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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 

LENGTH 
in inches 25.4 millimeters mm 

ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in

2
square inches 645.2 square millimeters mm

2

ft
2 

square feet 0.093 square meters m
2

yd
2 

square yard 0.836 square meters m
2

ac acres 0.405 hectares ha 
mi

2
square miles 2.59 square kilometers km

2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 
ft

3 
cubic feet 0.028 cubic meters m

3 

yd
3 

cubic yards 0.765 cubic meters m
3 

NOTE: volumes greater than 1000 L shall be shown in m
3

MASS 
oz ounces 28.35 grams g

lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
o
F Fahrenheit 5 (F-32)/9 Celsius 

o
C 

or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m

2 
cd/m

2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in

2
poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 

Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 

m meters 3.28 feet ft 
m meters 1.09 yards yd 

km kilometers 0.621 miles mi 

AREA 
mm

2
 square millimeters 0.0016 square inches in

2 

m
2
 square meters 10.764 square feet ft

2 

m
2
 square meters 1.195 square yards yd

2 

ha hectares 2.47 acres ac 
km

2 
square kilometers 0.386 square miles mi

2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m
3 

cubic meters 35.314 cubic feet ft
3 

m
3 

cubic meters 1.307 cubic yards yd
3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
o
C Celsius 1.8C+32 Fahrenheit 

o
F 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 

cd/m
2

candela/m
2

0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 

kPa kilopascals 0.145 poundforce per square inch lbf/in
2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e

(Revised March 2003) 
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EXECUTIVE SUMMARY 

The impact of road flooding are broader and go beyond simple economic aspects due to its effect 

on population mobility and travelers’ safety. Furthermore, flooding represents a serious threat for 

the durability of road infrastructures. Hence, road flooding is an undesirable naturally occurring 

phenomenon that often results in costly damage to the transportation infrastructure and 

motorist/public safety. When flooding occurs, most major creeks/bayous/rivers in east Texas 

overflow their banks inundating neighborhoods, overtopping bridges, and rendering key routes 

impassable. During these events, rescue requests from the stranded communities overwhelm the 

emergency response facilities; impassable roadways and the paucity of reliable information on the 

affected areas and their accessibility hamper emergency response operations, causing several 

detours and delays that put both the responders and evacuees at risk.  

Texas leads the country in the number of fatal floods involving motor vehicles. The data on 

fatalities in Texas floods caused by vehicles from 1959 to 2019 has been thoroughly studied in this 

study. Texas experienced 570 vehicle-related flood deaths in total over the 61-year study period. 

All but three of the incidents had one fatality. In the Flash Flood Alley, the monthly pattern of 

fatalities from motor vehicle accidents mirrors that of precipitation. 61% of all flood-related deaths 

involving vehicles were caused by flash floods, and the majority of these deaths (more than 80%) 

happened in the Flash Flood Alley region. 62% men compared to 38% women were victims of the 

flood. This finding is consistent with earlier research that found men were more likely to take 

chances during a flood event. Male and female victims aged 20 to 29 account for the majority of 

vehicle-related flood deaths; this is partly because people in this age range overestimate their 

driving prowess and underrate the level of protection that their vehicles may offer. Male drivers in 

this age bracket should receive education specifically geared at them. The findings of this study 

confirm that older drivers are less inclined to drive in bad weather.  

Flash flood alerts are issued by the National Weather Service (NWS) via text message and local 

media. These warnings, however, often cover a wide area and have a long window of effectiveness. 

Communities and decision-makers can benefit from a flood warning system that can offer exact 

information on the flooding volume, extent, and timing when choosing whether to take emergency 

action (such as evacuation) during a flood event. While other flood warning systems only provide 

real-time data on the present flood conditions, some use real-time data to estimate future flood 

conditions several hours in advance. A Flood Alert System (FAS) warns the targeted population 

and decision-makers when specified actions need to be taken in accordance with predetermined 

requirements. These notifications are pushed out and are targeted to certain places rather than 

requiring someone to keep an eye on a website. With the aid of a flood alert system driven by a 

predictive flood warning system, people can be informed in advance of impending floods in their 

specific neighborhood and have plenty of time to flee or move goods out of harm's way. The 

FEWS, as non-structural flood mitigation tools, have grown in popularity among flood-prone 

communities due to their life-saving features like monitoring rainfall and river levels, real-time 

flood forecasting, and estimating potential damages to different communities while remaining 

affordable in comparison to other infrastructure-related mitigation solutions. Many Texas 

municipalities have years of experience innovating and improving the FEWS application with 

unique practical requirements and flood level dangers. 
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For emergency personnel to take the required steps to prevent driving into flooded highways, time 

is the most important resource. Except through modeling, it is impossible to promptly identify 

floods anywhere and to notify or close routes. Floods can be anticipated with a certain amount of 

advance notice, allowing responders to set up, deploy, and issue notifications. It's a blessing that 

recent developments in high-resolution, real-time, remote-sensing precipitation data, quantitative 

precipitation forecasting, and physics-based distributed hydrological modeling have made it 

possible to forecast floods with high resolution and respectable lead times. Anywhere on the road 

network, flood forecast resolution can be good enough to estimate water depth and velocity. Any 

device can receive predicted flood maps through the Internet. 

It is recommended that the framework developed in this study be used as a tool for identifying the 

transportation network-wide impacts of flood ‘hot-spots’ and assessment of transportation-related 

flood mitigation alternatives. The framework can also be used to reveal potential vulnerabilities 

and to quantify the impacts of flooding on regional transportation networks. It can also directly 

support disaster planning and emergency preparedness measures in preparation for major events. 

Examples may include contingency planning for deployment of barricades, mitigation of site-

specific critical facilities, and large-scale evacuation planning. The methodology can provide 

useful outputs on system-wide costs of flooded roads that can be used to inform regional mitigation 

efforts. Maps of past road closures caused by extreme events would help validate the approach and 

develop a suite of realistic scenarios for future response patterns of the transportation network. 
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1. INTRODUCTION 

In recent years, the frequency and intensity of hurricanes and tropical storms has detrimentally 

increased in Texas and Region 6 in general. Similarly, resulting flash flooding has increasingly 

become a common occurrence. For instance, the years 2015, 2016, 2017, 2019, and 2020 witnessed 

devastating storms in Houston and eastern Texas. When flooding occurs, most major bayous 

(rivers) in east Texas overflow their banks inundating neighborhoods, overtopping bridges, and 

rendering key routes impassable. During these events, rescue requests from the stranded 

communities overwhelm the emergency response facilities; impassable roadways and the paucity 

of reliable information on the affected areas and their accessibility hamper emergency response 

operations, causing several detours and delays that put both the responders and evacuees at risk. 

In addition to exposing the vulnerabilities of transportation infrastructure, recent major storms 

demonstrated the need for tools that can facilitate deployment of disaster response resources before 

the flooding occurs, help identify the vulnerable population and affected communities, enable 

mitigation of potential flood-related connectivity issues between neighborhoods and critical 

facilities, and identify clear routes for emergency response.  

The impacts of road flooding are broader and go beyond simple economic aspects as it effects 

population mobility and travelers’ safety. Furthermore, flooding represents a serious threat for the 

durability of road infrastructures. Hence, road flooding is an undesirable naturally occurring 

phenomenon that often results in costly damage to the transportation infrastructure and 

motorist/public safety. The resulting emergency road works after the floods recede is typically 

time consuming. Several studies discussed the impact of coastal flooding on transportation 

network and emergency planning. For example, Johnson and Yu (1) and Shahriari et al. (2) 

evaluated flooding impact on the accessibility of vulnerable areas to emergency care facilities 

while Fahad et al. (3) assessed the challenges of evacuation during extreme flood. 

The need for reliable hydrologic modeling and forecasting has increased in recent years, especially 

in urban communities because it is the amount of precipitation and the time frame in which it 

occurs that can transform an ordinary rainfall event into a deadly one. Weather radar networks 

provide Quantitative Precipitation Estimates (QPE) covering much larger spatial domains (ranges 

up to 230 km), at spatial resolutions of the order of 1 km2 for each pixel (4). MRMS seamlessly 

covers the conterminous United States and Southern Canada at 1 km spatial resolution and a two-

minute temporal resolution using sophisticated algorithms and supplemental input data from 

ground gauges and environmental models (5). In addition to meteorological factors, hydrological 

factors - such as terrain slope, land use, vegetation and soil types, and soil moisture - and hydraulic 

processes related to the characteristics of stream or river channels subject to flooding control the 

flooding process (6). Hence, the selection of an appropriate hydrologic modeling methodology 

(which may involve complicated trade-off between model accuracy, complexity, ease of use, 

computational time, etc.) is a key component of any flood prediction system. Various combinations 

of rainfall intensity and duration may lead to flash flooding, depending on the hydrologic and 

hydraulic conditions of a watershed. Distributed, physically-based models are thought to better 

represent spatially-varied land surface parameters compared to the lumped-parameter modeling 

approach.  Other advantages of distributed modeling include the capability to produce simulation 

data at any point within the model domain and model extreme storm events beyond the limits of 

existing calibration data (7).  
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Traffic control personnel play a crucial role during the flood response process, as they participate 

in joint emergency management teams during the event and are central to traffic operation and 

rescue and relief efforts (8). Because of the risks posed by flooding, it is also imperative for 

transportation agencies and other emergency management organizations to collectively produce 

flood response plans (e.g., 9), which can be a valuable tool for flood planners and responders. Jha 

et al. (10) stressed the importance of creating an emergency flood plan for coordinating response 

to a flood event. However, road closures, electrical substation failures, and/or telephone exchanges 

being cut-off can cause problems. Therefore, contingency plans need to be formulated for these 

eventualities in order to keep vital services operating, such as identifying alternative sources of 

electricity for key facilities such as hospitals. This research proposes the development of a system 

that integrates observed road closure data, real-time radar rainfall estimates, floodplain simulation-

based estimation of road operability using advanced hydrologic/hydraulic modeling and network 

accessibility analysis. The network performance assessment regarding the emergency response 

routes can be evaluated through appropriate metrics to be developed to quantify the transportation 

disruption between facilities such as fire stations and hospitals and different neighborhoods across 

the city. We propose a procedure for identifying the network’s road link closures during various 

time instants of the storm event that integrates observed highway service operability with a 

simulation-based estimation of the operability of local roads based on the output of the flood 

inundation model. The methodology emphasizes the importance of the transportation network 

robustness during urban flooding events. Understanding this complex relationship between 

flooding and the transportation network provides guidance to improve the operation of the 

transportation network during urban natural disasters and informs the development of sound 

strategies for enhancing its robustness. 
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2. OBJECTIVE 

The overall goal of the project is to develop a road flooding forecasting system that can predict 

land surface flooding impact on the road network and define relative measures (e.g., road blockage 

and flood depth) that provide information on the spatial and temporal evolution of road network 

access during flooding events. The first specific objective of this project is to evaluate the 

performance of the transportation infrastructure during recent extreme flooding events in Texas 

with a focus on the cities of Houston and San Antonio, Texas. The second objective is to lay the 

foundation of a coupled system to include flood inundation modeling and assessment of the 

performance of the transportation network. The third objective is to describe how the coupled 

system can be validated through hind-casting of recent extreme flooding events and how to assess 

the ability of the system to accurately identify and locate the disruptions of the operation of the 

road network and provide real-time information that can be used by first responders. 
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3. LITERATURE REVIEW 

The number and magnitude of natural disasters along with the ensuing damages have all witnessed 

a worldwide increasing trend in recent decades. Hydrometeorological disasters can result in 

tremendous damage to infrastructure, significant loss to the economy, and, very often, loss of life 

(11). For example, the number of natural catastrophic events has increased from 730 events in 

2015 to 750 events in 2016 and the ensuing damage increased from $103 billion to $175 billion. 

