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Abstract

In this work we apply the two-dimensional Helmholtz/Hodge decomposition to

develop new �nite element schemes for two-dimensional Maxwell's equations. We

begin with the introduction of Maxwell's equations and a brief survey of �nite

element methods for Maxwell's equations. Then we review the related fundamentals

in Chapter 2. In Chapter 3, we discuss the related vector function spaces and the

Helmholtz/Hodge decomposition which are used in Chapter 4 and 5. The new

results in this dissertation are presented in Chapter 4 and Chapter 5. In Chapter

4, we propose a new numerical approach for two-dimensional Maxwell's equations

that is based on the Helmholtz/Hodge decomposition for divergence-free vector

�elds. In this approach an approximate solution for Maxwell's equations can be

obtained by solving standard second order scalar elliptic boundary value problems.

This new approach is illustrated by a P1 �nite element method. In Chapter 5, we

further extend the new approach described in Chapter 4 to the interface problem

for Maxwell's equations. We use the extraction formulas and multigrid method

to overcome the low regularity of the solution for the Maxwell interface problem.

The theoretical results obtained in this dissertation are con�rmed by numerical

experiments.

vii



Chapter 1
Introduction

1.1 Maxwell's Equations and the Corresponding

Interface Problems

In this section we introduce several formulations of Maxwell equations, their bound-

ary conditions and interface conditions. It is mainly based on the books [60, 7, 49,

40].

1.1.1 Maxwell's Equations in Integral Form

Consider an open surface S bounded by a closed contour C. The �rst two Maxwell's

equations are given in the following equations

∮
C

E(x, t) · dl = − d

dt

∫∫
S

B(x, t) · dS (1.1.1)

and ∮
C

H(x, t) · dl =
d

dt

∫∫
S

D(x, t) · dS +

∫∫
S

J · dS, (1.1.2)

where

E = electric �eld intensity,

D = electric displacement,

B = magnetic induction,

H = magnetic �eld intensity,

and

J = electric current density.
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Next, consider a volume V enclosed by a surface S. Two other Maxwell's equa-

tions are given by the following equations∫∫
S

D(x, t) · dS =

∫∫∫
V

ρ(x, t)dV (1.1.3)

and ∫∫
S

B(x, t) · dS = 0, (1.1.4)

where

ρ = electric charge density in V.

Remark 1.1.1. The integral form of Maxwell's equations (1.1.1)-(1.1.4) is valid

everywhere. We will use them to derive interface conditions.

1.1.2 Maxwell's Equations in Di�erential Form

By applying Stokes' theorem and Gauss' theorem from calculus (cf. [57]), we can

convert Maxwell's equations in integral form into Maxwell's equations in di�eren-

tial form.

By applying Stokes' theorem to (1.1.1) and (1.1.2), we get∫∫
S

∇×E(x, t) · dS = − d

dt

∫∫
S

B · dS (1.1.5)

and ∫∫
S

∇×H(x, t) · dS =
d

dt

∫∫
S

E(x, t) · dS +

∫∫
S

J · dS. (1.1.6)

Because of the arbitrariness of the surface S, equations (1.1.5) and (1.1.6) lead

to the following di�erential equations

∇×E(x, t) = − ∂

∂t
B(x, t) (1.1.7)

and
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∇×H(x, t) =
∂

∂t
D(x, t) + J . (1.1.8)

By applying Gauss' theorem to equations (1.1.3) and (1.1.4), we obtain

∇ ·D = ρ (1.1.9)

and

∇ ·B = 0. (1.1.10)

By taking the divergence of (1.1.8), applying (1.1.9) and the vector identity (cf.

[57])

∇ · (∇× v) = 0 for a smooth vector �eld v,

we obtain the conservation law

∂ρ

∂t
+ ∇ · J = 0. (1.1.11)

1.1.3 Constitutive Relations

A medium a�ects electromagnetic �elds through three phenomena: electric polar-

ization, magnetic polarization, and electric conduction. Electric polarization leads

to the constitutive relation for the electric �eld. In most cases it can be expressed

as

D = εE, (1.1.12)

where D is called the electric �ux density and ε is called the permittivity of the

dielectric medium. Magnetic polarization leads to the constitutive relation for the

magnetic �eld. In most materials it can be expressed as

B = µH , (1.1.13)
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where H is called the magnetic �eld intensity and µ is called the permeability of

the material. The electric conduction leads to the �nal constitutive relation

J c = σE, (1.1.14)

where σ is called the conductivity and J c is called the conduction current, which

can be regarded as a part of the total electric current.

1.1.4 Boundary Conditions and Interface Conditions

It is su�cient to consider interface conditions since the boundary of the domain is

a special type of interface. Without loss of generality, we only consider an interface

between two di�erent mediums. Moreover, we assume a surface charge distribution

over the interface. The surface charge density is de�ned as the amount of charge

over a unit area on the surface. Applying (1.1.3) in a small cylinder with one of its

faces in medium 1 and the other in medium 2 and letting its thickness ∆t→ 0, we

obtain

D1 · n1 +D2 · n2 = ρe,s, (1.1.15)

where ρe,s denotes the surface electric charge density, ni (i = 1, 2) denotes the

normal direction of the boundary of medium i, Di (i = 1, 2) denotes the electric

displacement in medium i.

Using a similar strategy, we obtain

B1 · n1 +B2 · n2 = 0, (1.1.16)

H1 × n1 +H2 × n2 = J s, (1.1.17)

and

E1 × n1 +E2 × n2 = 0, (1.1.18)
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where J s denotes the surface current density, Ei and H i (i = 1, 2) denote the

electric and magnetic �eld intensity in medium i. Here we de�ne a notation to

simplify the description of the interface conditions.

Notation 1.1.2. For a vector �eld u and Γ the interface between two mediums,

let us denote

[u · n]|Γ := u1 · n1 + u2 · n2 or [u · n] := u1 · n1 + u2 · n2 on the interface Γ

and

[u×n]|Γ := u1×n1+u2×n2 or [u×n] := u1×n1+u2×n2 on the interface Γ,

where ni denotes the normal direction of the interface with respect to medium i.

Using this new notation, the above interface conditions can be written as

[D · n]|Γ = ρe,s, (1.1.19)

[B · n]|Γ = 0, (1.1.20)

[E × n]|Γ = 0, (1.1.21)

[H × n]|Γ = J s. (1.1.22)

1.1.5 Time Harmonic Maxwell's Equations

Now we derive time-harmonic Maxwell's equations from the di�erential formulation

of Maxwell's equations (1.1.7)-(1.1.10).

Assume that functions and vector �elds in Maxwell's equations have the form

E = R(Ê(x)exp(−iωt)), (1.1.23)

D = R(D̂(x)exp(−iωt)), (1.1.24)

H = R(Ĥ(x)exp(−iωt)), (1.1.25)

B = R(B̂(x)exp(−iωt)), (1.1.26)
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J = R(Ĵ(x)exp(−iωt)), (1.1.27)

ρ = R(ρ̂(x)exp(−iωt)), (1.1.28)

where i =
√
−1 and R(·) denotes the real part of the expression in parentheses.

After substituting the relations (1.1.23)- (1.1.28) into (1.1.7)-(1.1.10), we get the

time-harmonic Maxwell system:

∇× Ĥ = −iωD̂ + Ĵ , (1.1.29)

∇× Ê = iωB̂, (1.1.30)

∇ · D̂ = ρ̂, (1.1.31)

∇ · B̂ = 0. (1.1.32)

Combining the constitutive relations (1.1.12)-(1.1.13), we can eliminate D̂, B̂ and

Ĥ from (1.1.29)-(1.1.32) and obtain the following equation:

∇× (µ−1∇× u)− ω2εu = f , (1.1.33)

where u = Ê and f = iωĴ .

Correspondingly, the interface conditions (1.1.19)- (1.1.22) imply the following

interface conditions for the solution u of (1.1.33):

[(εû) · n]|Γ = ρ̂e,s, (1.1.34)

[(∇× û) · n]|Γ = 0, (1.1.35)

[û× n]|Γ = 0, (1.1.36)

[(µ−1∇× û)× n]|Γ = Ĵ s, (1.1.37)

where ρe,s = R(ρ̂e,sexp(−iωt)) and J s = R(Ĵ sexp(−iωt)).

1.1.6 Two-dimensional Maxwell's Equations

In many cases, Maxwell's equations can be reduced to a two dimensional problem.

For example, in the case the region where an electromagnetic �eld exists is a
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cylindrical body, the cross section of the cylinder is orthogonal to z-axis, and the

electric �eld is orthogonal to z-axis and independent of the z variable, we could

write electric �eld and magnetic �eld as

E = (Ex(x, y), Ey(x, y), 0),

and correspondingly,

H = (0, 0, Hz(x, y)).

In this situation, we will get a two-dimensional version of the equation (1.1.33):

∇× (µ−1∇× u)− ω2εu = f , (1.1.38)

where u is a two-dimensional vector �eld.

1.1.7 Weak Formulation of Maxwell's Interface Problems

In this section we derive the weak formulation for certain Maxwell's interface prob-

lems. Let Ω ⊂ R2 be a polygonal domain and Ωj, 1 ≤ j ≤ J be polygonal subdo-

mains of Ω that form a partition of Ω (See Subsection 2.2.2 for more details). Γ

denotes the interface between Ωj's. Suppose that the vector function u satisfying

u|Ωj ∈ [C2(Ωj)]
2 ∩ [C1(Ω̄j)]

2 1 ≤ j ≤ J

is the classical solution of Maxwell's interface problem:

∇× (µ−1
j ∇× uj)− k2εjuj = f j in the domain Ωj, 1 ≤ j ≤ J, (1.1.39a)

n× u = 0 on the boundary ∂Ω, (1.1.39b)

[n× u] = 0 on the interface Γ, (1.1.39c)

∇ · (εu) = 0 in Ωj, 1 ≤ j ≤ J, (1.1.39d)

[n · εu] = 0 on the interface Γ, (1.1.39e)
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[µ−1∇× u] = 0 on the interface Γ, (1.1.39f)

where f j is smooth in the closed subdomain Ω̄j, 1 ≤ j ≤ J . We attempt to �nd

a proper weak formulation of the above interface problem (1.1.39). Let v be an

arbitrary vector function in R2 satisfying

v|Ωj ∈
[
C1(Ωj)

]2 ∩ [C0(Ω̄j)
]2

1 ≤ j ≤ J.

Taking the dot product on both sides of (1.1.39a) by the vector function v|Ωj ,

integrating over the subdomain Ωj, we have∫
Ωj

∇× (µ−1
j ∇× uj) · vdx−

∫
Ωj

k2εjuj · vdx =

∫
Ωj

f j · vdx. (1.1.40)

Hence,

J∑
j=1

(

∫
Ωj

∇× (µ−1
j ∇× uj) · vdx−

∫
Ωj

k2εjuj · vdx) =
J∑
j=1

∫
Ωj

f j · vdx. (1.1.41)

Using integration by parts, we have that∫
Ωj

∇×(µ−1
j ∇×uj)·vdx =

∫
Ωj

µ−1
j (∇×u)·(∇×v)dx+

∫
Ωj

µ−1
j (∇×vj)·(v×n)ds.

(1.1.42)

Therefore, (1.1.41) and (1.1.42) lead to

J∑
j=1

∫
Ωj

(µ−1
j ∇×uj·v−k2εjuj·v)dx+

J∑
j=1

∫
∂Ωj

µ−1
j (∇×uj)·(v×n)ds =

J∑
j=1

∫
Ωj

f j·vdx,

(1.1.43)

or equivalently,

J∑
j=1

∫
Ωj

(µ−1
j ∇× uj · v − k2εjuj · v)dx+

J∑
j=1

(

∫
∂Ω

µ−1(∇× u) · (v × n)ds

+

∫
Γ

µ−1(∇× u) · [v × n] ds) =
J∑
j=1

∫
Ωj

f j · vdx.

(1.1.44)
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By the homogeneous boundary and interface conditions (1.1.39b), (1.1.39c) and

(1.1.39f), (1.1.44) implies that

J∑
j=1

∫
Ωj

(µ−1
j ∇× uj · v − k2εjuj · v)dx =

J∑
j=1

∫
Ωj

f j · vdx, (1.1.45)

or,

(µ−1∇× u,∇× v)− k2(εu,v) = (f ,v), (1.1.46)

where (·, ·) denotes the summation of the L2 inner product on Ωj, 1 ≤ j ≤ J . A

natural choice of the variational space for the weak formulation (1.1.46) will be

H0(curl; Ω) ∩H(div0; Ω; ε).

So we are considering the weak formulation of Maxwell's interface problem:

Find u ∈ H0(curl; Ω) ∩H(div0; Ω; ε) such that

(µ−1∇×u,∇×v)−k2(εu,v) = (f ,v) ∀v ∈ H0(curl; Ω)∩H(div0; Ω; ε). (1.1.47)

Remark 1.1.3. The formal de�nition of the space H0(curl; Ω) ∩ H(div0; Ω; ε) will

be introduced in Chapter 3. For the moment, we just use it.

Remark 1.1.4. Here we consider Maxwell interface problem with homogeneous

interface conditions, which means we assume there are no interface charge and

interface current. The case where that there are interface charge and interface

current can be reduced to the problem we consider here.

1.2 History of Finite Element Methods for

Maxwell's Equations and the Corresponding

Interface Problems

The natural choice of variational space for the variational problem of Maxwell's

equations is H0(curl; Ω) ∩H(div0; Ω; ε). However, every conforming �nite element

subspace in H0(curl; Ω) ∩H(div0; Ω; ε) must be in [H1(Ω)]d (d = 2 or 3), since it

consists of continuous piecewise polynomials, and the intersection of [H1(Ω)]d and
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[H0(curl; Ω) ∩H(div0; Ω; ε)] is a proper closed subspace ofH0(curl; Ω)∩H(div0; Ω; ε)

when the domain Ω has re-entrant corners [49]. Therefore, the resulting �nite

element space is not dense in H0(curl; Ω) ∩ H(div0; Ω; ε) as the mesh size goes

to zero and hence the �nite element solution may not converge to the exact

H0(curl; Ω)∩H(div0; Ω; ε) solution [49]. Instead, some people use the larger space

H0(curl; Ω) as the variational space and solve the curl-curl variational problem for

Maxwell's equations by H(curl)-conforming edge elements [39, 49, 51, 52]. More

recently, successful algorithms have been discovered for this curl-curl problem that

either solve a curl-curl and grad-div problem using nodal H1 vector �nite elements

complemented by singular vector �elds [31], or solve its regularized version using

standard nodal H1 vector �nite elements [27]. Alternatively one can use noncon-

forming methods [15, 17, 18, 13, 19]. However, in the works we mentioned above,

the dielectric and magnetic permeability were assumed to be constant. In this dis-

sertation we will consider the case where the dielectric and magnetic permeability

are piecewise constant. The main challenge in this situation is that the regularity

of the solution could be much worse [28], and hence most of the existing methods

fail. In order to develop a successful algorithm for Maxwell's equations in heteroge-

neous media, a new algorithm for the homogeneous media case was �rst proposed

in our work [14], which is based on Hodge decomposition. Following this new

approach, an adaptive P1 �nite element method have been carried out in [16]. In

this dissertation, we further extend this new approach to the heterogeneous media

by exploiting extraction formulas and full multigrid methods [12, 21, 22, 23].
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Chapter 2
Fundamentals

2.1 Sobolev Spaces

In this section we review some basic facts about Sobolev spaces. They are based

on the references [1, 33, 34, 36]. First, let us de�ne the notations for derivatives

and related function spaces. Assume u : Ω → R, x ∈ Ω, where Ω is a bounded

open set in Rd, d = 2 or 3.

Notation 2.1.1. A vector of the form α = (α1, α2, · · · , αn), where each component

is a nonnegative integer, is called a multi-index of order |α| =
∑n

i=1 αi. Then we

denote

Dαu(x) :=
∂|α|u(x)

∂xα1
1 · · · ∂xαnn

.

Notation 2.1.2. The following function spaces are denoted by D(Ω), D(Ω̄), C0(Ω̄),

respectively:

D(Ω) := {v : v is smooth with compact support in the domain Ω},

D(Ω̄) :={v|Ω̄ : v|Ω̄ is the restriction to Ω of a smooth function v

with compact support in Rd},

C0(Ω̄) := {v : v is continuous in the domain Ω̄}.

We also need the concept of weak derivatives.

De�nition 2.1.3. Suppose u is locally integrable in Ω, and α is a multi-index. If

there exists a locally integrable function v such that∫
Ω

φvdx = (−1)|α|
∫

Ω

uDαφdx ∀φ ∈ D(Ω),

then v is called the αth weak derivative of u, written as Dαu = v.

11



Now let us de�ne the Sobolev spaces.

