R, A, {xi}2n
i=1) is an associative algebra over R known as

the nth Temperley-Lieb algebra TLn. For each n there exists an idempotent f (n)

in TLn that plays a central role in the Witten-Reshetikhin-Turaev Invariants for

SU(2). See [19], [21], and [32]. The idempotent f (n), known as the nth Jones-Wenzl

idempotent, was discovered by Jones [16] and it has a recursive formula due to

Wenzl [35]. We will use this recursive formula to define f (n). Further, we will adapt

a graphical notation for f (n) which is due Lickorish [20]. In this graphical notation

one thinks of f (n) as an empty box with n strands entering and n strands leaving

the opposite side. The Jones-Wenzl idempotent is defined by:

n

=

n− 1 1

−
(∆n−2

∆n−1

)
1n− 1

n− 2

1
n− 1

,

1

= (2.1)

where

∆n = (−1)n
A2(n+1) − A−2(n+1)

A2 − A−2
.

The polynomial ∆n is related to [n + 1], the (n + 1)th quantum integer, by ∆n =

(−1)n[n + 1]. It is common to use the substitution a = A2 when one works with

quantum integers.
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We assume that f (0) is the empty diagram. The Jones-Wenzl idempotent satis-

fies

∆n =

n

,

n m

m + n

=

m + n

,

n

1

m

m + n + 2

= 0, (2.2)

(1) ∆n =

n

, (2)

n m

m + n

=

m + n

(2.3)

and

(1)

n

m

=
∆m+n

∆n

n

, (2)

i j

i + j

= A−ij

i + j

(2.4)

In this thesis R will be Q(A), the field generated by the indeterminate A over

the rational numbers. Before we introduce any other skein modules we talk briefly

about linear maps between skein modules.

2.2.1 Skein Maps

We can relate various skein modules by linear maps induced from maps between

surfaces. Let F and F ′ be two oriented surfaces with marked points on their bound-

aries. A wiring is an orientation preserving embedding between F and F ′ along

with a fixed wiring diagram of arcs and curves in F ′ − F such that the boundary

points of the arcs consists of all the marked points of F and F ′. Any diagram D

in F induces a diagram W(D) in F ′ by extending D by wiring diagram. A wiring

10



W of F into F ′ induces the module homomorphism

S(W ) : S(F )←→ S(F ′)

defined by D −→ W (D) for any D diagram in F . For more details see [?].

Example 2.3. Consider the square I × I with n marked points on the top edge

and n marked points on the bottom edge. Embed I × I in S2 and join the n points

on the top edge to the n points on the bottom edge by parallel arcs as follows:

For each n, this wiring induces a module homomorphism:

trn : TLn −→ S(S2)

This map is usually called the Markov trace on TLn.

2.2.2 Quantum Spin Networks

Before giving the definition of quantum spin network we will need to introduce

a few relative skein modules. Consider the relative skein module of the disk with

a1 + ...+ am marked points on the boundary. We are interested in a submodule of

this module constructed as follows. Partition the set of the a1 + ...+am points into

m sets of a1, .., am−1 and am points respectively. At each cluster of these points we

place an appropriate idempotent, i.e. the one whose color matches the cardinality

of this cluster. We will denote this relative skein module by Ta1,...,am . Hence an

element in Ta1,...,am is obtained by taking an element in the module of the disk

with a1 + ... + am marked points and then adding the idempotents f (a1), ..., f (am)

11



on the outside of the disk. Figure 2.4 shows an element in the Kauffman bracket

skein module of the disk with 3 + 2 + 2 + 1 marked points on the boundary and

the corresponding element in the space T3,2,2,1..

FIGURE 2.4. An element in the module of the disk and its mapping to T3,2,2,1.

Of particular interest are the spaces Ta,b , Ta,b,c and Ta,b,c,d . The properties of the

Jones-Wenzl projector imply that the space Ta,b is zero dimensional when a 6= b

and one dimensional when a = b, spanned by f (a). Similarly, Ta,b,c is either zero

dimensional or one dimensional. The space Ta,b,c is one dimensional if and only if

the element τa,b,c shown in Figure 2.5 exists. This occurs when one has non-negative

integers x, y and z such that the following three equations are satisfied

a = x+ y, b = x+ z, c = y + z. (2.5)

b

a

x y

z

c
FIGURE 2.5. The skein element τa,b,c in the space Ta,b,c

When τa,b,c exists we will refer to the outside colors of τa,b,c by the colors a, b and

c and to the inside colors of τa,b,c by the colors x, y and z. The following definition

characterizes the existence of the element τa,b,c in terms of the outside colors.

12



Definition 2.4. A triple of colors (a, b, c) is admissible if a + b + c ≡ 0( mod 2)

and a+ b ≥ c ≥ |a− b|.

Note that if the triple (a, b, c) is admissible, then writing x = (a + b − c)/2,

y = (a + c − b)/2, and z = (b + c − a)/2 we have that x,y and z satisfy the

equations 2.5. If the triple (a, b, c) is not admissible then the space Ta,b,c is zero

dimensional. The fact that the inside colors are determined by the outside colors

allows us to replace τa,b,c by a trivalent graph as follows:

b

a

x y

z

cb

a

c
FIGURE 2.6. The element τa,b,c

This motivates the following definition.

Definition 2.5.

A quantum spin network in S2 is an embedded trivalent graph in S2 × I with

edges labeled by non-negative integers and the labels of the edges meeting at a

vertex satisfy the admissibility condition. Let Γ be a quantum spin network in S2.

The Kauffman bracket evaluation of Γ is defined to be bracket of the expansion

of Γ after replacing every edge labeled n by the projector f (n) and every vertex

labeled (a, b, c) by the skein element τa,b,c. See Figure 2.7.

b b

aa

x y

z

cc

,

n n

FIGURE 2.7. The evaluation of a quantum spin network as an element in S(S2).
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We assume that a diagram represent the zero element in the module if it has

a strand labeled by a negative number. The last relative Kauffman bracket skein

module that we need here is the module Ta,b,c,d, see Figure 2.8.

a b

d c

FIGURE 2.8. The relative skein module Ta,b,c,d

This module is free on the set of generators given in Figure 2.9. Here i runs over

all possible positive integers such that (a, b, i) and (c, d, i) are admissible.

a b

d c

i

FIGURE 2.9. A basis of the module Ta,b,c,d

2.3 The Colored Jones Polynomial

In 1980s a vast family of new knot invariants, called quantum invaraints were dis-

covered and later extended to invariants of 3-manifolds. The first quantum invari-

ant was discovered by Jones in [15]. The Jones polynomial is a Laurent polynomial

knot invariant in the variable q with integer coefficients. The Jones polynomial

generalizes to an invariant Jg
K,V (q) ∈ Z[q±1] of a zero-framed knot K colored by a

representation V of a simple Lie algebra g, and normalized so that Jg
O,V (q) = 1,

where O denotes the zero-framed unknot. The invariant Jg
K,V (q) is called the quan-

tum invariant of the knot K associated with the simple Lie algebra g and the

representation V . The Jones polynomial corresponds to the 2- dimensional irre-

ducible representation of sl(2,C) and the nth colored Jones polynomial, denoted by

14



Jn,K(q), is the quantum invariant associated with the n+1-dimensional irreducible

representation of sl(2,C).

Another version of the colored Jones polynomial is the unreduced colored Jones

polynomial. Let L be zero-framed framed link in S3. The nth unreduced colored

Jones polynomial of a link L is obtained by decorating every component of L,

according to its framing, by the nth Jones-Wenzl idempotent and consider this

decorated framed link as an element of S(S3). The two versions of the colored

Jones polynomial are related by a change of variable and a shift the index by 1. In

what follows we assume A4 = q.

In the next chapter we start studying the highest and the lowest coefficients

of the colored Jones polynomial using mainly the skein theoretic definition of the

unreduced colored Jones polynomial.
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Chapter 3
The Colored Kauffman Skein Relation
and the Head and the Tail of the
Colored Jones Polynomial

3.1 Introduction

In [7] Dasbach and Lin conjectured that, up to a common sign change, the highest

4(n+ 1) (the lowest resp.) coefficients of the nth unreduced polynomial J̃n,L(A) of

an alternating link L agree with the first 4(n + 1) coefficients of the polynomial

J̃n+1,L(A) for all n. This gives rise to two power series with integer coefficients asso-

ciated with the alternating link L called the head and the tail of the colored Jones

polynomial. The existence of the head and tail of the colored Jones polynomial

of adequate links was proven by Armond in [4] using skein theory. Independently,

this was shown by Garoufalidis and Le for alternating links using R-matrices [8]

and generalized to higher order tails.

Let L be an alternating link and let D be a reduced link diagram of L. Write

SA(D) to denote the A-smoothing state of D, the state obtained by replacing each

crossing by an A-smoothing. The state SB(D) of D is defined similarly. Using

the Kauffman skein relation Kauffman [17] showed that the A state (respectively

the B state) realizes the highest (respectively the lowest) coefficient of the Jones

polynomial of an alternating link. In this chapter we extend this result to the

colored Jones polynomial by using the colored Kauffman skein relation 4.2. We

show that the n-colored A state and the n-colored B state realize the highest and

the lowest 4n coefficients of the nth unreduced colored Jones polynomial of an

alternating link. Furthermore we show that this gives a natural layout to prove the
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stability of the highest and lowest coefficients of the colored Jones polynomial of

alternating links. In other words we prove that the head and the tail of the colored

Jones polynomial exist.

3.2 The Head and the Tail of the Colored Jones Polynomial for
Alternating Links

Let P1(q) and P2(q) be elements in Z[q−1][[q]], we write P1(q)
.
=n P2(q) if their first

n coefficients agree up to a sign.

Definition 3.1. Let P = {Pn(q)}n∈N be a sequence of formal power series in

Z[q−1][[q]]. The tail of the sequence P- if it exists - is the formal power series

TP(q) in Z[[q]] that satisfies

TP(q)
.
=n Pn(q), for all n ∈ N.

Observe that the tail of the sequence P = {Pn(q)}n∈N exists if and if only if

Pn(q)
.
=n Pn+1(q) for all n. We will need the definition of the minimal degree of

such formal power series. If p ∈ Z[q−1][[q]] then we will denote by m(p) to the

minimal degree of p.

Remark 3.2. Consider the sequence {fn(q)}n∈N where fn(q) is a rational function

in Q(q). Every rational function in Q(q) can be represented uniquely as an element

Z[q−1][[q]]. Using this convention one can study the tail of the sequence {fn(q)}n∈N.

Furthermore, this can be used to define the minimal degree of a rational function.

Let D = {Dn(q)}n∈N be a sequence of skein elements in S(S2). The evaluation

of Dn(q) gives in general a rational function. Using the observation in remark 3.2,

one could study the tail of the sequence D.
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3.3 The Colored Kauffman Skein Relation

We start this section by proving the colored Kauffman skein relation in 4.5. This

relation is implicit in the work of Yamada in [36]. The colored Kauffman skein

relation will be used in the next section to understand the highest and the lowest

coefficients of the colored Jones polynomial.

The following two Lemmas are basically due to Yamada [36]. We include the

proof here with modification for completeness.

Lemma 3.3. (The colored Kauffman skein relation) Let n ≥ 0. Then we have

n + 1 n + 1

= A2n+1

n + 1 n + 1

n n
1

1

+ A−(2n+1)

n + 1 n + 1

n n

11

Proof. Applying the Kauffman relation we obtain

n + 1 n + 1

= A

n + 1 n + 1

11

nn 11

nn

+ A−1

n + 1 n + 1

11

nn 11

nn

= A

n + 1 n + 1

11

nn 11

nn

+ A−1

n + 1 n + 1

11

nn 11

nn

Using property (2) in 2.4 we obtain the result.

Note that if we specialize n to 1 in the previous Lemma we obtain the Kauffman

skein relation. Recall that the quantum binomial coefficients are defined by:[
n

k

]
A

=
[n]!

[k]![n− k]!
.
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where [n] = (−1)n−1∆n−1 and [n]! = [1]...[n].

Lemma 3.4. Let n ≥ 0. Then we have

n n

=
n∑

k=0

Cn,k

n n

k k

n− k

n− k

Where

Cn,k = An(n−2k)

[
n

k

]
A

.

Proof. Lemma 4.5 implies that

n n

=
n∑

k=0

C ′n,k

n n

k k

n− k

n− k

(3.1)

where C ′n,k is a polynomial with integral coefficients in A. Let us prove by induction

on n that we have

C ′n,k = Cn,k. (3.2)

For n = 1 relation (3.2) holds since this is just the Kauffman skein relation.