Weather-related events such as severe storms and floods had the most significant increase in 

frequency among natural disasters (12). The total damage from 16,584 natural disaster events that 

occurred worldwide during the period 1980–2016 was more than $4.3 trillion with 80% of these 

disasters caused by either hydrological or meteorological events and 20% climatological or 

geophysical events (13). As for the U.S, it experienced 233 $1 billion (or higher) weather and 

climate related disasters during the period 1980–2017 resulting in a combined damage of more 

than $1.5 trillion (14). The year 2017 stands out as the most expensive year for damage due to 

natural disasters in recorded history in the U.S. 

In terms of the human loss, 1.7 million people died worldwide during the period 1980–2016 as a 

result of natural disasters (11). About 50% of these fatalities were due to geophysical events 

(earthquake, tsunami, volcanic activity), 26% were due to meteorological events (tropical storm, 

extratropical storm, convective storm, local storm), 14% were due to hydrological events (flood, 

landslides), and 11% were due to climatological events (extreme temperature, drought, forest fire 

(11). About 80% of the 16,500 disaster events that caused fatalities during this period were 

hydrological or meteorological (13). Concurrent to the increase in disaster event intensities, 

research of disaster fatalities is on the increase to improve risk models, provide a basis for policy 

reform, and strengthen public communication to minimize future casualties (15). 

The scientific community is largely in agreement that the rise of humidity in the air over the last 

decades can be attributed to warming oceans and increased evaporation from their surfaces (12). 

The intuitive consequence is that the increase in disaster events due to climate change is 

responsible for the increased damage losses. However, although the relationship of climate change 

to disaster occurrence is accepted, the relationship of disaster occurrence and the increasing trend 

in property damage is still a debated topic. One perspective is that the reported increasing damage 

and losses from hurricanes are not necessarily evidence of any increase in hurricane or tropical 

storm activity but are due only to the changes in population and wealth of the impacted regions 

(16-18). Klotzbach et al. (18) reported that damage caused by tropical cyclones adjusted for 

inflation and normalized by regional wealth and population factors did not show an increasing 

trend from 1900 to 2016 in the U.S., suggesting that the increase in damages are more a function 

of the increased regional wealth and property exposure than the increase in number of cyclones. 

Assessment of damages due to historic natural disasters can include direct and indirect replacement 

cost estimates and/or insurance payout information. The former use in this study is more applicable 

in longitudinal research since it is a function of available exposure value and includes all property 

whether insured. The Congressional Research Service reported that inflation-adjusted disaster 

appropriations have increased 46% from a median of $6.2 billion between 2000 and 2006 to $9.1 

billion between 2007 and 2013. The hurricanes in 2017 were immense and had a much costlier 

impact as they collided with growing cities with higher exposure. As more people compete for real 
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estate thereby pushing up the property values in disaster prone regions such as coastal Florida, 

Texas, and California, the level of property damage also increases (19). 

There is general agreement among public and private organizations and governmental agencies 

including the Government Accountability Office (GAO) that the cost of natural disasters in the 

U.S. is increasing at a significant rate. However, there are different perspectives on whether the 

increase is due to more violent storms or if the increase is due to the increase in population and 

wealth of property that is susceptible to damage. The U.S., as well as many other countries around 

the world, has experienced a rise in the number of natural disaster events and losses in the last four 

decades primarily due to convective events which are disaster events developing out of 

thunderstorms, such as hail, heavy precipitation, tornadoes and strong straight-line winds. Gall et 

al. (20) noted that direct losses from convective disaster events such as hurricanes, flooding, and 

severe storms are increasing and contribute about 75% of the total damage with hurricane and 

flood losses having tripled over the last 50 years. A study by Sander et al. (21) found that 80% of 

all losses in the U.S. from 1970 to 2009 were due to convective events that had normalized losses 

exceeding $250 million. The study also suggests that there is a correlation between the increase in 

losses and the changes in meteorological potential for severe thunderstorms driven by changes in 

the humidity of the troposphere (21). 

In a study that examined the detailed circumstances of more than 1000 flash flood fatalities across 

the US, Terti et al. (22) observed that the fatality circumstances exhibited certain characteristics 

related to season, time of day, duration of flood, location, and age and gender groups. Hamilton et 

al. (23) performed psycho-cognitive analysis of the beliefs of people who willingly drive into flood 

water in Australia. They identified key attitudinal, social expectations, and efficacy beliefs that 

guide willingness to drive through flooded waterways, including fear of being stranded, pressure 

from others, and seeing other drivers doing it, among others. Diakakis (24) analyzed 60-year flood 

fatality data from Greece and found a strong association between the risk-taking behavior during 

floods and the demographics of the victims, the type of the surrounding environment, and vehicle 

use, and used this information to develop a statistical model to predict the behavior of a flood 

victim based on the characteristics of the individual and the environment. Vinet et al. (25) 

examined fatalities resulting from two flood events in France—a total of 67 fatalities. They found 

that the individual vulnerability is the product of internal factors including personal knowledge, 

age, and health, and awareness of the risk, and external factors such as the availability of shelter 

and building type. They stressed the need to address all of these specific vulnerabilities in 

prevention and warning messages. Diakakis et al. (26) studied flood fatalities in Greece and 

identified factors and behaviors leading to increased vulnerability and found them to be different 

between urban and nonurban environments. 

According to weather-related fatality and injury statistics from the National Weather Service 

(NWS) for the 10-year average of 2009–2018 and for the 30-year average of 1989–2018, floods 

caused the second-highest number of weather-related fatalities in the US, surpassed only by heat 

waves (27). However, Borden and Cutter (28) listed flooding as the fourth deadliest weather-

related disaster behind heat/drought, severe weather, and winter weather. Kunkel et al. (29) 

observed and discussed a generally increasing trend of flood-related damages and fatalities in the 

last 25 years of the 20th century in the US. Freshwater flooding from 1970 to 1999 caused more 

than one-half of 600 water-related fatalities in the contiguous US (30). 
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Several researches have examined flood-related fatalities in the United States (e.g., 31; 32; 33; 34). 

French et al. (31) reported that flash floods contributed to the most flood fatalities, identifying 

1185 fatalities caused by 32 flash flood events from 1977 to 1981. According to the study, forty-

two percent (42%) of reported drowning deaths were vehicle-related. In four flood events 

involving dam breaks, warnings for heavy rain, and flash flooding were issued, but none for dam 

failure. Dittmann (32) estimated a total of 3934 flood fatalities from 1959 to 1991 in the United 

States with an annual average of 119 fatalities, while Ashley and Ashley (33) reported a total of 

4586 fatalities related to flooding in the contiguous US from 1959 to 2005, with an annual average 

of 97.6 fatalities (excluding the data of Hurricane Katrina, which occurred in 2005). Ashley and 

Ashley (33) suggested that heavy rain, snowmelt, structural failure, and a combination of these 

factors contributed to flooding. They also found that flash floods accounted for the majority of 

flood-related fatalities and identified high-fatality regions, such as the Ohio River valley, the 

northeast Interstate-95 corridor, and near the Balcones Escarpment in south-central Texas. Sharif 

et al. (34) conducted research on Texas from 1959 to 2008 and observed that the edge of Balcones 

Escarpment is a region of remarkably high fatalities. According to the study, a total of 840 flood-

related fatalities occurred in Texas and flash floods caused a majority of those fatalities. Han and 

Sharif (35) examined flood fatalities reported in the contiguous United States (US) from 1959 to 

2019 and reported that flash flooding caused more fatalities than other flood types. They suggested 

that the vast majority of flood fatalities are preventable as purposely driving or walking into 

floodwaters accounted for more than 86% of total flood fatalities the studies.  

Vehicle-related flood death was the dominant type among all circumstances in the US. Hamilton 

et al. (36) reported that more than half of flood-related deaths were caused by driving through 

floodwaters. They found that past living experience, individual perceptions of the floodwater 

hazard, and social and environmental circumstances are the main factors impacting a person’s 

decision on whether to drive through floodwaters. Drobot et al. (37) also reported that more than 

half of all flood fatalities in the United States are vehicle-related, mainly because people who do 

not treat flood warnings seriously and people who have not experienced floods drive into 

floodwaters. Ashley and Ashley (33) asserted that human behavior was a major culprit in flood 

deaths and that 63% of flood fatalities recorded with occurrence circumstance were vehicle-

related. French et al. (31) found that 42% of drowning deaths were vehicle-related during a study 

from 1969 to 1981. Zevin (38) reported that 40% of flash-flood fatalities were related to vehicles 

or pedestrians crossing streams. Mooney (39) found that over half of flood fatalities with a known 

circumstance of occurrence happened in vehicles. Terti et al. (22) found that more than 60% of the 

1075 flash flood fatalities reported from 1996 to 2014 across the United States were related to 

vehicles involving mainly males. This study found that human vulnerability depends on the social 

and natural factors of the flash flood; e.g., fatalities related to inundation of permanent buildings 

were most commonly associated with longer duration events and impacted the elderly, while the 

young were victims of outdoor activities during short-lived flash floods. In addition to human and 

social vulnerabilities, Doocy et al. (40) reported that urbanization, population density, terrain, and 

storm characteristics are also factors that contribute to flood risk levels. Flood fatality factors that 

influence human impacts were rural areas, short duration events, small catchment sizes, vehicles, 

and events that occurred during times with reduced visibility (41). 
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Ahmed et al. (42) examined the vehicle-related flood fatalities in Australia from 2001 to 2017. It 

was found that 83% of vehicle-related flood deaths happened when people drove through cross 

creeks, bridges, or causeways that flooded by rapidly rising floodwater. Drowning was the main 

category of vehicle-related deaths, resulting in 1.3 fatalities per incident. Half of the incidents 

occurred at night and 54% of the incidents had only the driver in the vehicle. Age and gender data 

were identified for drivers and passengers and males significantly outnumbered females. Jonkman 

and Vrijling (43) reported that individual behavior and vulnerability are the main factors in flood 

fatalities. Kellar and Schmidlin (44) conducted a study on vehicle-related flood fatalities in the 

United States from 1995 to 2005 and found that more than half of flood fatalities caused by flash 

floods are vehicle-related. They also found that males were overrepresented by far, especially 

among those older than 40, in all vehicle-related flood fatalities. The Texas Hill Country was 

identified as the area with the highest vehicle-related flood fatalities. Vehicle-related flood 

fatalities could occur at bridges, low water crossings, ditches/culverts, and viaducts or underpasses. 