De�nition 2.1.4. Let k be a nonnegative integer. The Sobolev space Hk(Ω) is

de�ned as follows:

Hk(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω), for all |α| ≤ k}.

We de�ne the subspace Hk
0 (Ω) of Hk(Ω) by

Hk
0 (Ω) = the closure of D(Ω) in Hk(Ω).

De�nition 2.1.5. Let s = k+σ, where k is a nonnegative integer, and 0 < σ < 1.

The fractional order Sobolev space Hs(Ω) is de�ned as follows:

Hs(Ω) = {u ∈ L2(Ω) : u ∈ Hk(Ω) and

∫∫
Ω×Ω

|Dαu(x)−Dαu(y)|2

|x− y|d+2s
dxdy <∞,

∀|α| = k}.

Next, we will discuss some properties of the Sobolev spaces Hk(Ω).

Theorem 2.1.6. For any nonnegative integer k, Hk(Ω) is a Hilbert space with the

inner product

(u, v)Hk =
∑
|α|≤k

∫
Ω

Dαu ·Dαvdx ∀u, v ∈ Hk(Ω)

and the induced norm

‖u‖Hk(Ω) = {
∑
|α|≤k

‖Dαu‖2
L2(Ω)}1/2.

For any positive number s = k+σ, where k is a nonnegative integer and 0 < σ < 1,

Hs(Ω) is a Hilbert space with the inner product

(u, v)Hs(Ω) = (u, v)Hk(Ω)+
∑
|α|=k

∫∫
Ω×Ω

(Dαu(x)−Dαu(y))(Dαv(x)−Dαv(y))

|x− y|d+2s
dxdy.

12



To better understand Hk(Ω), we need a density property of Hk(Ω). It turns out

that the density property and many other properties of Sobolev spaces depend

on the regularity of the domain Ω. So let us �rst de�ne a geometrical condition

on the domain which will be su�cient for our subsequent purposes whenever the

regularity of the boundary of the domain is needed.

De�nition 2.1.7. Let Ω ⊂ Rd be a bounded open set with the boundary Γ. Then

we say that the domain Ω has a Lipschitz continuous boundary if, for any point

x0 ∈ Γ, there exist r > 0 and a Lipschitz continuous function γ : Rd−1 → R, up to

relabeling and reorienting the coordinates axes if necessary, such that

Ω ∩B(x0, r) = {x ∈ B(x0, r) : xd > γ(x1, x2, · · · , xd−1)},

where B(x0, r) = {x ∈ Rd : ‖x−x0‖ < r} and x = (x1, x2, · · · , xd−1, xd). Similarly,

we say that the domain Ω has a C1 continuous boundary if, for any point x0 ∈ Γ,

there exist r > 0 and a C1 continuous function γ : Rd−1 → R such that

Ω ∩B(x0, r) = {x ∈ B(x0, r) : xd > γ(x1, x2, · · · , xd−1)}.

Theorem 2.1.8. (Approximation by Smooth Functions on Rd) Suppose that Ω

has a Lipschitz continuous boundary, then D(Ω̄) is dense in Hk(Ω).

To keep things simple, we will only state special cases of the Sobolev embedding

theorems which will be needed in later chapters.

Theorem 2.1.9. (Embedding Theorem) Suppose that the domain Ω ⊂ R2 has a

Lipschitz continuous boundary. Then H1(Ω) is compactly embedded in Lq(Ω) for

q ≥ 1, and H2(Ω) is embedded in C0,η(Ω̄) for 0 < η < 1, where C0,η(Ω̄) are the

Hölder spaces de�ned by

C0,η(Ω̄) = {u ∈ C0(Ω̄) : sup
x 6=y,
x,y∈Ω̄

|u(x)− u(y)|
|x− y|η

<∞} (2.1.1)

13



and their corresponding norms are de�ned by

‖u‖C0,η(Ω̄)= max
x∈Ω̄
|u(x)|+ sup

x 6=y
x,y∈Ω̄

|u(x)− u(y)|
|x− y|η

. (2.1.2)

Theorem 2.1.10. (Trace Theorem) Suppose that Ω ⊂ R2 has a C1 continuous

boundary Γ. Then there exists a linear operator

T : H1(Ω)→ L2(Γ)

such that

Tu = u|Γ ∀u ∈ D(Ω̄).

Moreover,

‖Tu‖L2(Γ) ≤ C‖u‖H1(Ω) ∀u ∈ H1(Ω),

where the constant C depends on Ω.

Remark 2.1.11. The trace theorem can be extended to polygonal domains. For

details, see the reference [36].

2.2 Regularity Results
2.2.1 Regularity of Elliptic Problems

In this subsection, we consider the regularity of elliptic problems with homogeneous

Dirichlet boundary condition and Neumann boundary condition in nonconvex do-

mains. The main results below are from the references [44, 36, 29, 50].

Suppose that Ω is a polygonal domain in R2. Let c1, c2, · · · , cNΩ
be the cor-

ners of Ω, ω1, ω2, · · · , ωNΩ
be the interior angles around those corners, and ω =

max{ω1, ω2, · · · , ωNΩ
}. For f ∈ L2(Ω), consider the Dirichlet problem:

Find u ∈ H1
0 (Ω) such that

−∆u = f in the domain Ω, (2.2.1a)

14



u = 0 on the boundary ∂Ω. (2.2.1b)

The regularity of the problem (2.2.1) is stated in the following theorem (cf. [29, 36]).

Theorem 2.2.1. (Regularity of the Dirichlet Problem of the Poisson Equation)

Suppose that Ω is nonconvex, i.e., ω > π. Then the solution u of (2.2.1) can be

decomposed into a singular part uS and a regular part uR, or equivalently, u =

uS + uR, where uR ∈ H2(Ω). Moreover, there exist constants κl, for ωl > π, such

that

uS =
∑
ωl>π

κlsl, (2.2.2)

and

sl = r
π
ωl sin(

π

ωl
θ)%l(r)

is a function de�ned with respect to the polar coordinates (r, θ) around the corner

cl and %l(r) is a cut-o� function which equals 1 near the corner and 0 away from

the corner. We also have the elliptic regularity estimate

‖uR‖H2(Ω) +
∑
ωl>π

|κl| ≤ C‖f‖L2(Ω). (2.2.3)

Under the same assumption for the domain Ω and f as in the Dirichlet problem,

we consider the Neumann problem:

Find u ∈ H1(Ω) such that

−∆u = f in the domain Ω, (2.2.4a)

∂u

∂n
= 0 on the boundary∂Ω. (2.2.4b)

The regularity of the problem (2.2.4) is stated in the following theorem (cf.

[29, 36]).

Theorem 2.2.2. (Regularity of the Neumann Problem of the Poisson Equation)

Suppose that Ω is nonconvex, i.e., ω > π. Then the solution u of (2.2.1) can be

15



decomposed into a singular part uS and a regular part uR, or equivalently, u =

uS + uR, where uR ∈ H2(Ω). Moreover, there exist constants κl, for wl > π, such

that

uS =
∑
ωl>π

κlsl, (2.2.5)

where

sl = r
π
ωl cos(

π

ωl
θ)%l(r)

is a function de�ned with respect to the polar coordinates (r, θ) around the corner

cl and %l(r) is a cut-o� function which equals 1 near the corner and 0 away from

the corner. We also have the elliptic regularity estimate

‖uR‖H2(Ω) +
∑
ωl>π

|κl| ≤ C‖f‖L2(Ω). (2.2.6)

Remark 2.2.3. The functions sl in (2.2.2) and (2.2.5) are called singular functions.

The constants κl in (2.2.2) and (2.2.5) are called stress intensity factors.

2.2.2 Regularity of Elliptic Interface Problems

In this subsection we discuss the regularity of elliptic interface problems. The main

references are [41, 42, 43, 46, 6, 32, 53, 54, 55, 56].

Suppose that Ω is a polygonal domain in R2, and Ωj, 1 ≤ j ≤ J , are polygonal

subdomains of Ω that form a partition of Ω (See Figure 2.1), i.e.,

Ωj1 ∩ Ωj2 = ∅ for j1 6= j2 and ∪Jj=1 Ω̄j = Ω̄.

Let f ∈ L2(Ω), ρj be positive constants and ρ : Ω→ R be a function de�ned by

ρ(x) = ρj ∀x ∈ Ωj, 1 ≤ j ≤ J.

Denote the interface between the subdomains Ωj by Γ.
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FIGURE 2.1. Examples of the domain Ω.

Consider the following elliptic interface problem with Neumann boundary con-

ditions:

Find u such that

−ρj∆u = f in Ωj, 1 ≤ j ≤ J, (2.2.7a)

∂u

∂n
= 0 on the boundary ∂Ω, (2.2.7b)

[u] = 0 on the interface Γ, (2.2.7c)[
ρ
∂u

∂n

]
= 0 on the interface Γ. (2.2.7d)

Here [u] denotes the jump of u and [u] = 0 on the interface Γ means that u is

continuous across Γ and
[
ρ∂u
∂n

]
denotes

[
ρ
∂u

∂n

]
= ρ−

∂u

∂n−
+ ρ+

∂u

∂n+

,

where ρ− (resp. ρ+) denotes the weight ρ in the subdomain Ω− (resp. Ω+) and n−

(resp. n+) denotes the unit normal along the interface Γ when we view Γ as the

boundary of the subdomain Ω− (resp. Ω+).

De�ne the weak bilinear form aρ(·, ·) by

aρ(u, v) =

∫
Ω

ρ∇u ·∇vdx ∀u, v ∈ H1(Ω).
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p θ = 0

θ = ω

p θ = 0

θ = 2π

FIGURE 2.2. Polar coordinates for the Sturm-Liouville problems.

Then the weak form of the interface problem is:

Find u ∈ H1(Ω) such that

aρ(u, v) = (f, v) ∀v ∈ H1(Ω). (2.2.8)

Away from the vertices of Ω1, · · · ,ΩJ , the solution u of (2.2.8) has the standard

regularity. In other words, u ∈ H2(Ωj,δ) for 1 ≤ j ≤ J , where Ωj,δ is obtained from

Ωj by excising the closure of a disc D(p, δ) (δ > 0 is arbitrary) around the vertex

p. At a vertex p common to more than one subdomain (i.e., an interface vertex),

the solution u of (2.2.8) is in general singular in the sense that it does not belong

to H2(D(p, δ)∩Ωj) for those subdomains Ωj that have nonempty intersection with

D(p, δ). Below we will discuss the details of the interface singularities.

The discussion of the interface singularities for (2.2.8) are divided into two cases

depending on whether the interface vertex p belongs to the boundary of Ω or the

interior of Ω (See Figure 2.2).

Case 1. The interface vertex p belongs to the boundary of Ω. Let (λk,Θk),

λk = σ2
k > 0, k = 1, 2, 3, · · · be the eigenvalues and eigenfunctions of the Sturm-

Liouville problem around the interface vertex p:

Θ′′(θ) + λΘ(θ) = 0 for ωj−1 ≤ θ ≤ ωj and 1 ≤ j ≤ J, (2.2.9a)

Θ′(0+) = Θ′(ω−) = 0, (2.2.9b)
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Θ(ωj−) = Θ(ωj+) for 1 ≤ j ≤ J − 1, (2.2.9c)

ρjΘ
′(ωj−) = ρj+1Θ′(ωj+) for 1 ≤ j ≤ J − 1, (2.2.9d)

where the Θk's satisfy

J∑
j=1

∫ ωj

ωj−1

Θi(θ)Θk(θ)ρjdθ = δik. (2.2.10)

Moreover,

u−
∑
σk<1

κkr
σkΘk(θ) ∈ H2(Ωj ∩D(p, δ)), 1 ≤ j ≤ J, (2.2.11)

where the κk's are called stress intensity factors, which can be computed by an

extraction formula.

Case 2. The interface vertex p belongs to the interior of Ω. Let (λk,Θk), λk =

σ2
k > 0, k = 1, 2, 3, · · · be the eigenvalues and eigenfunctions of the Sturm-Liouville

problem around the interior vertex p:

Θ′′(θ) + λΘ(θ) = 0 for ωj−1 ≤ θ ≤ ωj and 1 ≤ j ≤ J, (2.2.12a)

Θ(ωj−) = Θ(ωj+) for 1 ≤ j ≤ J − 1, (2.2.12b)

ρjΘ
′(ωj−) = ρj+1Θ′(ωj+) for 1 ≤ j ≤ J − 1, (2.2.12c)

Θ(0+) = Θ(2π−) = 0, (2.2.12d)

ρ1Θ′(0+) = ρJΘ′(2π−), (2.2.12e)

where the Θk's satisfy

J∑
j=1

∫ ωj

ωj−1

Θi(θ)Θk(θ)ρjdθ = δik. (2.2.13)

Moreover,

u−
∑
σk<1

κkr
σkΘk(θ) ∈ H2(Ωj ∩D(p, δ)), 1 ≤ j ≤ J. (2.2.14)
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FIGURE 2.3. The domain Ω and its subdomains.

For the simplicity of presentation we will assume from here on there is only one

interface vertex p of the subdomains near which u is singular. In this case, let %cut

be a cut-o� function which equals 1 in a neighborhood of the interface vertex p.

Let sl be de�ned by

sl = rσlΘl(θ)%cut, (2.2.15)

where λl = σ2
l , l ≥ 1, are the eigenvalues of Sturm-Liouville problem at p and Θl's

are the corresponding eigenfunctions. Let

uS =
∑

0<σl<1

κlsl,

and uR = u− uS, then we have

u = uS + uR,

where uR|Ωj ∈ H2(Ωj). Moreover, we have the elliptic regularity estimate

J∑
j=1

‖uR‖H2(Ωj) +
∑

0<σl<1

|κl| ≤ C‖f‖L2(Ω). (2.2.16)

Example 2.2.4. Let us consider the Sturm-Liouville problem on an L-shape do-

main with vertices (0, 0), (0, 1), (−1, 1), (−1,−1), (1,−1), and (0, 1), which is

partitioned into three squares Ω1, Ω2 and Ω3 (See Figure 2.3). So the interface

vertex is (0, 0) and ω0 = π
2
, ω1 = π, ω2 = 3π

2
and ω3 = 2π.

20



Suppose that ρ1 = ρ3 = 50, ρ2 = 1. Then σ1 = 0.126276410744819... is the posi-

tive square root of the �rst or smallest eigenvalue of this Sturm-Liouville problem,

and it is the only one which is less than one.

Actually, in this example, we can compute the �rst positive eigenvalue of the

corresponding Sturm-Liouville problem which is between 0 and 1 by the following

formula :

sin(
σ1π

2
) =

√
ρ2(ρ1 + ρ2 + ρ3)

ρ2(ρ1 + ρ2 + ρ3) + ρ1ρ3

, (2.2.17)

where λ1 = σ2
1.

Using the equation (2.2.17) with ρ2 = 1 and ρ1 = ρ3, we can construct a Sturm-

Liouville problem whose �rst positive eigenvalue is as small as we want. If ρ1 =

ρ3 = 50 and ρ2 = 1, then σ1 = 0.126276410744819... If ρ1 = ρ3 = 350 and

ρ2 = 1, then σ1 = 0.048066746316346... If ρ1 = ρ3 = 1300 and ρ2 = 1, then

σ1 = 0.024962282535010...

Remark 2.2.5. Note that if ρ1 = ρ2 = ρ3 = 1, then σ1 = 2
3
.

2.3 Extraction Formulas

From Subsection 2.2.1, we know that the solutions of Poisson problems with Dirich-

let or Neumann boundary conditions on nonconvex domains have singular repre-

sentations u =
∑

0<σl<1 κlsl + uR, where uR ∈ H2(Ω) and sl is determined by the

interior angle of the corner. The same is true for the elliptic interface problem.

The goal of this section is to develop formulas for computing the stress inten-

sity factors κl in di�erent cases. These formulas are called extraction formulas

[5, 2, 30, 45, 61, 37, 50] and [41, 42, 32, 53, 54, 55].
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2.3.1 Extraction Formulas for Poisson Problems

First let us consider the Poisson problem with the Dirichlet boundary condition

on nonconvex domain. Suppose that Ω is a nonconvex polygonal domain and f ∈

L2(Ω). Consider the following Dirichlet problem:

Find u ∈ H1
0 (Ω) such that

−∆u = f in the domain Ω, (2.3.1a)

u = 0 on the boundary ∂Ω. (2.3.1b)

From Subsection 2.2.1, we know that

u =
∑
ωl>π

κlsl + uR, (2.3.2)

where uR ∈ H2(Ω) and sl has the form

r
π
ωl sin(

π

ωl
θ)%l(r)

around the corner. Here ωl is the interior angle of the corner where ωl > π, (r, θ)

are the local polar coordinates around the corner, and %l is a cut-o� function which

equals 1 around the corner and 0 away from the corner.