Applying the identity (3.1) on each term of the colored Kauffman skein relation,
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we obtain :

n∑
k=0

C ′n,k

n n

k k

n− k

n− k

= A2n−1

n−1∑
k=0

C ′n−1,k

n n

k k

n− k

n− k

+ A−2n+1

n−1∑
k=0

C ′n−1,k

n n

k + 1 k + 1

= A2n−1

n−1∑
k=0

C ′n−1,k

n n

k k

n− k

n− k

+ A−2n+1

n−1∑
k=1

C ′n−1,k−1

n n

k k

The skein elements

n n

k k

n− k

n− k
, where 0 ≤ k ≤ n, are linearly independent ( see

remark 4.10 ) and hence

C ′n,k = A2n−1C ′n−1,k + A−2n+1C ′n−1,k−1. (3.3)

However

Cn,k = An(n−2k)(A2k

[
n− 1

k

]
A

+ A2k−2n

[
n− 1

k − 1

]
A

)

= An2−2nk+2k

[
n− 1

k

]
A

+ An2−2nk−2n+2k

[
n− 1

k − 1

]
A

Hence

Cn,k = A2n−1Cn−1,k + A−2n+1Cn−1,k−1. (3.4)

Relations (3.3) and (3.4) and the induction hypothesis yield the result.

Motivated by Lemma 4.5 we define the n-colored states for a link diagram D for

every positive integer n. Suppose that the link diagram has k crossings. Label the
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crossings of the link diagram D by 1,..,k. An n-colored state s(n) for a link diagram

D is a function s(n) : {1, .., k} → {−1,+1}. If the color n is clear from the context,

we will drop n from the notation of a colored state.

A B

n− 1 n− 1

1

1

1 1

n− 1

n− 1

FIGURE 3.1. The n-colored A and B smoothings

Given a link diagram D and a colored state s for the diagram D. We construct a

skein element Υ
(n)
D (s) obtained from D by replacing each crossing labeled +1 by an

n-colored A-smoothing and each crossing labeled −1 by an n-colored B-smoothing,

see Figure 3.1. Two particular skein elements obtained in this way are important

to us. The skein element obtained by replacing each crossing by the n-colored A-

smoothing will be called the n-colored A-state and denoted by Υ
(n)
D (s+), where s+

denotes the colored state for which s+(i) = +1 for all i in {1, ..,m}. The n-colored

B-state is defined similarly. See Figure 3.2 for an example.

n− 1 n− 1

1

1

1

1

FIGURE 3.2. n-colored B-state

Consider a crossingless skein element D in S(S2) consisting of arcs connecting

Jones-Wenzl idempotents of various colors. Let D̄ be the diagram obtained from
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D by replacing each idempotent f (n) with the identity idn in TLn. The diagram D̄

thus consists of non-intersecting circles. We say that D is adequate if each circle in

D̄ passes at most once through any given region where we replaced the idempotents

in D. See Figure 3.4 for a local picture of an adequate skein element and note that

the circle indicated in the figure bounds a disk. Figure 3.3 shows an example of

inadequate skein element on the left and an adequate skein element on the right.

FIGURE 3.3. Adequate and inadequate skein elements. All arcs are colored n.

n k

FIGURE 3.4. A local picture an adequate skein element

Using the convention in 3.2, we will denote by m(f) to the minimum degree of

f expressed as a Laurent series in q or in A. Furthermore, denote D(S) := m(S̄).

The following lemma is due to Armond [4].

Lemma 3.5. If S ∈ S(S2) is expressed as a single diagram containing the Jones-

Wenzl idempotent, then m(S) ≥ D(S). If the diagram for S is an adequate skein

diagram, then m(S) = D(S).
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3.4 The Main Theorem

The colored Kauffman skein relation provides a natural framework to understand

the highest and the lowest coefficients of the colored Jones polynomial. In this sec-

tion we will use this relation to prove that the the highest (the lowest respectively)

4n coefficients of the nth unreduced colored Jones polynomial agree up to a sign

with the n-colored A-state (the n-colored B-state respectively). We use this result

to prove existence of the the tail of the colored Jones polynomial.

Theorem 3.6. Let L be an alternating link diagram. Then

J̃n,L
.
=4n Υ

(n)
L (s−)

Proof. Assume that the link diagram L has k crossings and label the crossing of

the link diagram by 1, .., k. The colored Kauffman skein relation implies that

J̃n,L
.
=
∑
s

αL(n, s)Υ
(n)
L (s)

where αL(n, s) = A(2n−1)
∑k

i=1 s(i) and the summation runs over all functions s :

{1, 2, ..., k} → {−1,+1}. Now for any colored state s of the link diagram L there

is a sequence of states s0, s1..., sr such that s0 = s− , sr = s and sj−1(i) = sj(i) for

all i ∈ {1, ..., k} except for one integer il for which sj−1(il) = −1 and sj(il) = 1. It

is enough to show that the lowest 4n terms of α(n, s−)Υ
(n)
L (s−) are never canceled

by any term from α(n, s)LΥ
(n)
L (s) for any s. For any colored state s of the link

diagram L one could write

Υ
(n)
L (s) =

n−1∑
i1,...,ik=0

k∏
j=1

Cn−1,ijΛs,(i1,...,ik)

where Λs,(i1,...,ik) is the skein element that we obtain by applying 4.8 to every

crossing in Υ
(n)
L (s). The theorem follows from the following three lemmas.
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Lemma 3.7.

m(αL(n, s−)) = m(αL(n, s1))− 4n+ 2

m(αL(n, sr)) ≤ m(αL(n, sr+1))

m(Cn−1,n−1)−m(Cn−1,n−2) = −2

m(Cn−1,i) ≤ m(Cn−1,i−1).

Proof. It is clear that

αL(n, s−) = Ak−2kn

and

αL(n, s1) = A−2+k+4n−2kn

Furthermore,

αL(n, sr) = A(2n−1)
∑k

i=1 sr(i) = A(2n−1)(−k+2r) = Ak−2kn−2r+4nr

hence

m(αL(n, sr))−m(αL(n, sr+1)) = 2− 4n.

Finally, it is clear that

m(Cn,i) = 2i2 − 4in+ n2.

Hence, the result follows.

Lemma 3.8.

m(Λs−,(n−1,...,n−1)) = D(Λs1,(n−1,...,n−1))− 2.

D(Λs,(i1,...ij−1,ij ,ij+1...,ik)) = D(Λs,(i1,...ij−1,ij−1,ij+1,...,ik))± 2.
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Proof. When we replace the idempotent by the identity in the skein element

Υ(n)(s−) we obtain the diagram Ln−1
⋃̇
C where C is a link diagram composed

of a disjoint union of unit circles each one of them bounds a disk and Ln−1 is the

(n−1)-parallel of L. Note that state Λs−,(n−1,...,n−1) is exactly the all B-state of the

link diagram Ln and it is also the all B-state of Ln−1
⋃̇
C. Since L is alternating

then the the number of circles in Λs1,(n−1,...,n−1) is one less than the number of

circles in Λs−,(n−1,...,n−1). In other words, the number of circles in the all B-state

of Υ(n)(s1) is one less than the number of circles in the all B-state of the diagram

Ln−1
⋃̇
C. Thus,

D(Λs−,(n−1,...,n−1)) = D(Λs1,(n−1,...,n−1))− 2.

Moreover the skein element Λs−,(n−1,...,n−1) is adequate since L is alternating. Hence

by Lemma 3.5 we have

m(Λs−,(n−1,...,n−1)) = D(Λs1,(n−1,...,n−1))− 2.

For the second part, note that the number of circles in the diagrams Λs,(i1,...ij−1,ij ,ij+1...,ik)

and Λs,(i1,...ij−1,ij−1,ij+1,...,ik) differs by 1. Hence by 3.5 we obtain

D(Λs,(i1,...ij−1,ij ,ij+1...,ik)) = D(Λs,(i1,...ij−1,ij−1,ij+1,...,ik))± 2

.

Lemma 3.9.

m(Υ(n)(s−)) = m((Cn−1,n−1)kΛs−,(n−1,...,n−1)).

Proof. The previous two lemmas imply directly that the lowest term in Υ(n)(s−)

is coming from the skein element (Cn−1,n−1)kΛs−,(n−1,...,n−1) and this term is never

canceled by any other term in the summation.
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Theorem 3.10. Let L be an alternating link diagram and let Υ(n+1)(s−) be its

corresponding (n+ 1)-colored B-state skein element. Then

Υ
(n+1)
L (s−)

.
=4n J̃n,L

Proof. Since L is an alternating link diagram then the skein element Υ(n+1)(s−)

must look locally as in Figure 3.5.

1

n

FIGURE 3.5. Local view of the skein element Υ(n+1)(s−)

It follows from Theorem 9 and Lemma 10 in [4] that

1

n

.
=4n

1

n

The details of the previous equation can be found in [4] and we will not repeat

them here.

The previous step can be applied around the circle until we reach the final

idempotent :

1

n

.
=4n

1

n

.
=4n

1

n
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Equation 2.4 implies

1

n

.
=4n

∆n+1

∆n

n

.
=4n

n

Applying this procedure on every circle in Υ(n+1)(s−), we eventually obtain

Υ(n+1)(s−)
.
=4n J̃n,L.

Theorems 5.6 and 5.7 imply immediately the following result.

Corollary 3.11. Let L be an alternating link diagram. Then

J̃n+1,L
.
=4n J̃n,L
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Chapter 4
The Bubble Skein Element and the Tail
of the Knot 85

4.1 Introduction

Let L be an alternating link and let D be a reduced link diagram of L. Recall that

SB(D) denotes the all-B smoothing state of D, the state obtained by replacing

each crossing by a B smoothing. Let S
(n)
B (D) be the skein element obtained from

SB(D) by decorating each circle in this state with the nth Jones-Wenzl idempotent

and replacing each place where we had a crossing in D with the (2n)th projector.

It was proven in [3] that for an adequate link L the first 4(n+ 1) coefficients of nth

unreduced colored Jones polynomial coincide with the first 4(n+ 1) coefficients of

the skein element S
(n)
B (D). Our work here initially aimed to understand S

(n)
B (D) for

an alternating link diagram D. Initial examinations of various examples of S
(n)
B (D)

showed that a certain skein element in the relative Kauffman bracket skein mod-

ule of the disk with some marked points mostly shows up as sub-skein element of

S
(n)
B (D). We will call this skein element the bubble skein element. This chapter is

based on our work in [11]. In this chapter we study a certain skein element in the

relative Kauffman bracket skein module of the disk with some marked points, and

expand this element in terms linearly independent elements of this module. Then

we use this skein element in the study of the tail of 85. The knot 85 is the first knot

on the knot table that in not computable directly by the techniques developed [3].

In chapter 4 we use this skein element in various other applications.
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m n

m′ n′

k

l

FIGURE 4.1. The bubble skein element Bm,n
m′,n′(k, l)

As we mentioned in earlier, we are interested in a particular skein element

in the module Tm,n,n′,m′ . This element is shown in Figure 4.1 and it is denoted

by Bm,n
m′,n′(k, l), where k, l ≥ 1. We will call such an element in Tm,n,n′,m′ a bubble

skein element. For every bubble skein element Bm,n
m′,n′(k, l), the integers m,n,m′, n′,

k, l ≥ 0 and they satisfy m + k = m′ + l and n + k = n′ + l. The main work of

this chapter gives an expansion the bubble skein element Bm,n
m′,n′(k, l), defined in

the previous section, in terms of a set of Q(A)-linearly independent skein elements

in the module Tm,n,n′,m′ and gives an explicit determination of the coefficients ob-

tained from this expansion.

Recall that the quantum binomial coefficients are defined by[
l

i

]
q

=
(q; q)l

(q; q)i(q; q)l−i
.

where (a; q)n is q-Pochhammer symbol which is defined as

(a; q)n =
n−1∏
j=0

(1− aqj).

.

Remark 4.1. Note that our choice for the quantum binomial coefficient is slightly

different from the choice we made in the previous chapter. We will use the conven-

tion we have here in the consequent chapters as well.
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Theorem 4.2. (The bubble expansion formula) Let m,n,m′, n′ ≥ 0, and k ≥ l;
k, l ≥ 1. Then

m n

m′ n′

k

l

=

min(m,n,l)∑
i=0

⌈
m n
k l

⌉
i

m n

m′ n′

i

k − l + i
.

where


m n

k l


i

:= (−A2)i(i−l)

l−i−1∏
j=0

∆k−j−1

i−1∏
s=0

∆n−s−1∆m−s−1

l−1∏
t=0

∆n+k−t−1∆m+k−t−1

[
l

i

]
A4

l−i−1∏
j=0

∆m+n+k−i−j.

We give two applications of the previous theorem. The first one gives a relation

between the coefficient


m n

k k


0

and the theta graph Λ(m,n, k) (see Figure 4.3)

in S(S2).

Proposition 4.3.

m

n

k

n

k

m=


m n

k k


0

∆m+n.

The second application that we give to the bubble expansion formula is showing

that this expansion can be used to study and compute the tail of alternating links.

In particular, we give a simple formula for the tail of the knot 85:

Proposition 4.4.

T85(q) = (q; q)2
∞

∞∑
k=0

qk+k2

(q; q)k
(

k∑
i=0

q(−2i(k−i))

 k

i


2

q

).
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4.2 A Recursive Formula for the Bubble Skein Element

In this section we use the recursive definition of the Jones-Wenzl idempotent to

obtain a recursive formula for the bubble skein element Bm,n
m′,n′(k, l) in the module

Tm,n,n′,m′ . To obtain a recursive formula for the element Bm,n
m′,n′(k, l) we start by

expanding the simple bubble element Bm,n
m′,n′(k, 1) in Lemma 4.5 and then use this

expansion to obtain a recursion equation for an arbitrary bubble skein element in

Lemma 4.8. The recursive formula of Bm,n
m′,n′(k, l) obtained in this section will be

used in Theorem 4.11 to write a bubble skein element as a Q(A)-linear sum of

linearly independent elements in Tm,n,n′,m′ .

