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Abstract

In this work we apply the two-dimensional Helmholtz/Hodge decomposition to
develop new finite element schemes for two-dimensional Maxwell’s equations. We
begin with the introduction of Maxwell’s equations and a brief survey of finite
element methods for Maxwell’s equations. Then we review the related fundamentals
in Chapter 2. In Chapter 3, we discuss the related vector function spaces and the
Helmholtz/Hodge decomposition which are used in Chapter 4 and 5. The new
results in this dissertation are presented in Chapter 4 and Chapter 5. In Chapter
4, we propose a new numerical approach for two-dimensional Maxwell’s equations
that is based on the Helmholtz/Hodge decomposition for divergence-free vector
fields. In this approach an approximate solution for Maxwell’s equations can be
obtained by solving standard second order scalar elliptic boundary value problems.
This new approach is illustrated by a P; finite element method. In Chapter 5, we
further extend the new approach described in Chapter 4 to the interface problem
for Maxwell’s equations. We use the extraction formulas and multigrid method
to overcome the low regularity of the solution for the Maxwell interface problem.
The theoretical results obtained in this dissertation are confirmed by numerical

experiments.

vii



Chapter 1

Introduction

1.1 Maxwell’s Equations and the Corresponding
Interface Problems

In this section we introduce several formulations of Maxwell equations, their bound-
ary conditions and interface conditions. It is mainly based on the books [60, 7, 49,

10].

1.1.1 Maxwell’s Equations in Integral Form
Consider an open surface S bounded by a closed contour C'. The first two Maxwell’s

equations are given in the following equations

%CE(a:,t)-dl:—%//SB(w,t)-dS (1.1.1)

and
d
?{H(x,t).cu:—//D<x,t)-ds+//J.ds, (1.1.2)
c dt ) Js s

where

FE = electric field intensity,

D = electric displacement,

B = magnetic induction,

H = magnetic field intensity,

and

J = electric current density.



Next, consider a volume V' enclosed by a surface S. Two other Maxwell’s equa-

tions are given by the following equations

/SD(:c,t)-dS:///vp(a:,t)dV (1.1.3)

/ B(x,t) - dS = 0, (1.1.4)

and

where

p = electric charge density in V.

Remark 1.1.1. The integral form of Maxwell’s equations (1.1.1)-(1.1.4) is valid

everywhere. We will use them to derive interface conditions.

1.1.2 Maxwell’s Equations in Differential Form

By applying Stokes’ theorem and Gauss’ theorem from calculus (cf. [57]), we can
convert Maxwell’s equations in integral form into Maxwell’s equations in differen-
tial form.

By applying Stokes’ theorem to (1.1.1) and (1.1.2), we get

//Van:t dS———//B as (1.1.5)
/Vmet :—//Eact dS+//J ds. (1.1.6)

Because of the arbitrariness of the surface S, equations (1.1.5) and (1.1.6) lead

and

to the following differential equations

V x E(x,t) = —%B(m,t) (1.1.7)

and



V x H(x,t) = %D(w,t) +J. (1.1.8)

By applying Gauss’ theorem to equations (1.1.3) and (1.1.4), we obtain

V-D=p (1.1.9)

and

V-B=0. (1.1.10)

By taking the divergence of (1.1.8), applying (1.1.9) and the vector identity (cf.
[57])

V- (V xwv)=0 for asmooth vector field v,

we obtain the conservation law

dp

— +V-J=0. 1.1.11
1.1.3 Constitutive Relations

A medium affects electromagnetic fields through three phenomena: electric polar-
ization, magnetic polarization, and electric conduction. Electric polarization leads
to the constitutive relation for the electric field. In most cases it can be expressed

as

D = ¢E, (1.1.12)

where D is called the electric flux density and € is called the permittivity of the
dielectric medium. Magnetic polarization leads to the constitutive relation for the

magnetic field. In most materials it can be expressed as

B =uH, (1.1.13)



where H is called the magnetic field intensity and g is called the permeability of

the material. The electric conduction leads to the final constitutive relation

J.=oE, (1.1.14)

where o is called the conductivity and J. is called the conduction current, which

can be regarded as a part of the total electric current.

1.1.4 Boundary Conditions and Interface Conditions

It is sufficient to consider interface conditions since the boundary of the domain is
a special type of interface. Without loss of generality, we only consider an interface
between two different mediums. Moreover, we assume a surface charge distribution
over the interface. The surface charge density is defined as the amount of charge
over a unit area on the surface. Applying (1.1.3) in a small cylinder with one of its
faces in medium 1 and the other in medium 2 and letting its thickness At — 0, we

obtain

Dl ~n1—§—D2‘n2 :p&s, (1115)

where p. ; denotes the surface electric charge density, n; (i = 1,2) denotes the
normal direction of the boundary of medium i, D; (i = 1,2) denotes the electric
displacement in medium i.

Using a similar strategy, we obtain

Bl~n1—i—BQ-n2:O, (1116)
H1XTL1+H2XTL2:J5, (1117)

and
El X 1y + EQ X Mg = 0, (1118)



where J; denotes the surface current density, E; and H; (i = 1,2) denote the
electric and magnetic field intensity in medium :. Here we define a notation to

simplify the description of the interface conditions.

Notation 1.1.2. For a vector field w and ' the interface between two mediums,

let us denote

[u-nllr:=u; -ny+uy-ny or [u-nl:=u; -n;+uy-ny on the interface T
and

[uxn]|r := ui Xxn;+usxny  or [uxn]:=u;xn;+uyxny on the interface T,

where m; denotes the normal direction of the interface with respect to medium 1.

Using this new notation, the above interface conditions can be written as

[D - n]lr = pe,s, (1.1.19)
[B - n]lr =0, (1.1.20)
[E x n]|r =0, (1.1.21)
[H x n]|r = J,. (1.1.22)

1.1.5 Time Harmonic Maxwell’s Equations

Now we derive time-harmonic Maxwell’s equations from the differential formulation
of Maxwell’s equations (1.1.7)-(1.1.10).

Assume that functions and vector fields in Maxwell’s equations have the form

E = R(E(x)exp(—iwt)), (1.1.23)
D = R(D(z)exp(—iwt)), (1.1.24)
H = R(H (x)exp(—iwt)), (1.1.25)
B = R(B(x)exp(—iwt)), (1.1.26)



J = R(J (x)exp(—iwt)), (1.1.27)
p = R(p(x)exp(—iwt)), (1.1.28)
where ¢ = \/—1 and R(-) denotes the real part of the expression in parentheses.

After substituting the relations (1.1.23)- (1.1.28) into (1.1.7)-(1.1.10), we get the

time-harmonic Maxwell system:

V x H=—iwD+J, (1.1.29)
V x E = iwB, (1.1.30)
V.-D=), (1.1.31)
V- -B=0. (1.1.32)

Combining the constitutive relations (1.1.12)-(1.1.13), we can eliminate D, B and

H from (1.1.29)-(1.1.32) and obtain the following equation:
V x (u'V xu) — weu = f, (1.1.33)

where uw = E and f = iwdJ.
Correspondingly, the interface conditions (1.1.19)- (1.1.22) imply the following

interface conditions for the solution w of (1.1.33):

[(e@) - n][r = pe,s, (1.1.34)

[(V x4) - -n]lr =0, (1.1.35)

[@ x n]|r = 0, (1.1.36)

[(u'V x @) x n]|r = J, (1.1.37)

where p,., = R(pe.sexp(—iwt)) and J, = R(J sexp(—iwt)).
1.1.6 Two-dimensional Maxwell’s Equations

In many cases, Maxwell’s equations can be reduced to a two dimensional problem.

For example, in the case the region where an electromagnetic field exists is a



cylindrical body, the cross section of the cylinder is orthogonal to z-axis, and the
electric field is orthogonal to z-axis and independent of the z variable, we could

write electric field and magnetic field as

FE = (Ex(x,y),Ey(any>>0)a

and correspondingly,

H = (0,0, H.(,1)).

In this situation, we will get a two-dimensional version of the equation (1.1.33):
V x (p'V x u) — weu = f, (1.1.38)

where u is a two-dimensional vector field.

1.1.7 Weak Formulation of Maxwell’s Interface Problems

In this section we derive the weak formulation for certain Maxwell’s interface prob-
lems. Let Q C R? be a polygonal domain and ©;,1 < j < J be polygonal subdo-
mains of ) that form a partition of Q (See Subsection 2.2.2 for more details). T

denotes the interface between (2;’s. Suppose that the vector function w satisfying
2 2 16 12 »
ulo, € [C(Q)"NIC(Q)]" 1<j<J
is the classical solution of Maxwell’s interface problem:

V x (uj_lv x u;) — k*euj = f; in the domain Q;,1 < j < J, (1.1.39a)

n X u =0 on the boundary 0%, (1.1.39b)
[n X u] =0 on the interface T, (1.1.39¢)
Vo(eu)=0 inQ;,1<j</, (1.1.39d)
[n-eu] =0 on the interface T, (1.1.39¢)



[1'V x u] =0 on the interface T, (1.1.39f)

where f; is smooth in the closed subdomain Q;,1 < j < J. We attempt to find
a proper weak formulation of the above interface problem (1.1.39). Let v be an

arbitrary vector function in R? satisfying
v, € [CHOQN] N Q)] 1<j<J

Taking the dot product on both sides of (1.1.39a) by the vector function vlq,,

integrating over the subdomain €2;, we have

/ V x (4 'V X u;) - vdx — / keju; - vdx = / f; - vdz. (1.1.40)
Q; Q Q;
Hence,
J J
Z(/ V x (4 'V x wj) - vdx —/ keju; - vdz) = Z/ f;-vdr. (1.1.41)
= Jo, Q, =
Using integration by parts, we have that
/ VX (p; 'V xu)-vde = / ujl(qu)'(va)dx—l—/ 15 (V xv;)-(vxn)ds.
Q; Q Q

J J

(1.1.42)

Therefore, (1.1.41) and (1.1.42) lead to

Z/ 1V><u]v k2€ju] dx_|_2/ NJ qu] vXMN dS—Z/ f vdz,
114&

or equivalently,

J
Z/ (1 'V xwj v — kKeju; - v dx—i—Z/ YV xu)- (v xn)ds
j=1 7% j=1
J
+/u1(V><u)~[v><n]ds):Z/ f; - vdz.
r j=1 7%

(1.1.44)



By the homogeneous boundary and interface conditions (1.1.39b), (1.1.39¢) and

(1.1.39f), (1.1.44) implies that

J J
Z/ﬂ (1 'V X uj - v — Keju; - v)de = Z/Q f; - vdz, (1.1.45)
j=17%; j=1 7%

or,

(W 'V xu, V x v) — k*(eu,v) = (f,v), (1.1.46)

where (-,-) denotes the summation of the Ly inner product on ©;,1 < j < J. A
natural choice of the variational space for the weak formulation (1.1.46) will be
Hy(curl; Q) N H(div"; Qs €).

So we are considering the weak formulation of Maxwell’s interface problem:

Find u € Hy(curl; Q) N H(div’; Q; €) such that
(0 'V xu, Vxv)—k*(eu,v) = (f,v) Vo € Ho(curl; Q)NH (div";Q;€). (1.1.47)

Remark 1.1.3. The formal definition of the space Hy(curl; Q) N H(div®;Q;e) will

be introduced in Chapter 3. For the moment, we just use it.

Remark 1.1.4. Here we consider Maxwell interface problem with homogeneous
interface conditions, which means we assume there are no interface charge and
interface current. The case where that there are interface charge and interface

current can be reduced to the problem we consider here.

1.2 History of Finite Element Methods for
Maxwell’s Equations and the Corresponding
Interface Problems

The natural choice of variational space for the variational problem of Maxwell’s
equations is Hy(curl; Q) N H(div?; Q; €). However, every conforming finite element
subspace in Hy(curl; ) N H(div®; Q;€) must be in [H(2)]¢ (d = 2 or 3), since it

consists of continuous piecewise polynomials, and the intersection of [H1(2)]¢ and



[Ho(curl; ) N H(div®; Q; €)] is a proper closed subspace of Hy(curl; Q)NH (div®; Q; €)
when the domain Q has re-entrant corners [49]. Therefore, the resulting finite
element space is not dense in Hy(curl; Q) N H(div°;;€) as the mesh size goes
to zero and hence the finite element solution may not converge to the exact
Hy(curl; ) N H(div®; Q; €) solution [49]. Instead, some people use the larger space
Hy(curl; ) as the variational space and solve the curl-curl variational problem for
Maxwell’s equations by H (curl)-conforming edge elements [39, 49, 51, 52|. More
recently, successful algorithms have been discovered for this curl-curl problem that
either solve a curl-curl and grad-div problem using nodal H* vector finite elements
complemented by singular vector fields [31], or solve its regularized version using
standard nodal H' vector finite elements [27]. Alternatively one can use noncon-
forming methods [15, 17, 18, 13, 19]. However, in the works we mentioned above,
the dielectric and magnetic permeability were assumed to be constant. In this dis-
sertation we will consider the case where the dielectric and magnetic permeability
are piecewise constant. The main challenge in this situation is that the regularity
of the solution could be much worse [28], and hence most of the existing methods
fail. In order to develop a successful algorithm for Maxwell’s equations in heteroge-
neous media, a new algorithm for the homogeneous media case was first proposed
in our work |[14], which is based on Hodge decomposition. Following this new
approach, an adaptive P; finite element method have been carried out in [16]. In
this dissertation, we further extend this new approach to the heterogeneous media

by exploiting extraction formulas and full multigrid methods [12, 21, 22, 23|.

10



Chapter 2

Fundamentals

2.1 Sobolev Spaces

In this section we review some basic facts about Sobolev spaces. They are based
on the references [1, 33, 34, 36]. First, let us define the notations for derivatives
and related function spaces. Assume u : Q@ — R, x € , where €2 is a bounded

open set in R?,  d =2 or 3.

Notation 2.1.1. A vector of the form a = (a1, e, -+ , ), where each component
is a nonnegative integer, is called a multi-index of order |a] =Y " | ;. Then we

denote

ololy(z
D%u(z) = TR .(a;an.
1 n

Notation 2.1.2. The following function spaces are denoted by D(Q), D(Q), C°(),

respectively:

D(Q) :={v : v is smooth with compact support in the domain Q},

D(Q) :={v|q : v|q is the restriction to Q of a smooth function v
with compact support in ]Rd},
C°(Q) == {v : v is continuous in the domain Q}.
We also need the concept of weak derivatives.

Definition 2.1.3. Suppose u is locally integrable in €2, and « is a multi-index. If

there exists a locally integrable function v such that

/gbvdm = (—1)l / uD%pdz Vo € D(Q),
Q

Q

then v is called the at® weak derivative of u, written as D%u = v.

11



Now let us define the Sobolev spaces.

Definition 2.1.4. Let k be a nonnegative integer. The Sobolev space H*() is

defined as follows:
H*(Q) = {u € Ly(Q) : D*u € Ly(Q), for all |a| < k}.
We define the subspace HEY(Q) of H*(Q) by
HE(Q) = the closure of D(Q) in H*(1).

Definition 2.1.5. Let s = k+ o, where k is a nonnegative integer, and 0 < o < 1.

The fractional order Sobolev space H*((2) is defined as follows:

— Du(y)|”
y|d+2s

H*(Q) = {u € Ly(Q) : u € H*(Q) and / / ’Dau\f)— dzdy < o,

Via| = k}.

Next, we will discuss some properties of the Sobolev spaces H*(Q).

Theorem 2.1.6. For any nonnegative integer k, H*(Q) is a Hilbert space with the
inner product
(u,v)gr = Z / D%y - D%vdx  Yu,v € H*(Q)
ja <k 7€
and the induced norm
lull ey = { 1D 7 0}
la|<k
For any positive number s = k+o, where k is a nonnegative integer and 0 < o < 1,

H*(Q) is a Hilbert space with the inner product

(U,U)Hs(g) _ (U,U>Hk(Q)+Z //QXQ (Dau(x) — Dau<y>)(DaU(fL’) — D%<y))dxdy

o |z =yl

12



To better understand H*(€2), we need a density property of H*(Q). It turns out
that the density property and many other properties of Sobolev spaces depend
on the regularity of the domain €). So let us first define a geometrical condition
on the domain which will be sufficient for our subsequent purposes whenever the

regularity of the boundary of the domain is needed.

Definition 2.1.7. Let 2 C R be a bounded open set with the boundary I'. Then
we say that the domain €2 has a Lipschitz continuous boundary if, for any point
2° € T, there exist » > 0 and a Lipschitz continuous function ~ : R~! — R, up to

relabeling and reorienting the coordinates axes if necessary, such that
QN B2, r) ={z € B’ r):xq>y(21, 20, ,79-1)},

where B(2%,r) = {z e R?: || —2°|| < r} and @ = (21,22, -+ , T4_1,4). Similarly,
we say that the domain Q has a C' continuous boundary if, for any point 2° € T,

there exist » > 0 and a C! continuous function 7 : R*! — R such that
QN Bz r)={z € B(a"r): x4 > y(x1, 02, -+ ,74-1)}.

Theorem 2.1.8. (Approximation by Smooth Functions on R?) Suppose that

has a Lipschitz continuous boundary, then D() is dense in H*(Q).

To keep things simple, we will only state special cases of the Sobolev embedding

theorems which will be needed in later chapters.

Theorem 2.1.9. (Embedding Theorem) Suppose that the domain @ C R? has a
Lipschitz continuous boundary. Then H'(Q) is compactly embedded in L,(Q)  for
q > 1, and H*(Q) is embedded in C*"(Q) for 0 <n <1, where C®"(Q) are the

Hélder spaces defined by

C*1(Q) = {u e C'(Q) : iig % < oo} (2.1.1)
x,yeé
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and their corresponding norms are defined by

u(z) — u(y)
||| conqy= rilgglu(x)l + sup M (2.1.2)

zFy. |z — y["
z,yef)

Theorem 2.1.10. (Trace Theorem) Suppose that Q@ C R? has a C' continuous

boundary I'. Then there exists a linear operator
T:HY Q) — L)
such that
Tu=ulr Yue D).
Moreover,
HTuHLQ(F) S C’]|uHH1(Q) Vu € Hl(Q),
where the constant C depends on €.

Remark 2.1.11. The trace theorem can be extended to polygonal domains. For

details, see the reference [36].

2.2 Regularity Results
2.2.1 Regularity of Elliptic Problems

In this subsection, we consider the regularity of elliptic problems with homogeneous
Dirichlet boundary condition and Neumann boundary condition in nonconvex do-

mains. The main results below are from the references [44, 36, 29, 50].

Suppose that  is a polygonal domain in R% Let c¢,c,--- ,cn, be the cor-
ners of €}, wy,ws, -+ ,wn, be the interior angles around those corners, and w =
max{wy,ws, -+ ,wn, }- For f € Ly(Q), consider the Dirichlet problem:

Find u € H}(Q) such that

—Au=f in the domain (2, (2.2.1a)

14



u=0 on the boundary 0. (2.2.1b)

The regularity of the problem (2.2.1) is stated in the following theorem (cf. [29, 36]).

Theorem 2.2.1. (Regularity of the Dirichlet Problem of the Poisson Equation)
Suppose that ) is nonconvex, i.e., w > w. Then the solution u of (2.2.1) can be
decomposed into a singular part us and a reqular part ugr, or equivalently, u =

ug + ug, where ug € H*(Y). Moreover, there exist constants ry, for w; > m, such

that
us = Z RS, (222)
wy>T
and
. T
—= w 1 —6
Sp=r1r lsm(wl You(r)

is a function defined with respect to the polar coordinates (r,0) around the corner
¢ and o(1) is a cut-off function which equals 1 near the corner and 0 away from
the corner. We also have the elliptic reqularity estimate

gz + D 1wl < Clfllzaw: (2.2.3)

wy>T

Under the same assumption for the domain 2 and f as in the Dirichlet problem,
we consider the Neumann problem:

Find u € H'(Q) such that

—Au = f in the domain €, (2.2.4a)
ou

o 0 on the boundaryo). (2.2.4b)
n

The regularity of the problem (2.2.4) is stated in the following theorem (cf.
129, 36)).