In the following lemma, we derive the extraction formula for computing the stress

intensity factor κl in the equation (2.3.2). First, let us de�ne a related function.

De�nition 2.3.1. (Dual Singular Function) Given the singular function s =

rσ sin(σθ)%(r) around a corner of a polygonal domain, we call the function s∗ =

r−σ sin(σθ)%(r) the dual singular function.

Lemma 2.3.2. (Extraction Formula for κl) Let u ∈ H1
0 (Ω) be the weak solution of

the Poisson problem of (2.3.1). Then the stress intensity factors κl in the singular

representation (2.3.2) can be computed by the extraction formula

κl =
1

π

∫
Ω

(fs∗l + u∆s∗l )dx, (2.3.3)
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where

sl = r
π
ωl sin(

π

ωl
θ)%l(r)

and

s∗l = r
− π
ωl sin(

π

ωl
θ)%l(r).

Proof. Without loss of generality, we assume there is only one corner pl with the

interior angle ωl > π. Given any small δ > 0, denote Dδ = B(pl, δ) ∩ Ω, where

B(pl, δ) = {x ∈ R2 : ‖x− pl‖ < δ}. Denote Ωδ = Ω \Dδ.

For a small δ, consider the integral

Iδ =

∫
Ωδ

(fs∗l + u∆s∗l )dx. (2.3.4)

Using Lebesgue's dominated convergence theorem, we can show that

lim
δ→0

Iδ =

∫
Ω

(fs∗l + u∆s∗l )dx. (2.3.5)

We rewrite (2.3.4) as

Iδ = Iδ1 + κlI
δ
2 , (2.3.6)

where Iδ1 =
∫

Ωδ
(−(∆uR)s∗l + uR∆s∗l )dx and Iδ2 =

∫
Ωδ

(−(∆sl)s
∗
l + sl∆s

∗
l )dx.

After applying Green's formula and a direct computation, we have

lim
δ→0

Iδ2 = π. (2.3.7)

So it remains to show that lim
δ→0

Iδ1 = 0.

Applying Green's formula again, we have

Iδ1 =

∫
∂Ωδ

(−∂uR
∂n

s∗l + uR
∂s∗l
∂n

)ds = Iδ3 + Iδ4 . (2.3.8)

Here

Iδ3 =

∫
Γδ

(−∂uR
∂n

s∗l + uR
∂s∗l
∂n

)ds (2.3.9)
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and

Iδ4 =

∫
∂Ωδ\Γδ

(−∂uR
∂n

s∗l + uR
∂s∗l
∂n

)ds, (2.3.10)

where Γδ = ∂B(pl, δ) ∩ Ω̄.

Note that uR = 0 and s∗l = 0 on the boundary ∂Ω and ∂Ωδ \Γδ ⊂ ∂Ω, so Iδ4 = 0.

For su�ciently small δ , by a direct computation, we further simplify Iδ3 in the

following way:

Iδ3 = −
∫

Γδ

(−∂uR
∂r

s∗l + uR
∂s∗l
∂r

)ds = L1 + L2, (2.3.11)

where

L1 =

∫ ωl

0

∂uR
∂r

sin(
π

ωl
θ)δ

1− π
ωl dθ (2.3.12)

and

L2 =
π

ωl

∫ ωl

0

uR sin(
π

ωl
θ)δ
− π
ωl dθ. (2.3.13)

Since uR ∈ H2(Ω), it follows from the Sobolev embedding theorem (cf. Theo-

rem 2.1.9) that

uR ∈ C0,η(Ω̄) for any 0 < η < 1 (2.3.14)

and hence there exists a positive constant Cη depending only on η and Ω such that

|uR(x)− uR(y)| ≤ Cη|x− y|η for x, y ∈ Ω, (2.3.15)

which together with the fact that uR(pl) = 0 implies

|uR(δ, θ)| ≤ Cηδ
η. (2.3.16)

It follows from (2.3.13) and (2.3.16) that, for some positive constant C
′
η depend-

ing only on η and Ω,

|L2| ≤ C
′

ηδ
η− π

ωl , (2.3.17)

which implies that, if we choose an η so that η − π
ωl
> 0, then

lim
δ→0

L2 = 0. (2.3.18)
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Let z = ∂uR
∂r

. Since uR ∈ H2(Ω), we have z ∈ H1(Ω) and z ∈ H1(Dδ). Let

ẑ(r, θ) = z(δr, θ), then ẑ ∈ H1(D1).

By the Cauchy-Schwartz inequality, there exists a constant C depending only

on ωl such that

|
∫ ωl

0

∂uR
∂r

sin(
π

ωl
θ)dθ| = |

∫ ωl

0

z(δ, θ) sin(
π

ωl
θ)dθ| = |

∫ ωl

0

ẑ(1, θ) sin(
π

ωl
θ)dθ|

≤ C‖ẑ‖L2(Γ1),

which together with Theorem 2.1.10 implies

|
∫ ωl

0

∂uR
∂r

sin(
π

ωl
θ)dθ| ≤ C‖ẑ‖H1(D1). (2.3.19)

Since ẑ ∈ H1(D1), by Theorem 2.1.9, we have ẑ ∈ Lq(D1) for any q ≥ 1.

Using Hölder's inequality, we obtain the estimate

‖ẑ‖L2(D1) ≤ Cq‖ẑ‖Lq(D1) for q > 2, (2.3.20)

where Cq is a positive constant depending only on q and ωl.

A direct computation implies

‖ẑ‖qLq(D1) =

∫ 1

0

∫ ωl

0

|ẑ(r, θ)|qrdθdr

=
1

δ2

∫ δ

0

∫ ωl

0

|z|qrdθdr

=
1

δ2
‖z‖qLq(Dδ)

and hence

‖ẑ‖Lq(D1) = δ−2/q‖z‖Lq(Dδ). (2.3.21)

Similarly, we derive

|ẑ|H1(D1) = |z|H1(Dδ). (2.3.22)

Combining (2.3.12), (2.3.19)� (2.3.22), we obtain that, for any given q > 2,

|L1| ≤ C
′

q(δ
1− π

ωl
− 2
q ‖z‖Lq(Dδ) + δ

1− π
ωl |z|H1(Dδ)), (2.3.23)
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where C
′
q is a positive constant depending only on q and ωl. It follows from Theo-

rem 2.1.9 and (2.3.23) that, for a small δ,

|L1| ≤ C
′

qδ
1− π

ωl
− 2
q ‖z‖H1(Ω). (2.3.24)

Choose q such that 2
q
< 1− π

ωl
, then (2.3.24) implies

lim
δ→0

L1 = 0, (2.3.25)

which completes the proof.

Next we consider the following Poisson problem with Neumann boundary con-

dition:

Find u ∈ H1(Ω) such that

−∆u = f in the domain Ω, (2.3.26a)

∂u

∂n
= 0 on the boundary ∂Ω. (2.3.26b)

From Subsection 2.2.1, we know that

u =
∑
ωl>π

κlsl + uR, (2.3.27)

where uR ∈ H2(Ω) and sl has the form

r
π
ωl cos(

π

ωl
θ)%l(r)

around the corner. Here ωl is the interior angle of the corner where ωl > π, (r, θ)

are the local polar coordinates around the corner, and %l is the cut-o� function

which equals 1 around the corner and 0 away from the corner.

In this case, the corresponding dual singular functions are of the form

s∗ = r−σ cos(σθ)%(r)

around the particular corners of the polygonal domain. Then the extraction for-

mulas for this problem are formulated in the following lemma.
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Lemma 2.3.3. (Extraction Formula for κl) Let u ∈ H1(Ω) be the weak solution of

the Poisson problem (2.3.26). Then the stress intensity factors κl in the singular

representation (2.3.27) can be computed by the extraction formula

κl =
1

π

∫
Ω

(fs∗l + u∆s∗l )dx, (2.3.28)

where

sl = r
π
ωl cos(

π

ωl
θ)%l(r),

s∗l = r
− π
ωl cos(

π

ωl
θ)%l(r).

Proof. Without loss of generality, we assume there is only one corner pl with the

interior angle ωl > π. Given any small δ > 0, denote Dδ = B(pl, δ) ∩ Ω, where

B(pl, δ) = {x ∈ R2 : ‖x− pl‖ < δ}. Denote Ωδ = Ω \Dδ.

For a small δ, consider the integral

Iδ =

∫
Ωδ

(fs∗l + u∆s∗l )dx. (2.3.29)

Using Lebesgue's dominated convergence theorem, we can show that

lim
δ→0

Iδ =

∫
Ω

(fs∗l + u∆s∗l )dx. (2.3.30)

We rewrite (2.3.29) as

Iδ = Iδ1 + κlI
δ
2 , (2.3.31)

where Iδ1 =
∫

Ωδ
(−(∆uR)s∗l + uR∆s∗l )dx and Iδ2 =

∫
Ωδ

(−(∆sl)s
∗
l + sl∆s

∗
l )dx.

After applying Green's formula and a direct computation, we have

lim
δ→0

Iδ2 = π. (2.3.32)

So it remains to show that lim
δ→0

Iδ1 = 0.

Applying Green's formula again, we have

Iδ1 =

∫
∂Ωδ

(−∂uR
∂n

s∗l + uR
∂s∗l
∂n

)ds = Iδ3 + Iδ4 . (2.3.33)
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Here

Iδ3 =

∫
Γδ

(−∂uR
∂n

s∗l + uR
∂s∗l
∂n

)ds (2.3.34)

and

Iδ4 =

∫
∂Ωδ\Γδ

(−∂uR
∂n

s∗l + uR
∂s∗l
∂n

)ds, (2.3.35)

where Γδ = ∂B(pl, δ) ∩ Ω̄.

Note that ∂uR
∂n

= 0 and
∂s∗l
∂n

= 0 on the boundary ∂Ω and ∂Ωδ \ Γδ ⊂ ∂Ω, so

Iδ4 = 0.

For su�ciently small δ , by a direct computation, we further simplify Iδ3 in the

following way:

Iδ3 = −
∫

Γδ

(−∂uR
∂r

s∗l + uR
∂s∗l
∂r

)ds = L1 + L2, (2.3.36)

where

L1 =

∫ ωl

0

∂uR
∂r

cos(
π

ωl
θ)δ

1− π
ωl dθ (2.3.37)

and

L2 =
π

ωl

∫ ωl

0

uR cos(
π

ωl
θ)δ
− π
ωl dθ. (2.3.38)

The regular part uR at the vertex pl may not be zero for the Neumann problem.

But we can rewrite (2.3.38) as

L2 =
π

ωl
δ
− π
ωl

∫ ωl

0

[
(uR − uR(pl)) cos(

π

ωl
θ) + uR(pl) cos(

π

ωl
θ)

]
dθ. (2.3.39)

Since
∫ ωl

0
cos( π

ωl
θ)dθ = 0, we have

L2 =
π

ωl
δ
− π
ωl

∫ ωl

0

(ũR) cos(
π

ωl
θ)dθ, (2.3.40)

where ũR = uR − uR(pl).

Now we can repeat the argument in the proof of Lemma 2.3.2 to prove limδ→0 L1 =

0 and limδ→0 L2 = 0.
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2.3.2 Extraction Formulas for Elliptic Interface Problems

In addition to the assumptions for the domain Ω in Subsection 2.2.2 we further

assume for simplicity the domain Ω has only one interface vertex p. From Subsec-

tion 2.2.2, we have, for the solution of the interface problem (2.2.8), the following

singular function representation

u =
∑

0<σl<1

κlsl + uR, (2.3.41)

where uR ∈ H2(Ωj), 1 ≤ j ≤ J and sl has the form rσlΘj(θ)%l(r) around the

interface vertex p. Here {σ2
l ,Θl}, 0 < σl < 1 are the �rst few eigenvalues and

eigenfunctions of the corresponding Sturm-Liouville problem (2.2.9) or (2.2.12),

(r, θ) are the local polar coordinates around the interface vertex p, and %l is the

cut-o� function which equals 1 around the interface vertex p and 0 away from p.

In this case, the dual singular function of sl = rσlΘl(θ)%l(r) is de�ned by s∗l =

r−σlΘl(θ)%l(r). We have the following lemma on the extraction formula for the

stress intensity factors of the interface problem (2.2.8).

Lemma 2.3.4. (Extraction Formula for κl) Let u ∈ H1(Ω) be the weak solution

of the elliptic interface problem (2.2.8). Then the stress intensity factors κl in

(2.3.41) can be computed by the extraction formula

κl =
1

2σl

∫
Ω

(fs∗l + ρu∆s∗l )dx. (2.3.42)

Proof. Given any small δ > 0, denote Dδ = B(p, δ)∩Ω, where B(p, δ) = {x ∈ R2 :

‖x− p‖ < δ}. Denote Ωδ = Ω \Dδ and Ωδ,j = Ωδ ∩ Ωj.

For a small δ, consider the integral

Iδ =

∫
Ωδ

(fs∗l + ρu∆s∗l )dx. (2.3.43)

Using Lebesgue's dominated convergence theorem, we can show that

lim
δ→0

Iδ =

∫
Ω

(fs∗l + ρu∆s∗l )dx. (2.3.44)
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We rewrite (2.3.43) as

Iδ = Iδ1 + Iδ2 , (2.3.45)

where Iδ1 =
∫

Ωδ
(−ρ(∆uR)s∗l + ρuR∆s∗l )dx and Iδ2 =

∑
0<σl′<1

κl′
∫

Ωδ
(−ρ(∆sl′)s

∗
l +

ρsl′∆s
∗
l )dx.

Applying Green's formula on each subdomain of Ωδ and using the fact that

∂sl
∂n

= 0 and
∂s∗l
∂n

= 0 on the boundary ∂Ω, we have

Iδ2 =
∑

0<σl′<1

−κl′
∫
∂Dδ

(−ρ∂sl
′

∂r
s∗l + ρsl′

∂s∗l′

∂r
)ds. (2.3.46)

When δ is small, (2.2.9)-(2.2.10) (or (2.2.12)-(2.2.13)) and the de�nition of sl and

s∗l imply ∫
∂Dδ

(−ρ∂sl
′

∂r
s∗l + ρsl′

∂s∗l
∂r

)ds =
J∑
j=1

∫ θj

θj−1

(−ρjσl′δσl′−σlΘl′Θl

+ ρj(−σl)δσl′−σlΘl′Θl)dθ

= −δl′−l(σl + σl′)δl′l (2.3.47)

and hence Iδ2 = 2κlσl. So it remains to show that lim
δ→0

Iδ1 = 0.

Applying Green's formula on Ωδ,j for 1 ≤ j ≤ J , we have

Iδ1 =
J∑
j=1

∫
∂Ωδ,j

(−ρj
∂uR
∂n

s∗l + ρjuR
∂s∗l
∂n

)ds = Iδ3 + Iδ4 . (2.3.48)

Here

Iδ3 =

∫
Γδ

(−ρ∂uR
∂n

s∗l + ρuR
∂s∗l
∂n

)ds (2.3.49)

and

Iδ4 =
J∑
j=1

∫
∂Ωδ,j\Γδ

(−ρ∂uR
∂n

s∗l + ρuR
∂s∗l
∂n

)ds, (2.3.50)

where Γδ = ∂B(p, δ) ∩ Ω̄.

Since ∂uR
∂n

and
∂s∗l
∂n

are zero on the boundary ∂Ω,
[
ρ∂uR
∂n

]
and

[
ρ
∂s∗l
∂n

]
are zero on

the interface Γ, it follows that Iδ4 = 0.
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For su�ciently small δ, we further simplify Iδ3 in the following way:

Iδ3 = −
∫

Γδ

(−ρ∂uR
∂r

s∗l + ρuR
∂s∗l
∂r

)ds = L1 + L2, (2.3.51)

where

L1 =
J∑
j=1

∫ θj

θj−1

ρj
∂uR
∂r

Θlδ
1−σldθ (2.3.52)

and

L2 = σl

J∑
j=1

∫ θj

θj−1

ρjuRΘlδ
−σldθ. (2.3.53)

The regular part uR at the interface vertex p may not be zero, but we can rewrite

(2.3.53) as

L2 = σl

J∑
j=1

∫ θj

θj−1

[
ρj(uR − uR(p))Θlδ

−σl + ρjuR(p)Θlδ
−σl
]
dθ. (2.3.54)

Since Θ
′′

l (θ) = −σ2
l Θl(θ) for θj−1 < θ < θj and 1 ≤ j ≤ J , we have

σl

J∑
j=1

∫ θj

θj−1

ρjuR(p)Θlδ
−σldθ = − 1

σl
δ−σluR(p)

J∑
j=1

∫ θj

θj−1

ρjΘ
′′

l dθ (2.3.55)

which, together with the conditions (2.2.9b) and (2.2.9d) (or (2.2.12c) and (2.2.12e)),

implies

σl

J∑
j=1

∫ θj

θj−1

ρjuR(p)Θlδ
−σldθ = 0. (2.3.56)

Therefore,

L2 = σl

J∑
j=1

∫ θj

θj−1

ρjũRΘlδ
−σldθ, (2.3.57)

where ũR = uR − uR(p).