We denote the rational functions ∆n+k∆m+k−1−∆n∆m−1

∆n+k−1∆m+k−1
and ∆m−1∆n−1

∆n+k−1∆m+k−1
by αk

m,n

and βk
m,n, respectively.

Lemma 4.5. Let m,n,m′, n′ ≥ 0; k ≥ 1. Then we have

m n

m′ n′

k

1

= αk
m,n

m n

m′ n′

k − 1

+ βk
m,n

m n

m′ n′

1

k
.

Proof. First we consider the trivial cases when one of the integers m,n,m′, n′ is
zero. Observe that m + k = 1 + m′ and n + k = 1 + n′. Since k ≥ 1 , we know
that m ≤ m′ and n ≤ n′. If m′ = n′ = 0, then this implies that m and n must be
zero and k is 1. Hence B0,0

0,0(1, 1) = α1
0,0 = ∆1 and we are done. Here we used our

convention that a diagram is zero if it has a strand colored by a negative number.
If min(m,n) = 0 or min(m′, n′) = 0 , then the result follows from (2.4).

When min(m,n) 6= 0, we use induction on k. For k = 1 we apply the recur-
sive definition of the Jones-Wenzel idempotent (2.1) on the projector f (m+1) that
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appears in Bm,n
m′,n′(1, 1) to obtain

m n

m′ n′

1

1

=

m n

m′ n′

1

− ∆m−1

∆m

m n

m′ n′

1

1
. (4.1)

Using identity (2.4) in the first term and expanding the projector f (n+1) the second
term in (5.11) implies

m n

m′ n′

1

1

=
∆n+1∆m −∆n∆m−1

∆n∆m

m n

m′ n′

+
∆m−1∆n−1

∆n∆m

m n

m′ n′

1

1
. (4.2)

For k ≥ 2, we use the recursive definition (2.1) on the projector f (m+k) that
appears in Bm,n

m′,n′(k, 1). Hence

m n

m′ n′

k

1

=

m n

m′ n′

k − 1

1

− ∆m+k−2

∆m+k−1

m n

m′ n′

k − 1

1

1
. (4.3)

Using identity (2.4) and expanding the projector f (n+k) in (4.3) implies

m n

m′ n′

k

1

=
∆n+k∆m+k−1 −∆n+k−1∆m+k−2

∆m+k−1∆n+k−1

m n

m′ n′

k − 1

+
∆m+k−2∆n+k−2

∆m+k−1∆n+k−1

m n

m′ n′

k − 1

1

1 . (4.4)

We apply the induction hypothesis on the bubble skein element Bm,n
m′,n′(k − 1, 1)

that appears in the second term of the last equation:
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m n

m′ n′

k

1

=
∆n+k∆m+k−1 −∆n+k−1∆m+k−2

∆m+k−1∆n+k−1

m n

m′ n′

k − 1

+
∆m+k−2∆n+k−2

∆m+k−1∆n+k−1

(
∆n+k−1∆m+k−2 −∆n∆m−1

∆m+k−2∆n+k−2

m n

m′ n′

k − 2

1

+
∆m−1∆n−1

∆m+k−2∆n+k−2

m n

m′ n′

1

k − 1

1

)
.

Collecting similar terms together, we obtain

m n

m′ n′

k

1

=
∆n+k∆m+k−1 −∆n∆m−1

∆n+k−1∆m+k−1

m n

m′ n′

k − 1

+
∆m−1∆n−1

∆n+k−1∆m+k−1

m n

m′ n′

1

k
.

Remark 4.6. Note that, while the symmetry with respect to the variables m and n

in the function βk
m,n is clear, the rational function αk

m,n appears to be asymmetric
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with respect to these variables. It is routine to verify that ∆n+k∆m+k−1−∆n∆m−1 =

∆m+k∆n+k−1 − ∆m∆n−1 and hence αk
m,n is also symmetric with respect to the

variables m and n. This also could be seen to follow from the proof of Lemma 4.5.

To see this note that in Lemma 4.5 we obtain (4.4) by expanding f (m+k) first and

f (n+k) second. Further, the coefficients αk
m,n and βk

m,n are a result of an iterative

application of (4.4). We could have done the expansion of the bubble in the opposite

order, by expanding f (n+k) first and f (m+k) second, and obtain a version of the

identity (4.4) except m and n are swapped. An iteration of this identity would yield

the same coefficient βk
m,n and forces αk

m,n to be the same as αk
n,m.

We will need the following identity. A proof can be found in [19] and [25].

Lemma 4.7. ∆m+k∆n+k−1 −∆m∆n−1 = ∆m+n+k∆k−1.

Note that the previous identity can be used to obtain a more manageable formula

for αk
m,n.

Lemma 4.8. Let m,n,m′, n′ ≥ 0; k, l ≥ 1 and k ≥ l. Then we have

m n

m′ n′

k

l

= αk
m,n

m n

m′ n′

k − 1

l − 1

+ βk
m,n

m n

m′ n′

k

1

l − 1

. (4.5)

Proof. We start again by considering the trivial cases when one of the integers

m,n,m′, n′ is zero. Note that, as in Lemma 4.5, m ≤ m′ and n ≤ n′. If m′ = n′ = 0,

then B0,0
0,0(k, k) = αk

0,0∆k−1 = ∆k. If min(m,n) = 0 or min(m′, n′) = 0, then the

result follows from (2.4).
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Now suppose that min(m,n) 6= 0 and apply the recursive definition of the Jones-
Wenzel idempotent on the projector f (m+k) that appears in Bm,n

m′,n′(k, l)

m n

m′ n′

k

l

=

m n

m′ n′

k − 1

l − 1

1 − ∆m+k−2

∆m+k−1

m n

m′ n′

1

1

k − 1

l − 1

. (4.6)

Removing the loop that appears in the first term and expanding the projector f (n+k)

in the second term of (4.6) we obtain
m n

m′ n′

k

l

=
∆n+k∆m+k−1 −∆n+k−1∆m+k−2

∆n+k−1∆m+k−1

m n

m′ n′

k − 1

l − 1

+
∆m+k−2∆n+k−2

∆n+k−1∆m+k−1

m n

m′ n′

k − 1

l − 1

1

1
. (4.7)

If l = 1 then the result follows from Lemma 4.5. Otherwise we apply Lemma 4.5 to the
skein element Bm,n

m′,n′(k − 1, 1) appearing in the second term of (4.7) to obtain

m n

m′ n′

k

l

=
∆n+k∆m+k−1 −∆n+k−1∆m+k−2

∆n+k−1∆m+k−1

m n

m′ n′

k − 1

l − 1

+
∆m+k−2∆n+k−2

∆n+k−1∆m+k−1

(
∆n+k−1∆m+k−2 −∆n∆m−1

∆n+k−2∆m+k−2

m n

m′ n′

k − 2

1

l − 1

+
∆m−1∆n−1

∆n+k−2∆m+k−2

m n

m′ n′

1

l − 1

k − 1

1

)
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The last equation implies:

m n

m′ n′

k

l

=
∆n+k∆m+k−1 −∆n∆m−1

∆n+k−1∆m+k−1

m n

m′ n′

k − 1

l − 1

+
∆m−1∆n−1

∆n+k−1∆m+k−1

m n

m′ n′

k

1

l − 1

.

Remark 4.9. Let m,n,m′, n′ ≥ 0. Without loss of generality assume that m+n′ ≥

n+m′. In the space in Tm,n,n′,m′, there is a one-to-one correspondence between the

two set of element shown in Figure 4.2. The correspondence is shown also in the

same Figure and it can be parameterized by an integer i. Note that the diagonal

line in the Figure represents 1
2
(m+ n′− n−m′) parallel lines. The skein elements

on the right-hand side of Figure 4.2 form a basis for the space Tm,n,n′,m′. For a

proof of this fact see Lemma 14.9 in [22]. On the other hand the skein elements

of the left-hand side spans the space Tm,n,n′,m′. See also the proof of Lemma 14.9

in [22]. One concludes that, by the correspondence shown in Figure 4.2 the skein

elements on the left-hand side of Figure 4.2 must be linearly independent and hence

they form a basis for the space Tm,n,n′,m′.

m n

m′ n′

i

m n

m′ n′

i

FIGURE 4.2. Correspondence between two bases in the module Tm,n,n′,m′ .

Remark 4.10. We are interested in the coefficients the bubble skein element

Bm,n
m′,n′(k, l) in terms of the basis shown on the left-hand side in Figure 4.2. Since

m+k = m′+ l and n+k = n′+ l then we must have m+n′ = n+m′ and hence the
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diagonal line in the basis shown on the left-hand side in Figure 4.2 will not appear

when we expand the element Bm,n
m′,n′(k, l) in terms of this basis.

4.3 The Bubble Expansion Formula

In this section we will use the recursive formula we obtained in Lemma 4.8 for

Bm,n
m′,n′(k, l) to expand this element as a Q(A)-linear sum of certain linearly inde-

pendent skein elements in Tm,n,n′,m′ . Then we will use Theorem 4.11 together with

Lemma 4.8 to determine a recursive formula for the coefficients of Bm,n
m′,n′(k, l) in

terms of these linearly independent elements. Finally, the recursive formula will be

used to determine a closed form of these coefficients.

Theorem 4.11. Let m,n,m′, n′ ≥ 0; k, l ≥ 1. Then
(1) For k ≥ l:

m n

m′ n′

k

l

=

min(m,n,l)∑
i=0

⌈
m n
k l

⌉
i

m n

m′ n′

i

k − l + i
. (4.8)

(2) For l ≥ k:

m n

m′ n′

k

l

=

min(m′,n′,k)∑
i=0

⌈
n′ m′

k l

⌉
i

m n

m′ n′

l − k + i

i

. (4.9)

where


m n

k l


i

:=


m n

k l


i

(A) and


n′ m′

k l


i

:=


n′ m′

k l


i

(A) are

rational functions.

Proof. (1) The trivial cases when min(m,n, l) ≤ 1 were discussed in Lemma 4.8.

Suppose that min(m,n, l) ≥ 2 and consider the identity (4.5). We apply this iden-

tity to the bubble skein elements appearing in the first and the second terms of
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(4.5). We obtain that Bm,n
m′,n′(k, l) is equal to a Q(A)-linear sum of the three skein

elements

m n

m′ n′

k − 2

l − 2

,

m n

m′ n′

k − 1

1

l − 2

,

m n

m′ n′

k

2

l − 2

.

Note that a bubble skein element appears in each of the three elements above.

Moreover, each bubble has an index on at least one of its strands that is less than

the index of the corresponding strand in (4.5). One could apply the identity (4.5)

iteratively on each bubble that appears in the sum. This iterative process will

eventually terminate all bubbles in each element in the summation. This yields

that Bm,n
m′,n′(k, l) is equal to a Q(A)-linear sum of the Tm,n,n′,m′ skein elements

m n

m′ n′

k − l ,

m n

m′ n′

k − l + 1

1
, ... ,

m n

m′ n′

k − l + s

s
.

where s = min(m,n, l). Now the result follows by noticing that the variables

m,n,m′, n′, k and l are related by the equations m+ k = m′+ l and n+ k = n′+ l

and hence it is sufficient to index the coefficients in the expansion of Bm,n
m′,n′(k, l) in

terms of the previous skein elements by five indices. (2) Follows from (1).

Now we determine the coefficients


m n

k l


i

.

Proposition 4.12. Let m,n,m′, n′ ≥ 0, k, l ≥ 1. Let Bm,n
m′,n′(k, l) be a bubble skein

element in Tm,n,n′,m′ such that k ≥ l. Then, for 0 ≤ i ≤ min(m,n, l), the rational

function


m n

k l


i

satisfies the following recursive identity:
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
m n

k l


i

= αk
m,n ×


m n

k − 1 l − 1


i

+ βk
m,n ×


m− 1 n− 1

k l − 1


i−1

. (4.10)

Proof. Substitute (4.8) in both sides of (4.5):

min(m,n,l)∑
i=0

⌈
m n
k l

⌉
i

m n

m′ n′

i

k − l + i
= αk

m,n

min(m,n,l−1)∑
i=0

⌈
m n

k − 1 l − 1

⌉
i

m n

m′ n′

i

k − l + i

+ βkm,n

min(m−1,n−1,l−1)∑
i=0

⌈
m− 1 n− 1
k l − 1

⌉
i

m n

m′ n′

i

k − l + i+ 1

1

.