Jonkman and Kelman (45) reported that males were more vulnerable to floodwaters because they 

were more likely to be involved in unnecessary high-risk behaviors. They also reported that 

vehicle-related flood deaths occurred most frequently when people attempted to drive across 

flooded bridges, streams, and roads and these deaths occurred among all phases of flood events 

(i.e., onset, during, and shortly after). Coates (46) investigated flood fatalities in Australia from 

1788 to 1996 and found that males were more likely to be involved in risky behaviors than females 

when faced with floodwaters. About 38.5% of all flood fatalities with reported details happened 

across flooded creeks, bridge, and roads and 31.5% of all flood fatalities were people trapped in a 

building or camp. Adults and the elderly tend to be more vulnerable, especially in light of the 

growth of the elderly population group in most countries (47). When people are trapped inside 

vehicles in floodwaters, moving waters may sweep vehicles off the road, depending on the water 

depth and velocity, which are usually underestimated by drivers (48). The deeper the floodwater 

is, the less force or velocity of floodwater is needed to tip a person over. Some people try to escape 

from their trapped vehicles but are swept away or killed by floating objects (49). 

Texas is second in population (2010 Census) only to California and has a large and diverse terrain 

that combines a gulf coastline that is extremely susceptible to tropical storms and hurricanes; 

flooding and flash flooding at the base of the Balcones Escarpment running through the mid-

section of the state; heat and drought conditions in the south/southwest; and rural cold extremes in 

the northwest panhandle. Hydrometeorological events are the predominant disasters in Texas and 

have resulted in a high number of fatalities and losses to infrastructure (11; 34). The overall 

population growth coupled with the rapid urban and coastal development in recent decades have 

created an environment in which fatality rates are decreasing per capita due to population increases 

but property damage is increasing due to more people with more valuable property moving into 

more vulnerable (disaster prone) regions. This nexus of nature and society will continue to grow 

in Texas in the foreseeable future and warrants ongoing analysis to help policy and decision-

makers identify and prioritize the social vulnerabilities that can be managed to reduce the risk to 

Texas life and property. 

Compared to other states in the USA, Texas has been reported to have the highest number of flood 

fatalities in all studies (e.g., 33; 34). Ashley and Ashley (33) reported a total of 4586 flood fatalities 

in the USA from 1959 to 2005. Texas (760) had, by far, more flood fatalities than any other state 
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(33). Sharif et al. (34) had similar results, indicating that Texas had 840 flood fatalities from 1959 

to 2008. Kellar and Schmidlin (44) found that Texas is the state with the most storm events (60) 

and most vehicle-related flood fatalities (107) from 1995 to 2005. Ashley and Ashley (33) found 

that the geographical features of Texas lead to a large number of flood fatalities in Texas. Texas is 

the second largest state in the USA by area (695,662 km²) and population (approximately 29.90 

million in 2020). Floods in Texas caused by tropical storms and inland storms relate to different 

weather patterns such as the North American Monsoon system and movements on cold and warm 

fronts. The geographic location of the Balcones Escarpment, which consists of a series of cliffs 

dropping from the Edwards Plateau to the Balcones Fault Line, enhances the formation and 

increases the efficiency of storms in central Texas. The Gulf of Mexico in the south to the Rocky 

Mountains in the northwest contribute to the creation of storms capable of producing large amounts 

of rainfalls. The Texas Hill Country, located on the edge of the Escarpment, is also susceptible to 

flash floods due to the steep slopes, the very thin topsoil, and large areas of exposed bedrock. 

Another reason for enhanced runoff in the region is the existence of the highly urbanized corridor 

extending between the major metropolitan areas Dallas-Fort Worth and San Antonio. This region 

is known as “Flash Flood Alley”. It includes counties with the fastest population growth rates in 

Texas. Construction of large, expensive structures at road-stream crossings in this region is not 

feasible because there are thousands of these crossing and they stay dry all the time except for 

occasional storm events. Drainage at these crossings is through culverts and over-the-road flow. 

Low water crossings throughout Texas, especially in the Hill Country, contribute to road flooding, 

which poses a significant risk to drivers during flooding conditions (50, 51). 

Transportation safety research is concerned with understating not only the crash factors but also 

the factors that influence crash severity. According to the World Health Organization (WHO), road 

traffic crashes kill approximately 1.35 million people around the world each year and injure 

between 20 and 50 million people (52). There are serious concerns in the U.S. regarding the high 

number of fatal motor vehicle crashes in some states (33). Moreover, traffic crashes are a leading 

cause of death in the U.S. and the leading cause of non-natural death for healthy U.S. citizens 

residing or traveling abroad (54). In order to limit the number of fatal crashes, it is essential to 

identify and understand the main factors that lead to their occurrence (55). There are numerous 

driver-related, vehicle-related, road-related, and environment-related factors that affect crash 

incidence and severity. Application of new data analytics and data mining techniques on large 

databases of crashes is one of the few robust methods to identify factors that increase the chances 

of a traffic crash (56). However, traditional statistical methods are still widely used to determine 

the relationship between crashes and causal factors including correlation analysis and risk ratios.  

The performance of transportation networks during natural disasters has received wide attention 

in the interdisciplinary disaster, engineering, and network science research in recent years (57-61). 

Several studies demonstrated that transportation networks can be highly vulnerable to urban 

flooding disruptions (62-65) because road flooding impacts the transportation system stability 

leading to abrupt regime shifts between different states (66-68). Moreover, the observed sea-level 

rise is exacerbating flooding vulnerability of the transportation network in coastal cities (69; 70). 

Road flooding can lead to both network structural failure through road inundation and operational 

failure through reduced travel speed and road closures that exacerbate the disaster-impacted 

network connectivity loss (71). During flooding events, road closures and traffic rerouting increase 
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travel demand on other parts of the network, which eventually worsens congestion on links distant 

from flooded areas. Roadway flooding leads to the disruption of transportation systems even when 

flood depths are still passable by causing hazardous driving conditions that require a reduced safe 

driving speed (72). Localized roadway flooding can cause road closure and/or traffic disruptions 

that reach far beyond the extent of the flooding due to the connectivity of traffic networks (73). In 

addition to the inconvenience and travel delays, traffic disruptions can lead to significant economic 

loss (74; 75) and pose a risk to the performance of the transportation network during emergency 

situations (73). 

Several factors influence the driver’s perception, such as light condition, surface condition (76), 

and road geometry (77). Xu et al. (78) examined traffic flow factors for clear, rainy, and reduced 

visibility conditions on interstate I-880N in California for 2008 and 2010 using Bayesian random 

intercept logistic regression models and found that speed difference between upstream and 

downstream stations had the greatest effect on crash risk. Kim et al. (79) examined the influence 

of road characteristics and traditional variables on teen driver’s fatality and found that horizontal 

alignment, posted speed limit, traffic control, device type, and traffic way type are all statistically 

significant factors affecting crash fatalities. Unrau and Andrey (80) studied a driver’s response to 

light precipitation on urban expressways. Adverse weather conditions are important factors 

affecting traffic fatalities and are reported as a factor in a large number of motor vehicle fatalities 

in the U.S. (81). These adverse conditions include rain, snow, cloudy conditions, fog, and wind. 

Such weather conditions can affect the likelihood of road traffic injury and fatality occurrence in 

multiple ways, such as through decreased visibility, increased stopping distance, and wet road 

surfaces that lead to hydroplaning and loss of vehicle control (81; 82). Pisano et al. (83) estimated 

that 25% of all crashes that occurred on public roads in the U.S. were related to weather. According 

to recent analyses, weather was a cause or contributing factor in 35% of fatal crashes (84). Hayat 

et al. (85) found a significant correlation between adverse weather conditions and crash injury in 

a 20-year study. Using geo-spatial statistical analysis, Khan et al. (86) found the characteristics of 

weather-related crashes to be spatially correlated with the patterns of weather conditions such as 

rain, snow, and fog. Using the same approach, Jackson and Sharif (87) found spatial correlation 

between rainfall and crash frequency in Texas. Qiu and Nixon (88) found that snowfall could 

increase the crash rate by 84% and the injury rate by 75%. Andrey et al. (89) found a 75% increase 

of traffic during wet conditions in some case studies. Sun et al. (90) conducted a similar research 

that quantified the effect of adverse weather on crash risk using radar rainfall data and the matched-

pair method. They found rain to cause a higher risk of crash occurrence and severity. Hambly et 

al. (91) observed the most serious crash impacts when the daily rainfall amount is larger than 10 

mm. El-Basyouny et al. (93) demonstrated how rain is significantly and positively correlated with 

all crash types.  

Crash frequency analysis is used to develop traffic management practices. For example, Milton et 

al. (93) examined statistical analysis techniques used to model crash rates for transportation safety 

maintenance. They found several factors associated with traffic conditions. Anastasopoulos and 

Mannering (94) examined count data statistical methods for forecasting crash frequency using 

random-parameter count models. They identified that a variety of factors relating to pavement 

condition and quality were found to significantly influence vehicle accident occurrences. Depaire 

et al. (95) examined similar crash datasets and their results indicated that the traffic crash types 
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and their clustering patterns added value to subsequent crash outcome analyses and were most 

appropriate for identifying hidden relationships. Matkan et al. (96) studied the spatial-temporal 

autocorrelation by examining the crash frequencies in urban areas and found crashes occurred not 

only through clustering in the same location but also within a specific time range.  