Denote L1,j =
∫ θj
θj−1

ρj
∂uR
∂r

Θlδ
1−σldθ and L2,j = σl

∫ θj
θj−1

ρjũRΘlδ
−σldθ.

Since ũR ∈ H2(Ωj) (cf. Subsection 2.2.2) and
∂ũR
∂r

= ∂uR
∂r
∈ H1(Ωj), we can repeat

the argument in the proof of Lemma 2.3.2 to prove lim
δ→0

L1,j = 0 and lim
δ→0

L2,j = 0

for 1 ≤ j ≤ J . Hence lim
δ→0

L1 = 0 and lim
δ→0

L2 = 0.
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It is not di�cult to extend the extraction formula in Lemma 2.3.4 to the non-

homogeneous interface problem with the Neumann boundary condition.

In addition to the assumptions for the problem (2.2.7), we further assume there

are functions gΓ and hΓ on Γ such that there exists a function G on Ω̄ which

satis�es

G|Ωj ∈ H2(Ωj) for 1 ≤ j ≤ J,

ρ
∂G

∂n
= gΓ on the boundary ∂Ω,

[G] = 0 on the interface Γ,

and [
ρ
∂G

∂n

]
= hΓ on the interface Γ.

Now we consider the nonhomogeneous interface problem with the Neumann

boundary condition:

Find u ∈ H1(Ω) such that

−ρj∆u = f in Ωj, 1 ≤ j ≤ J, (2.3.58a)

ρ
∂u

∂n
= gΓ on the boundary ∂Ω, (2.3.58b)

[u] = 0 on the interface Γ, (2.3.58c)[
ρ
∂u

∂n

]
= hΓ on the interface Γ. (2.3.58d)

By our assumptions, ũ = u − G is the solution of the following homogeneous

interface problem with Neumann boundary condition:

−ρj∆ũ = f + ρj∆G in Ωj, 1 ≤ j ≤ J, (2.3.59a)

ρ
∂ũ

∂n
= 0 on the boundary ∂Ω, (2.3.59b)

[ũ] = 0 on the interface Γ, (2.3.59c)[
ρ
∂ũ

∂n

]
= 0 on the interface Γ. (2.3.59d)
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So Lemma 2.3.4 implies that the stress intensity factors κl for the problem

(2.3.58) can be computed by

κl =
1

2σl

∫
Ω

((f + ρ∆G)s∗l + ρ(u−G)∆s∗l )dx. (2.3.60)

By Green's formula and a similar argument in the proof of Lemma 2.3.3, (2.3.60)

implies that

κl =
1

2σl

[∫
Ω

(fs∗l + ρu∆s∗l )dx+

∫
∂Ω

ρhΓs
∗
l ds+

∫
Γ

ρgΓs
∗
l ds

]
. (2.3.61)

In summary, we have the following lemma.

Lemma 2.3.5. (Extraction Formula for κl of the Nonhomogeneous Interface Prob-

lem with the Neumann Boundary Condition) Let u ∈ H1(Ω) be the weak solution

of the elliptic interface problem (2.3.58). Then ũ = u − G has the singular func-

tion representation (2.3.41) and the stress intensity factors κl in (2.3.41) can be

computed by the extraction formula (2.3.61).

2.4 Finite Element Methods

In this section we discuss some basic facts about �nite element methods. The basic

references are [20, 25].

We will use the Poisson problem with the Dirichlet boundary condition as a

model problem.

Suppose that Ω is a polygonal domain and f ∈ L2(Ω). Consider the following

Dirichlet problem:

Find u ∈ H1(Ω) such that

−∆u = f in the domain Ω, (2.4.1a)

u = 0 on the boundary ∂Ω. (2.4.1b)
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Its weak formulation is to �nd u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (2.4.2)

where

a(u, v) =

∫
Ω

∇u ·∇vdx.

The well-posedness of the problem (2.4.2) is guaranteed by the following Lax-

Milgram theorem (cf. [33]).

Theorem 2.4.1. Let H be a Hilbert space with inner product (·, ·), and let B(u, v)

be a bilinear form on H ×H, u ∈ H, v ∈ H such that

|B(u, v)| ≤ C1‖u‖H‖v‖H , (2.4.3a)

|B(u, u)| ≥ C2‖u‖2
H , (2.4.3b)

with C1 > 0, C2 > 0.

Let f ∈ H ′, i.e., f is a bounded linear functional on H. Then there exists a

unique u0 ∈ H such that

B(u0, v) = f(v) ∀v ∈ H. (2.4.4)

We want to construct a �nite dimensional subspace of H1
0 (Ω) and solve the

equation (2.4.2) on that subspace. This can be carried out by a conforming �nite

element method. Now we introduce the basic terminology of this method.

De�nition 2.4.2. (Triangulation) Let Ω be a polygonal domain. A triangulation

Th of Ω is a subdivision consisting of triangles with the property that no vertex

of any triangle lies in the interior of an edge of another triangle. Denote h =

maxT∈Th diamT .
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De�nition 2.4.3. (Quasi-uniform) If a family {Th} of triangulations of Ω satis�es

the following condition: there exists a positive constant C such that

min{diamBT : T ∈ Th} ≥ Ch (2.4.5)

for all h, where BT is the largest ball inscribed in T and h = maxT∈Th diamT ,

then we say this family is quasi-uniform.

De�nition 2.4.4. (P1 Finite Element Space on Th) Let Vh be the space of con-

tinuous piecewise P1 polynomials on the triangulation Th, or,

Vh = {v ∈ C0(Ω̄) : v|T is a �rst order polynomial for any T ∈ Th}.

Let V̊h be the subspace of Vh de�ned by

V̊h = {v ∈ Vh : v|∂Ω = 0}

or

V̊h = Vh ∩H1
0 (Ω).

Remark 2.4.5. V̊h is a subspace of the spaceH
1
0 (Ω), so we refer to the corresponding

�nite element method as a conforming �nite element method.

Once the �nite element space is chosen (V̊h in our case), the discrete version of

the weak problem (2.4.2) is:

Find uh ∈ V̊h such that

a(uh, v) = (f, v) for all v ∈ V̊h. (2.4.6)

Because of the Lax-Milgram Theorem 2.4.1, the well-posedness of the equation

(2.4.6) can be easily veri�ed.

From (2.4.2) and (2.4.6), we have the following Galerkin orthogonality ([20,

Proposition 2.5.9]) for u− uh:

a(u− uh, v) = 0 for v ∈ V̊h. (2.4.7)
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Next, we consider the error between the two functions u and uh. First, we con-

sider Céa's lemma ([20, Theorem 2.8.1]), which is a consequence of (2.4.7). It shows

that the approximation uh to u is quasi-optimal.

Lemma 2.4.6. (Céa's Lemma) Suppose u and uh are the solutions of (2.4.2) and

(2.4.6). Then there exists a positive constant C independent of the subspace V̊h

such that

‖u− uh‖H1(Ω) ≤ C inf
v∈V̊h
‖u− v‖H1(Ω).

Because of Céa's lemma, we can focus on �nding a speci�c function v ∈ Vh

where ‖u − v‖H1(Ω) can be estimated in terms of h. That speci�c function is the

interpolant of u on Vh. Let Πh : C0(Ω̄) → Vh be the nodal interpolant operator

de�ned by

Πhv = v at all the vertices of Th.

Then we have the following interpolation error estimate. In the case of a convex

polygon, this is a standard result. A proof of the general case is given in Appendix

A.

Theorem 2.4.7. (Interpolation Error Estimate) Let u be the solution of (2.4.2).

Let c1, c2, · · · , cNΩ
be the corners of Ω and ω1, ω2, · · · , ωNΩ

be the interior angle of

the corners. Let ω = max{ω1, ω2, · · · , ωNΩ
} and

β = max{1, π
ω
}.

If β = 1, we have

‖u− Πhu‖L2(Ω) + h|u− Πhu|H1(Ω) ≤ Ch2‖u‖H2(Ω), (2.4.8)

where the constant C is independent of the mesh size h. If β < 1, we have

‖u− Πhu‖L2(Ω) + h|u− Πhu|H1(Ω) ≤ Ch1+β(‖uR‖H2(Ω) +
∑
ωi>π

|κi|), (2.4.9)
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where the constant C is independent of the mesh size h.

Remark 2.4.8. Based on the regularity result for u (Theorem 2.2.1), we know that

u ∈ C0(Ω̄) and hence Πhu is well-de�ned.

Applying Theorem 2.2.1, Lemma 2.4.6 and Theorem 2.4.7, we have the following

error estimate.

Theorem 2.4.9. (H1 Error Estimate for uh) Let u be the solution of (2.4.2) and uh

be the solution of (2.4.6). Let c1, c2, · · · , cNΩ
be the corners of Ω and ω1, ω2, · · · , ωNΩ

be the interior angle of the corners. Let ω = max{ω1, ω2, · · · , ωNΩ
} and

β = max{1, π
ω
}.

Then we have

‖u− uh‖H1(Ω) ≤ Chβ‖f‖L2(Ω), (2.4.10)

where the constant C is independent of the mesh size h.

Remark 2.4.10. The above discussion can be generalized to the elliptic interface

problem.

We now consider the error estimate for u− uh in the L2 norm. To estimate

‖u− uh‖L2(Ω), we use a duality argument. Let w be the solution of

−∆w = e in Ω, (2.4.11a)

w = 0 on the boundary ∂Ω, (2.4.11b)

where e = u− uh. The variational formulation of this problem is: �nd w ∈ H1
0 (Ω)

such that

a(w, v) = (e, v) ∀v ∈ H1
0 (Ω). (2.4.12)

Therefore

‖u− uh‖2
L2(Ω) = (u− uh, u− uh)
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= a(w, u− uh)

= a(w − Πhw, u− uh) (by Galerkin orthogonality (2.4.7))

≤ C‖w − Πhw‖H1(Ω)‖u− uh‖H1(Ω)

≤ Chβ‖u− uh‖H1(Ω)‖e‖L2(Ω) (by (2.2.3) and (2.4.8)).

By Theorem 2.4.9, we have ‖u− uh‖H1(Ω) ≤ Chβ‖f‖L2(Ω). Therefore,

‖u− uh‖L2(Ω) ≤ Ch2β‖f‖L2(Ω).

Thus we have proved the following theorem.

Theorem 2.4.11. (L2 Error Estimate for uh) Let u be the solution of (2.4.2)

and uh be the solution of (2.4.6). Let c1, c2, · · · , cNΩ
be the corners of Ω and

ω1, ω2, · · · , ωNΩ
be the interior angle of the corners. Let ω = max{ω1, ω2, · · · , ωNΩ

}

and

β = max{1, π
ω
}.

Then we have

‖u− uh‖L2(Ω) ≤ Ch2β‖f‖L2(Ω), (2.4.13)

where the constant C is independent of the mesh size h.

2.5 Multigrid Methods

In this section we discuss multigrid methods. The main references are [38, 10, 64,

11, 24, 20].

We consider the model problem (2.4.2). To approximate the solution u, we con-

struct a nested sequence of triangulations T1,T2, · · · ,Tk, · · · over the polygonal

domain Ω by the following procedure. Suppose that T1 is given, then the triangu-

lation Tk is obtained by connecting the midpoints of the edges of the triangles of
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the coarser triangulation Tk−1 for k > 1. On the triangulation Tk we de�ne the

�nite element space Vk ⊂ V = H1
0 (Ω):

Vk = {v ∈ C0(Ω̄) : v|T is a �rst order polynomial ∀T ∈ Tk} ∩H1
0 (Ω).

It is easy to see that Vk−1 ⊂ Vk.

First we introduce the basic terminology for multigrid methods.

We de�ne a mesh-dependent inner product (·, ·)k on Vk by

(v, w)k = h2
k

nk∑
i=1

v(pi)w(pi),

where {pi}nki=1 is the set of internal vertices of Tk.

The linear operators Ak : Vk → Vk are de�ned by

(Akv, w)k = a(v, w) ∀v, w ∈ Vk.

The operators Qk : L2(Ω)→ Vk are de�ned by

(Qku, v)k = (u, v) ∀u ∈ L2(Ω), v ∈ Vk.

The discrete weak problem (2.4.6) is then equivalent to

Akuk = Fk, (2.5.1)

where Fk = Qkf .

The coarse-to-�ne operator Ikk−1 : Vk−1 → Vk is de�ned to be the natural injec-

tion, or equivalently,

Ikk−1v = v ∀v ∈ Vk−1.

The �ne-to-coarse operator Ik−1
k : Vk → Vk−1 is de�ned to be the transpose of

Ikk−1, or equivalently,

(Ik−1
k v, w)k−1 = (v, Ikk−1w)k ∀v ∈ Vk, v ∈ Vk−1.
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Algorithm 2.5.1. (The kth Level Iteration) MG(k, z0, Fk) is the approximate

solution of the equation

Akz = Fk

obtained by the kth level iteration with initial guess z0. Let Rk : Vk → Vk be an

approximation of A−1
k and R1 = A−1

1 .

For k = 1, MG(1, z0, F1) is the solution obtained from a direct method. In other

words,

MG(1, z0, g) = R1F1.

For k > 1, MG(k, z0, Fk) is obtained recursively in three steps.

Presmoothing Step. For 1 ≤ l ≤ m1, let

zl = zl−1 +Rk(Fk − Akzl−1).

Error Correction Step. Let F̄k−1 := Ik−1
k (Fk−Akzm1) and q0 = 0. For 1 ≤ i ≤ p,

let

qi = MG(k − 1, qi−1, F̄k−1).

Then we de�ne

zm1+1 = zm1 + Ikk−1qp.

Postsmoothing Step. For m1 + 2 ≤ l ≤ m1 +m2 + 1, let

zl = zl−1 +Rk(Fk − Akzl−1).

Then the �nal output of the kth level iteration is

MG(k, z0, Fk) = zm1+m2+1.

Here p = 1 or p = 2. When p = 1 it is called a V -cycle method. Whenp = 2 it is

called a W -cycle method.
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When applying the kth level iteration to (2.5.1), we use the following approach.

We take the initial guess to be Ikk−1ûk−1, where ûk−1 is the approximate solution

already obtained for the equation Ak−1uk−1 = Fk−1. Then we apply the kth level

iteration r times.

Algorithm 2.5.2. (The Full Multigrid Algorithm) For k = 1, û1 = R1F1.

For k ≥ 2, the approximate solution ûk is obtained recursively from

uk0 = Ikk−1ûk−1,

ukl = MG(k, ukl−1, Fk), 1 ≤ l ≤ r,

ûk = ukr .

For simplicity, we consider the convergence of the one-sided W -cycle method,

i.e., p = 2, m1 = m and m2 = 0 in the algorithm 2.5.1. Then we have the following

convergence result (cf. [20, Theorem 6.5.9]).

Theorem 2.5.3. (Convergence of the kth Level Iteration for the One-sided W -

Cycle) For any 0 < γ < 1, m can be chosen large enough such that

‖z −MG(k, z0, Fk)‖H1(Ω) ≤ γ‖z − z0‖H1(Ω), for k = 1, 2, . . . .

Remark 2.5.4. Similar convergence results also hold for other W -cycle methods.

The convergence of the full multigrid method is a consequence of the convergence

of kth level iteration (cf. [20, Theorem 6.7.1])

Theorem 2.5.5. (Full Multigrid Convergence) If the kth level iteration is a con-

traction with a contraction number γ independent of k and if r is large enough,

then there exists a constant C > 0 such that

‖uk − ûk‖H1(Ω) ≤ Chβk |u|H1+β(Ω),

where β = max{1, π
ω
}.
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Chapter 3
Vector Function Spaces and
Helmholtz/Hodge Decompositions

The numerical methods we develop in this dissertation are based on the Helmholtz/

Hodge decomposition for vector �elds. Since Maxwell's equations involve the di-

vergence operator and curl operator, it is easy to see that Helmholtz/Hodge de-

composition can play a role in the study of Maxwell's equation. In this chapter, we

review the Helmholtz/Hodge decomposition for two-dimensional vector �elds, since

we will focus on the two-dimensional Maxwell's equations. The main references are

[14, 35, 49].

3.1 De�nitions and Properties of the Vector

Function Spaces H(div; Ω) and H(curl; Ω)

Let Ω ⊂ R2 be an open set with a Lipschitz boundary Γ. The vector function

spaces naturally related to the variational formulation of Maxwell's equations are

H(div,Ω) and H(curl,Ω).