Theorem 2.2.2. (Regularity of the Neumann Problem of the Poisson Equation)

Suppose that S is nonconvex, i.e., w > w. Then the solution u of (2.2.1) can be

15



decomposed into a singular part us and a reqular part ug, or equivalently, u =

ug + ug, where ug € H?(Q). Moreover, there exist constants k;, for w; > 7, such

that
us — Z KRS, (225)
wy >
where
o m
frd W, —9
5= cos(Z ) ai(r)

is a function defined with respect to the polar coordinates (r,6) around the corner
¢ and o(r) is a cut-off function which equals 1 near the corner and 0 away from

the corner. We also have the elliptic reqularity estimate

lurllzz@ + Y kil < Cllflla@)- (2.2.6)

wy>T
Remark 2.2.3. The functions s; in (2.2.2) and (2.2.5) are called singular functions.

The constants «; in (2.2.2) and (2.2.5) are called stress intensity factors.

2.2.2 Regularity of Elliptic Interface Problems
In this subsection we discuss the regularity of elliptic interface problems. The main
references are |41, 42, 43, 46, 6, 32, 53, 54, 55, 56].

Suppose that € is a polygonal domain in R?, and Q;,1 < j < J, are polygonal

subdomains of €2 that form a partition of 2 (See Figure 2.1), i.e.,

le N Qj2 == @ fOI‘ jl 7£ jg and U;-le Qj = Q

Let f € Ly(2), p; be positive constants and p :  — R be a function defined by
plx)y=p; VreQ;1<j5<J
Denote the interface between the subdomains €; by I'.

16



FIGURE 2.1. Examples of the domain €.

Consider the following elliptic interface problem with Neumann boundary con-
ditions:

Find u such that

—pjAu=f in Q;,1<75<, (2.2.7a)
ou
o 0 on the boundary 01, (2.2.7b)
n
[u] =0 on the interface T, (2.2.7¢)
ou .
p—| =0 on the interface TI. (2.2.7d)
on
Here [u] denotes the jump of w and [u] = 0 on the interface I' means that wu is

continuous across [' and [p%} denotes

) ou ou
Pon| = P~ on_ p+8n+’

where p_ (resp. p, ) denotes the weight p in the subdomain Q_ (resp. ) and n_
(resp. ny) denotes the unit normal along the interface I' when we view I' as the
boundary of the subdomain Q_ (resp. €2, ).

Define the weak bilinear form a,(-,-) by
a,(u,v) = / pVu - Vudr Vu,v € H(Q).
Q

17



FIGURE 2.2. Polar coordinates for the Sturm-Liouville problems.

Then the weak form of the interface problem is:

Find u € H'(Q) such that,
a,(u,v) = (f,v) Vv e H(Q). (2.2.8)

Away from the vertices of €y, -+, Q, the solution u of (2.2.8) has the standard
regularity. In other words, u € H?(Q;5) for 1 < j < J, where ;5 is obtained from
2 by excising the closure of a disc D(p,d) (§ > 0 is arbitrary) around the vertex
p. At a vertex p common to more than one subdomain (i.e., an interface vertex),
the solution u of (2.2.8) is in general singular in the sense that it does not belong
to H?(D(p, §)N <) for those subdomains €; that have nonempty intersection with
D(p,6). Below we will discuss the details of the interface singularities.

The discussion of the interface singularities for (2.2.8) are divided into two cases
depending on whether the interface vertex p belongs to the boundary of §2 or the
interior of Q (See Figure 2.2).

Case 1. The interface vertex p belongs to the boundary of Q. Let (\g, ©f),
M =0t >0,k=1,23,--- be the eigenvalues and eigenfunctions of the Sturm-

Liouville problem around the interface vertex p:

0"(0)+X0(0) =0 forw; ;1 <O<wjand1<j<J, (2.2.9a)

O'(0+) = ©'(w—) =0, (2.2.9b)

18



O(w;j—) =0(w;+) for1<j<J-—1, (2.2.9¢)

p;i® (wj—) = pj410'(w;+) for1<j<J—1, (2.2.9d)

where the ©,’s satisfy

J wj
> 0,(0)01(0)p;db = 5. (2.2.10)
j=1%i-1

Moreover,

u— Y mr7O(0) € H(Q; N D(p,d)), 1<j<, (2.2.11)

op<l
where the k;’s are called stress intensity factors, which can be computed by an
extraction formula.

Case 2. The interface vertex p belongs to the interior of Q. Let (A\g, O), A\p =
02 >0,k=1,2,3,--- be the eigenvalues and eigenfunctions of the Sturm-Liouville

problem around the interior vertex p:

0"(0)+20(0) =0 forw; 1 <f<wjand1<j<J, (2.2.12a)
O(w;j—) =0(wj+) for1 <j<J—-1, (2.2.12b)

pi® (wj—) = pj410'(w;+) for 1 <j<J-—1, (2.2.12¢)
0(0+) = O(27—) = 0, (2.2.12d)

P10 (04) = p,0'(27—), (2.2.12e)

where the ©,’s satisfy

Z/ 0,(0)04(0)p;db = 5. (2.2.13)
j=17wi-1
Moreover,
u— Y K Ox(0) € (N D(p,5), 1<j<J (2.2.14)

o<l
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Qs Qs

FIGURE 2.3. The domain ) and its subdomains.
For the simplicity of presentation we will assume from here on there is only one
interface vertex p of the subdomains near which w is singular. In this case, let 0.,
be a cut-off function which equals 1 in a neighborhood of the interface vertex p.

Let s; be defined by

51 = 17'0:(0) 0cut, (2.2.15)

where \; = 07,1 > 1, are the eigenvalues of Sturm-Liouville problem at p and ©;’s

are the corresponding eigenfunctions. Let

and ugr = u — ug, then we have
U = ug + Ug,

where ug|o, € H*(Q;). Moreover, we have the elliptic regularity estimate

J
> lurlme) + Y 16l < Cllfl@- (2.2.16)
j=1

0<o<1
Example 2.2.4. Let us consider the Sturm-Liouville problem on an L-shape do-
main with vertices (0,0), (0,1), (-=1,1), (=1,-1), (1,—1), and (0,1), which is

partitioned into three squares Q, s and Q3 (See Figure 2.3). So the interface

_ 3n

> and wz = 27.

vertex is (0,0) and wy = 5, wy = 7, Wy
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Suppose that p; = p3 = 50, po = 1. Then oy = 0.126276410744819... is the posi-
tive square root of the first or smallest eigenvalue of this Sturm-Liouville problem,
and it is the only one which is less than one.

Actually, in this example, we can compute the first positive eigenvalue of the
corresponding Sturm-Liouville problem which is between 0 and 1 by the following

formula :

sin(20) = palprtpatps) (2.2.17)
2 pa(p1 + p2 + p3) + pips

where \; = o2,

Using the equation (2.2.17) with p; = 1 and p; = p3, we can construct a Sturm-
Liouville problem whose first positive eigenvalue is as small as we want. If p; =
ps = 50 and p; = 1, then o7 = 0.126276410744819... If p; = p3 = 350 and
p2 = 1, then o7 = 0.048066746316346... If p; = p3 = 1300 and p, = 1, then

o1 = 0.024962282535010...

Remark 2.2.5. Note that if py = pos = p3 = 1, then oy = %
2.3 Extraction Formulas

From Subsection 2.2.1, we know that the solutions of Poisson problems with Dirich-
let or Neumann boundary conditions on nonconvex domains have singular repre-
sentations u = ZO<W<1 K18, + ug, where ugp € H*(Q) and s; is determined by the
interior angle of the corner. The same is true for the elliptic interface problem.
The goal of this section is to develop formulas for computing the stress inten-

sity factors k; in different cases. These formulas are called extraction formulas

[5, 2, 30, 45, 61, 37, 50] and [41, 42, 32, 53, 54, 55].
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2.3.1 Extraction Formulas for Poisson Problems

First let us consider the Poisson problem with the Dirichlet boundary condition
on nonconvex domain. Suppose that {2 is a nonconvex polygonal domain and f €
Ly(€2). Consider the following Dirichlet problem:

Find u € H}(Q) such that

—Au = f in the domain €, (2.3.1a)

u =10 on the boundary 052. (2.3.1b)

From Subsection 2.2.1, we know that

U= Z K18 + UuR, (2.3.2)

Wy >

where ug € H*(Q) and s; has the form

re Sin(glé)gl (r)

around the corner. Here w; is the interior angle of the corner where w; > 7, (r,0)
are the local polar coordinates around the corner, and g; is a cut-off function which
equals 1 around the corner and 0 away from the corner.

In the following lemma, we derive the extraction formula for computing the stress

intensity factor ; in the equation (2.3.2). First, let us define a related function.

Definition 2.3.1. (Dual Singular Function) Given the singular function s =
r? sin(of)p(r) around a corner of a polygonal domain, we call the function s* =

r~7sin(of)o(r) the dual singular function.

Lemma 2.3.2. (Extraction Formula for x;) Let u € H}(Q) be the weak solution of
the Poisson problem of (2.3.1). Then the stress intensity factors k; in the singular

representation (2.3.2) can be computed by the extraction formula

1
K= — /(fs}" + uAs])dx, (2.3.3)
T Ja
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where

T m

= rwr gj —6
5= sin(Z0)a(r)
and
_ T e
= sin(—0) o (r).
i =% sin( 0o

Proof. Without loss of generality, we assume there is only one corner p; with the

interior angle w; > 7. Given any small § > 0, denote Ds = B(p;,d) N €2, where

B(p;,8) ={z € R? : ||z — pi|| < §}. Denote Qs = Q\ Ds.

For a small 9, consider the integral

Is :/ (fs; +ulAs))dz.
Qs

Using Lebesgue’s dominated convergence theorem, we can show that

6—0

lim I = /(fs}k + uAs))dz.
Q

We rewrite (2.3.4) as

Iy =1 + kI3,

where I? = fQ (Aug)s; + urAs;)dz and I = fﬂ (Asy)s; + s;As))dx.

After applying Green’s formula and a direct computation, we have

lim [5 =T.
6—0

So it remains to show that hn% 1'5 = 0.
5—

Applying Green’s formula again, we have

Here
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and
Ooup 0s;
I = / (— =5 +ur—2=)ds, (2.3.10)
4 005\ an ! 877,
where I's = 0B(p;, §) N Q.
Note that ug = 0 and s7 = 0 on the boundary 9 and 9Qs\ I's C 99, so I = 0.
For sufficiently small § , by a direct computation, we further simplify I3 in the

following way:

I =— /Fé(—%sl* + UR%)CLS =Ly + Lo, (2.3.11)
where
L = /M QR (T 0)5" 5 do (2.3.12)
o Or Wy
and
=" s sin(0)5~ =1 df. (2.3.13)
wy 0 W

Since ur € H?(), it follows from the Sobolev embedding theorem (cf. Theo-
rem 2.1.9) that

up € C%"(Q) forany 0<n<1 (2.3.14)
and hence there exists a positive constant C, depending only on n and €2 such that
lup(z) —ugr(y)| < Cylz —y|" for z,y e, (2.3.15)

which together with the fact that ug(p;) = 0 implies
lur(9,0)| < C,0". (2.3.16)

It follows from (2.3.13) and (2.3.16) that, for some positive constant C, depend-

ing only on 7 and (2,

Lo < Cl8" %, (2.3.17)
which implies that, if we choose an n so that n — wil > (, then

lim Ly = 0. (2.3.18)
§—0
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Let 2 = 22, Since ug € H*(Q), we have z € HY(Q) and z € H'(D;). Let

2(r,0) = z(6r,0), then 2 € H' (D).
By the Cauchy-Schwartz inequality, there exists a constant C' depending only

on wj such that
wy
|/ MR G (T 0)dp| = |/ 59sm 0)do) = |/ 1081n -0)db|

< Cll2] Loy

which together with Theorem 2.1.10 implies
“i auR . ™ R

|/ —81n(59)d9| < C|\ 2| a1py)- (2.3.19)

0 !

Since z € H'(D;), by Theorem 2.1.9, we have 2 € L,(D;) forany ¢ > 1.

Using Holder’s inequality, we obtain the estimate
||2||L2(D1) S Oq‘|2||Lq(D1) for q > 2, (2320)

where Cj is a positive constant depending only on ¢ and wj.

A direct computation implies

1 wy
0y = [ ] oprasar
// |z|%rdOdr

= el
and hence
12l 2,00 = 0722 2,05). (2.3.21)
Similarly, we derive
|2 11y = | 2|2 () (2.3.22)

Combining (2.3.12), (2.3.19)- (2.3.22), we obtain that, for any given ¢ > 2,

’ _m _ 2 _m
|Li| < Cq(51 “I ‘IHZ’HL(,(D(;)+51 “t|2| 1 (Dy)); (2.3.23)
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where C’; is a positive constant depending only on ¢ and w;. It follows from Theo-
rem 2.1.9 and (2.3.23) that, for a small ¢,
;1T 2
Li| < O =71 ||2]| i ey. (2.3.24)
Choose ¢ such that % <1—Z, then (2.3.24) implies

lim L, = 0, (2.3.25)
6—0

which completes the proof. O
Next we consider the following Poisson problem with Neumann boundary con-
dition:

Find u € H'(Q) such that

—Au = f in the domain €2, (2.3.26a)
ou

o 0 on the boundary 0f2. (2.3.26b)
n

From Subsection 2.2.1, we know that

u = Z K1S; + ug, (2.3.27)

wy>T

where ur € H?(Q2) and s; has the form

o cos(%@)gl(r)

around the corner. Here wj is the interior angle of the corner where w; > 7, (r,0)
are the local polar coordinates around the corner, and g; is the cut-off function
which equals 1 around the corner and 0 away from the corner.

In this case, the corresponding dual singular functions are of the form

s* =177 cos(c0)o(r)
around the particular corners of the polygonal domain. Then the extraction for-

mulas for this problem are formulated in the following lemma.
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Lemma 2.3.3. (Extraction Formula for x;) Let u € H'(Q) be the weak solution of
the Poisson problem (2.8.26). Then the stress intensity factors k; in the singular

representation (2.3.27) can be computed by the extraction formula

1
K= — /(st‘ + uAs])dx, (2.3.28)
T Ja

where

s = e cos(wll@)gl(r),

s = r cos(%@)gl(r).

Proof. Without loss of generality, we assume there is only one corner p; with the
interior angle w; > 7. Given any small § > 0, denote Ds = B(p;,d) N 2, where
B(p;,0) = {x € R? : ||z — pi|| < }. Denote Qs = Q\ Ds.

For a small 9, consider the integral

Is :/ (fs] +uls])d. (2.3.29)
Qs

Using Lebesgue’s dominated convergence theorem, we can show that
lim I5 = /(fs}‘ + uAs))dx. (2.3.30)

We rewrite (2.3.29) as

Is = I + w13, (2.3.31)

where I? = fQ (Aug)s; +urAsy)dz and I3 = fQ (Asp)sf + s;Asf)d.

After applying Green’s formula and a direct computation, we have

lim 19 =r. (2.3.32)
_>

So it remains to show that hn% I‘S = 0.
5—

Applying Green’s formula again, we have

8uR sy
I’ = — * SUyds = IS + IP. 2.3.33
P= [ i s = B (2.3.3)
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Here

Oup sy
= (—=s —1)d 2.3.34
I= [ i g (2.3.34)
and
8uR s}

5 :/ — s+ up—=L)ds, 2.3.35
4 695\1"5( on l R an) ( )

where I's = 0B(p;, §) N Q.
Note that %‘—f = 0 and aig = 0 on the boundary 09 and 0Qs \ I's C 99, so

I =0.
For sufficiently small § , by a direct computation, we further simplify IJ in the

following way:

8uR sy
I=— [ (=g “ds=L,+ L 2.3.36
3 /r(;( 87’Sl+uR8r)8 1+ Lo, ( )
where
L1 = /wl QR s (054 df (2.3.37)
Y or Wy o
and
T “i _ T
Ly=— ug cos(—H0)d “1db. (2.3.38)
Wi Jo l

The regular part ug at the vertex p; may not be zero for the Neumann problem.

But we can rewrite (2.3.38) as

[ / [(uR—uR(pl))cos(ie)+uR(pl)cos(19) do.  (2.3.39)
Wi 0 Wi Wi
Since [ cos(Z-0)df = 0, we have
T = [ T
Lo="16"% | (a " 0)do 2.3.4
=2 /0 (i) cos " 0)d. (2.3.40)

where g = ur — ugr(p;).
Now we can repeat the argument in the proof of Lemma 2.3.2 to prove lims_,o L1 =

0 and limg_m LQ = 0. O
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2.3.2 Extraction Formulas for Elliptic Interface Problems

In addition to the assumptions for the domain €2 in Subsection 2.2.2 we further
assume for simplicity the domain €2 has only one interface vertex p. From Subsec-
tion 2.2.2, we have, for the solution of the interface problem (2.2.8), the following

singular function representation

u = Z k18] + UR, (2.3.41)

where up € H*(Q;),1 < j < J and s has the form r710;(#)g,(r) around the
interface vertex p. Here {¢?,0;},0 < 0; < 1 are the first few eigenvalues and
eigenfunctions of the corresponding Sturm-Liouville problem (2.2.9) or (2.2.12),
(r,0) are the local polar coordinates around the interface vertex p, and g; is the
cut-off function which equals 1 around the interface vertex p and 0 away from p.

In this case, the dual singular function of s; = r70,(6)0,(r) is defined by s; =
r=710;(0)oi(r). We have the following lemma on the extraction formula for the

stress intensity factors of the interface problem (2.2.8).

Lemma 2.3.4. (Extraction Formula for x;) Let u € H*(Q) be the weak solution
of the elliptic interface problem (2.2.8). Then the stress intensity factors k; in

(2.3.41) can be computed by the extraction formula

1
K= — /(st‘ + puls))dzx. (2.3.42)
201 Jo
Proof. Given any small § > 0, denote Ds = B(p,d) NS, where B(p,d) = {x € R?*:
|z — p|| < 6}. Denote Qs = Q\ Ds and Qs; = Q5 N Q.

For a small 9, consider the integral

Is = / (fs] + puls])dz. (2.3.43)
Qs
Using Lebesgue’s dominated convergence theorem, we can show that
lim I5 = /(st‘ + pulAs;)dx. (2.3.44)
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We rewrite (2.3.43) as

Is=10 419, (2.3.45)

where I? = fQ p(Aug)s;i + purAs;)dr and IS = Ky fQ p(Asp)st +
0<0’l/<1

psyAsy)da.

Applying Green’s formula on each subdomain of €25 and using the fact that

d—l =0 and 2 l = 0 on the boundary 02, we have
a / 8 ’
I3 = Z —Iil// il Sl + psp il )ds. (2.3.46)
aDs or
0<op<1

When 4 is small, (2.2.9)-(2.2.10) (or (2.2.12)-(2.2.13)) and the definition of s; and

s; imply

/ (— —SZIS*+ S _;7)618— EJ /ej (— RG]
/ = Yoy /
oDs P 5 L PSi . ] P01 19

=101
+ pj(—0'1>5glligl@l/@l>d9

= —5l/_l(O'l + O-l’)(;l’l (2347)

and hence I = 2k;0;. So it remains to show that hH(l) P =0.
*>

Applying Green’s formula on €5; for 1 <j <.J, we have

Os}
I = ds =13 + I. 2.3.48
Z/BQM pja 51+pJURa)S + ( )
Here
8uR sy
I’ = —p——s Lyd 2.3.49
D= [ oSt + oy (2.3.49)
and
J
Oup s
I = / (—p—=—s; + pup—L2)ds, (2.3.50)
4 ; aﬂg,j\Fg 8n ! R@n
where I's = 0B(p,d) N
7 *

Since 88“3 and

are zero on the boundary 02, [paa“R] and [,0%2} are zero on

the interface T, it follows that IJ = 0.
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For sufficiently small §, we further simplify I3 in the following way:

Ooup s
L=— [ (—p==s Bds = Ly + L 2.3.51
3 /Fé(p8r81+puR8r)S 1+ Lo, ( )
where
/ i 8uR
L= ——0,0' " df 2.3.52
1 z/p g, (2.352)
and
J 0,
LQ = 0] Z/ pjuR@l5_‘”d9. (2353)
j=1 701
The regular part ug at the interface vertex p may not be zero, but we can rewrite
(2.3.53) as
J 0,
Ly = oy Z/ [pj (ur —ug(p))©,0~ %" + pjuR(p)@lé_‘”} do. (2.3.54)
j=1 701

Since ©; (0) = —0?0,(f) for 0, , <0 <6;and 1 < j < J, we have

J 'y J 0;
J 1 J 1"
o Z/ pjur(p)©0~%d0 = ——5"ug(p) Z/ p;©, do (2.3.55)
j=1 /-1 a1 170
which, together with the conditions (2.2.9b) and (2.2.9d) (or (2.2.12¢) and (2.2.12¢)),
implies
J 0;
oy Z/ pjur(p)©;6~7tdf = 0. (2.3.56)
j=170i-1
Therefore,
J 0;
Ly=0a) / piliR©6~71do, (2.3.57)
j=1 v 0i-1

where g = ur — ug(p).