Several studies evaluated weather impacts on crashes and their severity used single and 

multivariate statistical analysis (97-103). For example, Edwards (99) examined the spatial 

distribution of weather-related crashes in England and Walesand found a positive relationship 

between the incidences of weather hazards and road crashes. An analysis by Andreescu and Frost 

(100) also confirmed a significant positive correlation between precipitation and the number of 

crashes at daily time scale in Montreal, Canada. Sangare et al. (101) developed a prediction model 

that combines a Gaussian Mixture Model (GMM) and a machine learning algorithm to identify 

road segments that are most prone to crash incidence base on factors related to the driver, vehicle, 

and the environment. The model successfully identified high risk road segments in most of the 

cases. Oralhan and Goktolga (102) found that the severity of traffic crashes was mostly influenced 

by the driver’s gender, age, and education level, in addition to the number of vehicles involved in 

the accident, road surface material, daylight, type of road, direction of road, and time of the day. 

Benlagha and Charfeddine (103), using a large sample of 405,177 crashes and various statistical 

and econometrics approaches, found that the gender factor is only significant for fatal accidents 

with male drivers having an increased likelihood of extreme risk behavior. Abdel-Aty and Pande 

(104) recommended considering weather conditions, more importantly rain occurrence, in 

evaluating the factors associated with crashes. Ma et al. (105) analyzed thousands of crashes and 

identified roadway geometry, crash location, roadway alignment on tangents and curves, roadway 

functional classification, and lighting condition as significant crash-related factors while Ma et al. 

(106) found statistically significant factors related to crash severity to be location, weather, driver’s 

gender, vehicle type, and crash type. Jung et al. (107) found the most important factors to be 

rainfall intensity, wind speed, roadway terrain, driver’s gender, and seat belt. Wilson and Stimpson 

(108) investigated the trends in distracted driving fatalities and found that more crashes involved 

male drivers than females in urban areas. Lira et al. (109) found alcohol involvement to be a very 

significant factor affecting crashes.  

Jovanis and Chang (110) showed environmental conditions to be a major factor proved to affect 

automobiles more than trucks. Amoros et al. (111) found a statistically significant relationship 

between crashes, roadway classification, and county. Abdel-Aty et al. (112) found a potential 

relationship between driver age and factors related to crash involvement including crash location, 

type of collision, roadway characteristics, speed of vehicles prior to crash, roadway surface 

conditions, and light conditions. Yan et al. (113) found atmospheric conditions, crash time, alcohol 

usage, crash type, and driver’s distraction affect the injury severity of crashes. Han and Sharif 

(114) examined the impact of rain on traffic safety by conducting an analysis of the fatal crashes 

related to rain in Texas from 1994 to 2018 using data from the Fatality Analysis Reporting System 

(FARS) database maintained by the National Highway Traffic Safety Administration (NHTSA). 

They found that rain-related fatal crashes represented about 6.8% of the total fatal crashes in Texas 

during the study period exhibiting a statistically significant decreasing trend when normalized by 

the total number of licensed drivers or vehicle miles travelled. According to Han and Sharif (114) 
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analysis, the relative risk of a fatal crash during rainy conditions was always greater than 1.0 at 

monthly (1.07 to 2.78) and hourly scales (1.35 to 2.57).  

Most of the studies that tried to simulate the impact of flooding on traffic operations employed 

static flood models due to their simplicity (e.g., 115; 116) ignoring the dynamic nature of flood 

events. A few studies tried to couple flood modeling with road network analysis to examine the 

impacts on the network performance during major flood events (117; 118). Only recently, 

researchers started to use hydrodynamic models to simulate the impact of roadway flooding on 

traffic flow (e.g., 119) and access to emergency care facilities (e.g., Yin et al. 2017). In the latter 

study, Yin et al. (120) coupled GIS analysis of the roadway network and hydrologic modeling to 

simulate how access to emergency services in lower New York City diminished as a coastal 

flooding and sea level rise increased. They utilized the integrated modeling approach to identify 

the optimal positioning of ambulances in preparation for major flooding events that could affect 

parts of the roadway network. 

Robust analysis of the interaction of flooding with the transportation network should include 

flooding analysis, traffic analysis, estimating the flood depth on roads, and analysis of the 

performance of the disrupted road network (72). Due to the knock-on effects, the performance of 

non-flooded roads could be impacted indirectly (121). Any increase in the extent and depth of 

urban flooding may lead to disproportionally higher disruptions of traffic performance [122; 123). 

When roadways are flooded emergency response can be significantly interrupted and many key 

facilities can become inaccessible depending on the road network configuration (117).  

Among other applications, mathematical modeling is being employed to minimize access time to 

hospitals through optimizing the location of ground and aerial mobile emergency facilities (e.g., 

2). Alabbad et al. (124) and Gori et al. (64) described how modeling can be used in distance-based 

accessibility analysis in flooding conditions while Zheng et al. (125) addressed the problem of 

optimizing the time-based accessibility to hospitals from different locations using different 

transportation modes. Green et al. (126) studied the response time and locations that can be reached 

by emergency vehicles within 10 minutes as a function of the flood magnitude and extent. Coles 

et al. (117) used Geographic Information Systems (GIS) software and flood modeling to assess the 

ability of ambulances to reach care homes from hospitals or emergency responder stations or 

within a designated travel time windows.  
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4. METHODOLOGY 

This research presents a novel framework for improved situational awareness during extreme 

flooding events by combining a flood inundation model with a transportation infrastructure 

performance assessment tool. The flood inundation model can be driven by real-time radar rainfall 

data in an efficient manner. The road network work model will use land use, census data, locations 

of critical facilities, and a spatial analysis tool. Criteria quantifying mobility and accessibility can 

be evaluated for each inundation map to develop the accessibility maps. These maps can be 

communicated to stakeholders in real-time to support emergency response and situational 

awareness and disaster management planning. The stated problem is addressed by conducting a 

comprehensive analysis of flood fatalities in Texas over a 61-year period highlighting fatalities 

involving driving into flooded roads. A high-resolution flood inundation model is developed for a 

catchment in San Antonio, Texas to demonstrate the utility of its predicted outputs as input to a 

road flooding warning system. Finally, the framework is described in more detail. 

4.1. Impact of Extreme Weather Events on Transportation Safety in Texas 

4.1.1. Vehicle-related Flood Fatality and Injury Data  

Texas is the second largest state in the USA by area (695,662 km²) and population (approximately 

29.90 million in 2020). Floods in Texas caused by tropical storms and inland storms relate to 

different weather patterns such as the North American Monsoon system and movements on cold 

and warm fronts. The geographic location of the Balcones Escarpment, which consists of a series 

of cliffs dropping from the Edwards Plateau to the Balcones Fault Line, enhances the formation 

and increases the efficiency of storms in central Texas. The Gulf of Mexico in the south to the 

Rocky Mountains in the northwest contribute to the creation of storms capable of producing large 

amounts of rainfalls. The Texas Hill Country, located on the edge of the Escarpment, is also 

susceptible to flash floods due to the steep slopes, the very thin topsoil, and large areas of exposed 

bedrock. Another reason for enhanced runoff in the region is the existence of the highly urbanized 

corridor extending between the major metropolitan areas Dallas-Fort Worth and San Antonio. This 

region is known as “Flash Flood Alley”. It includes counties with the fastest population growth 

rates in Texas (Figure 1). Construction of large, expensive structures at road-stream crossings in 

this region is not feasible because there are thousands of these crossing and they stay dry all the 

time except for occasional storm events. Drainage at these crossings is through culverts and over-

the-road flow. Low water crossings throughout Texas, especially in the Hill Country, contribute 

to road flooding, which poses a significant risk to drivers during flooding conditions. 

The Texas vehicle-related flood fatality information reviewed in this study is extracted from the 

National Oceanic and Atmospheric Administration (NOAA) “Storm Data” reports for the period 

January 1959 through December 2019. From 1959–1995, the data were only available as PDF 

files. Data from 1996–2019 were available via the NOAA searchable database. The data in the 

“Storm Data” publication relies on self-reporting from individual states and counties and is 

dependent upon the verification and validation of the reporting agency. The “Storm Data” had 

some inconsistencies from year to year and county to county in the classification of the causes of 

fatalities. The “Storm Data” reports include narratives that describe some the circumstances that 

lead to fatalities including time, location, age, and environmental conditions. “Storm Data” lists 

each incident with the date, time, the number of people who died in the incident, the number of 
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people injured, and a brief description of the event. The descriptive narratives provided along with 

each event were used to get information related to the gender, age, activity, mode of transport, and 

location of the individual who died. In 1996 and after, the database provided an accompanying 

chart of the victims. The chart listed the victim’s age, gender, and location. If there was a disparity 

between the description and the accompanying table, the information in the description was used 

since the descriptions were often retrieved from the police report that was filed with the death. 

4.1.2. Analysis of Data 

For this study, the data of vehicle-related flood fatalities, which was attributed to coastal floods, 

flash floods, floods, heavy rain, and tropical storms, was collected from the Storm Data website 

for Texas for 1959 to 2019. Fatality data before 1996 was available only as PDF files. In total, 444 

Storm Data reports in PDF format were reviewed (1959–1995). Rainfall data was obtained from 

the National Centers for Environmental Information of NOAA. Texas flood fatality data was 

downloaded for each year and then combined. R scripts were developed to extract data needed for 

the analysis. R scripts were also used to run Mann-Kendall nonparametric trend analysis. Excel 

was used to perform analysis of variance (ANOVA) to compare variables associated with fatalities. 

R scripts were then used to process rainfall data and compare rain and fatality data. 

4.2. Existing Flood Warning Systems 

Weather and flood warning systems are designed to warn driver they are approaching a flooded 

road when the water depth and speed are high enough to potentially wash the vehicle away. 

Specifically, a timely activation of warning systems on either side of a low-water can deter 

motorists driving into flooded roads. Weather and flood warning systems can also notify 

transportation and emergency management personnel of the flooded roadway conditions so other 

actions can be taken. There has been a few attempts to test such systems in Texas in recent years. 

The research team reviewed vehicle related fatalities and swift water rescues in urban areas during 

recent extreme weather events and tried to identify locations whether these incidents occurred at 

locations where high water warning systems were installed.  

4.3. A Framework of a Situational Awareness System 

Urban flooding can cause spatially varied road network disruptions that continue evolving during 

the flooding event impact access to neighborhoods and critical facilities. This research addresses 

this problem through development of a framework that integrates observed road closure data, real-

time radar rainfall estimates, floodplain simulation-based estimation of road operability using 

advanced hydrologic/hydraulic modeling and network accessibility analysis. The network 

performance assessment regarding the emergency response routes can be evaluated through 

appropriate metrics to quantify the transportation disruption between facilities such as fire stations 

and hospitals and different neighborhoods across the city. A procedure is proposed for identifying 

the network’s road link closures during various time instants of the storm event that integrates 

observed highway service operability data with a simulation-based estimation of the operability of 

local roads based on the output of the flood inundation model. 