De�nition 3.1.1. Let u = (u1(x1, x2), u2(x1, x2)) belong to [L2(Ω)]2. We say that

∇ · u ∈ L2(Ω) if there exists a function v ∈ L2(Ω) such that

(v, φ) = −(u,∇φ) ∀φ ∈ D(Ω).

We will then take ∇ · u top be v. The vector function space H(div; Ω) is de�ned

as follows:

H(div; Ω) = {u ∈ [L2(Ω)]2 : ∇ · u ∈ L2(Ω)},

with the norm

‖u‖H(div;Ω) = {‖u‖2
L2(Ω) + ‖∇ · u‖2

L2(Ω)}1/2.
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De�nition 3.1.2. Let u = (u1(x1, x2), u2(x1, x2)) belong to [L2(Ω)]2. We say that

∇× u ∈ L2(Ω) if there exists a function v ∈ L2(Ω) such that

(v, φ) = (u,∇× φ) ∀φ ∈ D(Ω),

where ∇ × φ = ( ∂φ
∂x2
,− ∂φ

∂x1
). We then de�ne ∇ × u to be v. The vector function

space H(curl; Ω) is de�ned as follows:

H(curl; Ω) = {u ∈ [L2(Ω)]2 : ∇× u ∈ L2(Ω)},

with the norm

‖u‖H(curl;Ω) = {‖u‖2
L2(Ω) + ‖∇× u‖2

L2(Ω)}1/2.

First we discuss the properties of the spaces H(div; Ω).

Theorem 3.1.3. (cf. [35, Theorem 2.4.]) The space D(Ω̄)2 is dense in H(div; Ω).

Because of the following theorem (cf. [35, Theorem 2.5]), the normal trace of

H(div; Ω) can be de�ned.

Theorem 3.1.4. The mapping γn : v → v ·n|Γ de�ned on D(Ω̄)2 can be extended

by continuity to a continuous linear mapping, still denoted by γn, from H(div; Ω)

into H−1/2(Γ), the dual space of H1/2(Γ).

We call γnv the normal trace of v on Γ and it is denoted by v ·n. We also denote

(γnv)(φ) for any φ ∈ H1/2(Γ) and γnv ∈ H−1/2(Γ) by < v · n, φ >Γ.

Because of Theorem 3.1.4, we have a generalized versions of Green's formulas

([35, Corollary 2.6] ).

Corollary 3.1.5. Let v ∈ H(div; Ω) and φ ∈ H1(Ω), then

(v,∇φ) + (∇ · v, φ) =< v · n, φ >Γ . (3.1.1)
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If u ∈ H1(Ω) and ∆u ∈ L2(Ω), then ∇u is in H(div; Ω). Therefore Corol-

lary 3.1.5 implies the following corollary.

Corollary 3.1.6. Let u ∈ H1(Ω) and ∆u ∈ L2(Ω). Then ∂u
∂n
∈ H−1/2(Γ) and

(∇u,∇v) + (∆u, v) =<
∂u

∂n
, v >Γ ∀v ∈ H1(Ω).

De�nition 3.1.7. Let H0(div; Ω) denote

Ker(γn) = {u ∈ H(div; Ω) : u · n|Γ = 0}.

Next, we will discuss the properties ofH(curl; Ω). Note that, in the two-dimensional

case, the function v = (v1, v2) ∈ H(curl; Ω) if and only if the function w =

(−v2, v1) ∈ H(div; Ω). Therefore, all the properties of H(div; Ω) have similar ver-

sions for H(curl; Ω) (cf. [35]).

Theorem 3.1.8. The space D(Ω̄)2 is dense in H(curl; Ω).

Let us denote the tangential vector of Γ by τ such that n and τ obey the right-

hand rule. Then we have the following extension theorem ([35, Theorem 2.11]).

Theorem 3.1.9. The mapping γτ : v → v · τ |Γ de�ned on D(Ω̄)2 can be extended

by continuity to a continuous linear mapping, still denoted by γτ , from H(curl; Ω)

into H−1/2(Γ). Moreover, the following Green's formula holds:

(∇× v, φ)− (v,∇× φ) =< γτv,φ >Γ ∀v ∈ H(curl; Ω), φ ∈ H1(Ω).

Remark 3.1.10. We call γτv the tangential trace of v on Γ and it is denoted by v ·τ .

We also denote (γτv)(φ),for any φ ∈ H1/2(Γ) and γτv ∈ H−1/2(Γ), by < v ·τ , φ >Γ.

De�nition 3.1.11. Let H0(curl; Ω) denote

Ker(γτ ) = {u ∈ H(curl; Ω) : u · τ |Γ = 0}.
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The following lemma ([35, Lemma 2.4]) gives us a criterion for H0(curl; Ω).

Lemma 3.1.12. A vector function f of H(curl; Ω) belongs to H0(curl; Ω) if and

only if

(f ,∇× φ)− (∇× f , φ) = 0 ∀φ ∈ H1(Ω).

3.2 Two-dimensional Helmholtz/Hodge

Decompositions

In this section we extend the following classical Stokes' Theorem.

Theorem 3.2.1. If a C1 vector �eld has a vanishing curl in a simply-connected

region of R2, then this vector �eld is the gradient of a function.

If a C1 vector �eld has a vanishing divergence in a simply-connected region of

R2, then this vector �eld is the curl of a function.

Let us �rst state a characterization for two-dimensional divergence free vector

�elds.

3.2.1 Characterization of Two-dimensional Divergence Free
Vector Fields and Curl Free Vector Fields

We will not restrict ourselves to a simply-connected domain here. Instead, the

domain can be multiply-connected.

Denote by Γ0 the exterior boundary of Ω and by Γi, 1 ≤ i ≤ p, the other

components of the boundary Γ. Then we have the following characterization for

two-dimensional divergence free vector �elds.

Theorem 3.2.2. (cf. [35, Theorem 3.1.]) A vector �eld v ∈ [L2(Ω)]2 satis�es

∇ · v = 0 and < v · n, 1 >Γi= 0 for 0 ≤ i ≤ p

if and only if there exists a stream function φ ∈ H1(Ω) such that:

v = ∇× φ,
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where ∇× φ = ( ∂φ
∂x2
,− ∂φ

∂x1
). Moreover φ is unique up to a constant in H1(Ω).

Remark 3.2.3. If the domain Ω is simply-connected, then v = ∇× φ if and only if

∇ · v = 0.

Similarly, we have the following characterization for two-dimensional curl-free

vector �elds.

Theorem 3.2.4. A vector �eld v ∈ [L2(Ω)]2 satis�es:

∇× v = 0 and < v · τ , 1 >Γi= 0 for 0 ≤ i ≤ p

if and only if there exists a potential function φ ∈ H1(Ω) such that

v = ∇φ.

Moreover φ is unique up to a constant in H1(Ω).

3.2.2 Helmholtz/Hodge Decompositions

There are many di�erent ways to decompose a vector �eld into a divergence free

�eld and a curl free �eld. Here, we introduce several Helmholtz/Hodge decompo-

sitions for [L2(Ω)]2, H0(curl; Ω), H(div0; Ω) and H(div0; Ω) ∩H0(curl; Ω), respec-

tively.

We �rst introduce an orthogonal decomposition for the space [L2(Ω)]2 with re-

spect to weighted inner product that will be used in Chapter 4. As in Subsec-

tion 3.2.1, the domain Ω is multiply-connected. First we introduce a weighted

inner product on the space [L2(Ω)]2.

Let ε be a bounded positive function in Ω. De�ne the weighted L2(Ω; ε) inner

product (·, ·)L2(Ω;ε) on [L2(Ω)]2 by

(v,w)L2(Ω;ε) =

∫
Ω

ε(v ·w)dx ∀v,w ∈ [L2(Ω)]2.

For distinction we use the notation [L2(Ω; ε)]2 for the space [L2(Ω)]2 equipped with

the weighted inner product (·, ·)L2(Ω;ε).
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De�nition 3.2.5. The subspace H(div0; Ω; ε) is de�ned by

H(div0; Ω; ε) = {v ∈ [L2(Ω)]2 : ∇ · (εv) = 0}.

De�nition 3.2.6. The space H(Ω; ε) is de�ned by

H(Ω; ε) = {φ ∈ H1(Ω) :(ε∇φ,∇v) = 0 ∀v ∈ H1
0 (Ω);

φ|Γ0 = 0; φ|Γi = a constant for 1 ≤ i ≤ p}.

We have the following decomposition theorem for [L2(Ω; ε)]2.

Theorem 3.2.7. With respect to the weighted L2(Ω; ε) inner product, we have the

decomposition:

[L2(Ω; ε)]2 = K ⊕H ⊕G, (3.2.1)

where

K = ε−1∇×H1(Ω) = {ε−1∇× φ : φ ∈ H1(Ω)},

G = ∇H1
0 (Ω) = {∇φ : φ ∈ H1

0 (Ω)},

and

H = ∇H(Ω; ε) = {∇φ : φ ∈ H(Ω; ε)}.

Moreover, with respect to the same weighted inner product, we have the decompo-

sition:

H(div0; Ω; ε) = K ⊕H. (3.2.2)

To prepare for the proof of Theorem 3.2.7, we �rst prove a few lemmas.

Lemma 3.2.8. We have an orthogonal decomposition

[L2(Ω; ε)]2 = H(div0; Ω; ε)⊕G

with respect to the weighted L2(Ω; ε) inner product.
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Proof. Let v ∈ [L2(Ω)]2. Then

v ∈ H(div0; Ω; ε)

i�

(εv,∇φ) = 0 ∀φ ∈ D(Ω)

i�

(εv,∇φ) = 0 ∀φ ∈ H1
0 (Ω).

In other words, H(div0; Ω; ε) is the orthogonal complement of G = ∇H1
0 (Ω)

with respect to the weighted L2(Ω; ε) inner product.

Next we will show that G = ∇H1
0 (Ω) is closed in [L2(Ω; ε)]2. First we note that

it is equivalent to show G = ∇H1
0 (Ω) is closed in [L2(Ω)]2, since the norms induced

by the L2(Ω) inner product and the weighted L2(Ω; ε) inner product are equivalent

on the space [L2(Ω)]2.

Let φn be a sequence in H1
0 (Ω) such that the sequence ∇φn converges to a

function v in [L2(Ω)]2 and hence ∇φn is a Cauchy sequence in [L2(Ω)]2. Because

of Poincare's inequality (cf. Proposition (5.3.5), [20]), φn is a Cauchy sequence in

H1
0 (O) and hence the sequence φn converges to a function φ in H1

0 (Ω) and hence

∇φn converges to a function ∇φ in [L2(Ω)]2. So v = ∇φ, where φ ∈ H1
0 (Ω).

Therefore G = ∇H1
0 (Ω) is closed in [L2(Ω)]2.

Since G = ∇H1
0 (Ω) is closed in [L2(Ω; ε)]2 and H(div0; Ω; Ω) is the orthogonal

complement of G = ∇H1
0 (Ω) in [L2(Ω; ε)]2, we have the orthogonal decomposition

[L2(Ω; ε)]2 = H(div0; Ω; ε)⊕G

with respect to the weighted L2(Ω; ε) inner product.
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Lemma 3.2.9. Let ζ ∈ H1(Ω) such that the trace of ζ on Γi is a constant γi for

0 ≤ i ≤ p. Then we have

(∇× ψ,∇ζ) = 0 ∀ψ ∈ H1(Ω). (3.2.3)

Proof. Let v = ∇× ψ. By Theorem 3.2.2, we have

< v · n, 1 >Γi= 0 ∀0 ≤ i ≤ p. (3.2.4)

So Corollary 3.1.5 and (3.2.4) imply that

(∇× ψ,∇ζ) = (v,∇ζ) =

p∑
i=0

< v · n, ζ >Γi

=

p∑
i=0

ζ|Γi < v · n, 1 >Γi= 0.

This lemma leads to the following corollary.

Corollary 3.2.10. We have ∇H1
0 (Ω) ⊂ H0(curl; Ω).

Proof. Obviously, ∇H1
0 (Ω) ⊂ H(curl; Ω). Lemma 3.2.9 implies that for any ζ ∈

H1
0 (Ω),

(∇× ψ,∇ζ) = 0 = (ψ,∇×∇ζ) ∀ψ ∈ H1(Ω). (3.2.5)

So ∇ζ ∈ H0(curl; Ω) by Lemma 3.1.12 and hence ∇H1
0 (Ω) ⊂ H0(curl; Ω).

Lemma 3.2.11. Let ϕ ∈ H(Ω; ε). Then

∫
Γi

ε
∂ϕ

∂n
ds = 0 for 1 ≤ i ≤ p (3.2.6)

if and only if ϕ = 0.
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Proof. It is su�cient to show that if ϕ ∈ H(Ω; ε) and ϕ satis�es (3.2.6), then ϕ = 0.

By Corollary 3.1.5 and De�nition 3.2.6, we have

(ε∇ϕ,∇ϕ) =

p∑
i=0

< ε
∂ϕ

∂n
, ϕ >Γi

=

p∑
i=0

ϕ|Γi < ε
∂ϕ

∂n
, 1 >Γi= 0.

So ϕ = 0, since the domain Ω is connected and ϕ = 0 on Γ0.

Lemma 3.2.12. We have an orthogonal decomposition

H(div0; Ω; ε) = K ⊕H

with respect to the weighted L2(Ω; ε) inner product.

Proof. Lemma 3.2.9 implies that K and H are orthogonal to each other under the

weighted L2(Ω; ε) inner product. H is also closed, since it is a �nite dimensional

space. Next we will show that K is closed in [L2(Ω; ε)]2.

First we note that it is equivalent to show K is closed in [L2(Ω)]2, since the

norms induced by the L2(Ω) inner product and the weighted L2(Ω; ε) inner product

are equivalent on the space [L2(Ω)]2. Furthermore, it is equivalent to show that

∇×H1(Ω) is closed [L2(Ω)]2.

Now let φn be a sequence in H
1(Ω) such that the sequence ∇×φn converges to a

function v in [L2(Ω)]2 and hence ∇×φn is a Cauchy sequence in [L2(Ω)]2. Because

of Friedrichs' inequality (cf. [20, Lemma 4.3.14]), it follows that the sequence φn−φ̄n

is a Cauchy sequence inH1(Ω) and hence converges to a function φ inH1(Ω), where

φ̄n = 1
|Ω|

∫
Ω
φndx. Hence ∇× φn = ∇× (φn− φ̄n) converges to the function ∇× φ

in [L2(Ω)]2. So v = ∇ × φ, where φ ∈ H1(Ω). Therefore ∇ × H1(Ω) is closed in

[L2(Ω)]2.

The remaining task of the proof is to show that H(div0; Ω; ε) = K +H.
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Let v be a vector function in H(div0; Ω; ε), there exists a function ϕ ∈ H such

that

< ε
∂ϕ

∂n
, 1 >Γi=< εv · n, 1 >Γi ∀1 ≤ i ≤ p,

since by Lemma 3.2.11, the mapping de�ned by

ϕ→



< ε∇ϕ · n, 1 >Γ1

< ε∇ϕ · n, 1 >Γ2

...

< ε∇ϕ · n, 1 >Γp


is an isomorphism from H(Ω; ε) to Rp.

Now ∇ · (εv − ε∇ϕ) = 0 and

< (εv − ε∇ϕ) · n, 1 >Γi= 0 for 1 ≤ i ≤ p.

Therefore, by Theorem 3.2.2, there exists φ ∈ H1(Ω) such that εv− ε∇ϕ = ∇×φ.

Let v1 = ε−1∇× φ, then we have

v = v1 + ∇ϕ,

where v1 ∈ K and ϕ ∈ HG.

Proof. (Proof of Theorem 3.2.7) Using Lemma 3.2.8 and Lemma 3.2.12, we have

Theorem 3.2.7.

Theorem 3.2.7 leads to the decomposition for H0(curl; Ω) and H0(curl; Ω) ∩

H(div; Ω; ε) in the following corollaries.

Corollary 3.2.13. (Decomposition for H0(curl; Ω)) Suppose that v ∈ H0(curl; Ω),

then there exist a unique v̊ and ϕ such that

v = v̊ + ∇ϕ,

where v̊ ∈ H0(curl; Ω) ∩H(div0; Ω; ε) and ϕ ∈ H1
0 (Ω).
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Proof. Since v ∈ H0(curl; Ω) ⊂ [L2(Ω)]2, by Theorem 3.2.7, there exists a unique

v̊ ∈ H(div0; Ω; ε) and ϕ ∈ H1
0 (Ω) such that

v = v̊ + ∇ϕ.

Note that ∇ϕ ∈ H0(curl; Ω) by Lemma 3.2.9 and v ∈ H0(curl; Ω), which imply

that v̊ ∈ H0(curl; Ω).