0 w Y 0, -~ Y

Denote LLj = f9j]71 Pj 83:2 6151 'df and LQJ = 0] fejil pjuR@l5 tde.

Since @ip € H*($;) (cf. Subsection 2.2.2) and 222 = 2n ¢ H1(Q);), we can repeat

the argument in the proof of Lemma 2.3.2 to prove (lsir% L;; =0 and (lsir% Ly; =0
— —

for 1 < j5 < J. Hence lim L; =0 and lim Ly, = 0. O
§—0 6—0
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It is not difficult to extend the extraction formula in Lemma 2.3.4 to the non-
homogeneous interface problem with the Neumann boundary condition.
In addition to the assumptions for the problem (2.2.7), we further assume there

are functions gr and hr on I' such that there exists a function G' on Q which

satisfies
Glo, € H*(y) for 1<j <,
p% =gr on the boundary 052,
on
[G] =0 on the interface I,
and

[pa—G] = hr on the interface I'.
on

Now we consider the nonhomogeneous interface problem with the Neumann
boundary condition:

Find v € H(Q) such that

—piAu=f inQ;1<5<, (2.3.58a)
p% = gr on the boundary 052, (2.3.58b)
n
[u] =0 on the interface T', (2.3.58¢)
ou .
Pan| = hr on the interface I (2.3.58d)
n

By our assumptions, © = u — G is the solution of the following homogeneous

interface problem with Neumann boundary condition:

p% = 0 on the boundary 0%, (2.3.59b)
[a] = 0 on the interface I, (2.3.59¢)

0 on the interface I'. (2.3.59d)

| — |
)

|Qv

3| <

—_
I
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So Lemma 2.3.4 implies that the stress intensity factors x; for the problem

(2.3.58) can be computed by

1
ki=— [ ((f 4+ pAG)s] + p(u — G)As))dx. (2.3.60)
20'1 Q

By Green’s formula and a similar argument in the proof of Lemma 2.3.3, (2.3.60)

implies that

1
K= — {/ (fs] + puls])dx —|—/ phrs]ds +/pgpsfds} : (2.3.61)
200 |Jo Bl9) r
In summary, we have the following lemma.

Lemma 2.3.5. (Extraction Formula for ; of the Nonhomogeneous Interface Prob-
lem with the Neumann Boundary Condition) Let u € H'(Q2) be the weak solution
of the elliptic interface problem (2.3.58). Then @ = u — G has the singular func-
tion representation (2.3.41) and the stress intensity factors k; in (2.3.41) can be

computed by the extraction formula (2.5.61).

2.4 Finite Element Methods

In this section we discuss some basic facts about finite element methods. The basic
references are 20, 25|.

We will use the Poisson problem with the Dirichlet boundary condition as a
model problem.

Suppose that ) is a polygonal domain and f € Lo(2). Consider the following
Dirichlet problem:

Find u € H'(Q) such that

—Au = f in the domain €, (2.4.1a)

u =10 on the boundary 0f2. (2.4.1b)
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Its weak formulation is to find v € HJ(f2) such that
a(u,v) = (f,v) Vv e Hy(Q), (2.4.2)
where
a(u,v) = / Vu - Voudz.
Q

The well-posedness of the problem (2.4.2) is guaranteed by the following Lax-

Milgram theorem (cf. [33]).
Theorem 2.4.1. Let H be a Hilbert space with inner product (-,-), and let B(u,v)
be a bilinear form on H x H,u € H,v € H such that

|B(u, v)| < Cillullzl|v]la, (2.4.3a)

| B(u, u)| > Collull3, (2.4.3b)

with Cp > 0, Cy > 0.
Let f € H', i.e., [ is a bounded linear functional on H. Then there exists a

unique ug € H such that
B(ug,v) = f(v) Yv e H. (2.4.4)

We want to construct a finite dimensional subspace of H}(Q) and solve the
equation (2.4.2) on that subspace. This can be carried out by a conforming finite

element method. Now we introduce the basic terminology of this method.

Definition 2.4.2. (Triangulation) Let Q2 be a polygonal domain. A triangulation
I, of Q is a subdivision consisting of triangles with the property that no vertex
of any triangle lies in the interior of an edge of another triangle. Denote h =

maxregz, diam 7.
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Definition 2.4.3. (Quasi-uniform) If a family {.7,} of triangulations of Q2 satisfies

the following condition: there exists a positive constant C' such that

min{diam Br : T' € 7,} > Ch (2.4.5)
for all h, where By is the largest ball inscribed in 7" and h = maxpeg, diam 7T,
then we say this family is quasi-uniform.

Definition 2.4.4. (P, Finite Element Space on Z,) Let Vj, be the space of con-

tinuous piecewise P; polynomials on the triangulation .7, or,
Vi = {v € C°Q) : vz is a first order polynomial for any T € .%,}.
Let ‘O/h be the subspace of V}, defined by
Vi ={v €V : v]gg = 0}
or
Vi = Vi N H(Q).

Remark 2.4.5. Vi, is a subspace of the space H{(£2), so we refer to the corresponding

finite element method as a conforming finite element method.

Once the finite element space is chosen (Vh in our case), the discrete version of
the weak problem (2.4.2) is:

Find wu,, € ‘O/h such that
a(up,v) = (f,v) for all v € V. (2.4.6)

Because of the Lax-Milgram Theorem 2.4.1, the well-posedness of the equation
(2.4.6) can be easily verified.
From (2.4.2) and (2.4.6), we have the following Galerkin orthogonality (|20,

Proposition 2.5.9]) for u — wy:

a(u —up,v) =0 for veV,. (2.4.7)
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Next, we consider the error between the two functions u and wuy,. First, we con-
sider Céa’s lemma (|20, Theorem 2.8.1]), which is a consequence of (2.4.7). It shows

that the approximation u, to u is quasi-optimal.

Lemma 2.4.6. (Céa’s Lemma) Suppose u and uy, are the solutions of (2.4.2) and
(2.4.6). Then there exists a positive constant C' independent of the subspace ‘O/h
such that

| — up|| 1) < C inf |Ju — v|| g1
vEV)

Because of Céa’s lemma, we can focus on finding a specific function v € V},
where [[u — v||g1(q) can be estimated in terms of h. That specific function is the
interpolant of u on Vj. Let II, : C°(Q2) — Vj, be the nodal interpolant operator

defined by

IIv=v at all the vertices of 7},.

Then we have the following interpolation error estimate. In the case of a convex

polygon, this is a standard result. A proof of the general case is given in Appendix

A.

Theorem 2.4.7. (Interpolation Error Estimate) Let u be the solution of (2.4.2).

Let ci,¢a,- -+, cn,, be the corners of Q and wy,ws, -+ ,wn, be the interior angle of
the corners. Let w = max{wy,wa, -+ ,wn,} and
7r
f = max{1, —}.
w

If 86 =1, we have
||u — Hhu|lL2(Q) + h\u — HhU|H1(Q) S ChQHuHIp(Q), (248)
where the constant C' is independent of the mesh size h. If B < 1, we have

lu = Tull Ly) + hlu — Tyulgi) < CAP (lupllme@ + Y ki), (24.9)

Wi >T
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where the constant C' is independent of the mesh size h.

Remark 2.4.8. Based on the regularity result for u (Theorem 2.2.1), we know that
u € C°(Q) and hence II,u is well-defined.
Applying Theorem 2.2.1, Lemma 2.4.6 and Theorem 2.4.7, we have the following

error estimate.

Theorem 2.4.9. (H' Error Estimate for u;,) Let u be the solution of (2.4.2) and uy,

be the solution of (2.4.6). Let ¢y, ca, -+ -, Cng, be the corners of Q and wy,ws, -+ , Wy,
be the interior angle of the corners. Let w = max{wy,wa, -+ ,wn,} and
T
= max{l, —}.
5= max{1, 7}

Then we have

lu = wnll @) < CRONL |l oo, (2.4.10)
where the constant C' is independent of the mesh size h.

Remark 2.4.10. The above discussion can be generalized to the elliptic interface

problem.

We now consider the error estimate for © — uy, in the Ly norm. To estimate

| — un||£o(e2), We use a duality argument. Let w be the solution of

—Aw=e in Q, (2.4.11a)

w=0 on the boundary 01, (2.4.11b)

where e = u — uy,. The variational formulation of this problem is: find w € H} ()
such that

a(w,v) = (e,v) Vv € Hy(9). (2.4.12)

Therefore

Ju— UhHi(g) = (u— up, u — up)
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= a(w,u — up)
= a(w — Hpw,u —up) (by Galerkin orthogonality (2.4.7))
S C’Hw — thHHl(Q)HU — uh||H1(Q)

< OWlu—wpllm@llel.@ (by (2.2.3) and (2.4.8)).
By Theorem 2.4.9, we have |lu — up|| 1) < ChP|| f]|L,(0)- Therefore,

lu = unllzo@) < CH||fl|Loce).

Thus we have proved the following theorem.

Theorem 2.4.11. (L, Error Estimate for wy,) Let u be the solution of (2.4.2)
and uyp, be the solution of (2.4.6). Let cy,ca,--- ,cn, be the corners of Q and
Wy, wa, -, WN, be the interior angle of the corners. Let w = max{wi,ws, - ,Wng }

and
T
= 1, —1L.
[ = max{ ’w}

Then we have

lu = unl Loy < CR*| fll Lo (2.4.13)

where the constant C' is independent of the mesh size h.

2.5 Multigrid Methods
In this section we discuss multigrid methods. The main references are [38, 10, 64,
11, 24, 20].

We consider the model problem (2.4.2). To approximate the solution u, we con-
struct a nested sequence of triangulations 77, %, -, %, -+ over the polygonal
domain by the following procedure. Suppose that 77 is given, then the triangu-

lation 7 is obtained by connecting the midpoints of the edges of the triangles of
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the coarser triangulation .7;,_; for k > 1. On the triangulation .7, we define the

finite element space Vi, C V = H}(Q):
Vi = {v € C°(Q) : v|r is a first order polynomial VT € Z} N Hy(9).

It is easy to see that V;,_; C V.
First we introduce the basic terminology for multigrid methods.

We define a mesh-dependent inner product (-, ) on Vi by

Nk

(v, W)k = hi, Z v(pi)w(ps),

i=1
where {p;}*, is the set of internal vertices of 7.
=1

The linear operators Ay : Vi, — V} are defined by
(Apv, W) = a(v,w) Yv,w € V.
The operators Qy, : L2(Q2) — Vj, are defined by
(Qru, V) = (u,v) Yu € Ly(Q),v € V4.
The discrete weak problem (2.4.6) is then equivalent to
Apug = F, (2.5.1)

where Fj, = Qif.
The coarse-to-fine operator [,’j_l : Vi1 — V, is defined to be the natural injec-
tion, or equivalently,

If w=v Yv€Vi,.

The fine-to-coarse operator I,’j‘l : Vi = Vi_1 is defined to be the transpose of

IF |, or equivalently,

(f/fflv,w)kq = (v, [ w), Vv € Vi,v € Vi
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Algorithm 2.5.1. (The k' Level Tteration) MG(k,zo, Fy) is the approzimate
solution of the equation

Akz = Fk

obtained by the k™" level iteration with initial quess z,. Let Ry : Vi, — Vj be an
approximation of A,:l and Ry = A]'.

For k=1, MG(1, 2o, F}) is the solution obtained from a direct method. In other
words,

MG(l, Zo,g) = RlFl-

For k> 1, MG(k, zo, F) is obtained recursively in three steps.

Presmoothing Step. For 1 <1 < my, let
2 =21 + R (Fy — Apzi—q).

Error Correction Step. Let Fj,_q := I,’j_l(Fk — Agzm,) and go = 0. For 1 < i <p,
let

q; = MG(/f - 17%717Fk71)~

Then we define
_ k
Zmi4+1 = Fmy + ]k—lq}o'

Postsmoothing Step. For my +2 <1 <my+mqg+ 1, let
21 =z1-1+ Ri(Fy — Apzi1).
Then the final output of the k™ level iteration is
MGk, zo, F) = Zmy+mat1-

Here p=1 orp=2. When p =1 1t is called a V-cycle method. Whenp = 2 it is

called a W -cycle method.
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When applying the k' level iteration to (2.5.1), we use the following approach.
We take the initial guess to be IF @y 1, where @ is the approximate solution
already obtained for the equation A,_juy_1 = Fj_;. Then we apply the k™ level

iteration r times.

Algorithm 2.5.2. (The Full Multigrid Algorithm) For k =1, 4y = R, F}.

For k > 2, the approximate solution uy is obtained recursively from

k k
Uy = Ikz—luk—b

uf = MG(k,up_y, Fy), 1<1<r,

k

fbk = U,..

For simplicity, we consider the convergence of the one-sided W-cycle method,
i.e., p =2, m; = m and ms = 0 in the algorithm 2.5.1. Then we have the following

convergence result (cf. [20, Theorem 6.5.9]).

Theorem 2.5.3. (Convergence of the k' Level Iteration for the One-sided W-

Cycle) For any 0 <~y < 1, m can be chosen large enough such that
|z = MGk, 20, Fy) | ) < 7M1z — 20llmn),  fork=1,2,....

Remark 2.5.4. Similar convergence results also hold for other W-cycle methods.

The convergence of the full multigrid method is a consequence of the convergence

of k™ level iteration (cf. |20, Theorem 6.7.1])

Theorem 2.5.5. (Full Multigrid Convergence) If the k'™ level iteration is a con-
traction with a contraction number v independent of k and if r s large enough,

then there exists a constant C > 0 such that
|y — || 1) < Chg‘u’HHﬁ(Q)a

where # = max{1, T }.
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Chapter 3

Vector Function Spaces and
Helmholtz/Hodge Decompositions

The numerical methods we develop in this dissertation are based on the Helmholtz/

Hodge decomposition for vector fields. Since Maxwell’s equations involve the di-

vergence operator and curl operator, it is easy to see that Helmholtz/Hodge de-

composition can play a role in the study of Maxwell’s equation. In this chapter, we

review the Helmholtz/Hodge decomposition for two-dimensional vector fields, since

we will focus on the two-dimensional Maxwell’s equations. The main references are

[14, 35, 49].

3.1 Definitions and Properties of the Vector
Function Spaces H(div;$2) and H (curl; Q)

Let Q C R? be an open set with a Lipschitz boundary I'. The vector function

spaces naturally related to the variational formulation of Maxwell’s equations are
H(div,Q) and H(curl,Q).
Definition 3.1.1. Let u = (u; (21, T2), uz(z1, T2)) belong to [La(Q)]?. We say that

V -u € Ly(Q) if there exists a function v € Ly(Q2) such that

(Ua ¢) = —(’LL, V(b) V(b S D<Q)

We will then take V - u top be v. The vector function space H(div;<Q) is defined
as follows:

H(div; Q) = {u € [Ly(Q)]? : V -u € Ly(Q)},

with the norm

el raivey = {llwllLy0 + IV - wlg, @}
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Definition 3.1.2. Let u = (u; (1, T2), uz(z1, T2)) belong to [Lo(Q)]*. We say that

V x u € Ly(Q) if there exists a function v € Ly(2) such that

(v,0) = (u,V x ¢) V¢ € D(Q),

where V x ¢ = (22, —22) We then define V x u to be v. The vector function
8x2 8951

space H(curl; Q) is defined as follows:
H(curl; Q) = {u € [Ly(Q)]? : V x u € Ly(Q)},
with the norm

el reursey = {[wllf, @ + IV x wlF 0.

First we discuss the properties of the spaces H(div; Q).
Theorem 3.1.3. (cf. [35, Theorem 2.4.]) The space D(Q)? is dense in H(div; ).

Because of the following theorem (cf. [35, Theorem 2.5]), the normal trace of

H(div; §2) can be defined.

Theorem 3.1.4. The mapping ¥, : v — v -n|r defined on D()? can be extended
by continuity to a continuous linear mapping, still denoted by ~,, from H(div; Q)

into H='/2(T"), the dual space of H'?(T).

We call v,,v the normal trace of v on I" and it is denoted by v-mn. We also denote
(7,v)(9) for any ¢ € HY/?(T') and y,v € HV2(T) by < v -m, ¢ >r.
Because of Theorem 3.1.4, we have a generalized versions of Green’s formulas

(|35, Corollary 2.6] ).

Corollary 3.1.5. Let v € H(div;Q) and ¢ € H'(Q), then

(v, Vo) + (V- -v,0) =<v-n,0 >p. (3.1.1)
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If w € H(Q) and Au € Ly(Q), then Vu is in H(div; ). Therefore Corol-

lary 3.1.5 implies the following corollary.

Corollary 3.1.6. Let u € H'(Q) and Au € Ly(Q). Then 3 € H~V*(T) and

(Vu, Vu) + (Au,v) =< Ou

5,V >r Vo€ HY(Q).

Definition 3.1.7. Let Hy(div; ) denote
Ker(vy,) ={u € H(div;Q?): u-n|pr =0}.

Next, we will discuss the properties of H (curl; 2). Note that, in the two-dimensional
case, the function v = (vy,v2) € H(curl;2) if and only if the function w =
(—wvg,v1) € H(div; Q). Therefore, all the properties of H(div;{2) have similar ver-

sions for H(curl; Q) (cf. [35]).
Theorem 3.1.8. The space D(Q)? is dense in H(curl; ().

Let us denote the tangential vector of I' by 7 such that n and 7 obey the right-

hand rule. Then we have the following extension theorem (|35, Theorem 2.11]).

Theorem 3.1.9. The mapping v, : v — v - T|r defined on D(Q)? can be extended
by continuity to a continuous linear mapping, still denoted by ., from H (curl; Q)

into H='/2(T"). Moreover, the following Green’s formula holds:
(Vxv,0)— (v,VX0¢)=<vv,¢> Vv H(url;Q),¢c H(Q).

Remark 3.1.10. We call v, v the tangential trace of v on " and it is denoted by v-T.

We also denote (v,v)(¢),for any ¢ € HY2(T) and v,v € H~Y3(T), by < v-T, ¢ >r.

Definition 3.1.11. Let Hy(curl; Q) denote

Ker(v,)={u € H(curl;Q) : w-7|r =0}.
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The following lemma (|35, Lemma 2.4|) gives us a criterion for Hy(curl; Q).

Lemma 3.1.12. A vector function f of H(curl;$) belongs to Ho(curl;Y) if and
only if

(F,Vx¢)=(Vxfe)=0 VYoecH ()
3.2 Two-dimensional Helmholtz/Hodge

Decompositions

In this section we extend the following classical Stokes” Theorem.
Theorem 3.2.1. If a C' vector field has a vanishing curl in a simply-connected
region of R?, then this vector field is the gradient of a function.

If a C! vector field has a vanishing divergence in a simply-connected region of

R2, then this vector field is the curl of a function.

Let us first state a characterization for two-dimensional divergence free vector

fields.

3.2.1 Characterization of Two-dimensional Divergence Free
Vector Fields and Curl Free Vector Fields

We will not restrict ourselves to a simply-connected domain here. Instead, the
domain can be multiply-connected.

Denote by I'y the exterior boundary of 2 and by I';,1 < ¢ < p, the other
components of the boundary I'. Then we have the following characterization for

two-dimensional divergence free vector fields.

Theorem 3.2.2. (cf. [35, Theorem 3.1.]) A vector field v € [Ly(Q)]* satisfies
V.v=0 and <v-n1>=0 for 0<:<p
if and only if there exists a stream function ¢ € H'(Q) such that:

v=V X ¢,
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where V X ¢ = (g—ai, —g—i). Moreover ¢ is unique up to a constant in H ().