4.3.1. Flood Inundation Model 

The flood inundation is simulated using the Gridded Surface Subsurface Hydrologic Analysis 

(GSSHA; 6, 7) model for various time instants of the storm. When a flood event is imminent, there 
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is limited time to execute hydrologic/hydraulic model runs to predict the outcome of the flood 

event. The solution is to pre-run a large number of models with varying input parameters, called 

"scenarios", and store or “can” the results for lookup in the time of a crisis. When a potential flood 

event occurs, the canned model database is queried using the radar rainfall data and the model run 

with the closest match is instantly returned. The Canned Modeling method can be applied to any 

hydrologic model, or even any combination of different hydrologic models. Data for applying the 

concept in Texas is already available. 

The two-dimensional, fully-distributed, physically-based hydrologic simulation tool Gridded 

Surface Subsurface Hydrologic Analysis (GSSHA), developed by the U.S. Army Corps of 

Engineers, is used to predict floodwater depth and velocity at low-water crossing.  GSSHA offers 

a multidimensional modeling technology that fully couples overland, surface, and subsurface flow 

for highly accurate watershed simulations. It can incorporate fully dynamic pipe networks and the 

relevant hydraulic structures for urban drainage systems (e.g., detention basins, culvers, weirs, 

etc.). GSSHA can be used as an event-based or continuous model where overland flow, soil surface 

moisture, groundwater levels and stream interactions are continuously simulated. The fully 

coupled groundwater-surface-water interaction capability also allows GSSHA to accurately 

estimate aquifer recharge. Open-source software tools can be used to provide access to multiple 

data sources (e.g., real-time remotely sensed rainfall estimates or forecasts, ground flood sensors) 

and lower the barriers for users in management agencies at the local level. GSSHA can fully be 

integrated with other hydraulic models if needed. The Army Corps of Engineers personnel and 

other hydrologists have used GSSHA in hundreds of real-life applications, including preparation 

for major storms such as Katrina and Sandy.  

4.3.2. Network Accessibility Model 

Local roads of the networks that are classified as not operable due to flooding can be identified 

based on the simulated inundation maps. This classification can be performed by establishing an 

inundation depth threshold y, and based on the intersection of roadways and inundation depths 

greater than y, road segments are considered to be closed and are removed from the road network 

during the network analysis. Threshold y can be set equal to 2 ft following guidelines from the 

National Weather Service regarding the approximate water depth at which most vehicles become 

buoyant during flood conditions. The lower roadway inundation depth thresholds indicating unsafe 

conditions proposed in the literature may apply to smaller cars. However, because the network 

accessibility performance is focused in this study on emergency response services and emergency 

vehicles are in general able to tolerate higher inundation depths, the higher threshold of 2 ft is 

recommended. Nonetheless, the threshold adopted should reflect the safe traversing height for the 

emergency response vehicles used, and a lower threshold may be appropriate depending on the 

vehicle type. 

Quantification and assessment of emergency response accessibility can be performed through 

network analysis. For example, the road networks, with all their links and nodes, can be 

constructed in GIS (Geographic Information Systems). The network nodes can then be placed at 

road intersections, the locations of fire stations and hospitals, and the centroids of census block 

groups (which represent neighborhood-scale accessibility). After  the  road  network  is  mapped  

in  GIS,  its  edge list corresponding  to a  list  of all the network’s links nodes that are connected, 
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can be extracted such that the network is mathematically represented, and appropriate network 

analysis algorithms can be implemented. Flood event speeds can be estimated by the hydrologic 

model based on inundation levels and rainfall rates. The network accessibility performance can be 

quantified through analysis that calculates the shortest and quickest paths for a vehicle traversing 

from any origin node to any destination node of interest. Then, the network’s accessibility 

performance can be assessed by travel time increase and connectivity loss. 

4.3.3. Flooding Impacts on Traffic 

The flood inundation and road network accessibility can be coupled to assess the evolution of road 

network accessibility between emergency response service locations and flood-impacted areas and 

estimate the emergency response travel times between origin-destination pairs. Moreover, the 

coupled system data can be used, in conjunction with post-event road inspection, to assess the 

impact of the flooding on the road integrity. This technology can be adapted to inexpensive systems 

that can be easily deployed where and when needed. Real-time deployment of the system will 

increase effectiveness of road warning systems, save operation costs, and nullify false alarm 

probability.  It will allow transportation departments and municipalities to inexpensively expand 

the effectiveness of their traffic safety operations. Recent development in sensor technology 

demonstrated the feasibility of using this technology for improving roadway warning and 

assessment systems, which is particularly beneficial in high-risk areas that are impacted by 

hurricanes and tropical storms.  There are several available sensing technologies that can report 

via wireless means to a base station for operation and control. Suitable sensor types are Pressure 

Transducer, Bubbler Sensor, Radar Sensor, or Laser Sensor.  A water level sensor system can 

record the depth and duration of road flooding and communicate the information. The recorded 

data can be used, in conjunction with post-event road inspection, to assess the impact of the 

flooding on the road integrity. 
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5. ANALYSIS AND FINDINGS  

5.1. Vehicle-related Flood Fatalities in Texas 

In total, 6478 flood fatalities happened in the past 61–year study period in the contiguous United 

States. Approximately 60% of the fatalities were recorded with circumstance details in Storm Data. 

Furthermore, 58% of the fatalities with known circumstance details were vehicle-related. 

Compared to other states, Texas has the highest number of flood fatalities (1069), with an annual 

average of 17.52 fatalities, from 1959 to 2019. Those fatalities resulted from 576 flood events. 

However, all events, except five, resulted in a single vehicle-related flood fatality. A family of six 

died in a vehicle in Houston during Hurricane Harvey. The vast majority, 86.6%, of all flood events 

caused less than four deaths per event. During the study period, there were 570 vehicle-related 

flood fatalities, with an annual average of 9.34 fatalities. The annual variability of vehicle-related 

flood fatality was similar to that of the flood fatalities. The most number of vehicle-related flood 

fatalities, 33, occurred in 2007, and 28 and 27 number of fatalities occurred in 1979 and 1966, 

respectively. On 5 May 1995, 16 people died due to a flash flood and 10 of them were vehicle-

related. Flash floods caused 26 deaths and 23 of them were related to a vehicle on 17 October 

1998. 

Total flood fatalities and vehicle-related fatalities occurred in every year of the study period, except 

2011 when Texas witnessed a major drought. The highest number of flood fatalities, 70, occurred 

in 2017, while the highest number of vehicle-related fatalities, 32, occurred in 2007 (Figure 1). 

Annual fluctuations were high for both total flood fatalities and vehicle-related flood fatalities. 

Both total and vehicle-related flood fatalities are significantly correlated with rainfall in Texas on 

the annual time scale, with Pearson correlation coefficients of 0.50 and 0.53, respectively. To 

illustrate the flood fatality risk, total flood fatalities and vehicle-related flood fatalities were 

normalized by the corresponding annual Texas population (Figure 2). The figure shows 

statistically significant decreasing trends for both normalized rates, with the total number of flood 

fatalities showing a higher decreasing rate with p-values of 0.01 and 0.03, respectively, based on 

the Mann-Kendall nonparametric trend test. The high fluctuation of the annual proportion of 

vehicle-related flood fatalities (using total fatalities as a reference), which ranges between 10% 

and 100%, is shown in Figure 3, which shows a small increasing trend that is not statically 

significant. As expected, there is no correlation between the proportion of vehicle-related flood 

fatalities and annual rainfall (Pearson correlation coefficient of 0.0). 
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Figure 1. Numbers of annual flood fatalities and vehicle-related flood fatalities in Texas, 1959–2019. 

 

 

Figure 2. Normalized numbers of total flood fatalities and vehicle-related flood fatalities per 1 million people in 

Texas, 1959–2019. 
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Figure 3. Annual proportion of vehicle-related flood fatalities for all flood fatalities in Texas, 1959–2019 (no 

flood fatalities occurred in 2011). 

The proportions of vehicle-related flood deaths estimated in this study reflect the variations in the 

proportions reported in some previous studies. Different study areas and study periods were 

responsible for this discrepancy. For example, a study found that 63% of flood fatalities that were 

recorded with occurrence details were vehicle-related in the contiguous United States from 1959 

to 2005, while another reported that 76% of flood deaths were vehicle-related when they studied 

all flood fatalities in Texas from 1959 to 2008. As seen in Figure 4, May (129), October (89), and 

April (77) witness the highest numbers of vehicle-related flood fatalities. A previous Texas study 

reported that May, June, and October were the top three months with the most flood fatalities in 

Texas from 1959 to 2008. The vehicle-related fatality monthly pattern agrees with that of the 

monthly precipitation in Texas and more so with that in the Flash Flood Alley, as seen in Figure 

4, especially the peaks of May and October. Very few vehicle-related fatalities occur in the driest 

months, which are February and January. 
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Figure 4. Monthly distribution of vehicle-related flood fatalities and average monthly precipitation in Flash 

Flood Alley and average monthly precipitation in Texas, 1959–2019. 

Gender information was reported for 483 (85%) of the vehicle-related flood fatalities in Storm 

Data. Males are almost twice as likely to die in vehicle-related flood accidents than females (63% 

to 37%), as seen in Figure 5. ANOVA test results showed that there was a difference between 

males and females, with p-values of less than 0.01. Although high, this male overrepresentation is 

lower than the 70% value and the 85% reported in previous studies. In Texas, Sharif et al. [28] 

reported that male flood fatalities accounted for 68.4% of all fatalities. Unfortunately, Storm Data 

does not specify the driver in the vast majority of the incidents, but males are always more likely 

to be involved in risky behavior than females.  

 

Figure 5. Proportions of vehicle-related flood fatalities by gender. 
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Storm Data provided information on the ages of individuals involved in 382 (67%) vehicle-related 

flood fatalities. The age group of 20–29 years covers the most vehicle-related flood fatalities for 

both male (42) and female (25) victims, as seen in Figure 6. The age group of 80 and above is the 

group that has the lowest male (14) and female fatalities (8). Male victims are significantly more 

involved than females among all the age groups, except the 10–19 age group. For the age group of 

40–49 and 70–79, the numbers of male victims are more than twice that of females. In general, 

victims of flood incidents characterized by active behaviors were, on average, younger by a 

significant margin than the ones that perish exhibiting a passive behavior.  