A similar argument as in the proof of Corollary 3.2.13 leads to the following

decomposition.

Corollary 3.2.14. (Decomposition for H0(curl; Ω) ∩ H(div; Ω; ε)) Suppose that

v ∈ H0(curl; Ω) ∩H(div; Ω; ε), then there exist a unique v̊ and ϕ such that

v = v̊ + ∇ϕ,

where v̊ ∈ H0(curl; Ω) ∩H(div0; Ω; ε) and ϕ ∈ H1
0 (Ω). Moreover ϕ satis�es

(ε∇ϕ,∇φ) = (∇ · (εv), φ) ∀φ ∈ H1
0 (Ω).
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Chapter 4
Maxwell Equations in Homogeneous Media

4.1 Introduction

For simplicity, we assume that ε = 1 and µ = 1. We will follow the notation in-

troduced in Subsection 3.2.2 but with ε suppressed. Let Ω ⊂ R2 be a polygonal

domain, Γ0 the exterior boundary, Γ1, · · ·Γp the components of the interior bound-

ary, and α be a constant. Then the weak formulation of the Maxwell's equations

is:

For f ∈ [L2(Ω)]2, �nd ů ∈ H0(curl; Ω) ∩H(div0; Ω) such that

(∇× ů,∇× v) + α(̊u,v) = (f ,v) ∀v ∈ H0(curl; Ω) ∩H(div0; Ω). (4.1.1)

We assume that −α is not a Maxwell eigenvalue so that (4.1.1) is uniquely solvable.

Remark 4.1.1. For α ≤ 0, (4.1.1) is exactly the weak form for (1.1.38). For α > 0,

(4.1.1) is related to the time-domain Maxwell's equations.

We will use the Helmholtz/Hodge decomposition from Chapter 3 to reduce

(4.1.1) to standard second order scalar elliptic boundary value problems. The pre-

sentation in this chapter follows [14] closely.

4.2 Equation for ξ = ∇× ů and φ

Because of the Helmholtz/Hodge decomposition forH(div0; Ω) (See Theorem 3.2.7),

we can reformulate the problem (4.1.1) as coupled elliptic problems.

Theorem 4.2.1. Suppose that the solution ů ∈ H0(curl; Ω) ∩ H(div0; Ω) is de-

composed as in Theorem 3.2.7,

ů = ∇× φ+ ∇ϕ, (4.2.1)
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where ϕ ∈ H(Ω) and φ ∈ H1(Ω) satis�es (φ, 1) = 0. Then φ is determined by

(∇× φ,∇× ψ) = (ξ, ψ) ∀ψ ∈ H1(Ω) (4.2.2)

and the constraint

(φ, 1) = 0, (4.2.3)

where the function ξ = ∇× ů ∈ H1(Ω) is determined by

(∇× ξ,∇× ψ) + α(ξ, ψ) = (f ,∇× ψ) ∀ψ ∈ H1(Ω) (4.2.4)

when α 6= 0, and by (4.2.4) together with the constraint

(ξ, 1) = 0 (4.2.5)

when Ω is simply connected and α = 0. Moreover, when p ≥ 1 and α 6= 0, ϕ can

be determined by

(∇ϕ,∇ψ) =
1

α
(f ,∇ψ) ∀ψ ∈ H(Ω). (4.2.6)

To prove Theorem 4.2.1, we need the following lemma concerning with the strong

form of (4.1.1).

Lemma 4.2.2. The solution ů of (4.1.1) satis�es

∇× (∇× ů) + αů = Qf

in the sense of distribution, where Q : [L2(Ω)]2 → H(div0; Ω) is the orthogonal

projection.

Proof. Let ζ ∈ [D(Ω)]2 be a C∞ vector �eld with compact support in Ω. So

ζ ∈ H0(curl; Ω), Qζ ∈ H(div0; Ω) and ζ −Qζ ∈ ∇H1
0 (Ω) by Lemma 3.2.8 .

Because of Corollary 3.2.10, we have ζ − Qζ ∈ H0(curl; Ω) and hence Qζ ∈

H0(curl; Ω). Therefore,

Qζ ∈ H0(curl; Ω) ∩H(div0; Ω). (4.2.7)
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Furthermore, we have

∇× (ζ −Qζ) = 0, (4.2.8)

since ∇× (∇H1
0 (Ω)) = {0}, and for ů ∈ H(div0; Ω), we have

(ů, ζ −Qζ) = 0, (4.2.9)

by Lemma 3.2.8 and the fact that ζ −Qζ ∈∇H1
0 (Ω).

Using (4.1.1), (4.2.7), (4.2.8) and (4.2.9), we have

(∇× ů,∇× ζ) + α(ů, ζ) =(∇× ů,∇× (Qζ + (ζ −Qζ)))

+ α(ů, Qζ + (ζ −Qζ))

=(∇× ů,∇×Qζ) + α(ů, Qζ)

=(f , Qζ) = (Qf , ζ),

which completes the proof.

Remark 4.2.3. Lemma 4.2.2 implies that ξ = ∇× ů ∈ H1(Ω) and

∇× ξ + αů = Qf . (4.2.10)

Now we are ready to prove Theorem 4.2.1.

Proof. (Proof of Theorem 4.2.1) First, let us justify (4.2.2) by using (4.2.1), Lemma

3.1.12 and Lemma 3.2.9. Let ψ ∈ H1(Ω) be arbitrary. We have

(∇× φ,∇× ψ) = (∇× φ+ ∇ϕ,∇× ψ) = (ů,∇× ϕ)

= (∇× ů, ϕ) = (ξ, ϕ).

To justify (4.2.6) when p ≥ 1, we take v = ∇ψ in (4.1.1) where ψ ∈ H(Ω),

and replace ů by the Hodge/Helmholtz decomposition (4.2.1). Then we obtain the

equation

α(∇× φ+ ∇ϕ,∇ψ) = (f ,∇ψ),
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which implies (4.2.6) by Lemma 3.2.9.

Now let us justify (4.2.4). Let ψ ∈ H1(Ω) be arbitrary. Since∇×ψ ∈ H(div0; Ω)

by Lemma 3.2.2, we have

(f ,∇× ψ) = (Qf ,∇× ψ)

= (∇× ξ + αů,∇× ψ) (by the equation (4.2.10))

= (∇× ξ,∇× ψ) + α(∇× ů, ψ) (by Lemma 3.1.12)

= (∇× ξ,∇× ψ) + α(ξ, ψ),

which gives (4.2.4). The constraint (ξ, 1) = 0 follows immediately from Lemma

3.1.12.

Note that H(Ω) is a �nite dimensional space with the basis {ϕ1, ϕ2, · · · , ϕp},

where ϕi, 1 ≤ i ≤ p satis�es that

∆ϕi = 0, (4.2.11a)

ϕi|Γ0 = 0, (4.2.11b)

ϕi|Γj = δij for 1 ≤ j ≤ p, (4.2.11c)

i.e.,

(∇ϕi,∇v) = 0 for v ∈ H1
0 (Ω), (4.2.12a)

ϕi|Γ0 = 0, (4.2.12b)

ϕi|Γj = δij for 1 ≤ j ≤ p, (4.2.12c)

therefore ϕ in (4.2.6) can be written as

p∑
i=1

ciϕi, (4.2.13)
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where the coe�cients ci's are determined by the symmetric positive-de�nite system

p∑
i=1

(∇ϕi,∇ϕk)ci =
1

α
(f ,∇ϕk) for 1 ≤ k ≤ p. (4.2.14)

Next we discuss the relation between the solvability of (4.1.1) and the solvability

of (4.2.4) under the condition that −α(6= 0) is not a Maxwell eigenvalue.

Lemma 4.2.4. For α 6= 0, the problem (4.1.1) is uniquely solvable if and only if

the problem (4.2.4) is uniquely solvable.

Proof. Let α be nonzero. Since H1(Ω) is compactly embedded in L2(Ω) by the

Rellich-Kondrachov theorem [1] and H0(curl; Ω)∩H(div0; Ω) is compactly embed-

ded in [L2(Ω)]2 by a result of Weber [62], we can apply the Fredholm alternative

[33] to consider only the homogeneous equation corresponding to (4.1.1)

(∇×w,∇× v) + α(w,v) = 0 ∀v ∈ H0(curl; Ω) ∩H(div0; Ω), (4.2.15)

and the homogeneous equation corresponding to (4.2.4)

(∇× η,∇× ψ) + α(η, ψ) = 0 ∀ψ ∈ H1(Ω). (4.2.16)

By the Fredholm alternative (cf. [34, Theorem 5.11]), it su�ces to show that

(4.2.15) has a nontrivial solution w ∈ H0(curl; Ω) ∩ H(div0; Ω) if and only if

(4.2.16) has a nontrivial solution η ∈ H1(Ω).

Suppose there exists a nontrivial w ∈ H0(curl; Ω) ∩ H(div0; Ω) that satis�es

(4.2.15). Let η = ∇ ×w, then η ∈ H1(Ω) and (4.2.16) holds as a special case of

(4.2.4) where f = 0.

Suppose there exists a nontrivial η ∈ H1(Ω) that satis�es (4.2.16). Since α 6= 0,

we deduce from (4.2.16) that (η, 1) = 0. Let w = ∇ × ρ, where ρ ∈ H1(Ω) is

de�ned by the Neumann problem

(∇× ρ,∇× ψ) = (η, ψ) ψ ∈ H1(Ω), (4.2.17a)
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(ρ, 1) = 0. (4.2.17b)

Then Theorem 3.2.2 and (4.2.17a) imply

η = ∇×w (4.2.18)

and w ∈ H(div0; Ω). Note that w ∈ H(curl; Ω) by (4.2.16). Since (4.2.17a) can

also be written as

(w,∇× ψ) = (∇×w, ψ) ∀ψ ∈ H1(Ω),

we havew ∈ H0(curl; Ω) by Lemma 3.1.12. Therefore,w ∈ H0(curl; Ω)∩H(div0; Ω).

It is easy to see that w is nontrivial. To check that it satis�es (4.2.15), we take

an arbitrary v ∈ H0(curl; Ω) ∩H(div0; Ω) and write its Hodge decomposition (cf.

Theorem 3.2.7) as

v = ∇× φ+ ∇ϕ, (4.2.19)

where φ ∈ H1(Ω) and ϕ ∈ H(Ω). Note that, by Lemma 3.2.9, we have

(∇× η,∇ϕ) = 0 and (w,∇ϕ) = (∇× ρ,∇ϕ) = 0. (4.2.20)

It follows from Lemma 3.1.12, (4.2.16), (4.2.18), (4.2.19) and (4.2.20) that

(∇×w,∇× v) = (η,∇× v) = (∇× η,v)

= (∇× η,∇× φ+ ∇ϕ)

= (∇× η,∇× φ)

= −α(η, φ)

= −α(∇×w, φ)

= −α(w,∇× φ)

= −α(w,∇× φ+ ∇ϕ) = −α(w, v),

58



i.e., w satis�es (4.2.15).

It follows from Theorem 4.2.1 and Lemma 4.2.4 that we can solve (4.1.1) by

the following numerical procedure under the assumption that −α is not a Maxwell

eigenvalue.

Step 1. Compute a numerical approximation ξ̃ of ξ by solving (4.2.4) when α 6= 0,

and by solving (4.2.4) with the constraint (ξ, 1) = 0 when Ω is simply connected

and α = 0.

Step 2. Compute a numerical approximation φ̃ of φ by solving (4.2.2) under the

constraint (φ, 1) = 0, where ξ is replaced by ξ̃.

Step 3. Compute numerical approximations ϕ̃1, · · · , ϕ̃p of ϕ1, · · · , ϕp by solving

the boundary value problems in (4.2.11).

Step 4. Compute numerical approximations c̃1, · · · , c̃p by solving (4.2.14), where

ϕ1, · · · , ϕp are replace by ϕ̃1, · · · , ϕ̃p.

Step 5. The numerical approximation ũ for ů is given by

ũ = ∇× φ̃+

p∑
i=1

c̃i∇ϕ̃i.

4.3 A P1 Finite Element Method

In this section, we use a P1 �nite element method to demonstrate our approach.

Let Th be a quasi-uniform simplicial triangulation of Ω with mesh size h and

Vh ⊂ H1(Ω) be the P1 �nite element space associated with Th (See Section 2.4).

For α 6= 0, the P1 �nite element method for (4.2.4) is to �nd ξh ∈ Vh such that

(∇× ξh,∇× v) + α(ξh, v) = (f ,∇× v) ∀v ∈ Vh. (4.3.1)
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For α > 0, the problem (4.3.1) is symmetric positive-de�nite and hence well-

posed. It is also well-posed for α < 0 provided −α is not a Maxwell eigenvalue and

h is su�ciently small (cf. Lemma 4.4.2).

Note that when α 6= 0 (4.3.1) implies

(ξh, 1) = 0. (4.3.2)

When Ω is simply connected and α = 0, ξh ∈ Vh is determined by (4.3.1)

together with the constraint (4.3.2). It is a well-posed problem because of the

Poincare-Friedrichs inequality (cf. [20])

‖v‖L2(Ω) ≤ C(|(v, 1)|+ ‖∇× v‖L2(Ω)) ∀v ∈ H1(Ω). (4.3.3)

The P1 �nite element approximation φh of φ is then determined by

(∇× φh,∇× v) = (ξh, v) ∀v ∈ Vh, (4.3.4a)

(φh, 1) = 0. (4.3.4b)

The problem (4.3.4) is well-posed because of (4.3.2) and (4.3.3).

For the multiply connected domain Ω (i.e., p 6= 0), we have the approximation

ϕh of ϕ as follows:

ϕh =

p∑
i=1

ci,h∇ϕi,h,

where ϕi,h is determined by

(∇ϕi,h,∇v) = 0 ∀v ∈ V̊h = Vh ∩H1
0 (Ω), (4.3.5a)

ϕi,h|Γ0 = 0, (4.3.5b)

ϕi,h|Γk = δjk for 1 ≤ k ≤ p, (4.3.5c)

and the ci,h's are determined by

p∑
i=1

(∇ϕi,h,∇ϕk,h)ci,h =
1

α
(f ,∇ϕk,h) for 1 ≤ k ≤ p. (4.3.6)
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Finally, we approximate ů by the piecewise constant vector �eld ůh de�ned by

ůh = ∇× φh +

p∑
i=1

ci,h∇ϕi,h. (4.3.7)

4.4 Convergence Analysis

In this section, we use standard techniques to analyze the P1 �nite element method

in Section 4.3, since (4.2.2), (4.2.1) and (4.2.6) only involve standard second order

scalar elliptic problems. Before doing this, let us introduce the related interpolation

error estimates which are similar to the one introduced in Section 2.4.

Let the index β be de�ned by

β = min(1, min
1≤l≤NΩ

π

ωl
), (4.4.1)

where ω1, ω2, . . . , ωNΩ
are the interior angles at the corners of Ω.

We have the following estimate for the solution of (4.3.5):

‖ϕi − Πhϕi‖L2(Ω) + h|ϕi − Πhϕi|H1(Ω) ≤ Ch1+β, (4.4.2)

where Πh is the nodal interpolation operator for the P1 �nite element.

Similarly, for the solution ζ of the Laplace equation with homogeneous Neumann

boundary condition, we have

‖ζ − Πhζ‖L2(Ω) + h|ζ − Πhζ|H1(Ω) ≤ Ch1+β‖g‖L2(Ω), (4.4.3)

where g is the right-hand side function.

We begin by comparing ξh and ξ = ∇× ů. The following result is obtained by

using (4.2.4), (4.3.1), (4.4.3) and a standard duality argument.

Lemma 4.4.1. For α > 0 (general Ω) and α = 0 (simply connected Ω), we have

‖ξ − ξh‖L2(Ω) ≤ Chβ inf
v∈Vh
‖∇× (ξ − v)‖L2(Ω). (4.4.4)
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Proof. Combining (4.2.4) and (4.3.1), we have the Galerkin orthogonality

(∇× (ξ − ξh),∇× v) + α((ξ − ξh), v) = 0 for v ∈ Vh. (4.4.5)

From (4.4.5) we conclude that

((ξ − ξh), 1) = 0 (4.4.6)

when α 6= 0. If α = 0 (simply connected Ω), then, from (4.2.5) and (4.3.2), we

have the equation (4.4.6).

Since ξ, ξh ∈ H1(Ω), it follows from (4.4.6) and Poincaré-Freidrichs inequality

(cf. [20, (10.6.1)]) that

‖ξ − ξh‖L2(Ω) ≤ C|ξ − ξh|H1(Ω), (4.4.7)

where the positive constant C depends only on the domain Ω.