Remark 3.2.3. If the domain € is simply-connected, then v = V x ¢ if and only if
V.v=0.
Similarly, we have the following characterization for two-dimensional curl-free

vector fields.
Theorem 3.2.4. A vector field v € [Lo(Q))? satisfies:
Vxv=0 and <v-7,1>p,=0 for 0<i<p
if and only if there exists a potential function ¢ € H*(Q)) such that
v = Vo.

Moreover ¢ is unique up to a constant in H* ().

3.2.2 Helmholtz/Hodge Decompositions

There are many different ways to decompose a vector field into a divergence free
field and a curl free field. Here, we introduce several Helmholtz/Hodge decompo-
sitions for [Lo(Q)]?, Ho(curl; Q), H(div’; Q) and H(div®; Q) N Hy(curl; ), respec-
tively.

We first introduce an orthogonal decomposition for the space [Lo(Q)]? with re-
spect to weighted inner product that will be used in Chapter 4. As in Subsec-
tion 3.2.1, the domain () is multiply-connected. First we introduce a weighted
inner product on the space [Ly(2)]2.

Let € be a bounded positive function in Q. Define the weighted Lo(€2;¢€) inner
product (-, )z, on [L2(2)]? by
(v, W) 1y = /Qe(v cw)dr  Yv,w € [Ly(Q)).
For distinction we use the notation [Lo(€2; €)]? for the space [Lo(Q2)]? equipped with

the weighted inner product (-, ), (0.)-
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Definition 3.2.5. The subspace H(div";€;€) is defined by
H(div®; Q2 ¢) = {v € [La(Q)]? : V - (ew) = 0}.
Definition 3.2.6. The space H(€2;¢) is defined by

H(QLe)={pc H'(Q) :(eVp,Vv) =0 Yo Hy(Q);

Aoy =0; ¢

r, = a constant for 1 <1 < p}.

We have the following decomposition theorem for [Ly(£2; €))%

Theorem 3.2.7. With respect to the weighted Lo(2;€) inner product, we have the

decomposition:
[Lo(Q o) =Ko Ha G, (3.2.1)
where
K=c'VxH(Q) ={'Vx¢:peH(Q),
G=VH(Q)={Vé:¢e H(Q)},
and

H=VH(Qe)={Vo:pecH(Qe)}.

Moreover, with respect to the same weighted inner product, we have the decompo-
sition:

H(div’;Q;¢) = K @ H. (3.2.2)
To prepare for the proof of Theorem 3.2.7, we first prove a few lemmas.

Lemma 3.2.8. We have an orthogonal decomposition
[Lo(Q;€)]? = H(div"; Q) @ G

with respect to the weighted Lo(£2;€) inner product.

47



Proof. Let v € [Ly(Q))°. Then

v € H(din%;Q; )
iff
(ev, Vo) =0 Vo € D(Q)
iff
(ev, V) =0 Vo e Hy(Q).

In other words, H(div®;€;¢) is the orthogonal complement of G = VH{ ()
with respect to the weighted Ly(€2;€) inner product.

Next we will show that G = VHJ(Q) is closed in [Ly(Q; €)]?. First we note that
it is equivalent to show G = V HJ () is closed in [Ly(Q)]?, since the norms induced
by the Ly(Q2) inner product and the weighted Lo (£2; €) inner product are equivalent
on the space [Ly(2)]2.

Let ¢, be a sequence in HJ () such that the sequence V¢, converges to a
function v in [Ly(Q)]? and hence V¢, is a Cauchy sequence in [Ly(€2)]?. Because
of Poincare’s inequality (cf. Proposition (5.3.5), [20]), ¢, is a Cauchy sequence in
H}(O) and hence the sequence ¢, converges to a function ¢ in H}(€2) and hence
V¢, converges to a function V¢ in [Ly(Q)]%. So v = V¢, where ¢ € HI(Q).
Therefore G = VH}(Q) is closed in [Ly(Q)]?.

Since G = VH}(Q) is closed in [Ly(€;¢)]* and H(div";Q; Q) is the orthogonal

complement of G = VH(Q) in [Ly(£2;€)]?, we have the orthogonal decomposition
[Lo($2;6)]? = H(div®;Q;¢) ® G

with respect to the weighted Lo(€2;€) inner product. O
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Lemma 3.2.9. Let ¢ € H'(Q) such that the trace of ¢ on T; is a constant v; for

0 <i<p. Then we have
(Vx, V() =0 Ve H(Q). (3.2.3)
Proof. Let v =V x 1. By Theorem 3.2.2, we have
<v-n,1>p=0 V0<i<np. (3.2.4)
So Corollary 3.1.5 and (3.2.4) imply that

(V x4, V() = (v, V() = Z<v n,( >r,

=0

1=0

This lemma leads to the following corollary.

Corollary 3.2.10. We have VH}(Q) C Ho(curl; 2).

Proof. Obviously, VH;(Q2) C H(curl;)). Lemma 3.2.9 implies that for any ¢ €
Hy (),
(V x4, V() =0=(¢,VxV() Ve H(Q). (3.2.5)

So V¢ € Hy(curl;Q) by Lemma 3.1.12 and hence VH}(Q) C Ho(curl; Q). O
Lemma 3.2.11. Let ¢ € H(Q;€). Then

890

€S —ds=0 for 1<i<p (3.2.6)

Ty

if and only if p = 0.
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Proof. Tt is sufficient to show that if ¢ € H(Q; €) and ¢ satisfies (3.2.6), then ¢ = 0.

By Corollary 3.1.5 and Definition 3.2.6, we have

(€Vp, Vi) = Z<6 =0 >,

dp
on’

So ¢ = 0, since the domain 2 is connected and ¢ = 0 on I'. m

Lemma 3.2.12. We have an orthogonal decomposition
H(div’;Q;e) =K@ H
with respect to the weighted Ly();€) inner product.

Proof. Lemma 3.2.9 implies that K and H are orthogonal to each other under the
weighted Ly(€2;€) inner product. H is also closed, since it is a finite dimensional
space. Next we will show that K is closed in [Ly(€; €))%

First we note that it is equivalent to show K is closed in [Ly(Q)]?, since the
norms induced by the Ly(2) inner product and the weighted Ly(€2; €) inner product
are equivalent on the space [Ly(€2)]%. Furthermore, it is equivalent to show that
V x HY(Q) is closed [Ly(Q)]2.

Now let ¢, be a sequence in H'(Q) such that the sequence V x ¢,, converges to a
function v in [Ly(92)]? and hence V X ¢, is a Cauchy sequence in [L,(2)]?. Because
of Friedrichs’ inequality (cf. [20, Lemma 4.3.14]), it follows that the sequence ¢,,— ¢,
is a Cauchy sequence in H'(2) and hence converges to a function ¢ in H'(f2), where
bn = ﬁ J dnda. Hence V x ¢, = V X (¢, — ¢,,) converges to the function V x ¢
in [Ly(Q)]?. So v = V x ¢, where ¢ € H'(Q). Therefore V x H'(Q) is closed in
[La(2)]%.

The remaining task of the proof is to show that H(div’;Q;¢) = K + H.
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Let v be a vector function in H(div®; Q;¢€), there exists a function ¢ € H such

that

0
<€a—w71 >r,=<ev-n,1>p VI<i<p,
n

since by Lemma 3.2.11, the mapping defined by

<eVy-n,l>p

<eVy-n,1>p,

<eVy-n,1>r,

is an isomorphism from H(2;€) to RP.

Now V - (ev — eVyp) =0 and
< (ev —€Vyp)-n,1>p,=0 for 1<i<p.

Therefore, by Theorem 3.2.2, there exists ¢ € H'(Q) such that ev —eVp = V X ¢.

Let v; = ¢ 'V x ¢, then we have
v=1v;+ Vo,
where v; € K and ¢ € HG. O]

Proof. (Proof of Theorem 8.2.7) Using Lemma 3.2.8 and Lemma 3.2.12, we have

Theorem 3.2.7. O

Theorem 3.2.7 leads to the decomposition for Hy(curl; ) and Hy(curl;2) N

H(div; Q;€) in the following corollaries.

Corollary 3.2.13. (Decomposition for Hy(curl; Q2)) Suppose that v € Hy(curl; <),

then there exist a unique v and ¢ such that
v=v+ Vo,

where © € Hy(curl; Q) N H(div’; Q;€) and ¢ € HL(Q).
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Proof. Since v € Hy(curl; Q) C [LQ(Q)]2, by Theorem 3.2.7, there exists a unique

v € H(div’;Q;¢) and p € HJ(Q) such that
v=v+ V.

Note that Vo € Hy(curl; ) by Lemma 3.2.9 and v € Hy(curl;2), which imply

that v € Ho(curl; ). O

A similar argument as in the proof of Corollary 3.2.13 leads to the following

decomposition.

Corollary 3.2.14. (Decomposition for Hy(curl;Q2) N H(div; Q;€)) Suppose that

v € Ho(curl; Q) N H(div; Qs €), then there exist a unique v and ¢ such that
v=1v+ Vy,
where © € Hy(curl; Q) N H(div’; Q;€) and ¢ € HL(Q). Moreover ¢ satisfies

(€Vp, Vo) = (V- (ev),¢) Vo € Hy(Q).
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Chapter 4

Maxwell Equations in Homogeneous Media

4.1 Introduction

For simplicity, we assume that ¢ = 1 and p = 1. We will follow the notation in-
troduced in Subsection 3.2.2 but with e suppressed. Let  C R? be a polygonal
domain, I'y the exterior boundary, I';, - - - I',, the components of the interior bound-
ary, and a be a constant. Then the weak formulation of the Maxwell’s equations
is:

For f € [Lo(Q)]?, find @ € Hy(curl; Q) N H(div’; ) such that
(Vxu,V xv)+al@v) = (f,v) Yve Hylcurl; Q)N H(div’;Q).  (4.1.1)

We assume that —a is not a Maxwell eigenvalue so that (4.1.1) is uniquely solvable.

Remark 4.1.1. For a <0, (4.1.1) is exactly the weak form for (1.1.38). For a > 0,

(4.1.1) is related to the time-domain Maxwell’s equations.

We will use the Helmholtz/Hodge decomposition from Chapter 3 to reduce
(4.1.1) to standard second order scalar elliptic boundary value problems. The pre-

sentation in this chapter follows [14] closely.

4.2 Equation for £ =V x u and ¢
Because of the Helmholtz/Hodge decomposition for H (div’; Q) (See Theorem 3.2.7),

we can reformulate the problem (4.1.1) as coupled elliptic problems.

Theorem 4.2.1. Suppose that the solution w € Hy(curl; Q) N H(div’; Q) is de-

composed as in Theorem 3.2.7,
u=V x ¢+ Vo, (4.2.1)
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where ¢ € H(Q) and ¢ € HY(Q) satisfies (¢, 1) = 0. Then ¢ is determined by
(Vxo,Vx)= () Ve H (D) (4.2.2)

and the constraint

(6,1) =0, (4.2.3)
where the function & =V x @ € HY(Q) is determined by
(VX &V ) +a(6,) = (f,V x ) Vip € H(Q) (4.2.4)
when o # 0, and by (4.2.4) together with the constraint
(£,1)=0 (4.2.5)

when € is simply connected and o = 0. Moreover, when p > 1 and o # 0, ¢ can

be determined by
1
(V. Vi) = —(£,Vy) ¥ € HQ). (4.2.6)
To prove Theorem 4.2.1, we need the following lemma concerning with the strong

form of (4.1.1).
Lemma 4.2.2. The solution w of (4.1.1) satisfies
Vx(Vxu)+au=Qf

in the sense of distribution, where Q : [Ly()]? — H(div®; Q) is the orthogonal

projection.

Proof. Let ¢ € [D(Q))? be a C™ vector field with compact support in €. So
¢ € Hy(eurl;Q), Q¢ € H(div?; Q) and ¢ — Q¢ € VH(Q2) by Lemma 3.2.8 .
Because of Corollary 3.2.10, we have ¢ — Q¢ € Hy(curl;2) and hence Q¢ €

Hy(curl; 2). Therefore,

Q¢ € Ho(curl; Q) N H(div’; Q). (4.2.7)
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Furthermore, we have

V X (€= Q¢) =0, (4.2.8)
since V x (VH}(Q)) = {0}, and for w € H(div’; ), we have
by Lemma 3.2.8 and the fact that ¢ — Q¢ € VH}(Q).
Using (4.1.1), (4.2.7), (4.2.8) and (4.2.9), we have
(Vxu, V() +aw ) =(Vxu,V x(Q¢+(C—QQ))
+ a(u, Q¢+ (¢ — QQ))
=(V x4,V xQ¢) + a(u, Q¢)
=(f,Q¢) = (Qf . C),

which completes the proof. O
Remark 4.2.3. Lemma 4.2.2 implies that ¢ = V x u € HY(Q) and
Vxé+au=QFf. (4.2.10)
Now we are ready to prove Theorem 4.2.1.

Proof. (Proof of Theorem 4.2.1) First, let us justify (4.2.2) by using (4.2.1), Lemma
3.1.12 and Lemma 3.2.9. Let ¢ € H'(Q) be arbitrary. We have
(Vx o, Vx)=(Vxop+Vp,Vxy)=(u,V xp)
= (V xu,¢) = (& ¢)
To justify (4.2.6) when p > 1, we take v = V¢ in (4.1.1) where ¢ € H(),
and replace u by the Hodge /Helmholtz decomposition (4.2.1). Then we obtain the

equation

a(V x ¢+ Vo, Vi) = (f, Vi),
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which implies (4.2.6) by Lemma 3.2.9.

Now let us justify (4.2.4). Let ¢» € H*(Q) be arbitrary. Since V x ¢ € H(div’; Q2)

by Lemma 3.2.2, we have

(f, Vx9)=(QFf, V x)

=(Vx&+au,V x1) (by the equation (4.2.10))

=(Vx&V X))+ a(V xau,y) (by Lemma 3.1.12)

= (V XV x )+ o, 1),

which gives (4.2.4). The constraint (£,1) = 0 follows immediately from Lemma

3.1.12.

]

Note that H(€2) is a finite dimensional space with the basis {¢1, 92, -+, ¢p},

where ¢;, 1 <14 < p satisfies that

(Piyro = 07

QOZ'|1"J. = 51’]’ for 1 Sj < D,
ie.,

(Vi, Vo) =0 for v e Hy(Q),
90i|F0 =0,
@ilp, = 05 for 1< 5 <p,

therefore ¢ in (4.2.6) can be written as

p

Z Ci®i,

=1
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(4.2.11D)

(4.2.11c)

(4.2.12a)
(4.2.12b)

(4.2.12¢)

(4.2.13)



where the coefficients ¢;’s are determined by the symmetric positive-definite system

p

1
> (Vi Vipr)er = E(f’ Vr) forl<k<np. (4.2.14)

i=1

Next we discuss the relation between the solvability of (4.1.1) and the solvability

of (4.2.4) under the condition that —a(7# 0) is not a Maxwell eigenvalue.

Lemma 4.2.4. For a # 0, the problem (4.1.1) is uniquely solvable if and only if

the problem (4.2.4) is uniquely solvable.

Proof. Let « be nonzero. Since H'(Q) is compactly embedded in Ly(€) by the
Rellich-Kondrachov theorem [1] and Hy(curl; Q) N H(div®; Q) is compactly embed-
ded in [Lo(€)]* by a result of Weber [62], we can apply the Fredholm alternative

[33] to consider only the homogeneous equation corresponding to (4.1.1)
(Vxw,V xv)+alw,v)=0 Yve Hy(curl; Q)N H(div®; Q), (4.2.15)
and the homogeneous equation corresponding to (4.2.4)
(Vxn,Vx)+am)=0 Y H(Q). (4.2.16)

By the Fredholm alternative (cf. [34, Theorem 5.11]), it suffices to show that
(4.2.15) has a nontrivial solution w € Hy(curl; Q) N H(div";Q) if and only if
(4.2.16) has a nontrivial solution n € H* ().

Suppose there exists a nontrivial w € Hy(curl;2) N H(div®; Q) that satisfies
(4.2.15). Let n = V X w, then n € H'(Q2) and (4.2.16) holds as a special case of
(4.2.4) where f = 0.

Suppose there exists a nontrivial € H'(Q) that satisfies (4.2.16). Since o # 0,
we deduce from (4.2.16) that (n,1) = 0. Let w = V X p, where p € H'(Q) is

defined by the Neumann problem

(V xp, Vx)=(nv) ¢eH (Q), (4.2.17a)
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(p,1) = 0. (4.2.17b)
Then Theorem 3.2.2 and (4.2.17a) imply
n=Vxuw (4.2.18)

and w € H(div’;Q). Note that w € H(curl;Q) by (4.2.16). Since (4.2.17a) can

also be written as
(w,V x 1) =(V xw, ) YoeH(Q),

we have w € Hy(curl; Q) by Lemma 3.1.12. Therefore, w € Hy(curl; Q)NH (div®; Q).
It is easy to see that w is nontrivial. To check that it satisfies (4.2.15), we take
an arbitrary v € Hy(curl; Q) N H(div°; Q) and write its Hodge decomposition (cf.

Theorem 3.2.7) as
v=Vx¢+ Vo, (4.2.19)

where ¢ € H'(Q2) and » € H(Q). Note that, by Lemma 3.2.9, we have
(Vxn,Vp)=0 and (w,Ve)=(V xp,Vp)=0. (4.2.20)
It follows from Lemma 3.1.12, (4.2.16), (4.2.18), (4.2.19) and (4.2.20) that

(Vxw,Vxv)=mnVxv)=(Vxn,v)
=(Vxn,Vx¢+ V)

=(V xn,V x¢)
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i.e., w satisfies (4.2.15).

It follows from Theorem 4.2.1 and Lemma 4.2.4 that we can solve (4.1.1) by
the following numerical procedure under the assumption that —« is not a Maxwell
eigenvalue.

Step 1. Compute a numerical approximation £ of £ by solving (4.2.4) when a # 0,
and by solving (4.2.4) with the constraint (£,1) = 0 when Q is simply connected
and o = 0.

Step 2. Compute a numerical approximation ¢ of ¢ by solving (4.2.2) under the
constraint (¢, 1) = 0, where ¢ is replaced by €.

Step 3. Compute numerical approximations ¢y, -+, @, of ¢1,--- , ¢, by solving
the boundary value problems in (4.2.11).

Step 4. Compute numerical approximations ¢y, - - - , ¢, by solving (4.2.14), where

P11, Pp are replace by 9517 o a@p'

Step 5. The numerical approximation @ for w is given by
5 p
W=V xo+ )Y &V
i=1

4.3 A P, Finite Element Method

In this section, we use a P finite element method to demonstrate our approach.
Let .7, be a quasi-uniform simplicial triangulation of €2 with mesh size h and
Vi, € HY(Q) be the P, finite element space associated with 7, (See Section 2.4).

For a # 0, the Pj finite element method for (4.2.4) is to find &, € V}, such that

(V x &,V x0v)+a,v) =(f,Vxv) YveV,. (4.3.1)
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For a > 0, the problem (4.3.1) is symmetric positive-definite and hence well-
posed. It is also well-posed for @ < 0 provided —« is not a Maxwell eigenvalue and
h is sufficiently small (cf. Lemma 4.4.2).

Note that when a # 0 (4.3.1) implies

(&,1) = 0. (4.3.2)

When  is simply connected and o = 0, &, € V}, is determined by (4.3.1)
together with the constraint (4.3.2). It is a well-posed problem because of the

Poincare-Friedrichs inequality (cf. [20])
[vllzo@) < C(0, 1] + IV x vlrye) Vo€ H(Q). (4.3.3)
The P, finite element approximation ¢ of ¢ is then determined by

(V X ¢p, V X U) = ({h,v) Yv € Vp,, (434&)

(¢n,1) = 0. (4.3.4D)

The problem (4.3.4) is well-posed because of (4.3.2) and (4.3.3).
For the multiply connected domain  (i.e., p # 0), we have the approximation

wp, of  as follows:

p
on = Z Ci,n Vi,

i=1
where ; ;, is determined by
(Vin, Vo) =0 Yo eV, =V,nHQ), (4.3.5a)
Pinlr, =0, (4.3.5b)
Yinlr, =0, for 1 <k <p, (4.3.5¢)
and the ¢;;’s are determined by
- 1
Z(VQOHL, Vgokﬂh)c@h = a(f, V@k,h) fOI‘ 1 S k? S p- (436)
i=1

60



Finally, we approximate u by the piecewise constant vector field u,; defined by

p
up =V X ¢y + Z Cin Vi (4.3.7)

i=1

4.4 Convergence Analysis

In this section, we use standard techniques to analyze the P; finite element method
in Section 4.3, since (4.2.2), (4.2.1) and (4.2.6) only involve standard second order
scalar elliptic problems. Before doing this, let us introduce the related interpolation

error estimates which are similar to the one introduced in Section 2.4.