 

Figure 6. Numbers of vehicle-related flood fatalities in Texas, 1959–2019by age and gender. 

Flash floods were the dominant flood type that caused fatalities. They were responsible for 347 

(61%) of all vehicle-related flood fatalities (Table 1). This is 20% higher compared to the findings 

of a previous Texas study that showed that about 50% of all flood fatalities were caused by flash 

flooding in Texas from 1959 to 2008. Among other types included in Storm Data, floods 

(excluding flash floods) caused the second highest number of vehicle-related flood fatalities, 107, 

followed by heavy rain, 51. The other flood types accounted for 11% of the fatalities combined. It 

is not clear what is meant by “flood” in Storm Data. Most probably, this refers to a river flood or 

a flood that NWS has not classified as a flash flood. 
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Table 1. Vehicle-related flood fatalities by flood types in Texas, 1959–2019. 

Flood Types 
Vehicle-Related Flood 

Fatalities 

Proportion 

(%) 

Heavy Rain 51 9 

Heavy Rain & Flooding 23 4 

Heavy Rain and Flash Flooding 16 3 

Flood 107 19 

Flash Flooding 347 61 

Flash Flood and Flood 8 1 

Flash Flooding and River Flooding 3 1 

Flooding due to Hurricane /Tropical 

Storm/Tornadoes/Cyclones 
11 2 

Tidal/Coastal Flooding 4 1 

 

Figure 7 shows the spatial distribution of vehicle-related flood fatalities at the county level. Only 

nine of the vehicle-related fatalities did not have the county identified, e.g., Storm Data reports 

that the event caused a vehicle related fatality in south Texas. The 561 vehicle-related flood 

fatalities were distributed over 113 out of the 254 counties in Texas. Only nine counties had more 

than 10 vehicle-related flood fatalities over the 61-year study period. The top counties in reporting 

vehicle-related floods are Bexar (54), Dallas (44), Travis (37), Harris (35), and Tarrant (33). These 

are highly urbanized counties, including the major cities of San Antonio, Dallas, Austin, Houston, 

and Fort Worth, respectively. Except for Harris, all of these counties are located in Flash Flood 

Alley. Figure 7 clearly shows that the vehicle-related fatalities are concentrated in Flash Flood 

Alley. Counties in the Flash Flood Alley account for about 83% of the vehicle-related flood 

fatalities in Texas. The rapid change of geographic elevation along the edge of Balcones 

Escarpment and the thin soils enhance the land surface response to storms that stall in this area, 

creating perfect conditions for very fast flowing water during or immediately after rainfall. The 

continued urbanization and explosive population growth increase the flood risk in the counties in 

Flash Flood Alley. Almost all the counties with more than 10 deaths were clustered on the edge of 

Balcones Escarpment, except for Harris County (35) and Gregg County (11). Harris County, 

located close to the Gulf of Mexico, witnessed major flooding events in 2015 (Memorial Day 

Flood), 2016 (Tax Day Flood), 2017 (Hurricane Harvey), and 2019 (Tropical Storm Imelda) that 

led to several fatalities. For instance, in 2017, Hurricane Harvey caused 13 vehicle-related flood 

deaths in Harris County. The effect of exposure can be seen in Figure 10, where the fatalities are 

normalized by population. Even in the Flash Flood Alley, the densely populated counties (around 

the cities of San Antonio, Austin, and Dallas, Figure 1) show modest fatality rates. The same 

applies to Harris County. Rural counties in and near the Alley have the highest rates. The 

proportion of vehicle-related flood fatalities (of the total flood fatalities) is generally higher in the 
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Flash Flood Alley, as seen in Figure 11. Some of the counties outside the Alley, with low numbers 

of flood facilities, in general, also show high proportions of vehicle related fatalities. 

 

 

Figure 7. Vehicle-related flood fatalities by county in Texas, 1959–2019. 

 

5.2. Existing Flood Warning Systems 
 

Harris County Flood Warning System  

To alert residents to hazardous weather conditions, the Harris County Flood Control District's 

Flood Warning System (FWS) records rainfall amounts and continuously monitors water levels in 

bayous and significant streams. The system is based on a network of gage stations that are carefully 

located throughout the bayous and streams of Harris County. The stations are equipped with 

sensors that convey useful information during periods of heavy precipitation as well as during 

hurricanes and tropical storms. Some gauges additionally measure humidity, barometric pressure, 

air temperature, road temperature, and wind speed and direction. 

The website for the Flood Warning System is designed to give quick access to the user-friendly 

data that the gages have gathered (Figure 8). The Flood Control District and Harris County's Office 

of Homeland Security and Emergency Management use this information to let the user know about 

upcoming and ongoing flooding situations along bayous. The National Weather Service also 

makes use of it to help issue flood watches and warnings. The user and emergency management 

professionals may lessen the danger of property damage, injuries, and fatalities by using accurate 
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rainfall and bayou/stream level data. The Flood Control District advises to use this information 

and take the necessary safety measures when there is a lot of rain. 

 

Figure 8. Stream gage map on Harris County flood warning system. 

To keep motorists informed, the roads free, and lives safe in the fourth most populous city in the 

country, representatives from the City of Houston, Harris County, METRO, and TxDOT have 

developed a unique cooperation known as Houston TranStar. The southeast Texas transportation 

system is managed by the Houston TranStar brand, which was founded in 1993. It also serves as 

the main hub for state, county, and local authorities to coordinate their responses to accidents and 

emergencies. The system uses cutting-edge technology to reduce traffic on local roads, aid and 

advise adjacent jurisdictions with traffic management services, and provide advice to several 

agencies across the nation as well as delegations around the world on crucial emergency 

management and transportation issues. 

Frequent heavy rainfall events make roadway flooding a concern for travelers throughout the 

Houston region. Houston TranStar, in cooperation with the Harris County Flood Control District's 

Flood Warning System, has developed a roadway flood warning system to alert travelers of areas 

where roadway flooding risk is high during rain events (Figure 9). Developed in partnership with 

the Harris County Flood Control District and the Texas A&M Transportation Institute after 

Hurricane Harvey, TranStar’s Roadway Flood Warning System displays real-time data from 283 

weather sensors, an increase of 76 sensors from 2019. 

http://www.harriscountyfws.org/
http://www.harriscountyfws.org/


34 

 

 

Figure 9. Houston TranStar showing an improved flood warning system that alerts drivers to flooded areas 

away from highways. 

 
 Advanced SSPEED Flood Alert Systems  

The Severe Storm Prediction, Education, and Evacuation from Disasters (SSPEED) Center at Rice 

University has built localized Flood Alert Systems for the Texas Medical Center (TMC FAS4), Sugar 

Land, and the Texas Department of Transportation (TxDOT). These systems use real-time radar 

rainfall data to predict flood levels at critical locations (Figure 10). For example, the TMC uses FAS4 

to determine when to implement emergency protocols regarding the placement and/or closing of gates 

and doors that prevent damages to the TMC from flooding (Figure 11). These systems are designed for 

use by specific end-users, but the real-time predictions and flood warnings are also available to the 

public online. The system provides real-time predictions of water levels in the Texas Medical Center, 

supporting mitigative action ahead of imminent flooding. The FAS system has been validated for 

accuracy over dozens of events dating back to 1997. Annual training of TMC personnel on how to 

utilize the system has helped reduce vulnerabilities at the TMC during the event, and increased 

performance in real-time. However, it is important to note that all flood alert systems are non-structural 

and must be implemented in combination with other measures to prevent structural or property damage. 
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Figure 10. SSPEED Center real-time rainfall map. 

 

Figure 11. SSPEED Center Flood Information and Response System for the City of Houston. 
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City of Austin Flood Early Warning System (ATXfloods)  

ATXfloods has existed since 1985 and is maintained by the City of Austin Flood Early Warning 

System (FEWS) team. It was built in large part to monitor flooded roadways in Austin’s surrounding 

8-county area. The system uses 130 gages and cameras to monitor water levels in the creeks and at 

low-water crossings. Individuals can sign-up online to receive flood alerts via email, text message, 

and/or phone call. In addition, Austin has placed flashing lights and automated barricades at fifteen 

low water crossings to prevent motorists from driving into high water. 

 

Figure 12. ATXFlood Web interface. 

Lower Colorado River Authority Flood Operations Notification Service (LCRA FONS)  

Because releases from flood control dams on Highland Lakes or Bastrop Dam in Central Texas can 

cause flash flooding, the Lower Colorado River Authority (LCRA) operates a flood alert system to 

warn residents living below Lake Austin when flood releases are occurring (Figures 13,14). Individuals 

can sign-up online to receive flood alerts via email, text message, and/or phone call when flood 

operations begin. LCRA FONS is intended to supplement NWS warnings and prompts individuals and 

businesses to take mitigative action in advance of flooding (e.g., evacuation).  
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Figure 13. Rainfall gage map in Austin, TX. 

 

Figure 14. Real-time road closure information. 

Flood Warning System - the City of Fort Worth 

 The City’s Flood Early Warning System (FEWS), known as the High Water Warning System 

(HWWS), consists of water level monitoring at 52 of the highest risk low water crossing sites (Figure 

15). Thirty-nine (39) sites were instrumented with tipping buckets for rainfall, five lake level 
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monitoring sites with rain gauges at City owned dams, and two sites are dedicated weather stations 

which measure temperature, rainfall, wind speed and direction, relative humidity, and air temperature. 

The water level measured by PTs triggers road-side flashers to warn drivers of street flooding. The 

ALERT telemetry protocol is used for the communication between the remote sites, and from the 

remote sites to the receive station in the Burnett Plaza Building. Software sends email alarms based on 

rising water levels to City and external first responders. The Stormwater Management (SWM) field 

crews barricade streets to prevent vehicles from getting into flooded areas of the street. Due to the 

flashy nature of flooding, field crews have very limited time in which to respond to flood emergencies. 

The city is working on improving rain and weather monitoring to better capture rainfall intensities so 

that better “City-wide” lead response times could be developed for the field crews to deploy at flood 

prone locations. 

 

Figure 15. Water level gage map in Fort Worth, TX. 

HALT – High Water Detection | Bexar County, TX 

The Bexar County (City of San Antonio) High-water Alert Lifesaving Technology (HALT) system 

is a tool to warn drivers when there is too much water over the road to drive through safely. HALT 

uses a sensor to detect rising water. Once the water reaches a certain depth, the system warns 

drivers to turn around with either flashing lights or a combination of flashing lights and gates. The 
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system shows the road conditions of monitored low water crossings across Bexar County (Figure 

16). 

 

 

Figure 16.  Low-water crossings map in Bexar County, TX. 