Now we estimate |ξ − ξh|H1(Ω). Let v ∈ Vh. It follows from (4.4.5) and (4.4.7)

that

|ξ − ξh|2H1(Ω) + α‖ξ − ξh‖2
L2(Ω) = (∇× (ξ − ξh),∇× (ξ − ξh)) + α(ξ − ξh, ξ − ξh)

= (∇× (ξ − ξh),∇× (ξ − v)) + α(ξ − ξh, ξ − v)

≤ C|ξ − ξh|H1(Ω)|ξ − v|H1(Ω),

which implies

|ξ − ξh|H1(Ω) ≤ C|ξ − v|H1(Ω) ∀v ∈ Vh. (4.4.8)

We prove an error estimate for ξ − ξh in the L2 norm by a duality argument.

Let ζ be the solution of

(∇× ζ,∇× v) + α(ζ, v) = (e, v) ∀v ∈ H1(Ω), (4.4.9)

where e = ξ − ξh. When α = 0, (4.4.9) is uniquely solvable up to an additive

constant (cf. [20, Section 5.2]) and we assume its solution ζ satisfying the constant
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(ζ, 1) = 0. It follows from (4.4.3), (4.4.5), (4.4.7), (4.4.8), and (4.4.9) that

‖ξ − ξh‖2
L2(Ω) =(e, ξ − ξh)

=(∇× ζ,∇× (ξ − ξh)) + α(ζ, ξ − ξh)

=(∇× (ζ − Πhζ),∇× (ξ − ξh)) + α(ζ − Πhζ, ξ − ξh)

≤C(|ζ − Πhζ|H1(Ω) + ‖ζ − Πhζ‖L2(Ω))

× (|ξ − ξh|H1(Ω) + ‖ξ − ξh‖L2(Ω))

≤Chβ‖ξ − ξh‖L2(Ω)|ξ − ξh|H1(Ω) (4.4.10)

≤Chβ‖ξ − ξh‖L2(Ω) inf
v∈Vh
|ξ − v|H1(Ω),

which implies (4.4.4).

In the case α < 0, we have the following result by using the approach of Schatz

[58], where the required well-posedness of the continuous problem (4.2.6) is guar-

anteed by Lemma 4.2.4.

Lemma 4.4.2. The discrete problem (4.3.1) is well-posed for α < 0, provided −α

is not a Maxwell eigenvalue and h is su�ciently small. Under these conditions the

estimate (4.4.4) remains valid.

Proof. First we establish an a priori estimate. Assume that the solution ξh of the

discrete problem (4.3.1) exists. Then we apply the same duality argument as in

the proof of Lemma 4.4.1 to obtain the estimate (cf. (4.4.10))

‖ξ − ξh‖L2(Ω) ≤ Chβ|ξ − ξh|H1(Ω). (4.4.11)

Let v ∈ Vh. It follows from (4.4.5) and (4.4.7) that

|ξ − ξh|2H1(Ω) + α‖ξ − ξh‖2
L2(Ω) = (∇× (ξ − ξh),∇× (ξ − v)) + α(ξ − ξh, ξ − v)

≤ C|ξ − ξh|H1(Ω)|ξ − v|H1(Ω),
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which together with the estimate (4.4.11) implies that

|ξ − ξh|2H1(Ω) ≤ C(|ξ − ξh|H1(Ω)|ξ − v|H1(Ω) + h2β|ξ − ξh|2H1(Ω)). (4.4.12)

Hence, for h su�ciently small, we have

|ξ − ξh|H1(Ω) ≤ C|ξ − v|H1(Ω) ∀v ∈ Vh, (4.4.13)

which together with (4.4.11) implies the estimate (4.4.4).

If ξh is the solution of (4.3.1) corresponding to f = 0, then ξ = 0 is a solution

of (4.3.1) and it follows from (4.4.4) that ξh = 0 (let v = 0 in (4.4.4)). Hence the

homogeneous discrete problem has a unique solution and, since Vh is �nite dimen-

sional, this implies that the discrete problem (4.3.1) is well-posed for h su�ciently

small.

Under the assumption f ∈ [L2(Ω)]2, we have the following stability estimate

from the well-posedness of the continuous problem:

‖ξ‖H1(Ω) ≤ C‖f‖L2(Ω), (4.4.14)

which together with (4.4.4) immediately implies the following corollary.

Corollary 4.4.3. Under the assumptions in Lemmas 4.4.1 and 4.4.2, we have

‖ξ − ξh‖L2(Ω) ≤ Chβ‖f‖L2(Ω).

Next we compare φh and φ.

Lemma 4.4.4. For h su�ciently small, we have

‖∇× (φ− φh)‖L2(Ω) ≤ C(hβ inf
v∈Vh
‖∇× (ξ − v)‖L2(Ω) + inf

v∈Vh
‖∇× (φ− v)‖L2(Ω)).

(4.4.15)
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Proof. Since (ξ, 1) = 0, we can de�ne φ̃h ∈ Vh to be the unique solution of

(∇× φ̃h,∇× v) = (ξ, v) ∀v ∈ Vh, (4.4.16a)

(φ̃h, 1) = 0. (4.4.16b)

It follows from (4.3.4) and (4.4.16) that

(∇× (φ̃h − φh),∇× v) = (ξ − ξh, v) ∀v ∈ Vh, (4.4.17)

and (φh − φ̃h, 1) = 0. We then obtain, by (4.3.3), (4.4.4) and (4.4.17),

‖∇× (φ̃h − φh)‖2
L2(Ω) = (ξ − ξh, φ̃h − φh)

≤ C‖ξ − ξh‖L2(Ω)‖φ̃h − φh‖L2(Ω)

≤ Chβ inf
v∈Vh
‖∇× (ξ − v)‖L2(Ω)‖∇× (φ̃h − φh)‖L2(Ω),

which implies

‖∇× (φ̃h − φh)‖L2(Ω) ≤ Chβ inf
v∈Vh
‖∇× (ξ − v)‖L2(Ω). (4.4.18)

Comparing (4.2.2 ) and (4.4.16a), we have the Galerkin orthogonality

(∇× (φ− φ̃h),∇× v) = 0 ∀v ∈ Vh,

which implies that, for v ∈ Vh,

‖∇× (φ− φ̃h)‖2
L2(Ω) = (∇× (φ− φ̃),∇× (φ− v))

≤ ‖∇× (φ− φ̃h)‖L2(Ω)‖∇× (φ− v)‖L2(Ω)

and hence

‖∇× (φ− φ̃h)‖L2(Ω) ≤ inf
v∈Vh
‖∇× (φ− v)‖L2(Ω). (4.4.19)

Since φ̃h ∈ Vh, the estimate (4.4.19) implies

‖∇× (φ− φ̃h)‖L2(Ω) = inf
v∈Vh
‖∇× (φ− v)‖L2(Ω). (4.4.20)

The estimate (4.4.15) follows from (4.4.18) and (4.4.20).
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Note that (4.2.2), (4.2.3) and (4.4.3) imply

inf
v∈Vh
‖∇× (φ− v)‖L2(Ω) ≤ ‖∇× (φ− Πhφ)‖L2(Ω) ≤ Chβ‖ξ‖L2(Ω). (4.4.21)

Hence, under the assumption that f ∈ [L2(Ω)]2, we can use (4.4.14), (4.4.15) and

(4.4.21) to obtain the following bound:

‖∇× (φ− φh)‖L2(Ω) ≤ Chβ‖f‖L2(Ω). (4.4.22)

The next result follows from a standard argument using (4.4.2) and Galerkin

orthogonality.

Lemma 4.4.5. We have, for 1 ≤ i ≤ p,

|ϕi − ϕi,h|H1(Ω) ≤ Chβ. (4.4.23)

Proof. Combining the weak formulation of (4.2.11) for ϕi and (4.3.4), we have the

Galerkin orthogonality

(∇(ϕi − ϕi,h),∇v) = 0 ∀v ∈ Vh ∩H1
0 (Ω) (4.4.24)

and hence

|ϕi − ϕi,h|2H1(Ω) = (∇(ϕi − ϕi,h),∇(ϕi − v))

≤ |ϕi − ϕi,h|H1(Ω)|ϕi − v|H1(Ω) ∀v ∈ Vh ∩H1
0 (Ω),

which implies that

|ϕi − ϕi,h|H1(Ω) ≤ inf
v∈Vh∩H1

0 (Ω)
|ϕi − v|H1(Ω) ≤ |ϕi − Πhϕi|H1(Ω). (4.4.25)

By the interpolation error estimate (cf. Section 2.4) and (4.4.25), we have the

estimate (4.4.23).

Now we compare ci,h and ci.
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Lemma 4.4.6. For h su�ciently small, we have

|ci − ci,h| ≤ Chβ‖f‖L2(Ω) for 1 ≤ i ≤ p. (4.4.26)

Proof. First we observe that (4.4.23) implies

|(f ,∇ϕi)− (f ,∇ϕi,h)| ≤ Chβ‖f‖L2(Ω) for 1 ≤ i ≤ p. (4.4.27)

Furthermore, since ϕi − ϕi,h ∈ H1
0 (Ω) for 1 ≤ i ≤ p, (4.2.12) implies that, for

1 ≤ i, j ≤ p,

(∇ϕi,∇ϕj)− (∇ϕi,h,∇ϕj,h) = (∇ϕi,∇ϕj) + (∇(ϕi,h − ϕi),∇ϕj)

− (∇ϕi,h,∇ϕj,h) + (∇ϕi,∇(ϕj,h − ϕj))

= (∇(ϕi − ϕi,h),∇(ϕj,h − ϕj))

and hence, in view of (4.4.23),

|(∇ϕi,∇ϕj)− (∇ϕi,h,∇ϕj,h)| ≤ Ch2β for 1 ≤ i, j ≤ p. (4.4.28)

We can rewrite (4.2.14) and (4.3.6) as

Ac = b and Ahch = bh,

where c ∈ Rp (resp. ch ∈ Rp) is the vector whose j-th component is cj (resp.

cj,h), A ∈ Rp×p (resp. Ah ∈ Rp×p) is the matrix whose (i, j)-th component is

(∇ϕj,∇ϕi) (resp. (∇ϕj,h,∇ϕi,h)), and b ∈ Rp (resp. bh ∈ Rp) is the vector whose

j-th component is α−1(f ,∇ϕj) (resp. α
−1(f ,∇ϕj,h)).

Note that

‖b‖∞ ≤ |α|−1(max
1≤i≤p

‖∇ϕi‖L2(Ω))‖f‖L2(Ω) ≤ C‖f‖L2(Ω), (4.4.29)

and the estimates (4.4.27)-(4.4.28) are translated into

‖b− bh‖∞ ≤ Chβ‖f‖L2(Ω) and ‖A−Ah‖∞ ≤ Ch2β. (4.4.30)
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The estimate (4.4.26) follows from the identity

c− ch = A−1b−A−1
h bh = A−1(b− bh) +A−1(Ah −A)A−1

h ((bh − b) + b)

and (4.4.29)-(4.4.30).

Putting all the lemmas together, we can deduce the following error estimate for

ůh.

Theorem 4.4.7. When α ≥ 0 in (4.1.1), we have

‖ů− ůh‖L2(Ω) ≤ Chβ‖f‖L2(Ω), (4.4.31)

where β is de�ned by (4.4.1). When α < 0 and h su�ciently small, we also have

(4.4.31).

Proof. From (4.4.29), we have that the solutions c1, c2, · · · , cp of (4.2.14) satisfy

|ci| ≤ C‖f‖L2(Ω) for 1 ≤ i ≤ p. (4.4.32)

From (4.2.1), (4.2.14) and (4.3.7), we have that

‖ů− ůh‖L2(Ω) ≤C|φ− φh|H1(Ω) +

p∑
i=1

|ciϕi − ci,hϕi,h|H1(Ω)

≤C|φ− φh|H1(Ω) +

p∑
i=1

(|ci − ci,h||ϕi|H1(Ω) + |ci,h||ϕi − ϕi,h|H1(Ω))

(4.4.33)

≤C|φ− φh|H1(Ω) +

p∑
i=1

|ci − ci,h|(|ϕi|H1(Ω) + |ϕi − ϕi,h|H1(Ω))

+

p∑
i=1

|ci||ϕi − ϕi,h|H1(Ω).

The estimate (4.4.31) follows from (4.4.22), (4.4.23), (4.4.26), (4.4.32) and (4.4.33).
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FIGURE 4.1. A uniform mesh on the L-shaped domain

Remark 4.4.8. In the case where ci = 0 = ci,h for 1 ≤ i ≤ p, it follows from (4.4.15)

and (4.4.33 ) that

‖ů− ůh‖L2(Ω) ≤ C(hβ inf
v∈Vh
‖∇× (ξ − v)‖L2(Ω) + inf

v∈Vh
‖∇× (φ− v)‖L2(Ω)).

4.5 Numerical Results

In this section we present the results of several numerical experiments that con�rm

the theoretical results obtained in Section 4.4.

In the �rst set of experiments, we examine the convergence behavior of the

numerical scheme on the L-shaped domain (−1, 1)2 \ [0, 1]2 with uniform meshes

(See Figure 4.1). The exact solution is chosen to be

ů = ∇× (r2/3 cos(
2

3
θ − π

3
)Φ(x)), (4.5.1)

where (r, θ) are the polar coordinates at the origin and Φ(x) = (1− x2
1)2(1− x2

2)2.

It has the correct Maxwell singularity at the reentrant corner. We solve (4.1.1) for

α = −1, 0 and 1, with f = ∇ × (∇ × ů) + αů ∈ H(div0; Ω). The results are

tabulated in Table 4.1.

Note that the convergence of ůh to ů is approaching the order of β = 2/3, which

is predicted by Theorem 4.4.7. On the other hand, since ξ = ∇×ů behaves like r2/3

at the origin, the order of convergence for ξh according to (4.4.4) is (2/3)+(2/3) =

4/3, which agrees with the observed order of convergence.
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h
‖∇×ů−ξh‖L2

‖f‖L2
Order h

‖ů−ůh‖L2

‖f‖L2
Order

α = −1
1/8 3.57E-02 1.43 1/8 3.19E-02 1.41
1/16 1.32E-02 1.43 1/16 1.23E-02 1.38
1/32 4.98E-03 1.41 1/32 5.03E-03 1.28
1/64 1.90E-03 1.39 1/64 2.26E-03 1.15
1/128 7.37E-04 1.37 1/128 1.13E-03 0.99
1/256 2.87E-04 1.36 1/256 6.17E-04 0.87

α = 0
1/8 1.12E-02 1.44 1/8 1.35E-02 1.29
1/16 4.24E-03 1.41 1/16 6.13E-03 1.14
1/32 1.63E-03 1.38 1/32 3.07E-03 0.99
1/64 6.36E-04 1.36 1/64 1.66E-03 0.89
1/128 2.50E-04 1.35 1/128 9.46E-04 0.81
1/256 9.86E-05 1.34 1/256 5.58E-04 0.76

α = 1
1/8 6.77E-03 1.39 1/8 1.06E-02 1.14
1/16 2.63E-03 1.36 1/16 5.27E-03 1.01
1/32 1.04E-03 1.34 1/32 2.80E-03 0.91
1/64 4.14E-04 1.33 1/64 1.56E-03 0.84
1/128 1.65E-04 1.33 1/128 9.06E-04 0.79
1/256 6.57E-05 1.32 1/256 5.38E-04 0.75

TABLE 4.1. Results for (4.1.1) on the L-shaped domain with exact solution given by

(4.5.1)
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FIGURE 4.2. A uniform mesh on the doubly connected domain

In the second set of experiments, we examine the convergence behavior of the

numerical scheme on the doubly connected domain (0, 4)2 \ [1, 3]2 with uniform

meshes (See Figure 4.2).

In this case the solution ů of (4.1.1) can be written as

ů = ∇× φ+ c∇ϕ, (4.5.2)

where c is a constant and the harmonic function ϕ satis�es the boundary conditions

ϕ|Γ0 = 0 and ϕ|Γ1 = 1.

Here Γ0 (resp. Γ1) is the boundary of (0, 4)2 (resp. (1, 3)2). The exact solution is

chosen to be

ů =

x2(1− x2)(3− x2)(4− x2)

x1(1− x1)(3− x1)(4− x1)

 . (4.5.3)

We solve (4.1.1) for α = −1 and 1, with f = ∇ × (∇ × ů) + αů ∈ H(div0; Ω).

The results are tabulated in Table 4.2.

Note that in this case ů is the curl of a quintic polynomial and hence c = 0 in

(4.5.2). In fact, since f is also the curl of a polynomial, we have (f ,∇ϕh) = 0 by

Lemma 3.2.9, and it is observed that ch = 0 up to machine error.