Let the index [ be defined by

™

= min(1 in — 4.4.1
B =min(1, min wz)’ (4.4.1)
where wy,ws, ..., wy, are the interior angles at the corners of 2.

We have the following estimate for the solution of (4.3.5):
10 = il Lagy + hls — Wil iy < CR'P, (4.4.2)

where I, is the nodal interpolation operator for the P; finite element.
Similarly, for the solution ¢ of the Laplace equation with homogeneous Neumann

boundary condition, we have

1€ = TGl Loy + 2IC = Tl i) < Ch*™*|gll Ly, (4.4.3)

where ¢ is the right-hand side function.
We begin by comparing &, and £ = V x u. The following result is obtained by

using (4.2.4), (4.3.1), (4.4.3) and a standard duality argument.

Lemma 4.4.1. For a > 0 (general Q) and o = 0 (simply connected ), we have

1€ = €ll ooy < O inf 1V 5 (€ = ). (1.4.4)
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Proof. Combining (4.2.4) and (4.3.1), we have the Galerkin orthogonality
(VX (€—¢&),Vxv)+a((lE—¢E,),v)=0 for vel. (4.4.5)

From (4.4.5) we conclude that

((€=&),1) =0 (4.4.6)

when a # 0. If @ = 0 (simply connected 2), then, from (4.2.5) and (4.3.2), we
have the equation (4.4.6).
Since &,&, € HY(Q), it follows from (4.4.6) and Poincaré-Freidrichs inequality

(cf. [20, (10.6.1)]) that

1€ = &nllza) < Cl = &l (4.4.7)

where the positive constant C' depends only on the domain €.
Now we estimate |{ — &,|m1(). Let v € Vj,. It follows from (4.4.5) and (4.4.7)

that

€ = Enlino) + alle = &nllT ) = (V X (€= &),V X (€ = &) + al€ — &, & — &)
=(Vx(=&), VX (£—v)+al—&,{—0)

< ClE = &lm @l —vla @),

which implies

1€ =&l < ClE—vlm@ YveV,. (4.4.8)

We prove an error estimate for £ — &, in the Ly norm by a duality argument.

Let ¢ be the solution of
(V x(,Vxv)+al,v) =(e,v) Yve H(Q), (4.4.9)

where e = £ — &,. When o = 0, (4.4.9) is uniquely solvable up to an additive

constant (cf. [20, Section 5.2]) and we assume its solution ( satisfying the constant
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(¢,1) = 0. It follows from (4.4.3), (4.4.5), (4.4.7), (4.4.8), and (4.4.9) that

1€ = &ullZ ) =(e,€ = &)
=(V X,V x(§=&))+alC.€—&)
=(V x (( = I1¢), V x (§ = &) + a(C — ¢, & — &)
<C(I¢ = nllmr@) + 1€ = Malllzo ()
X (1€ = Enla @) + 1€ = Eull o)
<SOR?|€ = &nll Lo |€ — &nlmio (4.4.10)

<CLP||€ = &l Lo() Inf [€ — v]mi(0),
veVy
which implies (4.4.4). O

In the case o < 0, we have the following result by using the approach of Schatz
[58], where the required well-posedness of the continuous problem (4.2.6) is guar-

anteed by Lemma 4.2.4.

Lemma 4.4.2. The discrete problem (4.5.1) is well-posed for o < 0, provided —«
s not a Maxwell eigenvalue and h is sufficiently small. Under these conditions the

estimate (4.4.4) remains valid.

Proof. First we establish an a priori estimate. Assume that the solution &, of the
discrete problem (4.3.1) exists. Then we apply the same duality argument as in

the proof of Lemma 4.4.1 to obtain the estimate (cf. (4.4.10))
1§ = &nll o) < CRPIE = &nlaey- (4.4.11)
Let v € Vj,. Tt follows from (4.4.5) and (4.4.7) that

1€ = &l () + allE = &nllT ) = (V X (€= &), V x (£ =) + a(é =&, € —v)

< ClE = &lm@l — vla o),
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which together with the estimate (4.4.11) implies that
1§ — fh\}gql(g) < C(€ = &lm@)lé — vlm@) + P*P|€ — fhﬁ{l(g))- (4.4.12)
Hence, for h sufficiently small, we have
1€ = &nlm) < ClE —vlm@) Yv eV, (4.4.13)

which together with (4.4.11) implies the estimate (4.4.4).

If &, is the solution of (4.3.1) corresponding to f = 0, then & = 0 is a solution
of (4.3.1) and it follows from (4.4.4) that &, = 0 (let v = 0 in (4.4.4)). Hence the
homogeneous discrete problem has a unique solution and, since V}, is finite dimen-
sional, this implies that the discrete problem (4.3.1) is well-posed for h sufficiently

small. O

Under the assumption f € [Ly(Q2)]%, we have the following stability estimate

from the well-posedness of the continuous problem:

1€l @) < CllFllza)s (4.4.14)

which together with (4.4.4) immediately implies the following corollary.

Corollary 4.4.3. Under the assumptions in Lemmas 4.4.1 and 4.4.2, we have

1€ = &nll o) < CR|| il o)

Next we compare ¢;, and ¢.

Lemma 4.4.4. For h sufficiently small, we have

IV % (¢ = dn)llza) < C (R nf [V x (€ = 0)lzo@) + If [[V < (¢ = )l|Lo@)-

(4.4.15)
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Proof. Since (£,1) = 0, we can define én € Vi to be the unique solution of

(V X ¢n, V x0) = (£,0) Vv eV, (4.4.16a)

(¢n,1) = 0. (4.4.16b)
It follows from (4.3.4) and (4.4.16) that
(V X (o — dp), V x0) = (£ —&,v) YueV, (4.4.17)
and (¢, — ¢n, 1) = 0. We then obtain, by (4.3.3), (4.4.4) and (4.4.17),
IV % (0 = én)l[Z0) = (€ = &ns On — 1)

< )€ = &l ol dn — Pnll o)

<Cn’ Inf |V x (& = 0)]l@ IV % (&n = )l o),
which implies
IV 5 (B = 60l < OB inf [V x (€~ ) | (4.4.18)
Comparing (4.2.2 ) and (4.4.16a), we have the Galerkin orthogonality
(Vx(p—p),Vxv)=0 Yvel,
which implies that, for v € V},
IV x (¢ — (;h)H%Q(Q) =(Vx(¢—9),Vx(¢—0))
<NV % (6= ola@ IV % (¢ = ) a(e)
and hence
IV % (6~ du)laen < i IV % (6= ) e (14.19)
Since ¢, € Vj,, the estimate (4.4.19) implies
IV % (6 = on)ll o) = Inf [V x (¢ = v)|L(@- (4.4.20)

The estimate (4.4.15) follows from (4.4.18) and (4.4.20). O
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Note that (4.2.2), (4.2.3) and (4.4.3) imply

nf |V x (¢ = 0)llza@ < IV % (¢ =~ i) La@) < CHP)|€ll Loy (44.21)

Hence, under the assumption that f € [Ly(2)]?, we can use (4.4.14), (4.4.15) and

(4.4.21) to obtain the following bound:

IV % (¢ — on)llLo) < CHP || F1l Lo (4.4.22)

The next result follows from a standard argument using (4.4.2) and Galerkin

orthogonality.

Lemma 4.4.5. We have, for 1 <i <p,
pi — inlma) < CRP. (4.4.23)

Proof. Combining the weak formulation of (4.2.11) for ¢; and (4.3.4), we have the

Galerkin orthogonality
(Vi —¢in), Vv) =0 Yo e V,NHi(Q) (4.4.24)
and hence

i — %Oi,h‘qul(Q) = (V(pi = ¢in), V(pi —))

< |oi — Ginlm@lei — vlm@ Yo € Vi N Hy(Q),

which implies that

i — Vi < inf i — < lp; — i . 4.4.25
i — Cinlrr (@) < uevhlmHg(Q)w Vi) < e hil H1(0) ( )

By the interpolation error estimate (cf. Section 2.4) and (4.4.25), we have the

estimate (4.4.23). O

Now we compare ¢;;, and c;.

66



Lemma 4.4.6. For h sufficiently small, we have
lci — cin] < CRP|| Fflliay for 1<i<p. (4.4.26)
Proof. First we observe that (4.4.23) implies
(. Vi) = (F, Vi)l < ChP| fllrye  for 1 <i<p. (4.4.27)

Furthermore, since ¢; — ¢;, € Hg(Q) for 1 < i < p, (4.2.12) implies that, for

1<4,5 <p,

(Vei, Vi) = (Vin, Voin) = (Vei, Vi) + (V(ein — i), Vo)
— (Voin, Vojn) +(Vei, V(ejn —¢)))

= (V(ei = ¢in), V(gjn — ¢;))
and hence, in view of (4.4.23),
[(Vi, Vi) — (Vein, Vipin)| < CR* for 1 <4, j <p. (4.4.28)
We can rewrite (4.2.14) and (4.3.6) as
Ac=b and A,c,=0b,

where ¢ € R? (resp. ¢, € RP) is the vector whose j-th component is ¢; (resp.
cin), A € RP*P (resp. A, € RP*P) is the matrix whose (4, j)-th component is
(Vo;, V) (resp. (Vin, Vi), and b € RP (resp. b, € RP) is the vector whose
J-th component is o™ (f, V;) (resp. o= (f, Vp,n)).

Note that
[Blloc < lal™ (max V@il a@) I fla@ < Cllf ), (4.4.29)
and the estimates (4.4.27)-(4.4.28) are translated into

16— bulle < CR?||fllza@ and  ||A — Aplle < CHP. (4.4.30)
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The estimate (4.4.26) follows from the identity
c—ch=A""b-A'b,=A"(b-b,)+A (A, - A)A, (b, —b) +])
and (4.4.29)-(4.4.30). O

Putting all the lemmas together, we can deduce the following error estimate for
Up,.
Theorem 4.4.7. When o >0 in (4.1.1), we have
i — i oy < O£l zagen, (1.4.31)
where B is defined by (4.4.1). When o« < 0 and h sufficiently small, we also have
(4.4.81).

Proof. From (4.4.29), we have that the solutions ¢y, o, -+ , ¢, of (4.2.14) satisfy
lci| SO\ fllzy for 1 <i<p. (4.4.32)
From (4.2.1), (4.2.14) and (4.3.7), we have that

p
|t — n| L) <C|d — Onlma) + Z |Civi — Cintpinl (@)
=1

p
<Cl¢ — dulm@) + > (lei — cinllpiln @) + leinlloi — winla @)
=1

(4.4.33)

p
<Clo — dnlmr () + Z ci = cinl (@il 1) + @i — Qinla@)
=1

p
+ Z cilloi — @inlm (@)
=1

The estimate (4.4.31) follows from (4.4.22), (4.4.23), (4.4.26), (4.4.32) and (4.4.33).

]
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FIGURE 4.1. A uniform mesh on the L-shaped domain
Remark 4.4.8. In the case where ¢; = 0 = ¢;, for 1 <14 < p, it follows from (4.4.15)

and (4.4.33 ) that

[ — ]| L,i0) < C(R7 inf [V x (€ = 0)|| Ly + f [V % (¢ = 0)]|L,0)-
veVy, veVy

4.5 Numerical Results
In this section we present the results of several numerical experiments that confirm
the theoretical results obtained in Section 4.4.

In the first set of experiments, we examine the convergence behavior of the
numerical scheme on the L-shaped domain (—1,1)2\ [0,1]* with uniform meshes

(See Figure 4.1). The exact solution is chosen to be

W=V x (723 cos(§9 -~ T)(a), (45.1)

where (r,0) are the polar coordinates at the origin and ®(z) = (1 — z3)?(1 — 23)2.

It has the correct Maxwell singularity at the reentrant corner. We solve (4.1.1) for
a = —1,0and 1, with f = V x (V x u) + au € H(div’; Q). The results are
tabulated in Table 4.1.

Note that the convergence of u, to u is approaching the order of 5 = 2/3, which
is predicted by Theorem 4.4.7. On the other hand, since ¢ = V x4 behaves like r%/3
at the origin, the order of convergence for &, according to (4.4.4) is (2/3)+(2/3) =

4/3, which agrees with the observed order of convergence.
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h HVXi"_thLQ Order h ”"o"_uoh”LQ Order
£z, £z,

a=—1
1/8 3.57E-02 1.43 1/8 |3.19E-02 | 141
1/16 1.32E-02 1.43 1/16 | 1.23E-02 | 1.38
1/32 4.98E-03 1.41 1/32 | 5.03E-03 | 1.28
1/64 1.90E-03 1.39 1/64 | 2.26E-03 | 1.15
1/128 | 7.37E-04 1.37 | 1/128 | 1.13E-03 | 0.99
1/256 | 2.87E-04 1.36 | 1/256 | 6.17E-04 | 0.87
a=20
1/8 1.12E-02 1.44 1/8 | 1.35E-02 | 1.29
1/16 4.24E-03 1.41 1/16 | 6.13E-03 | 1.14
1/32 1.63E-03 1.38 1/32 | 3.07E-03 | 0.99
1/64 6.36E-04 1.36 1/64 | 1.66E-03 | 0.89
1/128 | 2.50E-04 1.35 | 1/128 | 9.46E-04 | 0.81
1/256 | 9.86E-05 1.34 | 1/256 | 5.58E-04 | 0.76
a=1
1/8 6.77E-03 1.39 1/8 | 1.06E-02| 1.14
1/16 2.63E-03 1.36 1/16 | 5.27E-03 | 1.01
1/32 1.04E-03 1.34 1/32 | 2.80E-03 | 0.91
1/64 4.14E-04 1.33 1/64 | 1.56E-03 | 0.84
1/128 | 1.65E-04 1.33 | 1/128 | 9.06E-04 | 0.79
1/256 | 6.57E-05 1.32 | 1/256 | 5.38E-04 | 0.75

TABLE 4.1. Results for (4.1.1) on the L-shaped domain with exact solution given by
(4.5.1)
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FIGURE 4.2. A uniform mesh on the doubly connected domain
In the second set of experiments, we examine the convergence behavior of the
numerical scheme on the doubly connected domain (0,4)2 \ [1,3]* with uniform
meshes (See Figure 4.2).

In this case the solution w of (4.1.1) can be written as
u=V x¢+cVy, (4.5.2)
where ¢ is a constant and the harmonic function ¢ satisfies the boundary conditions
“lr, =0 and |, = 1.

Here Ty (resp. I'y) is the boundary of (0,4)? (resp. (1,3)?). The exact solution is

chosen to be
o To(1 — x9)(3 — x2)(4 — z2) | (45.3)
(1 —21)(3—21)(4 — 1)

We solve (4.1.1) for « = —1 and 1, with f = V x (V x @) + au € H(div’; Q).
The results are tabulated in Table 4.2.

Note that in this case @ is the curl of a quintic polynomial and hence ¢ = 0 in
(4.5.2). In fact, since f is also the curl of a polynomial, we have (f, V) =0 by
Lemma 3.2.9, and it is observed that ¢, = 0 up to machine error.

According to Remark 4.4.8; the order of convergence for wy, is 1 (since £ and ¢

are smooth), which is observed. The order of convergence for &, is found to be 2,
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h ”qu}'ﬁf:”% Order | |c|n _||u\ff'1ﬁ‘Z!L2 Order
pp—
1/8 | 3.71E-03 | 2.01 | 7.03E-17 | 1.13E-02 | 1.05
1/16 | 9.26E-04 | 2.00 | 1.36E-16 | 5.61E-03 | 1.01
1/32 | 2.31E-04 | 2.00 | 1.49E-16 | 2.80E-03 | 1.00
1/64 | 5.78E-05 | 2.00 | 7.69E-16 | 1.39E-03 | 1.00
1/128 | 1.44E-05 | 2.00 | 7.43E-16 | 6.99E-04 | 1.00
a=1
1/8 | 1.69E-03 | 1.98 | 9.25E-16 | 9.50E-03 | 1.00
1/16 | 4.25E-04 | 1.99 | L.11E-15 | 4.75E-03 | 1.00
1/32 | 1.06E-04 | 2.00 | 1.35E-15 | 2.38E-03 | 1.00
1/64 | 2.66E-05 | 2.00 | 3.27E-15 | 1.19E-03 | 1.00
1/128 | 6.64E-06 | 2.00 | 4.96E-15 | 5.94E-04 | 1.00

TABLE 4.2. Results for (4.1.1) on the doubly connected domain with exact solution given
by (4.5.3)

which is better than the order of 5 + 1 = 5/3 predicted by (4.4.4). This is likely
due to the effects of superconvergence since we use uniform meshes in computing
&, and the exact solution ¢ is smooth.

Finally we take the right-hand side of (4.1.1) to be the piecewise smooth vector

field
- _
1 + I
if ;1 <zy and 3 < <4,
0
f=4 b (4.5.4)
0
otherwise.
L 1+ )

The results are tabulated in Table 4.3.

The observed orders of convergence are consistent with the theoretical results.
In particular, the order of convergence for uy, is 2/3 for « = 1 and approaching 2/3
for o = —1, which agrees with the estimate (4.4.31). The order of convergence for
cp is 2/3+1/2 = 7/6. This is because f is piecewise smooth and hence the estimate

(4.4.26) can be improved (cf. [14, Remark 4.8]). The order of convergence for &, in
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IV x%—EnllLy lli—vin|L,
h Ei Order |l Order EiP Order

1/8 1.72E-01 1.26 | 0.763918 | 1.05 | 2.68E-01 | 1.00
1/16 5.28E-02 1.70 | 0.765285 | 0.87 | 1.28E-01 | 1.06
1/32 1.49E-02 1.83 | 0.765991 | 0.95 | 6.93E-02 | 0.89
1/64 4.29E-03 1.80 | 0.766332 | 1.05 | 4.04E-02 | 0.78
1/128 | 1.13E-03 1.69 | 0.766489 | 1.12 | 2.42E-02 | 0.73
a=1
1/8 1.03E-02 1.33 | -0.763918 | 1.05 | 8.60E-02 | 0.71
1/16 4.04E-03 1.35 | -0.765285 | 0.87 | 5.30E-02 | 0.70
1/32 1.58E-03 1.35 |-0.765991 | 0.95 | 3.29E-02 | 0.69
1/64 6.21E-04 1.35 |-0.766332 | 1.05 | 2.05E-02 | 0.68
1/128 | 2.44E-04 1.34 |-0.766489 | 1.12 | 1.28E-02 | 0.67

TABLE 4.3. Results for (4.1.1) on the doubly connected domain with right-hand side
given by (4.5.4)

both cases is higher than the order predicted by (4.4.3). This is probably due to
the fact that the mesh size h is not small enough and the asymptotic behavior has

not been reached.
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Chapter d

Multigrid Methods for Maxwell Equations
in Heterogeneous Media

5.1 Introduction
Let 2 be a bounded simply connected polygonal domain in R? and Q;,1 < j < J,

be open polygonal subdomains of ) that form a partition of €, i.e.,
le N ng = @ for jl 7& jg and U‘jjzl Qj = Q

Let ' = UT';,;, be the interface of 2, where T'; ;, = Q;, N Q,, if Q;, N Q;, # 0.
Let f € [Ly(Q)]? and €, u be piecewise constant functions in the domain 2 such
that e(x) = ¢; and p(x) = p; for © € Q;, with the assumption that €; and p; are
positive numbers.
We will consider the following weak formulation of the Maxwell interface prob-

lem:

Find w € Hy(curl; Q) N H(div’; Q; €) such that
(W 'V x4, V xv)+alew,v) = (f,v) Vv € Hylcurl; Q)N H(div®; Q;¢), (5.1.1)

where the space H(div’;€);¢) is defined in Subsection 3.2.2.
Remark 5.1.1. The variational formulation here actually implies the interface con-
ditions
mxul=n_xu_+nyxuy =0
and
m-(ew) =n_-(e_cu_)+n; - (equy) =0

in the sense of H~'/2(I"), where I' is the interface. The first interface condition above

comes from the assumption that w € H(curl;2). The second interface condition
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above means that there is no charge density distribution on the interface. It comes

from the assumption that w € H(div’; Q;e).