Hence

min(m,n,l)∑
i=0

⌈
m n
k l

⌉
i

m n

m′ n′

i

k − l + i
=

min(m,n,l−1)∑
i=0

αk
m,n ×

⌈
m n

k − 1 l − 1

⌉
i

m n

m′ n′

i

k − l + i

+

min(m−1,n−1,l−1)∑
i=0

βkm,n ×
⌈
m− 1 n− 1
k l − 1

⌉
i

m n

m′ n′

i+ 1

k − l + i+ 1
.
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The latter can be written as

min(m,n,l)∑
i=0

⌈
m n
k l

⌉
i

m n

m′ n′

i

k − l + i
=

min(m,n,l−1)∑
i=0

αk
m,n ×

⌈
m n

k − 1 l − 1

⌉
i

m n

m′ n′

i

k − l + i

+

min(m,n,l)∑
i=1

βkm,n ×
⌈
m− 1 n− 1
k l − 1

⌉
i−1

m n

m′ n′

i

k − l + i
.

Now note that the elements

m n

m′ n′

i

k − l + i
, where 0 ≤ i ≤ min(m,n, l), are linearly

independent in the module Tm,n,n′,m′ by Remarks 4.9 and 4.10. Hence we conclude

that 
m n

k l


i

= αk
m,n ×


m n

k − 1 l − 1


i

+ βk
m,n ×


m− 1 n− 1

k l − 1


i−1

.

Remark 4.13. The coefficients


m n

k l


i

behave like the binomial coefficients
(
l
i

)

in the sense that


m n

k l


i

= 0 when i < 0 or i > l. Note also that the recursion

formula for


m n

k l


i

, when one focuses the variables l and i, is analogues to the

recursion formula of the binomial coefficients
(
l
i

)
.

The following theorem gives a closed formula for the rational function


m n

k l


i

.
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Theorem 4.14. Let m,n, k, l ≥ 0, and k ≥ l and 0 ≤ i ≤ min(m,n, l). Then


m n

k l


i

= (−A2)i(i−l)

l−i−1∏
j=0

∆k−j−1

i−1∏
s=0

∆n−s−1∆m−s−1

l−1∏
t=0

∆n+k−t−1∆m+k−t−1

[
l

i

]
A4

l−i−1∏
j=0

∆m+n+k−i−j.

(4.11)

Proof. This equation agrees with the recursion identity (4.10).

The symmetry of the bubble skein element, or the previous formula for the

coefficients


m n

k l


i

, implies immediately the following.

Proposition 4.15. Let m,n, k, l ≥ 0. Let k ≥ l. Then


m n

k l


i

=


n m

k l


i

. (4.12)

It is preferred sometimes to write the the coefficients


m n

k l


i

in terms of

quantum integers rather than deltas. Recall that ∆n = (−1)n[n+ 1] and hence the

sign of the term
l−i−1∏
j=0

[k − j] can be easily calculated to be (−1)−( 1
2

)(i−l)(−1+i+2k−l).

Similarly, the sign of
i−1∏
s=0

[n − s] is (−1)−( 1
2

)i(1+i−2n), the sign of
l−1∏
t=0

[n + k − t] is

(−1)−( 1
2

)l(1−2k+l−2n), and the sign of
l−i−1∏
j=0

[m+n+k−i−j+1] is (−1)−( 1
2

)(i−l)(1+i+2k−l+2m+2n).

Thus the exponent of−1 of the whole term is−i−2ik−l+2il+4kl−2l2+2lm+2ln =

i+ l (mod 2). Hence the previous theorem can be rewritten as follows:
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Corollary 4.16. Let m,n, k, l ≥ 0. Let k ≥ l and 0 ≤ i ≤ min(m,n, l). Then


m n

k l


i

= (−1)i+lai(i−l)

l−i−1∏
j=0

[k − j]
i−1∏
s=0

[n− s][m− s]

l−1∏
t=0

[n+ k − t][m+ k − t]

[
l

i

]
a2

l−i−1∏
j=0

[m+n+k−i−j+1].

4.4 Applications

In this section we relate the coefficient


m n

k k


0

to the theta graph evaluation

in S2 and use the bubble formula to compute the tail of the knot 85.

4.4.1 The Theta Graph

A theta graph is a spin network in S2 that plays an important role in computing

arbitrary spin network in S2. The evaluation of a theta graph in S(S2) is equivalent

to find the evaluation of the skein element in Figure 4.3. Explicit determination

m

n

k

n

k

m

FIGURE 4.3. The skein element Λ(m,n, k)

of this skein element is done in [19] and [25]. We will denote this skein element

by Λ(m,n, k). Our first immediate application of the bubble expansion formula

is computing this skein element. The following lemma shows that


m n

k k


0

is

almost equal to the evaluation of this skein element.
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Lemma 4.17.

m

n

k

n

k

m =


m n

k k


0

∆m+n. (4.13)

Proof. We apply the bubble skein formula (4.8) on that bubble Bm,n
m,n(k, k) appears

in Figure 4.3:

m

n

k

n

k

m =

min(m,n,k)∑
i=0


m n

k k


i

n-i

m-i

i i

m

n n

m .

The previous summation is zero except when i = 0 and hence it reduces to


m n

k k


0

m

n n

m
=


m n

k k


0

∆m+n.

Remark 4.18. In the previous lemma one could apply the bubble skein formula

on the other bubbles in the skein element 4.3 and obtain

m

n

k

n

k

m =


m n

k k


0

∆m+n =


m k

n n


0

∆m+k =


n k

m m


0

∆n+k.

This reflects the symmetry of the theta graph.
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4.4.2 The Head and the Tail of Alternating Knots

We recall here some basic facts about the tail of the colored Jones polynomial.

Recall that B(D) denotes the B-graph associated with the the state SB(D). The

reduced B-graph of D, denoted by B′(D), is defined to be the graph that is obtained

from B′(D) by keeping the same set of vertices of B(D) and replacing parallel edges

by a single edge. See for 5.5 an example. We define the A− graph similarly.

FIGURE 4.4. The knot 41, its A-graph (left). Its reduced A-graph (right)

Let D be a link diagram and consider the skein element obtained from SB(D) by

decorating each circle in SB(D) with the nth Jones-Wenzl idempotent and replacing

each dashed line in SB(D) with the (2n)th Jones-Wenzl idempotent. See Figure 4.5

for an example. Write S
(n)
B (D) to denote this skein element.

n

n

n

n

n n

FIGURE 4.5. Obtaining S
(n)
B (D) from a knot diagram D
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We will need the following theorem.

Theorem 4.19. (C. Armond [4]) Let L be a link in S3 and D be a reduced alter-

nating knot diagram of L. Then

J̃n,L(A)
.
=4(n+1) S

(n)
B (D).

Theorem 4.19 has an important consequence, which basically tells us that the

tail (the head) of an alternating link only depends on the reduced A-graph (reduced

B-graph):

Theorem 4.20. (C. Armond, O. Dasbach [3]) Let L1 and L2 be two alternating

links with alternating diagrams D1 and D2. If the graph A′(D1) coincides with

A′(D2), then TK1 = TK2. Similarly, if B′(D1) coincides with B′(D2), then HK1 =

HK2.

Finding an exact form for the head and tail series is an interesting task. Explicit

calculations were done on the knot table to determine these two power series in

[3]. Using multiple techniques Armond and Dasbach determined the head and tail

for an infinite family of knots and links. The knot 85, Figure 4.6, is the first knot

on the knot table whose tail could not be determined by a direct application of

techniques in [3].

FIGURE 4.6. The knot 85
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The techniques we developed here appear to be helpful in understanding the

head and the tail for some knots. We demonstrate this by studying the family of

knots in Figure 4.7. Note that we obtain the knot 85 from this family by replacing

each crossing region by a single crossing.

FIGURE 4.7. The knot Γ

The reduced B-graph for each knot in this family can be easily seen to coincide

with the graph in Figure 5.4.

FIGURE 4.8. The reduced B-graph for Γ

Hence the skein element S
(n)
B for any knot from the family of the knots shown in

4.7 is given in Figure 4.9. Note that the bubble skein element appears in multiple

places in this skein element.

n

n

n

n

n

n

n

n

n

FIGURE 4.9. The skein element S
(n)
B (Γ)
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Let Γ be any knot from the family in Figure 4.7. Theorem 4.19 implies

J̃n,Γ(A)
.
=4(n+1)

n

n

n

n

n

n

n

n

n

.

Remark 4.21. The algorithm of Masbaum and Vogel in [25] can be used to com-

pute the evaluation of any quantum spin network in S(S2). In particular, it can

be used to give a formula for the skein element S
(n)
B (Γ). However, it is difficult

to compute the tail of Γ using the formula obtained from this algorithm. For this

reason, we will use the techniques we developed here to compute the evaluation of

the skein element S
(n)
B (Γ).

Now we compute the tail of the knot Γ.

Lemma 4.22.

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

n∑
j=0

⌈
n n
n n

⌉
i

⌈
n n
n n

⌉
j

⌈
i n
n n− j

⌉
0

⌈
j n
n n− i

⌉
0

⌈
j i
n n

⌉
0

∆2n

∆n+i

∆2n

∆n+j
∆i+j

Proof. We use the bubble expansion formula on the top left bubble in the skein

element S
(n)
B (Γ) we obtain:

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

⌈
n n
n n

⌉
i

n

n

n-i

n-i

i i

n

n

n

n

n

n

.

Using properties of the Jones-Wenzl projector

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

⌈
n n
n n

⌉
i

n

n

n

ii

n-i

n-i

n .
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Using the identity (2.4)

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

⌈
n n
n n

⌉
i

∆2n

∆n+i

n-i

i

i

n

n

n

n .

Now apply the bubble expansion formula to the lower mostright bubble

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

n∑
j=0

⌈
n n

n n

⌉
i

⌈
n n

n n

⌉
j

∆2n

∆n+i n-j

n-j

j j

n-i
i

i
n

n

=

n∑
i=0

n∑
j=0

⌈
n n
n n

⌉
i

⌈
n n
n n

⌉
j

∆2n

∆n+i

∆2n

∆n+j

i

i

n-i

n-j

j

n

n

n n
j
.
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Similarly, we apply the bubble expansion formula on the top bubble that appears
in the previous equation

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

n∑
j=0

min(j,n−i)∑
k=0

⌈
n n

n n

⌉
i

⌈
n n

n n

⌉
j

⌈
j n

n n− i

⌉
k

×
∆2n

∆n+i

∆2n

∆n+j

i

i
n-j

j

n n

n

i+k k

j-k

n-k

j

=

n∑
i=0

n∑
j=0

min(j,n−i)∑
k=0

⌈
n n
n n

⌉
i

⌈
n n
n n

⌉
j

⌈
j n
n n− i

⌉
k

×
∆2n

∆n+i

∆2n

∆n+j

i

i
n-j

j

n

n

i+k k

j-k

n-k .

Note that the previous sum is zero unless k = 0. Hence

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

n∑
j=0

⌈
n n

n n

⌉
i

⌈
n n

n n

⌉
j

⌈
j n

n n− i

⌉
0

∆2n

∆n+i

∆2n

∆n+j

i

i
n-j

j

n

n

i

j

n .
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Similarly

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

n∑
j=0

⌈
n n

n n

⌉
i

⌈
n n

n n

⌉
j

⌈
i n

n n− j

⌉
0

⌈
j n

n n− i

⌉
0

∆2n

∆n+i

∆2n

∆n+j

i

i

i

j

n

n

j

j

.

Applying the bubble expansion one last time on the middle bubble in previous
summation, we obtain

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

n∑
j=0

min(i,j)∑
k=0

⌈
n n

n n

⌉
i

⌈
n n

n n

⌉
j

⌈
i n

n n− j

⌉
0

⌈
j n

n n− i

⌉
0

⌈
j i

n n

⌉
k

×
∆2n

∆n+i

∆2n

∆n+j

i

i

i

j

j

j

k k .

The previous summation is zero unless k = 0. Hence

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

n∑
j=0

⌈
n n
n n

⌉
i

⌈
n n
n n

⌉
j

⌈
i n
n n− j

⌉
0

⌈
j n
n n− i

⌉
0

⌈
j i
n n

⌉
0

× ∆2n

∆n+i

∆2n

∆n+j

i

i

j

j

.

which implies that

J̃n,Γ(A)
.
=4(n+1)

n∑
i=0

n∑
j=0

⌈
n n
n n

⌉
i

⌈
n n
n n

⌉
j

⌈
i n
n n− j

⌉
0

⌈
j n
n n− i

⌉
0

⌈
j i
n n

⌉
0

∆2n

∆n+i

∆2n

∆n+j
∆i+j .

(4.14)

50



In the next proposition we work with the variable q. Recall that A4 = q.

Proposition 4.23.

TΓ(q) = (q; q)2
∞

∞∑
k=0

qk+k2

(q; q)k
(

k∑
i=0

q(−2i(k−i))

 k

i


2

q

).