5.3. A Framework of a Situational Awareness System 

5.3.1. Modeling Flood Inundation  

The catchment responses to two major rainfall events in 2007 and 2015 were modeled using the 

Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model. For emergency personnel to 

take necessary measures to prevent driving into flooded roads, time is the most needed resource. 

It is impossible to estimate inundation at every location and issue warning or block flooded roads 

in time. If road flooding can be predicted with any lead time, this will allow emergency personnel 

to prepare and deploy resources and issue warnings. Fortunately, the availability of high-resolution 
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remotely sensed precipitation data in real time and quantitative precipitation estimates and the 

recent advances in physically based distributed hydrologic modeling, makes it possible to predict 

flooding at high resolution with reasonable lead time. The resolution of the flood inundation can 

be high enough to enable prediction of water depth and velocity at any location of the road network. 

The flood inundation maps can be sent to any device over the Internet. In this section, the results 

of high-resolution hydrologic model simulations are described that provide information on flow 

depth and velocity at every point over urban areas in San Antonio. The inputs to such a model are 

rainfall observation as estimated by a radar and the outputs are the predicted flood water level and 

velocity at any point in the catchment including roads. 

The results shown below are for a highly urbanized 0.22 mi2 area near downtown San Antonio, 

Texas (Figure 17). The catchment is part of Upper San Antonio River watershed. The catchment 

is dominated by urban land uses. About 99 percent of the catchment is developed, with 

approximately 55 percent as residential, 30 percent as transportation, and 14 percent as industrial 

and commercial. Clay soil types are dominant, with 55 percent clay, 24 percent cobbly-clay, 12 

percent clay-loam, and 9 percent silty-clay. 

 

 

Figure 17. Location of the study area in San Antonio. 

LiDAR-based 1 m digital elevation models (DEM) were obtained from the San Antonio River 

Authority (SARA) for the Upper San Antonio River. DEM data were processed using Watershed 

Modeling System (WMS) version 10.2. The WMS watershed processing tools, including the 

USDA topographic analysis program TOPAZ, were used to delineate the catchment and stream 

arcs from the DEM (Figure 18).  This process resulted in a 0.22-mi2 drainage basin.  Pits, or digital 

dams, in the DEM were filled using the Cleandam algorithm distributed with the GSSHA model.  
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Cleandam uses a stochastic search process to determine the most likely flow path from a digital 

dam to a lower elevation. 

 

Figure 18. Topography of the study catchment. 

Land use/land cover and soil type GIS shapefiles, obtained from SARA, and the Natural Resource 

Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO), respectively, were 

processed using WMS to create GSSHA input files modeling the physical characteristics of the 

catchment.  NRCS soil types were assigned a USDA soil texture classification as well as a 

classification based on land uses where natural infiltration processes are altered by the presence of 

impervious areas due to urbanization.  These soil types associated with urbanized portions of the 

catchment are referred to as “developed” soil texture classifications.  The dominant natural soil 

texture classifications are clay and silty-clay (Figure 19). 
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Figure 19. Soil types of the study catchment. 

Green-Ampt infiltration parameters, including saturated hydraulic conductivity (Ks cm/hr), 

capillary suction head (ψf, cm) and effective porosity (θe), were assigned using the soil type index 

map.  Applied values were based on published average estimates for the soil texture classifications 

by Rawls et al. (1983).  In order to model the reduced infiltration caused by development, the 

applied value of hydraulic conductivity for developed soil texture classifications was reduced in 

an amount proportional to the computed fraction of impervious cover.  Uniform values of initial 

soil moisture (θi) were assigned based on antecedent soil conditions at the time of the storm event. 

Simulations were started at least one week before the event to spin-up the model and thus eliminate 

initial soil moisture uncertainties. Overland flow Manning’s roughness coefficient values for the 

developed portion of the catchment were assigned based on the land use and cover index map. The 

most dominant land cover types are forest and pasture (Figure 20). 
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Figure 20. Land use types of the study catchment. The transportation network is shown in blue (see legend). 

Delineation of the channel network was based on the topography data. Minor adjustment was 

needed when the delineated network was compared to aerial photographs of the catchment. Stream 

channels were modeled using irregular cross sections and reach-specific Manning’s n values at 

five locations along the main stream channel.  Manual adjustment of stream channels using the 

WMS “smoothing” feature was required to remove some regions of adverse (negative) channel 

slope resulting from errors in the DEM. There were no natural channels within the catchment but 

a small section of San Antonio River channel at the outlet of the catchment was included in the 

study area to enable simulation of the merging of the catchment discharge with discharge in the 

river and its effect on sediment and pollutant concentrations.  

Next Generation Radar (NEXRAD) preprocessed precipitation products were used in this study. 

Multi-sensor precipitation data for the two storm events were obtained from the National Weather 

Service West Gulf River Forecast Center online archive. The Multi-sensor Precipitation Estimates 

(MPE), developed by the National Weather Service (NWS) Office of Hydrology in March 2000, 

is a product that merges rainfall measurements from rain gauges and rainfall estimates from the 

NEXRAD network and the Geostationary Operational Environmental Satellite (GOES) products. 

The NWS West Gulf River Forecast Center (WGRFC) switched from Stage III to MPE as the 

preferred precipitation estimation program in October 2003, and ended Stage III in December, 

2004. Thus, since January 1, 2005, only MPE has been produced and distributed by the WGRFC 

(Greg Story, personal communication, April 2010). MPE rainfall products are available at 4 km 

and hourly resolution.  The National Weather Service Austin/San Antonio region WSR-88D 
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(Weather Surveillance Radar, 1988-Doppler) located in New Braunfels, Texas, approximately 70 

km from the catchment, is the primary source of radar estimates used in the MPE product for the 

catchment area.     

5.3.2. Transportation Network Accessibility 

GSSHA model was run in continuous mode on a 5-m grid with all the catchment characteristics 

described above used to assign model parameter values. These parameters include soil hydraulic 

conductivity, soil initial water content, porosity, Green and Ampt capillary head parameter, 

Manning’s roughness coefficient (n), seepage coefficient, and overland retention depth. The 

overland roughness coefficient and flow retention depth are a function of the land use/cover. 

Impervious areas were assigned soil hydraulic conductivity values of 0.0.  Two events were 

simulated: A July 2007 event and an October 2015 event. The simulation was started 10-days 

before the major event to spin up the model and make sure that the initial moisture conditions are 

as accurate as possible. The GSSHA model was used to simulate water discharges into the San 

Antonia River.  The area was simulated with 21,621 5m grid cells.  This resolution was sufficient 

to capture fine features, such as roads and building tops.  The processes simulated in the model 

were: 

• Overland flow with diffusive wave utilizing land use to specify overland roughness. (See 

https://www.gsshawiki.com/Surface_Water_Routing:Overland_Flow_Routing for more 

details on how GSSHA implements overland flow routing.) 

• Infiltration using Green and Ampt with redistribution with a combination of land use and 

soil type being used to specify soil hydraulic parameters. 

(https://www.gsshawiki.com/Infiltration:Green_and_Ampt_with_Redistribution_(GAR)) 

• Infiltration was adjusted for impervious areas, roads and building tops. 

• Soil moisture accounting using the two-layer soil model using the soil types to assign 

parameter values. 

(https://www.gsshawiki.com/Continuous:Computation_of_Soil_Moisture) 

• Evapotranspiration using the Penman-Monteith method with land use used to specify 

parameters. 

(https://www.gsshawiki.com/Continuous:Computation_of_Evaporation_and_Evapo-

transpiration) 

• The short section of the San Antonio River included in the model was simulated with 1D 

diffusive wave channel routing.  Channel dimensions were estimated from Google Earth 

and roughness was assigned according to recommendations by GSSHAwiki website  

(https://www.gsshawiki.com/Surface_Water_Routing:Channel_Routing). 

The main advantage of using a physically-based model to predict flow depth and velocity is that 

the model outputs can be available at multiple resolutions providing accurate estimates of flow 

depths and velocities over the model domain “the entire drainage area and depths over which the 

model is being applied including the transportation network” showing current condition, predicted 

conditions, and predictions of how and when the flood water will recede, which is vital information 

for flood emergency crews. Figure 21 shows the maximum inundation caused by the 2015 event 

over the study. The model can provide an output map of flood depth and velocity for every point 

in the catchment, including the streets, at every time step while the model is running.  

 

https://www.gsshawiki.com/Surface_Water_Routing:Overland_Flow_Routing
https://www.gsshawiki.com/Infiltration:Green_and_Ampt_with_Redistribution_(GAR)
https://www.gsshawiki.com/Continuous:Computation_of_Soil_Moisture
https://www.gsshawiki.com/Continuous:Computation_of_Evaporation_and_Evapo-transpiration
https://www.gsshawiki.com/Continuous:Computation_of_Evaporation_and_Evapo-transpiration
https://www.gsshawiki.com/Surface_Water_Routing:Channel_Routing
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Figure 21. Maximum inundation depth caused by the 2015 flood event. 

5.3.3. Modeling Flood Impacts on Traffic 

The next step corresponds to identifying the local roads of the networks that are classified as not 

operable due to flooding based on the simulated inundation maps. This classification is performed 

by establishing an inundation depth threshold y, and based on the intersection of roadways and 

inundation depths greater than y, road segments are considered to be closed and are removed from 

the road network during the network analysis. The threshold y be set equal to 2 ft (e.g., 34; 114), 

following guidelines from the National Weather Service (27) regarding the approximate water 

depth at which most vehicles become buoyant during flood conditions. The lower roadway 

inundation depth thresholds indicating unsafe conditions proposed in the literature (e.g., 117; 120) 

may apply to smaller cars. However, because the network accessibility performance is focused in 

this study on emergency response services and emergency vehicles are in general able to tolerate 

higher inundation depths (120), the higher threshold of 2 ft will be used. Nonetheless, the threshold 

adopted should reflect the safe traversing height for the emergency response vehicles used, and a 

lower threshold may be appropriate depending on the vehicle type. Since the model output (Figure 

21) can be available in real time or in predictive mode, quantification and assessment of 

transportation network accessibility can be done visually and emergency personnel can determine 

the roads that are non-navigable and make decisions to disseminate the information and send 

orders to block certain roads. 

Alternatively, quantification of network accessibility can be performed through network analysis 

(127). The transportation network, with all of its links and nodes, is readily constructed in GIS 

(Geographic Information Systems). The network nodes can be placed at road intersections, the 

locations of fire stations and hospitals, and the centroids of census block groups (which represent 

neighborhood-scale accessibility). The  transportation  network’s  edge list (127) corresponding  

to a  list  of all the network’s links nodes that are connected, can be extracted such that the network 

is mathematically represented, and appropriate network analysis algorithms will be implemented. 