Under the assumption that € is simply connected, we can write (cf. Lemma 3.2.12)
eu =V X ¢, (5.1.2)

where ¢ € H'(Q) satisfies (¢,1) = 0. Then we can show (cf. Section 5.2) that the

function ¢ in (5.1.2) is determined by

(V% 6,6V x ) = (u€,v) Vo € H(Q) (5.1.3)
and the constraint
(¢,1) =0, (5.1.4)

where the function £ = 7'V x w € H(Q) is determined by
(V< &'V x ) +alué, ) = (f, e 'V x ) Yo e H(Q), (5.1.5)
when a # 0 and by the equation (5.1.5) with the constraint

(u€,1) =0, (5.1.6)

when a = 0.

We can therefore solve (5.1.1) by the following numerical procedure under the
assumption that —a is not a Maxwell eigenvalue.

Step 1. Compute a numerical approximation & of & by solving the interface
problem (5.1.5) when « # 0, and by solving (5.1.5) with the constraint (¢,1) = 0
when a = 0.

Step 2. Compute a numerical approximation ¢ of ¢ by solving the interface
problem (5.1.3) under the constraint (¢, 1) = 0, where ¢ is replaced by &.

Step 3. The numerical approximation @ for w is given by

=V X0
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Because equations (5.1.5) and (5.1.3) are elliptic interface problems, we already
know that the solutions of these equations have very low regularity (cf. Subsec-
tion 2.2.2) and hence the solution of Maxwell’s interface problem (5.1.1) can have
very low regularity. Therefore the P, finite element method does not work well in
this case. However we can take advantage of the singular function representations
of elliptic interface problems and the extraction formulas for the stress intensity
factors (cf. the discussion in Subsection 2.3.2) to recover the optimal convergence
of the P, finite element method on quasi-uniform grids by using a full multigrid

approach for the interface problems (5.1.5) and (5.1.3).

5.2 Equation for £ and ¢

Our goal in this section is to justify the equations (5.1.3)—(5.1.6).

Lemma 5.2.1. Given v € H(div°;Q;¢), there exists a unique ¢ € H'(Q) such

that (¢,1) =0 and

ev =V X ¢.
Proof. By Lemma 3.2.12, we have
v=¢'V xp,

for some p € H'(Q2). Let ¢ = p— ‘51' o, pda, then it satisfies the constraint (¢, 1) =

0. The uniqueness comes from Friedrichs’ inequality (cf. |20, Lemma 4.3.14]). O

Now we use Lemma 5.2.1 to justify the equation (5.1.3). For any ¢ € H*(2) we

have

(V X ¢, 'V x0) = (etr, e 'V x ) = (%, V x )

= (V xu,p) = (u,v),
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since u € Hy(curl; Q) satisfies Lemma 3.1.12. To justify the equation (5.1.5), we

need another lemma (cf. [14]).

Lemma 5.2.2. The solution w of (5.1.1) satisfies
V x (p 'V xa) + alenr) = eQ(e ' f) (5.2.1)

in the sense of distributions, where Q : [Lo(Q; €)]> — H(div’; Q; €) is the orthogonal

projection.

Proof. Let ¢ € [D(Q)]? be a C™ vector field with compact support in Q. So ¢ €
Ho(curl; ), Q¢ € H(div";Q;¢) and ¢ — Q¢ € VHE(Q) because of Theorem 3.2.7.
Because of Corollary 3.2.10, we have ¢ — Q¢ € Hy(curl;$2) and hence Q¢ €

Ho(curl; ). Therefore
Q¢ € Ho(curl; Q) N H(div®; Qs ¢). (5.2.2)

Furthermore, we have

V x (¢ —Q¢) =0, (5.2.3)

since V x (VH}(Q)) = {0}, and for w € H(div’; ;¢€), we have
(cit, ¢ — QC) = 0. (5.2.4)
Using (5.1.1), (5.2.2), (5.2.3) and (5.2.4), we have

(bV xu, V x )+ alew, () =(uV x u, V x (Q¢ + ¢ — QC))
+a(ew, Q¢ + (¢ — QQ))
=(uV X,V x QC) + a(ew, QC)
=(f, Q<)
=(Q(e™f), Orae0)
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which completes the proof. O

Remark 5.2.3. Lemma 5.2.2 is a generalization of Lemma 4.2.2.

With the help of Lemma 3.2.2, equation (5.1.5) can be justified by the same
argument as in Chapter 4.
Let ¢ € H'(Q2) be arbitrary. Since ¢ 'V x ¢ € H(div’;Q;¢) by Theorem 3.2.2

and Definition 3.2.5, we have

(f, e 'V x ) = (' f, 'V x ¥)y0
= Q' f), €'V X Y) 100
= (eQ(e7' f), 'V x ¥)
= (V x &+ aletr),e 'V x )  (by Lemma 5.2.2)
= (VX &IV xY) +a(V x a,9)  (by Lemma 3.2.9)

= (VX &'V x ) + aué, ¥),

which gives (5.1.5). The constraint (£, 1) = 0 follows immediately from Lemma 3.1.12.

5.3 Regularity, Stress Intensity Factors and
Extraction Formulas

For simplicity we will assume from here on that there is only one interface vertex
p« of the subdomains near which the solution ¢ of (5.1.3) and/or the solution & of
(5.1.5) are singular.

We further assume that f € H'(;) and ©; is convex for 1 < j < J. Then by
integration by parts, the weak problems (5.1.5) and (5.1.3) are equivalent to the

following strong problems:
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Find ¢ € HY(Q) such that

—6 Al ="V X f in Q1 <5<, (5.3.1a)
elg—i = —¢ 'n x f on the boundary 05, (5.3.1b)
1 0¢ 4 :
e —le7"n x f] on the interface T, (5.3.1c)
n

and find ¢ € H*(Q) such that

—; 'Ap =& inQ;,1 <)< (5.3.2a)
E_I% =0 on the boundary 052, (5.3.2b)
n
109 :
v 0 on the interface I'. (5.3.2c)

We can rewrite the problem (5.3.2) as a weak problem of the form (2.2.8). For
the problem (5.3.1), we can find a function U satisfying the boundary and interface
conditions and Ulg, € H*(Q;) for 1 < j < J. By Theorem 3.2.7, there exist

Ujx € H3(Q;) and U5 € H* () such that
flo, = VU1 +V x Ujy,
where Uj; is the solution of
(VU;1,Vv) = —(V - f,v) Vv e Hy(Q).

We have U;; € H*(Q;) since ; is convex and V- f € Ly(€;). Therefore,V x U, 5 =
f—VU;;isin H(Q;1) and hence U;5 is in H*(Q;). On the boundary 99;, we

have

since U;; € Hy(§;) implies m x VU;; = 0 on the boundary 99;. Now we define

U="U;s forx € Q; and 1 < j < J. The function U satisfies the corresponding
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boundary and interface conditions and U]Qj € H2(Qj) for 1 < j < J. So the func-
tion £ — U satisfies homogeneous boundary and interface conditions and hence is
the solution of a weak problem described by (2.2.8). According to the discussion in
Subsection 2.2.2, we let \; = (07)%,1 > 1, be the positive eigenvalues of the Sturm-
Liouville problem at p, and the functions ©; be the corresponding eigenfunctions.

We define the singular functions s; by the formula
s1(r,0) = 01(r)r71©,(0),

where g; is a smooth cut-off function that equals 1 identically near » = 0 and
vanishes for » > 4.

We have the singular function representations (2.2.11)/ (2.2.14) for the solution

¢ of (5.1.5):
E= > Kisi+w, (5.3.3)
0<o;<1
and the solution ¢ of (5.1.3):
o= Z KT s+ we, (5.3.4)
0<o<1

where

welo,, wolo, € H*(Q;) for 1 < j < J.

Moreover, the solution £ and ¢ satisfy the following elliptic regularity estimates

(cf. Subsection 2.3.2):

J
ST IR+ wellmgy) < CIV % Fllraw) (5.3.5)
0<o;<1 j=1
and
J
Z K|+ Z |we || 520, < CIIV X FllLy)- (5.3.6)
0<oy<1 j=1
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The stress intensity factors /ﬁf and /ﬂ? can be computed by the following extrac-

tion formulas (Lemma 2.3.4 and Lemma 2.3.5)

205{/ (e7'(V x f)s; —ap&s; + ¢ 'EAs)da

—/ e l(nx f)sids — /[6_171 x flsjds}, (5.3.7)
o0 r
and

K = 2; (pés; + € LoAs})dz. (5.3.8)

Now we present the basic idea of our algorithm by focusing on (5.1.5) with « # 0.
For (5.1.3) the idea will be essentially the same, so we omit it here. By (5.1.5) and

(5.3.3), we (the regular part of £) is the solution of

(V X we, € 'V x ) + a(pwe, ) = (F,e'V x 1)

+ Z KS[(e7 Asy, ¥) — apsy, )] Vb € HY(Q). (5.3.9)

0<o<1

We can then solve (5.3.9) using a P finite element method and the convergence
rate in H'-norm would be of order O(h) since w € H*(Q;) for 1< j < .J. But
of course we do not know the stress intensity factors /ﬁf and therefore we consider

the following problem instead:

(V x 1, €'V x ) + a(uid, 1) = (£, x 9)

+ 30 K A w) — alpsi )] Vo € HYQ). (5.3.10)

0<oy<1
Here the numbers fif:k are the approximate stress intensity factors computed through
the extraction formula (5.3.7) where ¢ is replaced by an approximation from the
previous level. This strategy can be implemented naturally through the full multi-
grid methodology.
In the resulting algorithm we are really computing the regular part w of the

solution and therefore the improvement in the convergence rate is possible because
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w has better regularity than £. Actually, the optimal convergence rate of the stan-
dard P, finite element is recovered, i.e., the convergence rate of wy to w in the

H'-norm will be O(h) (cf. Theorem 5.5.3).

5.4 The Algorithm

Consider a sequence of triangulations {77, - - - , Iy} of Q, where the triangulations
are aligned with the interface between subdomains. Suppose 7] is given and let
T, k> 2, be obtained from 7,_; via a regular subdivision, i.e., edge midpoints
in Z,_1 are connected by new edges to form .7,. Let V, be the P; finite element
space associated with 7 (cf. Section 2.4), and Vi be the subspace of Vj such that
v €V iff (uvg, 1) = 0. Let hy = max diam T. We introduce a discrete inner

TeI,

product (-, -); on Vj by

(v1,v2)x = R} Zvl(p)vg(p) Yoy, vy € Vj, (5.4.1)

where the summation is taken over all the vertices p of 7.
The operators My : Vi — Vi, Ap : Vi = Vi, IFV 0 Vi = Viet, Qo Vi — Wi,

where a = p or 1, are defined by

(Ak'Ul,Uz)k = / €7lv X v - V x U2d$ \V/’Ul,’UQ S Vk, (542)
Q
(IF v, w)e g = (v,w)y Yo € Vi,w € Vi1 (C V), (5.4.3)
(Myvy,v9)y = / pvivedx  Yui, v € Vi, (5.4.4)
Q

and Qg Vi — f/k, where
Vi ={veV: (uw,1) =0}

or

Vk:{UEVki(U,l):O},

82



is the orthogonal projection with respect to the inner product (-, ), i.e.,
(kavl,UQ)k = (Ul,Ug)k VUl € Vk,Uz S % (545)

For the convergence analysis, we also define the Ritz projection operators Py :
HY(Q) — Vi and Py, : H'(Q) — Vi. If @ = 0 in (5.1.5), then P, : H'(Q) — V4 is
defined by

(W x (=P, Vxuv)=0 YCeH(Q),veV,. (5.4.6)
If « #01in (5.1.5), then Py, : H'(Q) — Vj is defined by
(€'V x (= P),V xv)+a(u(C — P),v) =0 Ve HY(Q),v eV, (5.4.7)

The following is the standard two-sided symmetric &% level multigrid iteration
scheme. For p = 1 it is the V-cycle algorithm with m presmoothing steps and m
postsmoothing steps, and for p = 2 it is the W-cycle algorithm with m presmooth-

ing steps and m postsmoothing steps.

5.4.1 The k" Level Iteration

The k' level iteration with initial guess zo yields MG(k, 2y, g) as an approximate

solution to the equation

Az =g,
’ (5.4.8)
(ILLZ, 1) =0,
or
Az +aMz =g (5.4.9)

when o # 0. For k = 1, MG(1, 2o, g) is the solution obtained from an exact solver.
For k > 1, MG(k, 2y, g) is obtained recursively in three steps.

Presmoothing Step. For 1 <[ < m,

B 1
2= z-1+ A—(g — Apzi-1),
k (5.4.10)

2 = Qurz,
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or

1
21 =211+ A—(g - OszZl_l - Akzl_l) (5411)
k

when « # 0, where m is a positive integer independent of k, and A; dominates the
spectral radius of Ay + aM,,.
Correction Step. Let g = I,’j’l(g — Agzp) or g = [,’j’l(g — aMyzy — Agzp) and

¢ € Vi—1(0 < i < p,p=1 or 2) be defined recursively by

q =0 (5.4.12)
and
¢ =MG(k—-1,¢1,5) for 1<i<p. (5.4.13)
Then
Zmi1 = Zm + I} 1qp. (5.4.14)

Postsmoothing Step. For m +2 <1 <2m + 1, let

. 1
2= Z-1+ A—(g — Ap21),
k (5.4.15)
2l = Qa,kgla
or
1
21 =211+ A—(g - OéMkZl_l - Akzl—l) (5416)
k
if & # 0. Then the final output of the k' level iteration is
MG(]C, 20, g) = 22m—+1- (5417)

5.4.2 The Full Multigrid Algorithms

We use a nested iteration to compute mfk and wy € Vi so that nil approximates
the stress intensity factor mf, and & = > fff x51 +wy, approximates the solution
0<o<1 ’

¢ of (5.1.5). Then we approximate £ in (5.1.3) by &y (the approximation of £ on

the finest level), and use a nested iteration to compute /i??k and v, € Vi so that
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b= > /iffks + v, approximates ¢. The full multigrid algorithm is described as
0<o;<1

follows.

Algorithm 5.4.1. (Full Multigrid Algorithm for &.) Let Qo = Qui in (5.4.10)
and (5.4.15) when o # 0. For k = 1, & is the exact solution of (5.4.8), where

g1 € Vi is defined by
(91,01 = (f,e'V xv) YoeW,

and we set wy = &.
For 2 < k < N, the stress intensity factors Hf}k are computed by the following
extraction formula:
I3 1 —1 * * -1 *
Kig = 2_{ (€ (VX f)s; — aubp_15] + € §_1As])dx
' gL Ja
—/ e lnx f)sids — /[e_ln x flsjds}, (5.4.18)
o0

r

and wy € Vi 15 obtained recursively by

Wg,o = Wg-1,
wiy = MG(k,wiy—1,g1) for 1<1<n, (5.4.19)
W = Wkn,

where n s a positive integer independent of k, and g, € Vj, is defined by

Jr, V)E = f(e'Vxv)—el kS Vs-Vu—auv K¢ sitdxr Yv e V.
L,k 1,k
Q

0<o;<1 0<o;<1

(5.4.20)

Then we define

Ge=wp+ Y K. (5.4.21)

0<o;<1

Similarly, we define a full multigrid algorithm for ¢.
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Algorithm 5.4.2. (Full Multigrid Algorithm for ¢.) Let Qur = Q1. in (5.4.10)
and (5.4.15). For k = 1, ¢y is the exact solution of (5.4.8), where g1 € V1 is defined
by

(91,v)1 = (&N, v) Vv € VA,

and we set v; = ¢4.
For 2 < k < N, the stress intensity factors /ffk are computed by the extraction

formula:
1

kP = o [ (Hénsi + € 'op1As))da (5.4.22)
’ 20-1 Q

and v € Vi 1s obtained recursively by

Vo = Uk—1,
vy = MG(k,vgi-1,9x) for 1<1<mn, (5.4.23)
UV = Ukn,

where g, € Vi s defined by

(gr, V) = /(,quv —! Z /{ikVSl -Vu)dxr v € V. (5.4.24)
0

0<o;<1

Then we define

) (5.4.25)

0<o;<1

and the approrimation of u by
Uy =€ 'V X v, + Z /ﬁfke’lv X 8.
0<o<1
5.5 Convergence Analysis
In this section we prove the convergence of Algorithm 5.4.1 and Algorithm 5.4.2
for the case when o > 0.
In order to avoid the proliferation of constants, we will use the notation A < B

to represent the statement that A is bounded by B multiplied by a constant which
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is independent of the variables, the mesh sizes and the grid levels. The notation
A =~ B means that A < B and B < A, and the notation A <. B indicates that
the constant may depend on e.

First we derive a convergence result for the k" level symmetric W-cycle multi-
grid algorithm applied to our interface problems. Recall that M G(k, 2o, g) is the
approximate solution of (5.4.8) obtained by the k' level iteration scheme with

initial guess 2.
Lemma 5.5.1. Let p = 2 in the k' level iteration scheme. Let § € (0,1), € € (0,07)
and o, = 1 — o1 + €, we have

HZ — MG(/f, Zo,g)HHl(Q) < (5HZ — ZUHHl(Q) Yk > 1, (551)
and

|z = MG(k, 20, 9)||roc () < 0|2 — 20|l oe)  VE > 1, (5.5.2)
provided that the number of smoothing steps m is sufficiently large.
Proof. The proof of (5.5.1) is essentially identical to the proof of Theorem 1 in the
paper [4]. The proof of (5.5.2) below is similar to the proof of Lemma 3.2 in [22],
where the boundary condition is different.

We follow the methodology in [22]|. For simplicity, we assume that & = 1 in

(5.1.5). Let A, = A, + M,. First we consider the two-grid algorithm where ¢, in

(5.4.14) is replaced by
q=(Ap1)'g=Pi1(2 — zm), (5.5.3)

and there is no postsmoothing steps.

Let Ry : Vi, — V. be defined by

1 -
Fi =1 = A (5.5.4)
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Then, by (5.5.4) and (5.4.11), we have
z2— zm = RI'(z — 2). (5.5.5)

It follows from (5.5.3) and (5.5.5) that the error of the output Z = z,, + ¢ of the

two-grid method is given by
z2—Z=z—2zm—q=UI—=Pe1)(z—2m) = — Poe1)R' (2 — 20). (5.5.6)
For 0 < s <1, we define
llolll, = v/ (Ao, 0)k Vo € Vi (5.5.7)

By the spectral decomposition for positive definite operators, (5.5.7) and a slight

modification of |20, Lemma 6.2.8], we have
lolll, < (A2 Mol S B llll, Vo € Vi, 0 < s < 1, (5.5.8)
and since Ay = Ch,;2 dominates the spectral radius of Ay,
I1Rkvlll, < lvlll, VeV 0<s<1. (5.5.9)
The effect of the smoothing step is measured by the following smoothing property:

IRl = (AeRiv, Biv)e)? = ((AeRi™v, v)i) '/

s/2 —s As p2m 1/2 11—s 1/2 R
<N p(ASCAR™) (A %v,v)/”  (by spectral decomposition)
< by Lsup (1= )2 [lo]ll,_,

0<t<1

S hm 2 o, Vv € Vi, 0<s < 1. (5.5.10)
The effect of the correction step is given by the following approximation property:
H’U — Pk,1U|’Hae(Q) S,e hzl_€|?] — Pkfl’l)‘Hl(Q) Yv € Hl(Q> (5511)
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We will establish (5.5.11) by a duality argument. Let L € [H?(Q2)]" and ¢ €

H(Q) satisfy
(e'V x (,V xv) + (u¢,v) = L(v) Vo€ HYQ). (5.5.12)
It is well known (cf. [53]) that ¢ € H'™17¢(Q) and

||C’|H1+are(g) Se HLH[HUG(Q)]’- (5.5.13)

Let II; be the nodal interpolation operator associated with Vj. It follows from

standard interpolation error estimates (cf. Section 2.4) that

¢ = Tl sy Se AN Ll oy (5.5.14)

We can modify the proof for Friedrichs’ inequality (cf. [20, Lemma 4.3.14]) and

have
v —allg ) S lula @), (5.5.15)

where u € HY(Q) and @ = ﬁ Jo nude.