Proof. Using Corollary 4.16 and the fact that

j∏
i=0

[n− i] = q(2+3j+j2−2n−2jn)/4(1− q)−1−j (q; q)n
(q; q)n−j−1

. (4.15)

One obtains:
n n

n n


i

= (−1)i+nq(2i+4i2−2n)/4 (q; q)6
n(q; q)3n−i+1

(q; q)2
2n(q; q)2n+1(q; q)2

i (q; q)
3
n−i

, (4.16)

and 
j n

n n− i


0

= (−1)n−iq(i−n)/2 (q; q)i+j(q; q)n(q; q)n+i(q; q)2n+j+1

(q; q)i(q; q)2n(q; q)j+n(q; q)n+j+i+1

. (4.17)

Finally Lemma 4.17 implies
i j

n n


0

∆i+j = Λ(n, i, j), (4.18)

and one could use (5.16) and the formula for the theta graph given in [19] or [25]

to write


i j

n n


0

∆i+j = (−1)i+j+nq−(i+j+n)/2 (q; q)n(q; q)j(q; q)i(q; q)n+j+i+1

(1− q)(q; q)i+n(q; q)j+n(q; q)j+i

. (4.19)

Putting (4.17), (4.18), and (4.19) in (4.14) we obtain
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J̃n,Γ(q)
.
=n

n∑
i=0

n∑
j=0

P (n, i, j), (4.20)

where

P (n, i, j) =
(−1)i+j+nq

i
2

+i2+ j
2

+j2− 5n
2 (q; q)i+j(q; q)15

n (q; q)1+i+2n(q; q)1+j+2n(q; q)1−i+3n(q; q)1−j+3n

(1− q)(q; q)2
i (q; q)2

j (q; q)6
2n(q; q)3

n−i(q; q)i+n(q; q)3
n−j(q; q)j+n(q; q)1+i+j+n(q; q)2

1+2n

∆2n

∆n+i

∆2n

∆n+j
.

Now

(q; q)n
(q; q)2n

=

n−1∏
i=0

(1− qi+1)

2n−1∏
i=0

(1− qi+1)

=
1

2n−1∏
i=n

(1− qi+1)

=
n−1∏
i=0

1

(1− qi+n+1)
.
=n 1.

Similarly,

(q; q)n
(q; q)2n+1

.
=n 1.

Moreover,

(q; q)3n−i+1

(q; q)2n+1

= 1− q2n+2 +O(2n+ 3) =n 1.

and

(q; q)2n+i+1

(q; q)n+i

=

3n+i∏
k=0

(1− qk+1)

n+i−1∏
i=0

(1− qk+1)

=
3n+i∏
i=n+i

(1− qk+1)
.
=n 1.

Hence,

n∑
i=0

n∑
j=0

P (n, i, j)
.
=n

n∑
i=0

n∑
j=0

qi+i2+j+j2
(q; q)i+j(q; q)

8
n

(1− q)(q; q)2
i (q; q)

2
j(q; q)

3
n−i(q; q)

3
n−j

.
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Further simplification yields:

n∑
i=0

n∑
j=0

qi+i2+j+j2
(q; q)i+j(q; q)

8
n

(1− q)(q; q)2
i (q; q)

2
j(q; q)

3
n−i(q; q)

3
n−j

.
=n (q; q)2

n

n∑
i=0

n∑
j=0

qi+i2+j+j2
(q; q)i+j

(1− q)(q; q)2
i (q; q)

2
j

=
(q; q)2

n

(1− q)

n∑
i=0

n∑
k=i

qk+k2−2i(k−i)

(q; q)k

 k

i


2

q

.

The definition of the quantum binomial coefficients allows us to write

(q; q)2
n

(1− q)

n∑
i=0

n∑
k=i

qk+k2−2i(k−i)

(q; q)k

 k

i


2

q

=
(q; q)2

n

1− q

n∑
k=0

qk+k2

(q; q)k
(

k∑
i=0

q(−2i(k−i))

 k

i


2

q

).

Hence

TΓ(q)
.
=n

J̃n,Γ(q)

∆n(q)
.
=n (q; q)2

∞

∞∑
k=0

qk+k2

(q; q)k
(

k∑
i=0

q(−2i(k−i))

 k

i


2

q

).

Using Mathematica we computed the first 120 terms of TΓ(q):

T85

.
=120 1−2q+q2−2q4 +3q5−3q8 +q9 +4q10−q11−2q12−2q13−3q14 +3q15 +

7q16 + 2q17 − 4q18 − 4q19 − 4q20 − 5q21 + 3q22 + 9q23 + 9q24 − 4q26 − 9q27 − 8q28 −

5q29 − q30 + 9q31 + 13q32 + 16q33 + 5q34 − 10q35 − 13q36 − 15q37 − 12q38 − 7q39 +

15q41 + 25q42 + 23q43 + 15q44− 3q45− 16q46− 28q47− 31q48− 21q49− 12q50 + 4q51 +

16q52 +37q53 +41q54 +39q55 +26q56−6q57−34q58−48q59−51q60−49q61−32q62−

8q63 + 20q64 + 39q65 + 67q66 + 76q67 + 67q68 + 43q69 + 9q70− 36q71− 74q72− 99q73−

101q74− 79q75− 52q76− 7q77 + 33q78 + 77q79 + 108q80 + 135q81 + 127q82 + 104q83 +

51q84−10q85−82q86−145q87−174q88−182q89−160q90−115q91−37q92 + 37q93 +
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119q94 + 177q95 + 218q96 + 238q97 + 229q98 + 171q99 + 88q100 − 17q101 − 126q102 −

236q103−313q104−344q105−325q106−256q107−157q108−28q109 +98q110 +241q111 +

343q112 +420q113 +440q114 +424q115 +336q116 +212q117 +41q118−150q119−324q120.
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Chapter 5
The Tail of a Quantum Spin Network
and Roger-Ramanujan Type Identities

5.1 Introduction

In this chapter we generalize the study of the tail of the colored Jones polynomial

to study the tail of certain trivalent graphs in S2. In particular, we study the tail

of a sequence of admissible trivalent graphs with edges colored n or 2n. We use

local skein relations to understand and compute the tail of these graphs. We also

give product formulas for the tail of such trivalent graphs. Finally, we show that

our skein theoretic techniques naturally lead to a proof for the Andrews-Gordon

identities for the two variable Ramanujan theta function as well to corresponding

new identities for the false theta function. This chapter is based on our work in [10].

Skein theoretic techniques have been used in [3] and [4] to understand the head

and tail of an adequate link. It was proven in [3] that for an adequate link L the

first (n+1) coefficients of nth unreduced colored Jones polynomial, considering the

q variable, coincide with the first (n+ 1) coefficients of the evaluation in S(S2) of

a certain skein element in S2. We demonstrate here that this skein element can

be realized as quantum spin network obtained from the link diagram D. Hence,

studying the tail of the colored Jones polynomial can be reduced to studying the

tail of these quantum spin networks.

A quantum spin network is a banded trivalent graph with edges labeled by non-

negative integers, also called the colors of the edges, and the three edges meeting

at a vertex satisfy some admissibility conditions. The main purpose of this chapter
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is to understand the tail of a sequence of planer quantum spin network with edges

colored n or 2n. Our method to study the tail of such graphs relies mainly on

adapting various skein theoretic identities to new ones that can in turn be used to

compute and understand the tail of such graphs. Studying the tail of these graphs

via local skein relations does not only give an intuitive method to compute the tails

but also demonstrates certain equivalence between the tails of different quantum

spin networks as well as the existence of the tail of graphs that are not necessarily

derived from alternating links.

The q-series obtained from knots in this way appear to be connected to classi-

cal number theoretic identities. Hikami [14] realized that that Rogers-Ramanujan

identities appear in the study of the colored Jones polynomial of torus knots. In [4]

Armond and Dasbach calculate the head and the tail of the colored Jones polyno-

mial via multiple methods and use these computations to prove number theoretic

identities. In this chapter we show that the skein theoretic techniques we developed

herein can be also used to prove classical identities in number theory. In particular

we use skein theory to prove the Andrews-Gordon identities for the two variable

Ramanujan theta function, as well as corresponding identities for the false theta

function.

5.2 Background

In this section we give the definitions of the general Ramanujan theta function and

false theta functions and we list some of their properties.

5.2.1 Roger Ramanujan type identities

1. The general two variable Ramanujan theta function, see [2], is defined by :

f(a, b) =
∞∑
i=0

ai(i+1)/2bi(i−1)/2 +
∞∑
i=1

ai(i−1)/2bi(i+1)/2 (5.1)
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The definition of f(a, b) implies

f(a, b) = f(b, a).

The Jacobi triple product identity of f(a, b) is given by

f(a, b) = (−a; ab)∞(−b, ab)∞(ab, ab)∞,

It follows immediately from the Jacobi triple product identity that

f(−q2,−q) = (q; q)∞.

The function f(a, b) specializes to (5.1)

f(−q2k,−q) =
∞∑
i=0

(−1)iqk(i2+i)qi(i−1)/2 +
∞∑
i=1

(−1)iqk(i2−i)qi(i+1)/2. (5.2)

The Andrews-Gordon identity for the Ramanujan theta function is given by

f(−q2k,−q) = (q, q)∞

∞∑
l1=0

∞∑
l2=0

...
∞∑

lk−1=0

q

k−1∑
j=1

(ij(ij+1))

k−1∏
j=1

(q, q)lj

(5.3)

where ij =
k−1∑
s=j

ls. This identity is a generalization of the second Rogers-

Ramanujan identity

f(−q4,−q) = (q, q)∞

∞∑
i=0

qi
2+i

(q, q)i
(5.4)

2. The general two variable Ramanujan false theta function is given by (e.g.

[23]):

Ψ(a, b) =
∞∑
i=0

ai(i+1)/2bi(i−1)/2 −
∞∑
i=1

ai(i−1)/2bi(i+1)/2 (5.5)

In particular

Ψ(q2k−1, q) =
∞∑
i=0

qki
2+(k−1)i −

∞∑
i=1

qk(i2−i)+i (5.6)
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We will show that the Andrews-Gordon identities (5.3) have corresponding

identities for the false Ramanujan theta function:

Ψ(q2k−1, q) = (q, q)∞

∞∑
l1=0

∞∑
l2=0

...

∞∑
lk−1=0

q

k−1∑
j=1

(ij(ij+1))

(q, q)2
lk−1

k−2∏
j=1

(q, q)lj

(5.7)

where ij =
k−1∑
s=j

ls. The latter identity is a generalization of the following

identity (Ramanujan’s notebook, Part III, Entry 9 [6])

Ψ(q3, q) = (q, q)∞

∞∑
i=0

qi
2+i

(q; q)2
i

(5.8)

Using skein theory, we recover and prove the identities (5.3) and (5.7) in Theorem

5.27.

5.3 Existence of the Tail of an Adequate Skein Element

In [3] C. Armond proves that the tail of the colored Jones polynomial of alternating

links exist. This was done by proving that the tail of the colored Jones polynomial

of an alternating link L is equal to the tail a sequence of certain skein elements

in S(S2) obtained from an alternating link diagram of L. In fact, Armond proved

this for a larger class of links, called Adequate links. Following [3], we briefly recall

the proof of existence of the tail the colored Jones polynomial and we illustrate

how this can be applied to our study.

Every alternating link L induces a family of adequate skein elements in S2.

Let D be an alternating diagram of L. These adequate skein elements are the

skein elements S
(n)
B (D) that we introduced in the previous chapter. Armond proved

that the tail of family {S(n)
B (D)}n∈N exists by showing that S

(n+1)
B (D)(q)

.
=n+1

S
(n)
B (D)(q) using three basic steps:
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1. Since the link diagram D is alternating one can observe that S
(n+1)
B (D) is an

adequate skein element and it actually looks locally like Figure 5.1.

n+ 1 k

FIGURE 5.1. A local picture for S
(n+1)
B (D)

Furthermore, we have the following equality

n+ 1 k
.
=n+1 1

n k

This is done by using the recursive definition of the Jones-Wenzl idempotent and
showing that all of the other terms resulting from applying the recursive definition

of the idempotent do not contribute to the first n+ 1 coefficients of S
(n+1)
B (D).

2. Step one can be applied around the circle until we reach the final idempotent:

1

n
k
.
=n+1

1

n
k
.
=n+1

1

n
k

and finally one can show that removing the circle colored 1 do not affect the first

n+ 1 coefficients of S
(n+1)
B (D).

3. Step one and two can be applied on every circle in S
(n+1)
B (D) and eventually we

reduce S
(n+1)
B (D) to S

(n)
B (D).
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Now let D = {Dn(q)}n∈N be a sequence of skein elements in S(S2). The previous

discussion implies that the tail of the sequenceD exists whenever the skein elements

Dn(q) are adequate. On the other hand, we know that the tail of the sequence D

exists if and only if Dn+1(q)
.
=n Dn(q). This condition and the previous proof

suggest that adequateness of every diagram in the family D may be a necessary

condition for the tail of D to exist. This is not true however, and in the next section

we give infinite family of sequences of inadequate skein elements whose tail exist.

See Example 5.17.

5.4 Computing the Tail of a Quantum Spin Network Via Local Skein
Relations

Let D be a planer trivalent graph. Recall that an admissible coloring of D is

an assignment of colors to the edges of D so that at each vertex, the three colors

meeting there form an admissible triple. Consider a sequence of admissible quantum

spin networks {Dn}n∈N obtained from D by labeling each edge by n or 2n. Recall

that the evaluation of the quantum spin network Dn in the skein module S(S2)

gives in general a rational function. Using definition 3.1 and remark 3.2 one could

study the tail of the sequence {Dn}n∈N. In this section we will study the tail of

such skein elements. We start this section with a simple calculation for a certain

coefficient of a crossingless matching diagram in the expansion of the Jones-Wenzl

projector and we use this coefficient to derive our first local skein relation. We then

use the bubble skein relation to compute more complicated local skein relations.