This mathematical representation can be performed using network theory concepts, and in 
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particular by representing the topology of a network as a graph with sets of nodes and links (127). 

Any graph with n nodes can then be represented by an adjacency matrix (127; 128). The adjacency 

matrix can be modified in real time for a network that is disrupted because various road links are 

not operable due to flooding conditions. The identification of non-navigable road links can be 

performed through the methodology described above. The network accessibility performance can 

be quantified through analysis that calculates the shortest and quickest paths for a vehicle 

traversing from any origin node to any destination node of interest.  

The flood inundation and road network accessibility can be coupled to assess the evolution of road 

network accessibility between emergency response service locations and flood-impacted areas and 

estimate the emergency response travel times between origin-destination pairs. Moreover, the 

coupled system data can be used, in conjunction with post-event road inspection, to assess the 

impact of the flooding on the road integrity. This technology can be adapted to inexpensive systems 

that can be easily deployed where and when needed. Real-time deployment of the system should 

increase effectiveness of road warning systems, save operation costs, and nullify false alarm 

probability.  It will allow transportation departments and municipalities to inexpensively expand 

the effectiveness of their traffic safety operations. 

5.4. Key Findings 

Flooding of the transportation networks during extreme events poses a serious risk to the public's 

health and safety. In prediction and analysis efforts regarding the effects of the physical damage 

causes by such events, little attention is paid to the total impact of restricted access in the 

transportation network affected by flooding. This study offers a technical framework for 

quantifying the time-varying impacts of regional floods on an urban transportation network's 

overall performance during extreme events. The framework is demonstrated in a small catchment 

near the downtown area of San Antonio, TX. A physically-based hydrologic model is able to 

provide inundation maps that can be used to predict the road network's accessibility in real-time 

or in a predictive mode. The model results can also be used to identify the important facilities in 

that could become inaccessible to normal motor vehicles during an event. The results of the model 

and information on network accessibility can also be used to provide timely and adequate warning 

to approaching motorists that a flooded roadway conditions exist further up the road.  
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6. CONCLUSIONS 

Texas lead the nation in motor vehicle-related flood fatalities. In this study, the data of vehicle-

related flood fatalities in Texas from 1959 to 2019 has been examined in detail. A total of 570 

vehicle-related flood deaths occurred in Texas during the 61-year study period. All but three events 

resulted in a single fatality.. Monthly distribution of vehicle-related fatalities follows that of 

rainfall in the Flash Flood Alley. Flash flood caused 61% of all vehicle-related flood fatalities and 

most of them (more than 80%) occurred in the Flash Flood Alley region. Males made up a greater 

percentage of flood victims than females, 62% to 38%. This result agrees with previous studies 

suggesting that males were more likely to take risks during a flood event. The most vehicle-related 

flood deaths occurred in the age group of 20–29 years for both male and female victims; possibly, 

because people in this age group underestimate the hazard of floodwaters and overestimate their 

driving skills and the protective capability provided by their vehicles. Education programs should 

be tailored to male drivers in this age group. Old drivers are less likely to drive in inclement 

conditions, which is supported by the results of this study. 

Transportation safety is seriously threatened by deaths from floods involving motor vehicles, 

which are frequently preventable. Further physical and hydraulic field research is required to fully 

comprehend the frequent occurrence of these phenomena. Due to a number of variables, flood 

fatalities, particularly in Texas, are predicted to increase if nothing is done. Providing the details 

of vehicle-related flood deaths can help officials and the public to better understand flood hazards. 

Furthermore, policy makers and engineers can have a better estimation of the flood impacts and 

take corresponding proactive mitigation measures. Resources can be invested strategically to 

improve the effectiveness of education programs by specifically targeting vulnerable groups. 

Financial resources can be directed to emergency preparedness hazard communication and address 

immobility issues. Our study's main recommendation is that efforts to lower flood fatalities in 

Texas should combine better road flooding forecasting and detection, educational initiatives aimed 

at raising public awareness of flood risk and the gravity of flood warnings, and prompt and 

appropriate response from local emergency and safety authorities. 

National Weather Service (NWS) provides flash flood warnings via text message and local media. 

However, these warnings are typically for broad, city-wide or regional and are effective within 

large time window. When deciding whether to take emergency action (such as evacuation) during 

a flood event, communities and decision-makers can benefit from a flood warning system that can 

provide precise information on the flooding magnitude, extent, and timing. Some flood warning 

systems employ real-time data to forecast future flood conditions several hours in advance, while 

other just provide real-time data on current flood conditions. When specific measures need to be 

taken according to preset standards, a Flood Alert System (FAS) alerts the targeted community 

and decision-makers. Instead of requiring someone to keep an eye on a website, these notifications 

are pushed out and are targeted to particular regions. People can receive advance notification of 

impending floods in their specific neighborhood and have ample time to leave or transfer things 

out of harm's way with the help of a flood alert system powered by a predictive flood warning 

system. Due to their life-saving features like monitoring rainfall and river levels, real-time flood 

forecasting, and estimating potential damages to different communities while remaining low cost 

in comparison to other infrastructure-related mitigation solutions, the FEWS, as non-structural 

flood mitigation tools, have become more and more popular among flood-prone communities. 
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Many Texas municipalities have years of experience innovating and improving the FEWS 

application with unique practical requirements and flood level dangers. 

Time is the most critical resource for emergency responders to take the necessary actions to avoid 

driving into flooded roads. It is impossible to immediately detect floods everywhere and warn or 

block roads except through modeling. Floods can be predicted with a certain lead time so 

responders can prepare and deploy resources and issue alerts. Fortunately, recent advances in high-

resolution, real-time, remote-sensing precipitation data, quantitative precipitation forecasting, and 

physics-based distributed hydrological modeling have made it possible to forecast floods at high 

resolution and with reasonable lead times. Flood forecast resolution can be high enough to predict 

water depth and velocity anywhere on the road network. Predicted flood maps can be sent to any 

device over the internet.  

Recent advances in sensor technology have demonstrated the utility of this technology in 

improving road warning and assessment systems, particularly useful in high-risk areas affected by 

hurricanes and tropical storms. This technology can be adapted to inexpensively develop warning 

systems that can be easily deployed where and when needed. However, the model-based 

framework demonstrates the flexibility and utility of the method which can serve as useful tool to 

apply towards future efforts aimed at increasing the overall accessibility and resilience of 

transportation networks. The framework presented in this study is general enough such that 

additional details (e.g., storm movement, lane directions, traffic control, and increased resolution 

of road pavement surfaces) can be easily incorporated. The framework proposed in this study can 

also be combined with sensing technology to trigger just-in-time deployment to increase 

effectiveness of the warning system, save operation costs, nullify false alarm probability, and allow 

transportation departments and municipalities to inexpensively expand the effectiveness of their 

safety countermeasures.  

6.1. Recommendations 

6.1.1. The Utility of the Framework can be expanded 

The framework can serve as a tool for identifying the transportation network-wide impacts of flood 

‘hot-spots’ and assessment of transportation-related flood mitigation alternatives. The framework 

can also be used to reveal potential vulnerabilities and to quantify the impacts of flooding on 

regional transportation networks. It can also directly support disaster planning and emergency 

preparedness measures in preparation for major events. Examples may include contingency 

planning for deployment of barricades, mitigation of site-specific critical facilities, and large-scale 

evacuation planning. The methodology can provide useful outputs on system-wide costs of flooded 

roads that can be used to inform regional mitigation efforts. Maps of past road closures caused by 

extreme events would help validate the approach and develop a suite of realistic scenarios for 

future response patterns of the transportation network. 

6.1.2. The proposed System should be implemented at Critical Locations 

For emergency personnel to take the necessary and prompt action to avoid driving onto flooded 

roadways, time is the most important consideration. With the help of real-time, very accurate 

remote sensing precipitation data, quantitative precipitation forecasts, and physically based 

distributed hydrologic models, it is now possible to anticipate flooding with tolerable accuracy and 
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lead times. The high-resolution flood prediction can forecast the depth and speed of water at every 

point along the road network. To promote quick action, predicted flood maps can be shared in real 

time over the Internet. The use of warning systems is particularly necessary in situations where 

there is a history of vehicles being trapped or washed away by rapidly rising water, where roadway 

geometry and/or other factors (such as vegetation or obstructions) reduce sight distance and 

visibility to the crossing, and where crossings are situated in remote areas where there may be a 

significant delay before the crossing. The high risk in Region 6 can be reduced by investment in 

roadway flood safety improvement, including early warnings, better road flooding signage, 

indicating alternate routes during flooding, and preemptive transportation protocols 

6.1.3. Flood Warning Systems should be continuously evaluated 

Future research should compile and organize the lessons learned from the communities that used 

flood warning systems to manage frequent flooding events, offer advice to local and state officials 

regarding regional oversight and coordination of flood mitigation measures, and produce useful 

guidance manuals that are specifically tailored for different communities in Region 6. The 

technical guidelines will help mitigate against future flooding events by serving as reference 

material for local government officials, county judges, and floodplain managers as well as meeting 

future needs in grant applications for flood mitigation. Together with emergency agencies, the 

necessary data will be compiled in a database that can be used by the public and all branches of 

government. 

6.1.4. Transportation Safety Studies should be shared with Decision Makers 

Officials and the general public can better comprehend flood threats by knowing the specifics of 

vehicle-related flood deaths if such studies are shared. Additionally, policymakers and engineers 

can more accurately predict the effects of floods and implement the necessary proactive mitigation 

strategies. By focusing on vulnerable groups, resources can be wisely allocated to increase the 

efficacy of education programs. Financial resources might be allocated to immobility issues and 

hazard communication for emergency preparedness.  

6.1.5. Educational Campaign Programs 

1. Community awareness efforts such as the “Turn Around Don’t Drown” campaign may 

have modify citizens’ flood risk perceptions and/or improve their risk awareness, leading 

to more conscious decisions during flooding. 

2. It is important to address the misconception that vehicles, especially light trucks and SUVs, 

can safely cross flood roads and creeks. There is also a need to emphasize prudent safe 

driving behaviors during hazardous weather conditions in teenager driver education 

courses and defensive driving courses. 

3. Transportation agencies and insurance companies should make efforts to alert the public 

about the flood hazards with the recorded cases of vehicle-related flood fatalities without 

releasing personal information. Auto manufacturers can participate in the education 

program to introduce vehicle performance in different weather conditions. 

4. Education programs should be tailored to male and young drivers. 
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