Using (5.4.7), (5.5.12), (5.5.15) and (5.5.14), we have

L(v—Pe1v) = (€ 'V x(,V X (v — Pp_1v)) + (ul, v — Po_yv)
=(e'V x (( —TI}(), V x (v — Pp_1v)) + (u(¢ = Ti¢), v — Pe_1v)
S ¢ = Tilllar@llv = Peoavll o)

< hZ“GHLH[HUE(Q)]/W — Pe1v|ma)- (5.5.16)
The estimate (5.5.11) follows from (5.5.16) and the duality formula
Il ) = SuplL(n)/ | Lllimeioy] Vm€ H(Q),  (5.57)
where the supremum is taken over all L € [H7(Q2)]"\ {0}.
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The final ingredient is the relation between the mesh dependent norm |||-|||, and

the Sobolev norm || - |[gs) on Vj. First of all, we have |v|giq) = [||v]|, and
1] o) S [llvllly for all v € Vj. Interpolating these estimates (cf. [20, Proposi-

tion 14.1.5]), we have

]| sy Slvllly, Vv e Vi, 0<s< 1 (5.5.18)

Meanwhile, there exists (cf. [26, 59]) an interpolation operator 7y : La(Q2) — Vj

such that
Imivllly S lmrvllza@) S lvllza@) Vo € La(9), (5.5.19)
lImevllly, S llmevllme) S Il Yo e HY(Q), (5.5.20)
mv=v Yv€EV. (5.5.21)

For 0 < s < 1, we can interpolate (5.5.19) and (5.5.20) (cf. |20, Proposition 14.1.5,

Theorem 14.2.3]) to obtain

|mrollly S lJvl|as@) Yo e H¥(Q),0<s < 1. (5.5.22)
Combining (5.5.21) and (5.5.22), we find

llollly < 1ol

Therefore, from (5.5.6),(5.5.10), (5.5.11), (5.5.18) and (5.5.23), we have the fol-

lowing error estimate for the two-grid algorithm:

|2 = 2l oe@) S MR (2 = 2m) |11 @)

S mETF 2|2 — 2| goe - (5.5.24)

Now we estimate the error for the one-sided W-cycle k" level iteration. Let

Ym = ml=?179/2 and suppose that the error of the (k — 1) level iteration in the
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H?(2) norm is reduced by a factor n. Then it follows from (5.4.14), (5.5.6) and

(5.5.24) that

Iz = MG(k, 20, 9)lloe (@) < |12 = Zllmoe(@) + la — @2l e @)

< Cevmllz = 20llmoe (@) + 772||QHH"(Q)-
From (5.5.8), (5.5.11), (5.5.18) and (5.5.23), we have
| Pe-10| oe () < (| = Pe1v|[meei@) + |0l e @)

Se he ™ ol + vl aee @)
Se Wllaoe) Vo € Vi
Combining (5.5.5), (5.5.9), (5.5.18), (5.5.22) and (5.5.26), we obtain
gl zzee (@) = 1Pea1(z = z) |l o) < Collz = 20/l ree )
The estimates (5.5.23), (5.5.25) and (5.5.27) together imply that
l2 = MGk, 20, 9)|| o (@) < (Cevm + Cai’) |2 = 2ol 1o -

For m sufficiently large, we have ~,, < (4C.C.)~! and

M = |1 — (1 — 4C.Cly,,) 2| /(2C))

(5.5.25)

(5.5.26)

(5.5.27)

(5.5.28)

(5.5.29)

is a fixed point of the map T'(n) = Ceypm + C’;nQ. Since the first level iteration is an

exact solver, it follows from (5.5.29) and mathematical induction that
|z = MG(k, 20, 9)||toe () < mll2 — 20|l Hoc) for k> 1.
As lim,,, 00 My, = 0, the estimate (5.5.2) follows from (5.5.30).

Remark 5.5.2. For the symmetric W-cycle k" level iteration, we have

z— MG(k, z0,9) = R’ (2 — Zm41).
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Combining (5.5.9) and (5.5.31), we can prove (5.5.2) for the symmetric W-cycle

k" level iteration.

With the help of Lemma 5.5.1, we can prove the following result by following

the methodology of [23].

Theorem 5.5.3. Let p = 2 in the k'™ level iteration scheme, ¢ € (0,01), 0. =
1 — o1 + €, and the number of smoothing steps m be sufficiently large so that the
kth level iteration scheme is a contraction. If the number of nested iterations n is

sufficiently large, then we have

I = s S ClFTTTNV X Fllig) VR > 1 (5.5.32)
0<o;<1
and
||w5 — 1Uk||HUe(Q) S C’ehllj_al_eHv X f||L2(Q) vk Z 1. (5533)

Moreover we have the following estimates in the H' norm:

ng — wkHH1(Q) S CthV X f||L2(Q) Vk‘ Z 1. (5534)
Let
&= Ks+wg, (5.5.35)
0<o;<1

then (5.5.33) and (5.5.34) lead to the following estimate:
1€ = &ullimiey < CHllV X Flloay Wk > 1L (5.5.36)

Proof. We will establish (5.5.32) and (5.5.33) through recursive estimates. By

(5.3.7) and (5.4.18) along with (5.3.3) and (5.4.21), we know that, for 1 <1 < L,

1
|5 — Rl = . |/ € (€ — &) Asyda] (5.5.37)
g1 Q

SE = Ge=1ll 2 | AsT || L2 ()
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S k=1 — W1 foe ()5

where

Wr=E— Y K= Y (Kp — Kg)s+we = (6 — &) + wy. (5.5.38)

0<o<1 0<o;<1

Let ap = Y |s5— nik|, and by = |[Wy, — wi|| gee (). So (5.5.37) says that
0<o;<1

To estimate by, we begin with

For the first term on the right-hand side of equation (5.5.40), by using the elliptic
regularity estimate (5.3.5) and standard finite element tools (cf. Section 2.4), we

have the following estimate

ik — Pl o) < llwe — Pewellueey + > 155 — silllsi = Pesill e (o)
0<o;<1

(5.5.41)

56 hllc+al_€‘|v % fHLg(Q) + hi(olfe)ak.
The second term on the right-hand side of (5.5.40) can be estimated as follows:
HPkwk - wkHHoe(Q) S 5nHP]€’UAJk - wk,1|’Hae(Q), (5542)

by Lemma 5.5.1, since Pyw is the exact solution of (5.4.9) whose right-hand side
is given by (5.4.19) and wy, is its approximate solution.

Now we estimate || Py — wi—1|goe () as follows:

| Petre — Wi—1 || roe () < || Petle — Wi || foe (@) + ||k — we | moe (@)

+ |lwe — Wi—1llmoe (@) + 1r—1 — Wi || 5oe (@)
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Se hlljal_snv X f||L2(Q) + ap + ag—1 + bx_1,

by (5.5.38), (5.5.41) and the definitions of a; and by.

Combining (5.5.39)-(5.5.43) we find, for k > 2,

b Se (B NV X Fllza) + he™ Yar) + 6" (hi |V % Flliao)

+ar +ap_1 + bkfl)

< C(BF ) 4 6"y + Ced"bg g + ChET NV X F Lo,

where C. is a positive constant.

Therefore (5.5.44) leads to the estimate
b < Bby—1 + Bbr—o + O*h;?mfea
provided that Cghi(al_g) + C.0™ < 3 for some positive constant 3 and
Ci = CllV X fllLo@)-

Later we will identify the choice of 5.

We reformulate (5.5.45) as

br_1 0 1] |bgo . 0
< +C.h |
by, B B bkt 1
where the vector inequality is interpreted component-wise.
0 1
Let M = and rewrite (5.5.47) as
5 op
b1 b 14o1—e
<M + Cih, ™
by, br_1 1

(5.5.43)

(5.5.44)

(5.5.45)

(5.5.46)

(5.5.47)

(5.5.48)

For any given € € (0,01) and 8 > 0, there exist sufficiently large k* and n*

depending on f such that C’ehi(ol_e) + Co" < B for k > k* and n > n*. So for

k> k* and n > n*, (5.5.48) is valid.
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By iterating (5.5.48), we obtain
br—1 br—1

. ) 0 , 0
< MFF + Ol |+ M (5.5.49)

o
o hTEMEE ).

By a direct computation, we have
M? = B(I + M), (5.5.50)

where I is the 2 x 2 identity matrix.
By (5.5.50), we have
M| < 28
and hence
1M (| < (28)
and
Moo < (28)",

where ¢ is a positive integer. So for sufficiently small j, i.e., for k and n sufficiently

large, we have
| M| < 27Hot for =2, .. (5.5.51)
Then (5.5.49) and (5.5.51) implies that, for £ > k* + 1 and n > n*,
by <27 UFo)t=Rh L CLh T T (1427 (5.5.52)
+ 27N X f @),
<otk g e o

On the other hand, we have

ar= Y |5l SV x 2w, (5.5.53)

0<o;<1
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b1 = |I§ = Pilllaoe@) S ) S IV X Fll@), (5.5.54)

Combining (5.5.44),(5.5.53) and (5.5.54), we obtain, for 1 < k < k*,

b S IV %l S BNV x £ (5.5.55)
Combining (5.5.52) and (5.5.55), we conclude that

b Se TNV X Flliz for k> 1 (5.5.56)

We have established (5.5.33), and (5.5.32) follows directly from (5.5.39).
Now we consider the error estimate (5.5.34). First note that if we let € be % in

(5.5.32) , then we obtain
ax < Ch IV X fllago), (5.5.57)

where the constant C' no longer depends on e.
Let us denote

We have the following estimate
||w§ - wkHHl—al-l»e(Q) ,S ng - wkHHl(Q) 5 Qg (5559)

by (5.5.38).

Also, by the elliptic regularity estimate assumption, we have the estimate
by = |Jir — w1 ) = 1€ = Piéllin) S IV X Fllia@)- (5.5.60)
We may also obtain the analogue of (5.5.40)-(5.5.43). From (5.5.58), we have
b < ||k — Petdg| o) + || Petor — wiel| i (- (5.5.61)
By (5.5.38), (5.5.57) and the analogue of (5.5.41), we have

W, — Prvw|| ) S hellV X Fll2) + byt “ar (5.5.62)
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S IV X f o)
By Lemma 5.5.1, we have
| Py — w1 o) < 0"||Prbe — wi—1 || g1 (o)- (5.5.63)
By the analogue of (5.5.44), we have

| Pt — wi—1]| ) S hullV X Flla) + ak +ar—1 + b1 S hil|V X o) + biet.

(5.5.64)
So (5.5.61)-(5.5.64) imply that
b, S 6"by—1 + ||V X o (5.5.65)
or
Ek < CT((Sanfl + thV X fHLZ(Q)) (5566)

for some constant C;. For n sufficiently large so that Cj0" < 1/4, we can iterate

(5.5.66) and apply (5.5.60) to get the estimate

k
b, < (C10™)F "0y + CHIV X Fllza@) Y (C16™)F 'y
=2

7

S hel|lV X fllo, for k>1, (5.5.67)
which is (5.5.34). O

Remark 5.5.4. Because of (5.3.3), (5.5.35), (5.5.32), and (5.5.33), we also have the
estimate

1€ = &l o) < Ol IV % fllraey VE > 1. (5.5.68)

Remark 5.5.5. For the case a < 0, it is a symmetric indefinite problem and there
are several multigrid schemes developed [3, 47, 48, 9, 63, 8] in the literature. We

will not discuss this case here.
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We use &y = > /ﬁﬁNsl + vy, where Jy is the finest triangulation, as the
0<0’l<1
approximation to the solution & of (5.1.5) in (5.1.3). Applying Algorithm 5.4.2 to

the equation (5.1.3), we obtain the approximation /ild)k and vy, for 1 <k < N..

Theorem 5.5.6. Let p = 2 in the k™ level iteration scheme, € € (0,01), 0. =
1 — 01 + €, and the number of smoothing steps m be sufficiently large so that kth
level iteration scheme is a contraction scheme. If the number of nested steps n is

sufficiently large, then we have

>R = S ORIV X Flliae) VE =1 (5.5.69)
0<o<1
||w¢ — Uk“Hl(Q) S OthV X f”LQ(Q) VEk 2 1. (5570)
Let ¢ = > /ﬁ’fksl + vy, then we have the following estimates in the H' norm:
0<o;<1
16 = @l < ChillV % Flloaey Yk > 1. (5.5.71)

Proof. Let ¢ € H'(Q) be the exact solution of the following problem:
7'V x ¢,V x v) = (uéy,v) Yo e HY(Q), (5.5.72a)
(p,1) =0. (5.5.72b)
Then quS is an approximation of ¢, which is the exact solution of the problem:
(€'V x ¢,V x0v) = (ué,v) Yve H(Q), (5.5.73a)
(¢,1) =0. (5.5.73b)

We denote the singular representation for qg by

(52 Z ﬁ?3l+w¢3.

0<o<1

Because of the estimate (5.5.68) the error between ¢ and ¢ can be estimated by
16 =l i) < CllE = Enllia) S AN IV X Fllra@). (5.5.74)
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Moreover, from (5.5.74) and the extraction formulas for £ and ', we have

- 1 . R i
8 = {1 < 5| [ (€ = )5t + (6 - dw)Asidal
g1 Q
SN TNV X Fllao) (5.5.75)

and

[wg — wgllme) S 1€ = Enlla@) + Z |/<o§;5 — /<al¢|
0<o;<1

Shy IV X Flliaw) (5.5.76)

We know that ¢ is an approximation of $ A similar argument to the proof of

Theorem 5.5.3 gives the following estimates:

SR — K] < OB X Flre VE 21, (5.5.77)
0<o<1
lwy = vellai@) < ChillV X Fllra@) Yk 21 (5.5.78)
Let ¢, = >, lffjksl + v, then we have the following estimates in the H' norm:
0<o<1
16 — dulli) < ChullV X Flliae ¥k > 1. (5.5.79)
Now (5.5.74)-(5.5.79) imply (5.5.69)-(5.5.71). O

5.6 Numerical Results

In this section we present the results of several numerical tests that illustrate the
performance of our algorithm. The first two numerical examples are performed
on the L-shaped domain Q = (—1,1)%\ [0,1]* , where the subdomains are Q; =
(—1,0) x (0,1), Q3 = (—1,0)2, and Q3 = (0,1) x (—=1,0) (See Figure 5.1). We use
the P, finite element in the experiments. The mesh size hy for the k' level grid
is taken to be 1/(3 - 2%). All the computations are done using a W-cycle k™ level

iteration with 50 smoothing steps, and the number of nested iterations in both full
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Qy Qs

FIGURE 5.1. The domain 2 and its subdomains.

m| k=4 |k=5|k=6|k=7
11 | 0.4662 | 0.6128 | 0.8082 | 0.9803
12 1 0.4461 | 0.5874 | 0.7528 | 0.9545
13 | 0.4286 | 0.5645 | 0.7028 | 0.9236
14 | 0.4131 | 0.5437 | 0.5824 | 0.8903
15 1 0.3993 | 0.5249 | 0.6416 | 0.8560
16 | 0.3870 | 0.5079 | 0.6218 | 0.8217

TABLE 5.1. Contraction numbers for the symmetric W-cycle algorithm on the L-shaped
domain with m smoothing steps for the case e = [1/350, 1, 1/350]

multigrid algorithms (See Algorithm 5.4.1 and Algorithm 5.4.2 in Subsection 5.4.2)
is also 50.
We will consider the case where ¢ = [1/350,1,1/350]. In this situation, the

contraction numbers for the symmetric W-cycle algorithm are given in Table 5.1.

Example 5.6.1. We solve equations (5.1.5), (5.1.3) on the domain Q where o = 0,
e =[1/350,1,1/350] and p = [350,1,350]. The vector function f is given by
r7 ol (Ajsin((oy + 1)0) — B, cos((o1 + 1)0))
flz) = , (5.6.1)
17 ol (—A; cos((o1 + 1)0) — B;sin((o1 + 1)0))
for z in the subdomain 2,1 < j < J, where (r,§) are the polar coordinates of the

point (0,0), \; = o2 is the first eigenvalue of the related Sturm-Liouville problem

(cf. Subsection 2.2.2), oy = 0.048066746316346..., A;, B; are coeflicients appearing
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in the eigenfunction ©, and g, is the cut-off function defined by

I, 0<r<1/4
Ocut(r) = 4 —192r° + 480r* — 4401 + 180r2 — 29 4 21 1/4 < < 3/4
0, r>3/4.
(5.6.2)
In this case the exact solution ¢ = s = r7'0(0)0ey- The numerical results

are tabulated in Table 5.2. For comparison, we solved the same problem by full
multigrid without using the extraction formula. The numerical results are tabulated
in Table 5.3.

From Table 5.2, we see that the approximate stress intensity factor /{i is very
accurate when using the new full multigrid with the extraction formula . Actually,
the relative error between mg and the exact one k¢ = 1 is less than 0.1%. However,
when using the full multigrid without the extraction formula, we see from Table 5.3
that the relative error between x5 and the exact one xé = 1 is larger than 30%.
Because the equation (5.1.3) has £ as the right-hand side input function, we need
a good approximation to £ to obtain a good approximation to ¢. Therefore, the
numerical results tell us that the standard full multigrid method can not obtain
a reliable approximation to ¢, but the new full multigrid method with extraction
formula has a much better performance than the standard and it can give us a
reliable approximation to ¢.

Furthermore we consider the error between the values of the exact solution and
the numerical solution at a particular nodal point. Also, we consider the L., error
between the values of the exact solution and the numerical solution. Those errors
provide another way to check the accuracy of our algorithm.

We choose two particular nodal points (1/3,—1/3) and (2/3,—2/3) and use the

following notations to denote the errors between the values of the exact solution
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and the numerical solutions &, = wy + /iis (obtained by full multigrid using the

extraction formula) or & = w; (obtained by full multigrid without using the

extraction formula) at the two points:

ey = [&r(1/3,—1/3) — £(1/3,-1/3)|
and

er = 16(2/3,-2/3) — £(2/3,-2/3)|.
The k' level convergence rates are computed and denoted by:

1
€k

7711; = 108;2(1—)
€11
and
2
e
771% = 10g2(2_k)'
€11

We also denote the errors in L, norm and their convergence rates by:

er = 16 —hnéllee = max  [&(p) — &(p)]
p is a nodal point
and
oo eoo
i = log,y (=),
Ch+1

(5.6.3)

(5.6.4)

(5.6.5)

(5.6.6)

(5.6.7)

(5.6.8)

where IIj, is the nodal interpolant (cf. Subsection 2.4 ). The numerical results

are tabulated in Table 5.4 and Table 5.5. From Table 5.4 we clearly see that the

numerical solutions obtained by the full multigrid methods using the extraction

formulas converge quickly. Meanwhile, from the results in Table 5.5 we see that

the numerical solutions obtained by the full multigrid methods without using the

extraction formulas converge very slowly.