Remark 5.1. Since we will be working closely with identities such as the bubble

expansion equation it will be easier to work with Jones-Wenzl projectors than to

work with trivalent graphs. For this reason we will not state our results in terms

of trivalent graphs notation.
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One can regard any skein element Γ in the linear skein space Ta1,a2,..,am as an

element of the dual space T ∗a1,a2,..,am
. This is done by embedding the space Ta1,a2,..,am

in S2 and wiring the outside in someway to obtain a skein element in S(S2). Let

Γ be an element of the skein space Ta1,a2,..,am and let x be a wiring in the disk in

S2 that is complementary to Ta1,a2,..,am with the same specified boundary points.

Denote by Γ∗ to the element in T ∗a1,a2,..,am
induced by the skein element Γ. We

call the skein element Γ∗(x) ∈ S(S2) a closure of Γ. In the following definition

we assume that αn and βn are admissible trivalent graphs with edges labeled n

or 2n in the skein space Ta1,a2,..,am , where ai∈ {n, 2n}, with α∗n and β∗n are the

corresponding dual elements.

Definition 5.2. Let αn,βn,α∗n and β∗n be as above. Let S be a subset of Ta1,a2,..,am.

We say that

αn
.
=n βn

on S if

α∗n(x)
.
=n β

∗
n(x)

for all x in S.

Remark 5.3. The set S mentioned in the definition can be chosen to be the set of

all wiring x such that the skein elements α∗n(x) and β∗n(x) are adequate. However,

adequateness seems to be unnecessary in some cases and one could loosen this

condition on the set S further. We will give examples of such cases in this chapter.

Ideally, the set S is supposed to be the set of all wiring x such that the tail of the

skein elements α∗n(x) and β∗n(x) exist. It is not known to the author what is the

largest set for which this condition holds.
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Remark 5.4. If we are working with Ta,b,c, where (a, b, c) ∈ {(2n, 2n, 2n), (n, n, 2n)},

then for any skein element αn in Ta,b,c we can write

αn = Pn(q)τa,b,c (5.9)

for some rational function Pn(q). Hence if x is an element in Ta,b,c then the tail of

the sequence {α∗n(x)}n∈N exists if and only if the tails of the sequences {τ ∗a,b,c(x)}n∈N

and {Pn(q)}n∈N exist. In particular, 5.9 also implies that if the tail of {Pn(q)}n∈N

exists and x is a wiring in Ta,b,c such that τ ∗a,b,c(x) is an adequate skein element,

then the tail of the sequence {α∗n(x)}n∈N exists. Note that for every such x one has

Pn(q)
.
=n α

∗
n(x)/τ ∗a,b,c(x).

Following Morrison [27], write coeff
∈f (n)

(D) to denote the coefficient of the crossing-

less matching diagram D appearing in the nth Jones-Wenzl projector. We will use

Morrison’s recursive formula to calculate certain coefficients of the Jones-Wenzl

idempotent. The recursive formula is explained very well in [27], see Proposition

4.1 and the examples within, and we shall not repeat it here.

Lemma 5.5.

coeff
∈f (2n)


n

 =
([n]!)2

[2n]!
(5.10)
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Proof. Applying Morrison’s induction formula, Proposition 4.1 in [27], on the left
hand side of (5.10), we obtain

coeff
∈f (2n)


n

 =
[n]

[2n]
coeff
∈f (2n−1)


n− 1

n− 1
1



=
[n][n− 1]

[2n][2n− 1]
coeff
∈f (2n−2)


n− 2

n− 2

2


=

[n]!
2n∏

i=n+1
[i]

=
([n]!)2

[2n]!

Proposition 5.6. For all adequate closures of the element τn,n,2n and for all n ≥ 0:

nn

2n

.
=n (q; q)n

2n

nn

(5.11)

Proof. Write Γn to denote the skein element that appears on the left hand side of

5.11.

nn

2n

FIGURE 5.2. Expanding f (2n)

Consider the idempotent f (2n) that appears in Γn inside the square in Figure

5.2 and expand this element as a Q(A)-linear summation of crossingless matching

diagrams. Every crossingless matching diagram in this expansion, except for the

diagram that appears in Figure 5.3, is going to produce a hook to the bottom
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idempotent f (2n) in Γn and hence the term with such crossingless matching diagram

evaluates to zero.

n

FIGURE 5.3. A crossingless matching that appears in the expansion of f (2n)

This allows us to write

nn

2n

= coeff
∈f (2n)


n


2n

nn

=
([n]!)2

[2n]!

2n

nn

Using the fact [n]! = q(n−n2)/4(1− q)−n(q, q)n we can write

([n]!)2

[2n]!
= qn

2/2 (q; q)2
n

(q; q)2n

= qn
2/2

(
n−1∏
i=0

(1− qi+1)

)2

2n−1∏
i=0

(1− qi+1)

= qn
2/2

n−1∏
i=0

(1− qi+1)

2n−1∏
i=n

(1− qi+1)

.

However,
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qn
2/2

n−1∏
i=0

(1− qi+1)

(1− qi+n+1)
.
=n

n−1∏
i=0

(1− qi+1) = (q; q)n

Proposition 5.7. For all adequate closures of the element τn,n,2n and for all n ≥ 0:

2n

nn

n

n .
=n (q; q)n

2n

nn

(5.12)

Proof.

2n

nn

n

n
=

n∑
i=0


n n

n n


i

2n

nn i

i

=


n n

n n


0

2n

nn

The first equation follows by applying the bubble expansion formula, Theorem 4.11,

and the second equation follows from the annihilation axiom of the Jones-Wenzl

idempotent.

Using (??) and the fact that

j∏
i=0

[n− i] = q(2+3j+j2−2n−2jn)/4(1− q)−1−j (q; q)n
(q; q)n−j−1

(5.13)

we can write 
n n

n n


0

= (−1)nq−n/2 (q; q)3
n(q; q)3n+1

(q; q)2
2n(q; q)2n+1

. (5.14)
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However,

(q; q)3n+1

(q; q)2n+1

= 1− q2n+2 +O(2n+ 3) =n 1,

and

(q; q)n
(q; q)2n

=n 1,

hence (5.14) yields: 
n n

n n


0

.
=n (q; q)n,

and the result follows.

Remark 5.8. In [10] we showed that
n n

n n


0

∆2n = Θ(2n, 2n, 2n).

Hence the previous theorem implies

Θ(2n, 2n, 2n)
.
=n

(q, q)n
1− q

= (q2, q)n.

Propositions 5.6 and 5.7 imply immediately the following result.

Proposition 5.9. For all adequate closures of the left hand side skein element of

the following equation and for all n ≥ 0 the following holds:

2n

nn

.
=n

nn

2n

Lemma 5.10. For n ≥ 1:

1.
n∑

i=0


n n

n n


i

∆2n

∆n+i

.
=n Ψ(q3, q).
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2.
n∑

i=0


n n

n n


i


n i

n n


0

∆2n

∆n+i

.
=n f(−q4,−q).

Proof. 1. Set P (n, i) :=


n n

n n


i

∆2n

∆n+i
. From the bubble expansion formula,

Theorem 4.11, we obtain,

P (n, i) = qi(i−n)/2 [2n+ 1]

[n+ i+ 1]

n−i−1∏
j=0

[n− j]
i−1∏
s=0

[n− s]2

n−1∏
h=0

[2n− h]2

(
n

i

)
q

n−i−1∏
k=0

[3n− i−k+1]

(5.15)

Using (??) and the fact that

j∏
i=0

[n− i] = q(2+3j+j2−2n−2jn)/4(1− q)−1−j (q; q)n
(q; q)n−j−1

, (5.16)

we can rewrite (5.15) to obtain the following:

P (n, i) = q(2i+4i2−2n)/4 [2n+ 1]

[n+ i+ 1]

(q; q)6
n(q; q)3n−i+1

(q; q)2
2n(q; q)2n+1(q; q)2

i (q; q)
3
n−i

. (5.17)

Now we shall study the first n terms of P (n, i+ 1) + P (n, i). We claim that

P (n, i) + P (n, i+ 1)
.
=n P (n, i) +Q(n, i+ 1),

where (q;q)n
(q;q)n−i

Q(n, i) = P (n, i). To prove this claim observe first thatm(P (n, i)) =

(i+ i2 − n). Note also that for all 1 ≤ i ≤ n:

(q; q)n
(q; q)n−i

= 1 +O(n− i+ 1).

This implies that the minimal degree of Q(n, i) is equal to the minimal degree

of P (n, i). Thus
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P (n, i) + P (n, i+ 1) = P (n, i) +
(q, q)n

(q, q)n−i−1

Q(n, i+ 1)

= P (n, i) + (1 +O(n− i))Q(n, i+ 1)

= P (n, i) +Q(n, i+ 1) +O(2 + 2i+ i2)

.
=n P (n, i) +Q(n, i+ 1).

The last equation is true since m(P (n, i) + P (n, i + 1)) = i + i2 − n and

hence the terms O(3+2i+ i2) do not contribute the first n terms of P (n, i)+

P (n, i+ 1) for every i ≥ 0. This proves our claim and hence we can write:

P (n, 0) + P (n, 2) + ...+ P (n, n)
.
=n P (n, 0) + ...+ P (n, n− 1) +Q(n, n)

.
=n P (n, 0) +Q(n, 2)...+Q(n, n− 1) +Q(n, n)

= Q(n, 0) +Q(n, 2)...+Q(n, n− 1) +Q(n, n).

The last equality follows from the fact that P (n, 0) = Q(n, 0). We can prove

similarly that
n∑

i=0

P (n, i)
.
=n

n∑
i=0

Q′(n, i),

where (q;q)3
n

(q;q)3
n−i
Q′(n, i) = P (n, i). Using this result and (5.17) we obtain

n∑
i=0

P (n, i)
.
=n

n∑
i=0

q(i/2+i2) [2n+ 1]

[n+ i+ 1]

(q; q)3
n(q; q)3n−i+1

(q; q)2
2n(q; q)2n+1(q; q)2

i

. (5.18)

Now

(q; q)3n−i+1

(q; q)2n+1

= 1− q2n+2 +O(2n+ 3) =n 1, (5.19)

and similarly we can show that

(q, q)n
(q, q)2n

=n 1. (5.20)
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Putting (5.19) and (5.20) all in (5.18) we obtain:

n∑
i=0

P (n, i)
.
=n (q; q)n

n∑
i=0

qi/2+i2

(q; q)2
i

[2n+ 1]

[n+ i+ 1]

.
=n (q; q)n

n∑
i=0

qi+i2

(q; q)2
i

.
=n Ψ(q3, q).

2. Using 5.16 one can write
n i

n n


0

= (−1)nq−n/2 (q; q)i(q; q)
2
n(q; q)2n+i+1

(q; q)n+i+1(q; q)n+i(q; q)2n

. (5.21)

Equations 5.15 and 5.21 imply:⌈
n n
n n

⌉
i

⌈
n i
n n

⌉
0

∆2n

∆n+i
= (−1)nqi/2+i2−n [2n+ 1]

[n+ i+ 1]
×

(q; q)8
n(q; q)2n+i+1(q; q)3n−i+1

(q; q)n+i+1(q; q)n+i(q; q)3
n−i(q; q)i(q; q)

3
2n(q; q)2n+1

.

Using similar calculations to the ones we did in (1), one can write

n∑
i=0


n n

n n


i


n i

n n


0

∆2n

∆n+i

.
=n (q; q)n

n∑
i=0

qi
2+i

(q; q)i

.
=n f(−q4,−q).

Proposition 5.11. For adequate closures of the element τn,n,2n and for all n ≥ 0:

1.

n

n

nn

n

n

2n

.
=n Ψ(q3, q)

2n

nn
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2.

n

n

nn

n

n

n

n

2n

= f(−q4,−q)

2n

nn

Proof. 1. Applying the bubble expansion formula on the left bubble, we obtain,

n

n

nn

n

n

2n

=
n∑

i=0


n n

n n


i

i

i

2n

nn
n

=
n∑

i=0


n n

n n


i

i

i

2n

nn
n− i

Using the property (2.4) of the idempotent, we obtain

n

n

nn

n

n

2n

=
n∑

i=0


n n

n n


i

∆2n

∆n+i

i

i

2n

nn

Using Lemma 5.10 (1) we obtain

n

n

nn

n

n

2n

.
=n Ψ(q3, q)

2n

nn
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2. Using the bubble expansion formula on the left most bubble we obtain:

n

n

nn

n

n

n

n

2n

=
n∑

i=0

⌈
n n
n n

⌉
i

2n

nn
n

n

i

i

=

n∑
i=0

⌈
n n
n n

⌉
i

2n

nn
n

n

i

n− i

Using (2.4) we can write the previous equation as:

n

n

nn

n

n

n

n

2n

=
n∑

i=0

⌈
n n
n n

⌉
i

∆2n

∆n+i

2n

nn
n

n

i

=

n∑
i=0

i∑
j=0

⌈
n n
n n

⌉
i

⌈
n i
n n

⌉
j

∆2n

∆n+i

2n

nn
j

j

i

Hence,

n

n

nn

n

n

n

n

2n

=
n∑

i=0

i∑
j=0

⌈
n n
n n

⌉
i

⌈
n i
n n

⌉
j

∆2n

∆n+i

2n

nn
j

j

The skein element in the on the right of the previous equation is zero unless

j = 0. Hence, Lemma 5.10 (2) yields the result.
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More generally we have the following theorem.

Theorem 5.12. For all adequate closures of the element τn,n,2n and for all n, k ≥ 1:

1.

2k bubbles

nn nn

nn nn nn

2n

.
=n (q, q)n

n∑
l1=0

n∑
l2=0

...
n∑

lk=0

q

k∑
j=1

(ij(ij+1))

(q, q)2
lk

k−1∏
j=1

(q, q)lj

2n

nn

where ij =
k∑

s=j

ls.

2.

2k + 1 bubbles

nn nn

nn nn nn

2n

.
=n (q, q)n

n∑
l1=0

n∑
l2=0

...
n∑

lk=0

q

k∑
j=1

(ij(ij+1))

k∏
j=1

(q, q)lj

2n

nn

where ij =
k∑

s=j

ls.

Proof. 1. We proceed as in the previous theorem and we apply the bubble

expansion formula on the left most bubble we obtain:

2k bubbles

nn nn

nn nn nn

2n

=
n∑

i1=0


n n

n n


i1

ni1 nn

ni1 nn nn

2n

=
n∑

i1=0


n n

n n


i1

∆2n

∆n+i1 i1 nn

i1 nn
n

2k − 2 bubbles
n

2n
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Each time we apply the bubble expansion formula we eliminate two bubbles.
Hence, after k applications of the bubble expansion formula we obtain:

2k bubbles

nn nn

nn nn
nn

2n

=

n∑
i1=0

i1∑
i2=0

...

ik−1∑
ik=0

⌈
n n
n n

⌉
i1

∆2n

∆n+i1

k∏
j=2

⌈
n ij−1

n n

⌉
ij

×

∆2n

∆n+ij

2n

nn

Using 5.16 we can compute


n i

n n


j

= (−1)j+nqj
2+j/2−n/2 (q, q)2

i (q, q)
4
n(q, q)2n+i−j+1

(q, q)i−j(q, q)2
j(q, q)2n(q, q)n+i(q, q)n+i+1(q, q)2

n−j

Similar calculations to the ones we did in Lemma 5.10 implies:

n∑
i1=0

i1∑
i2=0

...

ik−1∑
ik=0

⌈
n n
n n

⌉
i1

∆2n

∆n+i1

k∏
j=2

⌈
n ij−1

n n

⌉
ij

∆2n

∆n+ij

.
=n

(q, q)n

n∑
i1=0

i1∑
i2=0

...

ik−1∑
ik=0

q

k∑
j=1

(ij(ij+1))

(q, q)2
ik

k∏
j=2

(q, q)ij−1−ij

The previous summation can be written as

(q, q)n

n∑
i1=0

i1∑
i2=0

...

ik−1∑
ik=0

q

k∑
j=1

(ij(ij+1))

(q, q)2
ik

k∏
j=2

(q, q)ij−1−ij

=

(q, q)n

n∑
ik=0

n∑
ik−1=ik

...
n∑

i1=i2

q

k∑
j=1

(ij(ij+1))

(q, q)2
ik

k∏
j=2

(q, q)ij−1−ij
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Now if we set lj = ij−ij+1 for j = 1, ..., k−1 and lk = ik, we obtain ij =
k∑

s=j

ls

and hence we can rewrite the right side of the previous equation as

(q, q)n

n∑
ik=0

n∑
ik−1=ik

...

n∑
i1=i2

q

k∑
j=1

(ij(ij+1))

(q, q)2
ik

k∏
j=2

(q, q)ij−1−ij

=

(q, q)n

n∑
l1=0

n∑
l2=0

...
n∑

lk=0

q

k∑
j=1

(ij(ij+1))

(q, q)2
lk

k−1∏
j=1

(q, q)lj

where ij =
k∑

s=j

ls. Hence the result follows.

2. We apply the bubble expansion formula k times we obtain: small

2k + 1 bubbles

nn nn

nn nn
nn

2n

=
n∑

i1=0

i1∑
i2=0

...

ik−1∑
ik=0


n n

n n


i1

∆2n

∆n+i1

k∏
j=2


n ij−1

n n


ij

× ∆2n

∆n+ij

2n

ik

ik

n nn

n

Hence,

2k + 1 bubbles

nn nn

nn nn
nn

2n

=
n∑

i1=0

i1∑
i2=0

...

ik−1∑
ik=0

⌈
n n
n n

⌉
i1

⌈
n ik
n n

⌉
0

∆2n

∆n+i1

k∏
j=2

⌈
n ij−1

n n

⌉
ij

× ∆2n

∆n+ij

2n

nn
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and one can do computations to the coefficient in the last equation similar
to the ones we did in Lemma 5.10 and obtain:

n∑
i1=0

i1∑
i2=0

...

ik−1∑
ik=0

⌈
n n
n n

⌉
i1

⌈
n ik
n n

⌉
0

∆2n

∆n+i1

k∏
j=2

⌈
n ij−1

n n

⌉
ij

∆2n

∆n+ij

.
=n

(q, q)n

n∑
i1=0

i1∑
i2=0

...

ik−1∑
ik=0

q

k∑
j=1

(ij(ij+1))

(q, q)ik
k∏

j=2
(q, q)ij−1−ij

The previous summation can be rewritten as follows:

(q, q)n

n∑
i1=0

i1∑
i2=0

...

ik−1∑
ik=0

q

k∑
j=1

(ij(ij+1))

(q, q)ik
k∏

j=2

(q, q)ij−1−ij

=

(q, q)n

n∑
ik=0

n∑
ik−1=ik

...
n∑

i1=i2

q

k∑
j=1

(ij(ij+1))

(q, q)ik
k∏

j=2

(q, q)ij−1−ij

Set lj = ij − ij+1 for j = 1, ..., k − 1 and lk = ik, we obtain ij =
k∑

s=j

ls and

hence we can rewrite the previous equation:

(q, q)n

n∑
ik=0

n∑
ik−1=ik

...

n∑
i1=i2

q

k∑
j=1

(ij(ij+1))

(q, q)ik
k∏

j=2
(q, q)ij−1−ij

= (q, q)n

n∑
l1=0

n∑
l2=0

...

n∑
lk=0

q

k∑
j=1

(ij(ij+1))

k∏
j=1

(q, q)lj

where ij =
k∑

s=j
ls.

Corollary 5.13. For all adequate closures of the element f (n) and for all n, k ≥ 1:

1.

n

n

2k + 1 bubbles

n

n n

n

.
=n (q, q)n

n∑
l1=0

n∑
l2=0

...

n∑
lk=0

q

k∑
j=1

(ij(ij+1))

(q, q)2
lk

k−1∏
j=1

(q, q)lj

n
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where ij =
k∑

s=j
ls.

2.

n

n n

n n

n

2k bubbles
.
=n (q, q)n

n∑
l1=0

n∑
l2=0

...

n∑
lk−1=0

q

k−1∑
j=1

(ij(ij+1))

k−1∏
j=1

(q, q)lj

n

where ij =
k−1∑
s=j

ls.

Proof. (1) Let F : Tn,n,2n −→ Tn,n be the wiring linear map defined by

nn

n

2n

F

nn

This map is clearly an isomorphism. The result follows by noticing that

F

(
nn nn

nn nn
nn

2k bubbles

2n

)
=

n

n n

n n

n

2k + 1 bubbles

(2) The proof is similar to (1).

The previous theorem and its corollary give an interesting proof of the Andrews-

Gordon identities for the theta function and corresponding identities for the false

theta function. We give this proof in section 5.6.
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Theorem 5.14. For all adequate closures of the element τ2n,2n,2n and for all n ≥ 0:

n

n n

2n

2n2n

.
=n Λ(q)

2n

2n2n

where

Λ(q) = (q; q)2
∞

∞∑
i=0

(−1)iq(i+3i2)/2

(q; q)3
i

(5.22)

Proof. First note that

n

n n

2n

2n2n

=

2n 2n

2n

2n 2n

2n

and hence

2n 2n

2n

2n 2n

2n

=

Tet

 2n 2n 2n

2n 2n 2n


Θ(2n, 2n, 2n)

2n 2n

2n

(5.23)

As before we only have to show:

Tet

 2n 2n 2n

2n 2n 2n


Θ(2n, 2n, 2n)

.
=n Λ(q)

To this end, note first that the bubble expansion formula implies

Θ(2n, 2n, 2n) =


n n

n n


0

∆2n = q−n/2 (q; q)3
n(q; q)3n+1

(q; q)2
2n(q; q)2n+1

[2n+ 1].
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and hence Theorem 5.7 implies

Θ(2n, 2n, 2n)
.
=n

(q; q)n
(1− q)

(5.24)

On the other hand one could use the Tetrahedron coefficient formula in [25] to

obtain

Tet

 2n 2n 2n

2n 2n 2n

 =
([n]!)12

([2n]!)6

4n∑
i=3n

(−1)i[i+ 1]!

([4n− i]!)3([i− 3n]!)4
. (5.25)

Using the identity

j∏
i=0

[n− i] = q(2+3j+j2−2n−2jn)/4(1− q)−1−j (q; q)n
(q; q)n−j−1

the equation (5.25) can be written as

Tet

 2n 2n 2n

2n 2n 2n

 =
q3n2

(q; q)12
n

(q; q)6
2n

4n∑
i=3n

(−1)1+3n+iq−i/2+3i2/2−12in+21n2
(q, q)i+1

(1− q)(q, q)4
i−3n(q, q)3

4n−i

One can simplify the previous equation to obtain

Tet

 2n 2n 2n

2n 2n 2n

 =
q−2n(q; q)12

n

(q; q)6
2n

n∑
i=0

(−1)iq(i+3i2)/2(q, q)4n−i

(1− q)(q, q)4
n−i(q, q)

3
i

Using the same techniques we used in Lemma 5.10 we can write

Tet

 2n 2n 2n

2n 2n 2n

 .
=n (q; q)3

n

∞∑
i=0

(−1)iq(i+3i2)/2

(1− q)(q; q)3
i

(5.26)

Putting (5.24) and (5.26) in (5.23) yield the result.

Remark 5.15. The tail of the tetrahedron whose edges all colored 2n is computed

in the previous theorem, see equation (5.26). The tail of this element can be seen

to be Λ(q)(q2; q)n. This tail was also computed by Garoufalidis and Le in [8].
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Example 5.16. All edges in the following graphs are colored 2n.

.
=n Λ(q)

.
=n Λ2(q)(q2; q)∞

The first equation follows from the previous theorem and the second one follows

from the same theorem and remark 5.8.

Example 5.17. All arcs in the following skein elements are colored n.

.
=n (q, q)∞

.
=n (q, q)2

∞

The first and the second equations follow from Proposition 5.6. Observe that Propo-

sition 5.6 also implies

Tet

 2n n n

2n n n

=
nn

n n

.
=n (q, q)n

n n
.
=n

(q, q)n
1− q

.
=n (q2; q)n.

Hence,

.
=n (q2, q)∞(q, q)2

∞.
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Similarly, one can compute

m bubbles

.
=n (q2, q)∞(q, q)m∞.

Note that the skein elements in this example are all inadequate. In particular the

skein elements Tet

 2n n n

2n n n

 is inadequate.

5.5 Tail Multiplication Structures on Quantum Spin Networks

In [4] C. Armond and O. Dasbach defined a product structure on the tail of the

color Jones polynomial. In this section we will define a few product structures on

the tail of trivalent graphs in S(S2) using similar techniques to the ones in [4]. Let

Γ1 and Γ2 be trivalent graphs in S(S2). Suppose that each of Γ1 and Γ2 contains

the trivalent graph τ2n,2n,2n as in Figure 5.4.

2n 2n
2n

FIGURE 5.4. The graph Γ with a trivalent graph τ2n,2n,2n

Define the map

[, ]1 : S(S2)× S(S2) −→ S(S2)

via the wiring map shown below.
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2n

2n

2n

2n

2n

2n

Γ1Γ2

[Γ1,Γ2]1

2n

2n

2n

FIGURE 5.5. The product [Γ1,Γ2]1

The proof of the following theorem is analogous to the proof of Theorem 5.1 in

[4].

Theorem 5.18. Let Γ1 and Γ2 as defined above. Suppose further that TΓ1 and TΓ2

exist. Then

[Γ1,Γ2]1
.
=n

1

(q2, q)n
TΓ1TΓ2

Proof. If you regard the element τ2n,2n,2n as a map of the outside, then the fact that

the space T2n,2n,2n is one dimensional generated by the the graph τ2n,2n,2n allows

us to write

Γi = fi(q)Θ(2n, 2n, 2n),

where fi(q) ∈ Q(q) for i = 1, 2. On the other hand one can also use the same fact

to write

[Γ̂1, Γ̂2]1 = f1(q)f2(q)Θ(2n, 2n, 2n).