Example 5.6.2. We solve equations (5.1.5) and (5.1.3) on the domain © where

a=1,¢e=[1/350,1,1/350], u = [1,1, 1], and the right-hand side vector function
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k % Order W Order lii Order
k=3 | 4.13089E-002 | 2.32 | 9.54251E-002 | 2.27 | 1.33663 | 2.40
k=4 | 8.25511E-003 | 2.70 | 1.97396E-002 | 2.65 | 1.06363 | 1.65
k=5 1.26805E-003 | 1.75 | 3.13929E-003 | 1.69 | 1.02034 | 1.55
k=6 | 3.76819E-004 | 1.60 | 9.71532E-004 | 1.53 | 1.00695 | 1.58
k= 7| 1.24339E-004 - 3.35502E-004 - 1.00233 | 1.63
k=8 - - - - 1.00075 -

k % Order W Order /{f Order
k=3 4.97390ﬁ3—002 2.24 | 1.12834E-001 | 2.08 | 1.55132 | 0.54
k=4 | 1.05195E-002 | 0.04 | 2.65966E-002 | 0.04 | 1.87351 | 0.96
k=5 | 1.02509E-002 | 0.88 | 2.59071E-002 | 0.81 | 2.21573 | 1.13
k= 6 | 5.58306E-003 | 1.17 | 1.48107E-002 | 1.08 | 2.41218 | 1.18
k=7 | 2.48641E-003 - 6.99230E-003 - 2.50392 | 1.05
k=28 - - - - 2.54140 -

TABLE 5.2. Results of the full multigrid method with exaction formulas for Example 5.6.1

k —Hw’“ﬁ}ﬂ:’“”” Order —'wkﬂ}ﬂ;’“lm Order /@'i Order
k=3 | 1.60827E-003 | 0.15 | 1.36642E-002 | 0.79 | 1.33663 | 0.83
k=4 | 1.45351E-003 | 0.05 | 7.89844E-003 | 0.54 | 0.81059 | -0.76
k=5 | 1.40607E-003 | 0.03 | 5.48214E-003 | 0.22 | 0.68034 | -0.10
k=6 | 1.37394E-003 | 0.03 | 4.69297E-003 | 0.04 | 0.65850 | 0.02
k= 7| 1.34356E-003 - 4.54985E-003 - 0.66423 | 0.05
k=8 - - - - 0.67665 -

h loner—villey | Opqep | Berizvelgt | Opder KO Order

| £] o Il £l zo k
k=3 | .76793E-003 | 0.02 | 2.39732E-002 | -0.06 | -3.6208 -
k=4 | 8.61832E-003 | 0.03 | 2.49235E-002 | -0.05 | -3.7190 -
k=5 | 8.46529E-003 | 0.03 | 2.57451E-002 | -0.04 | -3.8143 -
k=6 | 8.30104E-003 | 0.03 | 2.64454E-002 | -0.03 | -3.9076 -
k=7 | 8.12447E-003 - 2.70319E-002 - -3.9989 -
k=28 - - - - -4.0882 -

TABLE 5.3. Results of the full multigrid method without extraction formula for Exam-

ple 5.6.1
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1 2 o) 0
€k Un €k Un €k Un

2.44230E-002 | 1.64 | 2.44371E-002 | 1.64 | 2.49002E-002 | 1.64
7.87278E-003 | 2.46 | 7.85942E-002 | 2.46 | 7.96934E-003 | 1.45
1.42442E-003 | 1.71 | 1.42349E-003 | 1.71 | 1.45365E-003 | 1.70
4.36182E-004 | 1.61 | 4.35866E-004 | 1.61 | 4.48301E-004 | 1.60
1.42605E-004 | 1.64 | 1.42499E-004 | 1.64 | 1.47737E-004 | 1.63
4.58088E-005 | - | 4.57748E-005 | - | 4.78813E-005 | -

o

k
k
k
k
k
k

I
0 =1 O T W

TABLE 5.4. Pointwise errors for Example 5.6.1 using the full multigrid algorithms with
extraction formulas, where e}, n}, €2, n2, e2° and n° are defined by (5.6.3)—(5.6.8)

k er 0 ek i e 0
k— 3 | 2.44230B-002 | - | 2.44371E-002 | - | 2.49002E-002 | -
k= 4 | 2.33570E-002 | - | 2.33482E-002 | - | 2.36740E-002 | -
k— 5 | 2.23848E-002 | - | 2.23700E-002 | - | 2.28435E-002 | -
k— 6 | 2.14447E-002 | - | 2.14313E-002 | - | 2.20428E-002 | -
k— 7 | 2.05315E-002 | - | 2.05161E-002 | - | 2.12710E-002 | -
k= 8 | 1.96366E-002 | - | 1.96218E-002 | - | 2.05272E-002 | -

TABLE 5.5. Pointwise errors for Example 5.6.1 using the full multigrid algorithms without
extraction formulas, where e}, 0}, ez, 92, ex® and 7;° are defined by (5.6.3)—(5.6.8)

is given by
R
1
if x € Ql or QQ
0
fle)=4 _° (5.6.9)
0
otherwise.
\ 1

The numerical results are tabulated in Table 5.6. For comparison we solved the
same problem by full multigrid without using the extraction formula. The numer-
ical results are tabulated in Table 5.7.

Comparing Table 5.6 and Table 5.7, we can clearly see the improvement of the
order of convergence for Hi and wy, while using the algorithm with extraction
formulas. The order of convergence for /{i and wy, matches the estimates (5.5.32)

and (5.5.33).
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k % Order %%'Hl Order lii Order
k=3 | 1.30236E-002 | 2.32 | 8.84351E-002 | 0.96 0.40726 0.54
k=4 | 2.60059E-003 | 0.01 | 4.54224E-002 | 0.87 | 0.48641 0.99
k=5 | 2.58557E-003 | 0.91 | 2.48881E-002 | 0.91 0.57346 1.17
k=6 | 1.37815E-003 | 1.20 | 1.32454E-002 | 0.94 0.62234 1.20
k=7 | 5.99051E-004 - 6.91438E-003 - 0.64457 1.05
k=8 - - - - 0.65340 -

h % Order % Order /{f Order
k=3 | 1.26544E-002 | 2.20 | 2.91030E-002 | 1.97 |-0.39397 | 0.55
k=4 | 2.75549E-003 | 0.06 | 7.34879E-003 | 0.11 | -0.47836 | 0.96
k=5 | 2.64996E-003 | 0.88 | 6.80194E-003 | 0.81 | -0.56680 | 1.13
k=6 | 1.44195E-003 | 1.17 | 3.86959E-003 | 1.08 |-0.61752 | 1.18
k=71 6.41671E-003 - 1.82865E-003 - -0.64119 | 1.05
k=8 - - - - -0.65086 -

TABLE 5.6. Results of the

full multigrid method with extraction formulas for Exam-

ple 5.6.2

k _Hwk-ﬁ.lfﬂ;”;’”L_Q Order —‘wk]ﬂi’“'m Order Iii Order
k=3 | 1.65040E-003 | 0.69 | 8.33942E-002 | 0.89 0.40726 | -0.05
k=4 | 1.02427E-003 | 0.12 | 4.50228E-002 | 0.90 0.41681 0.01
k=5 | 9.40852E-004 | 0.04 | 2.41734E-002 | 0.89 0.42670 0.03
k=6 | 9.14799E-004 | 0.04 | 1.30572E-002 | 0.83 0.43647 | 0.03
k=7 8.92539E-004 - 7.34235E-003 - 0.44611 -
k=8 - - - - 0.45551 -

h W Order | [eoi—velyt | o1 qer KO Order

L2 [EAP k

k= 3 | 1.00389E-003 | 0.06 | 5.63034E-002 | 0.59 | -0.40462 | -0.05
k=4 | 9.65823E-004 | 0.03 | 3.73602E-003 | 0.26 | -0.41468 | 0.01
k=51 9.44524E-004 | 0.03 | 3.13045E-003 | 0.06 | -0.42507 | 0.02
k=61 9.25241E-004 | 0.03 | 3.01696E-003 | -0.01 | -0.43541 | 0.03
k=71 9.05325E-004 - 3.02828E-003 - -0.44557 -
k=28 - - - - -0.45551 -

TABLE 5.7. Results of the full multigrid method without extraction formulas for Exam-

ple 5.6.2
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FIGURE 5.2. The domain ) and its subdomains.

The last numerical example is performed on the domain Q = (—1,1)? , where
the subdomains are ; = (0,1) x (0,1), 2y = (=1,0) x (0,1), Q3 = (—1,0)?,
and Q4 = (0,1) x (—1,0) (See Figure 5.2). We use the P, finite element in the
experiments. The mesh size hy for the k™ level grid is taken to be 1/2F"1. All
the computations are done using a W-cycle k" level iteration with 50 smoothing
steps, and the number of nested iterations in both full multigrid algorithms (See

Algorithm 5.4.1 and Algorithm 5.4.2 in Subsection 5.4.2) is also 50.

Example 5.6.3. We solve equations (5.1.5) and (5.1.3) on the domain © where
a=1,¢e=1[1/10,1/1031,1/10%, u = [1,1,1,1], and the right-hand side vector

function is given by

-
! if ¢ € Q or ()
0
flx)=4 _° (5.6.10)
0
otherwise.
| 1

In this case, the square root of the first eigenvalue of the related Sturm-Liouville
problem (cf. Subsection 2.2.2) is oy = 0.069817020390924... The numerical results
are tabulated in Table 5.8. For comparison we solved the same problem by full
multigrid without using the extraction formula. The numerical results are tabulated

in Table 5.9.
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k llwe 1 —well 2 Order Wk 1 —wk |1 Order “i Order
£]l 2 112

k=4 | 2.50818e-002 | 1.93 | 1.04075e-001 | 0.92 1.57342 1.92
k=5 | 6.59066e-003 | 0.66 | 5.48533e-002 | 0.53 1.99063 0.55
k=6 | 4.16937e¢-003 | 1.07 | 3.79186e-002 | 0.69 2.27528 1.01
k=7 | 1.98659e-003 | 1.32 | 2.35356e-002 | 0.77 | 2.41677 1.29
k=8 | 7.97897e-004 - 1.37912e-002 - 2.47466 1.49
k=9 - - - - 2.49524 -

h % Order % Order mi Order

k=4 | 2.63827e-003 | 1.83 | 6.47826e-003 | 1.02 | -0.13092 | 1.89
k=5 | 7.39617e-004 | 0.65 | 3.19478e-003 | 0.33 | -0.16625 | 0.56
k=6 | 4.71923e-004 | 1.11 | 2.54380e-003 | 0.79 | -0.19026 | 1.01
k=7 | 2.18638e-004 | 1.42 | 1.47385e-003 | 1.01 | -0.20221 | 1.29
k=8 | 8.15293e-005 - 7.32761e-004 - -0.20710 | 1.49
k=9 - - - - -0.20885 -

TABLE 5.8. Results of the full multigrid method with extraction formulas for Exam-
ple 5.6.3

Comparing Table 5.8 and Table 5.9, we can clearly see the improvement of the
order of convergence for rai and wy while using the algorithm with extraction

formulas. The order of convergence for lii and wy matches the estimates (5.5.32)

and (5.5.33).
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k ”w’“‘*l}%“ﬂ Order | [weri—wilyr | 0oy K Order
L2 [EPE k

k=4 | 3.43595e-003 | 0.40 7.52331e-002 0.55 1.57342 4.67
k=5 1| 2.60679¢-003 | 0.17 5.12986e-002 0.51 1.63532 0.16
k=6 | 2.32044e-003 | 0.11 3.60078e-002 0.59 1.69081 0.07
k=71 2.15047¢-003 | 0.08 2.39613e-002 0.56 1.74351 0.06
k=8 | 2.04033e-003 - 1.62005e-002 - 1.79395 0.06
k=9 - - - - 1.84220 -

h % Order % Order /ii Order
k=4 | 3.35034e-004 | -0.03 | 2.35234e-003 | -0.27 | -0.13441 | 4.59
k=51 3.41577e¢-004 | 0.09 2.82980e-003 0.22 |-0.13997 | 0.21
k=6 | 3.20896e-004 | 0.18 2.42614e-003 0.62 |-0.14479 | 0.09
k=7 | 2.82526e-004 | 0.13 1.57991e-003 0.58 | -0.14934 | 0.06
k=8 | 2.57405e-004 - 1.05698e-003 - -0.15369 | 0.06
k=9 - - 0.00000e+000 - -0.15787 -

TABLE 5.9. Results of the full multigrid method without extraction formulas for Exam-

ple 5.6.3
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Appendix A: Proof for Theorem 2.4.7

Let C denote a generic constant independent of the mesh size h.
Let s = r? sin(of), where (r, §) are the polar coordinates with respect to a corner
c and o is a number between 0 and 1.

Around the corner ¢, we have

S s—Tsle < S /252+2|Hh5|2)dm

T€S, ,ceT TeT, ,ceT
=2 > / Sdr+2 ) / T, 5|2 da: (5.6.11)
TS, ,c€T TS, ceT
and
Vs = VLl < Y 2|vs|2 + 2|V1I,s|?)da
T, ,ceT TET, ,ceT

=2 ) yvs|2dx+2 > |VIL,s|’de.  (5.6.12)

T€J,,ceT 7€, ,ceT

For a triangle T around the corner c, i.e. ¢ € T, let xj,j = 1,2, 3 be the coordinates

of the vertices of the triangle T', and e;, j = 1,2, 3 be the local basis functions. Then

we have
h
/Sle' < / r2ode < C/ r2otldr < Ch*+2, (5.6.13)
T T 0
3 3 3
[t = [ staepiar < [ st e
T T =1 T =1 j=1
3
< Ch¥ / O eddr < Ch> 2, (5.6.14)
T 5
h
/ |Vs|?dx < C/ r22dy < C/ r?~tdr < Ch*, (5.6.15)
T T 0
and

[ romsis = [ \gsm)w?dz </ és(xj)?)(iwejr?)dm

T

109



3
< Ch%/(z Ve,|?)dz < Ch¥.

j=1
By (5.6.11), (5.6.13) and (5.6.14), we have
S s = Taslf2, ) < Ch2 2.
T€r7h,C€T
By (5.6.12), (5.6.15) and (5.6.16), we have

> Vs = VILs| 7,0 < CR™.

TET,,ceT

Let Q, = {z € Q: |x — ¢| > dh} for some ¢ between 0 and 1 so that

TCUifT € F,ceT.

Therefore,
> s =Masliz, iy < lls = Masli,q,)-
TEyh,C¢T
and
Z |s — HhSHJQLIl(T) <ls- HhSHJZLII(Qh)'
TE«?h,C¢T

Since s € H*(Q4), by [20, Theorem (4.4.4)], we have

HS - Hhs”Lz(Qh) + h"S - HhslHl(Qh) < Ch2|S’H2(Qh)'

Note that
R
|s|§{2(9h) <C [ rYdr < C’/ r23dr < Ch* 2,
o h

where R is the diameter of the domain 2.

Therefore (5.6.21) and (5.6.22) imply
HS - HhSHLZ(Qh) + h"S - HhS‘Hl(Qh) < Ch7*t.
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By (5.6.19), (5.6.20), and (5.6.23) we have

> s —ys|l3, iy < CR*F2 (5.6.24)
TG:?}L,CQT
and
> s — sl By < Ch*. (5.6.25)
Teﬂh,céT

Now by (5.6.17), (5.6.18), (5.6.24), and (5.6.25), we have
||S — HhS||L2(Q) + h|S — HhS|H1(Q) < Chott, (5626)

If 3 =1, then u € H*(Q2). So (2.4.8) is true by |20, Theorem (4.4.4)].

If B < 1, then, from Section 2.2.1, we know that
u = ug + ug, (5.6.27)

where ug € H*(Q) and ug = > k151 The regular part ug € H?(Q2) and hence

wy>T

||uR - HhUR||L2(Q) + h|UR - HhUR|H1(Q) S OhQHUR||H2(Q), (5628)

by |20, Theorem (4.4.4)].

For s; = r™/“i sin((7 /w;)0) 0cur With w; > m, we have
si = 1™ sin(7/w;)0) (0eur — 1) + ™% sin(7 /w;)6).

Let s;1 = r™/“isin(m/w;)0)(0eur — 1) and s;5 = r™/“isin((7/w;)0). Then s;; €

H?*(Q), so
181 — Wpsial o) + Alsin — Mpsia|m@) < Ch?|siallme) < Ch%. (5.6.29)
By (5.6.26), we have
1852 — Upsizll L) + hlsiz — psio|mi) < Chott, (5.6.30)

Now (5.6.27), (5.6.28), (5.6.29), and (5.6.30) together imply (2.4.9).
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Appendix B: Proof for (2.2.17)

We will follow the methodology of Example 1 in [54, Section 5] and consider a

general Sturm-Liouville problem:

0"(0)+c’0(#) =0 for 01 <0<6;, i=1,..n, (5.6.31a)
O'(6y) = ©'(6,,) = 0, (5.6.31b)
0(0,—)=0(;+) for i=1,..,n—1, (5.6.31c)
pi1®(0;+) = p©'(0;—) for i=1,..,n—1, (5.6.31d)

where 0 <6y <0y <..<0,<2m, 0,—0y#2m,and p; >0 fori=1,2,...n.
Our goal is to find the eigenvalues A = o2 of (5.6.31).

The solutions of (5.6.31a) have the general form
O(0) = A;cos(cl) + B;sin(cf) for 0,1 <0 <6;,i=1,..,n.

Substituting the general solution of © into the boundary condition (5.6.31b) and
the interface conditions (5.6.31c)-(5.6.31d), we obtain a linear system about the
variables A; and B;. Denote the determinant of the coefficient matrix of this linear
system by DY (o). We also denote, by the symbol DY (o), the determinant of the
coefficient matrix of the linear system obtained from the Sturm-Liouville problem
with mixed boundary condition on the external boundary, i.e., we replace the
Neumann boundary condition ©'(6,,) = 0 in (5.6.31b) by the Dirichlet boundary
condition ©(6,) = 0. When n = 1, the determinants D} (c) and D (o) are given
by

—sin(oby) cos(aby)

DY = (5.6.32)
—sin(o#,) cos(ob)
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and

—sin(oby) cos(ob
DM — (60) - cosloto)} (5.6.33)
cos(oby) sin(ob;)

From (5.6.32) and (5.6.33), a simple computation implies
DY (o) = sin(ow,) (5.6.34a)

and

DY (0) = — cos(owy), (5.6.34b)

where W = 91 — (90.

When n = 2, the determinants DY (o) and DY (o) are given by

—sin(aby)  cos(aby) 0 0
cos(of sin(o0 —cos(of —sin(c6
by | ooty sinon) (08))  —sin(of)) 0
—p1sin(aby) pycos(aby) pasin(ohy) —pscos(ab)
0 0 —sin(ofy)  cos(obs)
and
—sin(aby)  cos(aby) 0 0
cos(of sin(o0 —cos(of —sin(o6
py | clon) sinioty o) s |

—p1sin(aby) pycos(aby) pasin(ohy) —pscos(ab)

0 0 cos(abs) sin(ofs)

Using expansion by minors with respect to the last row of DY (o), DY (o) can be

computed by

DY (o) = cos(06y) * Ny + sin(obs) * Ny, (5.6.37)
where
—sin(ofy)  cos(aby) 0
Nyt =| cos(ab;) sin(o#y)  — cos(ab) (5.6.38)
—p1sin(aby) pycos(aby) posin(ob)
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and

—sin(oby)  cos(oby) 0

Nyz =| cos(cb;) sin(c6,) —sin(oby) |- (5.6.39)

—p1sin(aby) pycos(aby) —pacos(ab)

Using expansion by minors with respect to the last column of Ny3 and the last

column of Ny, we obtain
Ny = pasin(ay) D (o) + p1 cos(a6) DY (o) (5.6.40)

and

Nyz = —pycos(aby) DY (o) + pysin(ab,) DY (o) (5.6.41)
By (5.6.37), (5.6.41), (5.6.40) and trigonometry identity, we have
DY (o) = —pysin(owy) DM (o) + py cos(owy) DY (o), (5.6.42)
where wy = 05 — 6. Similarly, we have
DY (0) = py cos(ows) DM (5) + py sin(owy) DY (o). (5.6.43)

When n > 3, similar to the case when n = 2, we apply expansion by minors
with respect to the last row of DY (o) and the last row of D (o). We find that

DY () can be determined by the following recurrence formula:
DN(0) = —ppsin(ow,) DM [ (0) + pp_1 cos(ow,) DY (), (5.6.44a)
DM(5) = pyn cos(ow,) DM (o) + pp_1sin(ow,) DY (o). (5.6.44b)

Here w, = 60,, — 0,,_1. The square of the solutions of the equations DY (o) = 0 are
the eigenvalues for the Sturm-Liouville problem (5.6.30).
For Example 2.2.4 in Subsection 2.2.2, we have n = 3, w1 = wy = w3 = 7/2. So

using the recurrence formulas (5.6.34) and (5.6.44), we have

p2(p1 + p2 + p3)sin(ow) — (p2(p1 + p2 + p3) + pips)sin’(ow) =0,  (5.6.45)
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where w = 7/2. For 0 < o < 1, we have that 0 < sin(ow) < 1 and hence (5.6.45)

implies that (2.2.17) holds.
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