By assumption we have

TΓ̂i

.
=n fi(q)Θ(2n, 2n, 2n)

for i = 1, 2. Hence
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[Γ̂1, Γ̂2]1
.
=n TΓ̂1

TΓ̂2

Θ(2n, 2n, 2n)

.
=n

1

(q2, q)n
TΓ̂1

TΓ̂2

Similarly, suppose that Υ1 and Υ2 are trivalent graphs in S(S2) and each of

them contains the idempotent f (2n) as in Figure 5.6. Suppose further that Ξ1 and

Ξ2 are trivalent graphs in S(S2) and each of them contains the idempotent f (n) as

shown in Figure 5.6 below.

2n n

FIGURE 5.6. The graph Υ (left) and the graph Ξ (right)

Define the maps

[, ]i : S(S2)× S(S2) −→ S(S2)

for i = 2, 3 as shown below.

2n2n

Υ1Υ2

[Υ1,Υ2]2

2n

2n

nn

Ξ1Ξ2

[Ξ1,Ξ2]3

n

n

FIGURE 5.7. The product [Υ1,Υ2]2 (left) and the product [Ξ1,Ξ2]3 (right)
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As before these maps induce multiplication structures on skein elements in S(S2)

in the following sense.

Theorem 5.19. Suppose that Υ1 and Υ2 are trivalent graphs in S(S2) and suppose

that each of them contains the projector f (n) or f (2n) as in Figure 5.6. Suppose

further that TΥ1 and TΥ2 exist. Then

[Υ1,Υ2]i
.
=n (1− q)TΥ1TΥ2

for i = 2, 3.

Proof. The proof follows from the fact that space Ta,a is one dimensional generated

by f (a) and

1

∆n

.
=n

1

∆2n

.
=n 1− q.

The rest of the proof is identical to the proof of 5.18.

5.6 Applications

In this section we give two applications of the the tail of quantum spin networks.

The first application we show that the tail of the colored Jones polynomial satis-

fies certain product structure. In our second application, we show that the skein

theoretic techniques we developed in this chapter naturally lead to a proof for the

Andrews-Gordon identities for the two variable Ramanujan theta function as well

to corresponding new identities for the false theta function.

5.6.1 The Tail of the Colored Jones Polynomial

In [3] C. Armond and O. Dasbach introduced the tail of the colored Jones poly-

nomial. The existence of the tail of the colored Jones polynomial of an alternating

links was conjectured by Dasbach and Lin [7] and in [4] C. Armond proved that

the tail of colored Jones polynomial of adequate links exists. Higher order stability

of the coefficients of the colored Jones polynomial of alternating links is studied
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by Garoufalidis and Le in [8]. Explicit calculations were done on the knot table

to determine the tail of colored Jones polynomial of alternating links in [3]. The

knot 85 is the first knot on the knot table whose tail could not be determined by

a direct application of techniques in [3]. In the previous chapter we use theorem

4.19 and the bubble expansion formula to compute the tail of the 85 and we gave

an explicit formula for it. In this section we apply the results we obtain in section

5.4 to study the tail of the color Jones polynomial.

Remark 5.20. When dealing with the tail of colored Jones polynomial of a link L

we usually compute the tail of normalized polynomial J̃n,L(q)/∆n(q). We will adapt

this convention in this section.

Let L be a an alternating link in S3 and let D be a reduced alternating diagram of

L. Recall from section 5.3 that the skein elements {S(n)
B (D)}n∈N are obtained from

all-B smoothing Kauffman state of D. See Figure 4.5. Recall from the previous

chapter that the tail of the unreduced colored Jones polynomial of an alternating

link only depends on the reduced B-graph. See also 4.19.

Remark 5.4 implies the following important result.

Theorem 5.21. (1) Let G be the graph shown on the right hand side of the fol-

lowing identity, then there exists a q-power series A(q) series such that

T

(
G

)
.
=n A(q)T

( )
(5.27)

84



(2) (Armond and Dasbach [3]) Let G′ be the graph shown on the right hand side

of the following identity, then there exists a q-power series A′(q) series such that

T

(
G′

)
.
=n A′(q)T

( )
(5.28)

Proof. (1) The graph G is equivalent to the skein element S

2n

2n2n

in the skein module T2n,2n,2n. Here S is the skein element obtained from G by

replacing every vertex by a circle colored n and every edge by an idempotent that

connects two circles. However,

S

2n

2n2n

.
=n fn(q)

2n

2n2n

(5.29)

for some rational function fn(q). This holds because the skein module T2n,2n,2n is

free on the generator τ2n,2n,2n. Write α∗n to denote the skein element on the left

hand side of (5.29) then the result follows by noticing

fn(q)
.
=n α∗n(τ2n,2n,2n)/τ ∗2n,2n,2n(τ2n,2n,2n)

= α∗n(τ2n,2n,2n)/θ(2n, 2n, 2n)

.
=n α∗n(τ2n,2n,2n)/(q2; q)∞.

Now the result follows by noticing that the graph is equivalent to the

skein element of the right hand side of (5.29).

(2) The graph G is equivalent to the skein element

S

2n

nn

in

the skein module T2n,n,n. where S is the skein element obtained from G as explained

in (1). Since the skein module T2n,n,n is freely generated by τ2n,n,n, we have
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S

.
=n Bn(q) (5.30)

for some rational function Bn(q). However,

Bn(q)
.
=n β∗n(τn,n,2n)/τ ∗2n,n,n(τ2n,n,n)

= β∗n(τ2n,n,n)/θ(2n, n, n)

.
=n β∗n(τ2n,n,n).

The result follows by noticing that the graph on the right hand side of (5.28) is

equivalent to the skein element on the right hand side of 5.30.

As mentioned in the previous section, Armond and Dasbach [3] showed that if

G1 and G2 are reduced graphs then the product of the tails TG1 and TG2 is equal

to the tail of the graph G1 ∗G2 obtained from G1 and G2 by gluing one edge from

G1 and another edge from G2. In other words the following identity holds

TG1TG2 = TG1∗G2 . (5.31)

Theorem 5.21 (2) merely a restatement of this result. On the other hand, Theorem

5.21 (1) implies immediately the following result.

Corollary 5.22. The tail of reduced graphs satisfies the following product:

T

(
G1

)
T

(
G2

)
.
=n T

( )
T

(
G2

G1

)
(5.32)

Note that Theorem 5.14 is a special case of 5.21 (1) and it can be stated as:

T

( )
.
=n Λ(q)T

( )
(5.33)
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The following examples illustrate how one could apply the results obtained in

section 5.4 to compute the tail of a reduced graph.

Example 5.23.

T

( )
.
=n (Λ(q))4T

( )
.
=n

(Λ(q))4(q; q)∞..

Where in the first equality we used equation (5.33) and in the second equality we

used the fact that the tail of a triangle is the same as the tail of Θ(2n, 2n, 2n) which

is just (q2; q)∞. Recall here that we normalize tail by dividing by ∆n. See remark

5.20.

Example 5.24. Let Gm be the reduced graph in the Figure 5.8.

m vertices

FIGURE 5.8. The graph Gm

Then the tail of this graph can be computed as follows:

T (Gm)
.
=n (Λ(q))mT

( )
.
=n

(Λ(q))m(q; q)∞..

Here used again equation (5.33) in the first equality.

Example 5.25. Let k ≥ 1 and l ≥ 0. Let Gk,l be the reduced graph in the Figure

5.9.

2l + 1 vertices

2k vertices

FIGURE 5.9. The graph Gk,l
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Then using Theorem 5.22 one could see that

T (Gk,l)
.
=n Ψ(q2k+1, q)T

(
2l + 1 vertices

)
.
=n Ψ(q2k+1, q)f(−q2l+2, q).

Remark 5.26. Example 5.25 can be computed also using the techniques of Armond

and Dasbach in [3].

5.6.2 The Tail of the Colored Jones Polynomial and Andrews-Gordon
Identities

The fact that the tail of an alternating link L is a well-defined q-power series

invariant implies that any two expressions of the tail of L are equal. This can be

used to prove various q-identities and it was first utilized by Armond and Dasbach

in [3] where they showed that the Andrews-Gordon identity for the theta function

can be proven using two methods to compute the tail of the (2, 2k+1) torus knots.

In particular Armond and Dasbach use R-matrices and a combinatorial version of

the quantum determinant formulation of Huynh and Le [13] developed by Armond

[5] to compute the colored Jones polynomial of the (2, 2k + 1) torus knot. These

computations are then used to obtain two expressions of the tail associated with

the (2, 2k+ 1) torus knot. The q-series they obtained are precisely the two sides of

the Andrews-Gordon identity for the theta function. In this section we show that

the skein theoretic techniques developed in this chapter can be used to prove the

following false theta function identity:

∞∑
i=0

qki
2+(k−1)i −

∞∑
i=1

qk(i2−i)+i = (q, q)∞

∞∑
l1=0

∞∑
l2=0

...
∞∑

lk−1=0

q

k−1∑
j=1

(ij(ij+1))

(q, q)2
lk−1

k−2∏
j=1

(q, q)lj

with k ≥2 and ij =
k−1∑
s=j

ls.
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We also show that the same skein theoretic techniques can be applied to prove

the Andrews-Gordon identity for the theta function 5.3. Our techniques to prove

the identity (5.3) has the advantage over the ones in [3] in that our method restricts

the tools used to prove this identity to skein theory.

Denote the torus knot (2, f) in Figure 5.10 by Kf .

FIGURE 5.10. The (2, f) torus knot

Theorem 5.27. 1. For all k ≥2:

∞∑
i=0

qki
2+(k−1)i −

∞∑
i=1

qk(i2−i)+i = (q, q)∞

∞∑
l1=0

∞∑
l2=0

...
∞∑

lk−1=0

q

k−1∑
j=1

(ij(ij+1))

(q, q)2
lk−1

k−2∏
j=1

(q, q)lj

with ij =
k−1∑
s=j

ls.

2. (The Andrews-Gordon identity for the theta function) For all k ≥1

∞∑
i=0

(−1)iqk(i2+i)qi(i−1)/2 +
∞∑
i=1

(−1)iqk(i2−i)qi(i+1)/2

= (q, q)∞

∞∑
l1=0

∞∑
l2=0

...

∞∑
lk−1=0

q

k−1∑
j=1

(ij(ij+1))

k−1∏
j=1

(q, q)lj

with ij =
k−1∑
s=j

ls.

Proof. 1. Using linear skein theory Kauffman bracket one can easily compute

the colored Jones polynomial of Kf . See [18] or [22] for more details about
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skein theory.

J̃n,Kf
(q)/∆n(q) =

1

∆n(q)

n∑
i=0

(−1)f(n−i)qf(2i+2i2−2n−n2)/4∆2i(q).

Hence,

J̃n,Kf
(q)/∆n(q)

.
=n

n∑
i=0

(−1)fiqf(i+i2)/2(q−i − q1+i). (5.34)

If f = 2k, then we can rewrite the previous equation:

n∑
i=0

q2k(i+i2)/2(q−i − q1+i) =
n∑

i=0

q−i+ik+i2k −
n∑

i=0

q1+i+ik+i2k

=n

∞∑
i=0

qki
2+(k−1)i −

∞∑
i=1

qk(i2−i)+i

Hence

J̃n,K2k
(q)/∆n(q)

.
=n Ψ(q2k−1, q) (5.35)

On the other hand theorem 4.19 implies

J̃n,K2k
(q)/∆n(q)

.
=n

1

∆n(q)

2k − 1

bubbles

and the tail of the skein element in the previous equation can be computed

from corollary 5.13 and we can obtain

J̃n,K2k
(q)/∆n(q)

.
=n (q, q)n

n∑
l1=0

n∑
l2=0

...

n∑
lk−1=0

q

k−1∑
j=1

(ij(ij+1))

(q, q)2
lk

k−2∏
j=1

(q, q)lj

(5.36)

with ij =
k−1∑
s=j

ls. Equations (5.35) and (5.36) yield the result.
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2. Substituting (f = 2k + 1) in (5.34), we obtain

J̃n,K2k+1
(q)/∆n(q)

.
=n

n∑
i=0

(−1)iq(2k+1)(i+i2)/2(q−i − q1+i)

=
n∑

i=0

(−1)iq−i/2+i2/2+ik+i2k −
n∑

i=0

(−1)iq1+3i/2+i2/2+ik+i2k

=
n∑

i=0

(−1)iq−i/2+i2/2+ik+i2k −
n∑

i=1

(−1)iqi/2+i2/2−ik+i2k

Hence

J̃n,K2k+1
(q)/∆n(q)

.
=n f(−q2k,−q) (5.37)

Theorem 4.19 implies

J̃n,K2k+1
(q)/∆n(q)

.
=n

1

∆n(q)

2k
bubbles

However corollary 5.13 implies

1

∆n(q)

2k

bubbles
.
=n (q, q)∞

∞∑
l1=0

∞∑
l2=0

...
∞∑

lk−1=0

q

k−1∑
j=1

(ij(ij+1))

k−1∏
j=1

(q, q)lj

(5.38)

with ij =
k−1∑
s=j

ls. Equations (5.37) and (5.38) yield the result.
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