According to Remark 4.4.8, the order of convergence for ůh is 1 (since ξ and φ

are smooth), which is observed. The order of convergence for ξh is found to be 2,
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h
‖∇×ů−ξh‖L2

‖f‖L2
Order |c|h

‖ů−ůh‖L2

‖f‖L2
Order

α = −1
1/8 3.71E-03 2.01 7.93E-17 1.13E-02 1.05
1/16 9.26E-04 2.00 1.36E-16 5.61E-03 1.01
1/32 2.31E-04 2.00 1.49E-16 2.80E-03 1.00
1/64 5.78E-05 2.00 7.69E-16 1.39E-03 1.00
1/128 1.44E-05 2.00 7.43E-16 6.99E-04 1.00

α = 1
1/8 1.69E-03 1.98 9.25E-16 9.50E-03 1.00
1/16 4.25E-04 1.99 1.11E-15 4.75E-03 1.00
1/32 1.06E-04 2.00 1.35E-15 2.38E-03 1.00
1/64 2.66E-05 2.00 3.27E-15 1.19E-03 1.00
1/128 6.64E-06 2.00 4.96E-15 5.94E-04 1.00

TABLE 4.2. Results for (4.1.1) on the doubly connected domain with exact solution given

by (4.5.3)

which is better than the order of β + 1 = 5/3 predicted by (4.4.4). This is likely

due to the e�ects of superconvergence since we use uniform meshes in computing

ξh and the exact solution ξ is smooth.

Finally we take the right-hand side of (4.1.1) to be the piecewise smooth vector

�eld

f =



1 + x1

0

 if x1 < x2 and 3 < x1 < 4,

 0

1 + x2

 otherwise.

(4.5.4)

The results are tabulated in Table 4.3.

The observed orders of convergence are consistent with the theoretical results.

In particular, the order of convergence for ůh is 2/3 for α = 1 and approaching 2/3

for α = −1, which agrees with the estimate (4.4.31). The order of convergence for

ch is 2/3+1/2 = 7/6. This is because f is piecewise smooth and hence the estimate

(4.4.26) can be improved (cf. [14, Remark 4.8]). The order of convergence for ξh in
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h
‖∇×ů−ξh‖L2

‖f‖L2
Order |ch| Order

‖ů−ůh‖L2

‖f‖L2
Order

α = −1
1/8 1.72E-01 1.26 0.763918 1.05 2.68E-01 1.00
1/16 5.28E-02 1.70 0.765285 0.87 1.28E-01 1.06
1/32 1.49E-02 1.83 0.765991 0.95 6.93E-02 0.89
1/64 4.29E-03 1.80 0.766332 1.05 4.04E-02 0.78
1/128 1.13E-03 1.69 0.766489 1.12 2.42E-02 0.73

α = 1
1/8 1.03E-02 1.33 -0.763918 1.05 8.60E-02 0.71
1/16 4.04E-03 1.35 -0.765285 0.87 5.30E-02 0.70
1/32 1.58E-03 1.35 -0.765991 0.95 3.29E-02 0.69
1/64 6.21E-04 1.35 -0.766332 1.05 2.05E-02 0.68
1/128 2.44E-04 1.34 -0.766489 1.12 1.28E-02 0.67

TABLE 4.3. Results for (4.1.1) on the doubly connected domain with right-hand side

given by (4.5.4)

both cases is higher than the order predicted by (4.4.3). This is probably due to

the fact that the mesh size h is not small enough and the asymptotic behavior has

not been reached.
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Chapter 5
Multigrid Methods for Maxwell Equations
in Heterogeneous Media

5.1 Introduction

Let Ω be a bounded simply connected polygonal domain in R2, and Ωj, 1 ≤ j ≤ J ,

be open polygonal subdomains of Ω that form a partition of Ω, i.e.,

Ωj1 ∩ Ωj2 = ∅ for j1 6= j2 and ∪Jj=1 Ω̄j = Ω̄.

Let Γ = ∪Γj1j2 be the interface of Ω, where Γj1j2 = Ω̄j1 ∩ Ω̄j2 , if Ω̄j1 ∩ Ω̄j2 6= ∅.

Let f ∈ [L2(Ω)]2 and ε, µ be piecewise constant functions in the domain Ω such

that ε(x) = εj and µ(x) = µj for x ∈ Ωj, with the assumption that εj and µj are

positive numbers.

We will consider the following weak formulation of the Maxwell interface prob-

lem:

Find ů ∈ H0(curl; Ω) ∩H(div0; Ω; ε) such that

(µ−1∇× ů,∇×v)+α(εů,v) = (f ,v) ∀v ∈ H0(curl; Ω)∩H(div0; Ω; ε), (5.1.1)

where the space H(div0; Ω; ε) is de�ned in Subsection 3.2.2.

Remark 5.1.1. The variational formulation here actually implies the interface con-

ditions

[n× ů] = n− × u− + n+ × u+ = 0

and

[n · (εů)] = n− · (ε−u−) + n+ · (ε+u+) = 0

in the sense ofH−1/2(Γ), where Γ is the interface. The �rst interface condition above

comes from the assumption that ů ∈ H(curl; Ω). The second interface condition
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above means that there is no charge density distribution on the interface. It comes

from the assumption that ů ∈ H(div0; Ω; ε).

Under the assumption that Ω is simply connected, we can write (cf. Lemma 3.2.12)

εů = ∇× φ, (5.1.2)

where φ ∈ H1(Ω) satis�es (φ, 1) = 0. Then we can show (cf. Section 5.2) that the

function φ in (5.1.2) is determined by

(∇× φ, ε−1∇× ψ) = (µξ, ψ) ∀ψ ∈ H1(Ω) (5.1.3)

and the constraint

(φ, 1) = 0, (5.1.4)

where the function ξ = µ−1∇× ů ∈ H1(Ω) is determined by

(∇× ξ, ε−1∇× ψ) + α(µξ, ψ) = (f , ε−1∇× ψ) ∀ψ ∈ H1(Ω), (5.1.5)

when α 6= 0 and by the equation (5.1.5) with the constraint

(µξ, 1) = 0, (5.1.6)

when α = 0.

We can therefore solve (5.1.1) by the following numerical procedure under the

assumption that −α is not a Maxwell eigenvalue.

Step 1. Compute a numerical approximation ξ̃ of ξ by solving the interface

problem (5.1.5) when α 6= 0, and by solving (5.1.5) with the constraint (ξ, 1) = 0

when α = 0.

Step 2. Compute a numerical approximation φ̃ of φ by solving the interface

problem (5.1.3) under the constraint (φ, 1) = 0, where ξ is replaced by ξ̃.

Step 3. The numerical approximation ũ for ů is given by

ũ = ∇× φ̃.
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Because equations (5.1.5) and (5.1.3) are elliptic interface problems, we already

know that the solutions of these equations have very low regularity (cf. Subsec-

tion 2.2.2) and hence the solution of Maxwell's interface problem (5.1.1) can have

very low regularity. Therefore the P1 �nite element method does not work well in

this case. However we can take advantage of the singular function representations

of elliptic interface problems and the extraction formulas for the stress intensity

factors (cf. the discussion in Subsection 2.3.2) to recover the optimal convergence

of the P1 �nite element method on quasi-uniform grids by using a full multigrid

approach for the interface problems (5.1.5) and (5.1.3).

5.2 Equation for ξ and φ

Our goal in this section is to justify the equations (5.1.3)�(5.1.6).

Lemma 5.2.1. Given v ∈ H(div0; Ω; ε), there exists a unique φ ∈ H1(Ω) such

that (φ, 1) = 0 and

εv = ∇× φ.

Proof. By Lemma 3.2.12, we have

v = ε−1∇× ϕ,

for some ϕ ∈ H1(Ω). Let φ = ϕ− 1
|Ω|

∫
Ω
ϕdx, then it satis�es the constraint (φ, 1) =

0. The uniqueness comes from Friedrichs' inequality (cf. [20, Lemma 4.3.14]).

Now we use Lemma 5.2.1 to justify the equation (5.1.3). For any ψ ∈ H1(Ω) we

have

(∇× φ, ε−1∇× ψ) = (εů, ε−1∇× ψ) = (ů,∇× ψ)

= (∇× ů, ψ) = (µξ, ψ),
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since ů ∈ H0(curl; Ω) satis�es Lemma 3.1.12. To justify the equation (5.1.5), we

need another lemma (cf. [14]).

Lemma 5.2.2. The solution ů of (5.1.1) satis�es

∇× (µ−1∇× ů) + α(εů) = εQ(ε−1f) (5.2.1)

in the sense of distributions, where Q : [L2(Ω; ε)]2 → H(div0; Ω; ε) is the orthogonal

projection.

Proof. Let ζ ∈ [D(Ω)]2 be a C∞ vector �eld with compact support in Ω. So ζ ∈

H0(curl; Ω), Qζ ∈ H(div0; Ω; ε) and ζ −Qζ ∈ ∇H1
0 (Ω) because of Theorem 3.2.7.

Because of Corollary 3.2.10, we have ζ − Qζ ∈ H0(curl; Ω) and hence Qζ ∈

H0(curl; Ω). Therefore

Qζ ∈ H0(curl; Ω) ∩H(div0; Ω; ε). (5.2.2)

Furthermore, we have

∇× (ζ −Qζ) = 0, (5.2.3)

since ∇× (∇H1
0 (Ω)) = {0}, and for ů ∈ H(div0; Ω; ε), we have

(εů, ζ −Qζ) = 0. (5.2.4)

Using (5.1.1), (5.2.2), (5.2.3) and (5.2.4), we have

(µ∇× ů,∇× ζ) + α(εů, ζ) =(µ∇× ů,∇× (Qζ + ζ −Qζ))

+ α(εů, Qζ + (ζ −Qζ))

=(µ∇× ů,∇×Qζ) + α(εů, Qζ)

=(f , Qζ)

=(Q(ε−1f), ζ)L2(Ω;ε)
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=(εQ(ε−1f), ζ),

which completes the proof.

Remark 5.2.3. Lemma 5.2.2 is a generalization of Lemma 4.2.2.

With the help of Lemma 3.2.2, equation (5.1.5) can be justi�ed by the same

argument as in Chapter 4.

Let ψ ∈ H1(Ω) be arbitrary. Since ε−1∇ × ψ ∈ H(div0; Ω; ε) by Theorem 3.2.2

and De�nition 3.2.5, we have

(f , ε−1∇× ψ) = (ε−1f , ε−1∇× ψ)L2(Ω;ε)

= (Q(ε−1f), ε−1∇× ψ)L2(Ω;ε)

= (εQ(ε−1f), ε−1∇× ψ)

= (∇× ξ + α(εů), ε−1∇× ψ) (by Lemma 5.2.2)

= (∇× ξ, ε−1∇× ψ) + α(∇× ů, ψ) (by Lemma 3.2.9)

= (∇× ξ, ε−1∇× ψ) + α(µξ, ψ),

which gives (5.1.5). The constraint (ξ, 1) = 0 follows immediately from Lemma 3.1.12.

5.3 Regularity, Stress Intensity Factors and

Extraction Formulas

For simplicity we will assume from here on that there is only one interface vertex

p∗ of the subdomains near which the solution φ of (5.1.3) and/or the solution ξ of

(5.1.5) are singular.

We further assume that f ∈ H1(Ωj) and Ωj is convex for 1 ≤ j ≤ J . Then by

integration by parts, the weak problems (5.1.5) and (5.1.3) are equivalent to the

following strong problems:
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Find ξ ∈ H1(Ω) such that

−ε−1
j ∆ξ + αµjξ = ε−1

j ∇× f in Ωj, 1 ≤ j ≤ J, (5.3.1a)

ε−1 ∂ξ

∂n
= −ε−1n× f on the boundary ∂Ω, (5.3.1b)[

ε−1 ∂ξ

∂n

]
= −[ε−1n× f ] on the interface Γ, (5.3.1c)

and �nd φ ∈ H1(Ω) such that

−ε−1
j ∆φ = µjξ in Ωj, 1 ≤ j ≤ J, (5.3.2a)

ε−1∂φ

∂n
= 0 on the boundary ∂Ω, (5.3.2b)[

ε−1∂φ

∂n

]
= 0 on the interface Γ. (5.3.2c)

We can rewrite the problem (5.3.2) as a weak problem of the form (2.2.8). For

the problem (5.3.1), we can �nd a function U satisfying the boundary and interface

conditions and U |Ωj ∈ H2(Ωj) for 1 ≤ j ≤ J . By Theorem 3.2.7, there exist

Uj,1 ∈ H1
0 (Ωj) and Uj,2 ∈ H1(Ωj) such that

f |Ωj = ∇Uj,1 + ∇× Uj,2,

where Uj,1 is the solution of

(∇Uj,1,∇v) = −(∇ · f , v) ∀v ∈ H1
0 (Ωj).

We have Uj,1 ∈ H2(Ωj) since Ωj is convex and∇·f ∈ L2(Ωj). Therefore,∇×Uj,2 =

f −∇Uj,1 is in H1(Ωj,1) and hence Uj,2 is in H2(Ωj). On the boundary ∂Ωj, we

have

ε−1n× (∇× Uj,2) = ε−1n× f = −ε−1 ∂ξ

∂n
,

since Uj,1 ∈ H1
0 (Ωj) implies n ×∇Uj,1 = 0 on the boundary ∂Ωj. Now we de�ne

U = Uj,2 for x ∈ Ωj and 1 ≤ j ≤ J . The function U satis�es the corresponding
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boundary and interface conditions and U |Ωj ∈ H2(Ωj) for 1 ≤ j ≤ J . So the func-

tion ξ − U satis�es homogeneous boundary and interface conditions and hence is

the solution of a weak problem described by (2.2.8). According to the discussion in

Subsection 2.2.2, we let λl = (σl)
2, l ≥ 1, be the positive eigenvalues of the Sturm-

Liouville problem at p∗ and the functions Θl be the corresponding eigenfunctions.

We de�ne the singular functions sl by the formula

sl(r, θ) = %l(r)r
σlΘl(θ),

where %l is a smooth cut-o� function that equals 1 identically near r = 0 and

vanishes for r ≥ δ.

We have the singular function representations (2.2.11)/ (2.2.14) for the solution

ξ of (5.1.5):

ξ =
∑

0<σl<1

κξl sl + wξ, (5.3.3)

and the solution φ of (5.1.3):

φ =
∑

0<σl<1

κφl sl + wφ, (5.3.4)

where

wξ|Ωj , wφ|Ωj ∈ H2(Ωj) for 1 ≤ j ≤ J.

Moreover, the solution ξ and φ satisfy the following elliptic regularity estimates

(cf. Subsection 2.3.2):

∑
0<σl<1

|κξl |+
J∑
j=1

‖wξ‖H2(Ωj) ≤ C‖∇× f‖L2(Ω) (5.3.5)

and ∑
0<σl<1

|κφl |+
J∑
j=1

‖wφ‖H2(Ωj) ≤ C‖∇× f‖L2(Ω). (5.3.6)
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The stress intensity factors κξl and κ
φ
l can be computed by the following extrac-

tion formulas (Lemma 2.3.4 and Lemma 2.3.5)

κξl =
1

2σl
{
∫

Ω

(ε−1(∇× f)s∗l − αµξs∗l + ε−1ξ∆s∗l )dx

−
∫
∂Ω

ε−1(n× f)s∗l ds−
∫

Γ

[ε−1n× f ]s∗l ds}, (5.3.7)

and

κφl =
1

2σl

∫
Ω

(µξs∗l + ε−1φ∆s∗l )dx. (5.3.8)

Now we present the basic idea of our algorithm by focusing on (5.1.5) with α 6= 0.

For (5.1.3) the idea will be essentially the same, so we omit it here. By (5.1.5) and

(5.3.3), wξ (the regular part of ξ) is the solution of

(∇× wξ, ε−1∇× ψ) + α(µwξ, ψ) = (f , ε−1∇× ψ)

+
∑

0<σl<1

κξl [(ε
−1∆sl, ψ)− α(µsl, ψ)] ∀ψ ∈ H1(Ω). (5.3.9)

We can then solve (5.3.9) using a P1 �nite element method and the convergence

rate in H1-norm would be of order O(h) since w ∈ H2(Ωj) for 1 ≤ j ≤ J . But

of course we do not know the stress intensity factors κξl and therefore we consider

the following problem instead:

(∇× ŵ, ε−1∇× ψ) + α(µŵ, ψ) = (f , ε−1∇× ψ)

+
∑

0<σl<1

κξ̂l,k[(ε
−1∆sl, ψ)− α(µsl, ψ)] ∀ψ ∈ H1(Ω). (5.3.10)

Here the numbers κξ̂l,k are the approximate stress intensity factors computed through

the extraction formula (5.3.7) where ξ is replaced by an approximation from the

previous level. This strategy can be implemented naturally through the full multi-

grid methodology.

In the resulting algorithm we are really computing the regular part w of the

solution and therefore the improvement in the convergence rate is possible because
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w has better regularity than ξ. Actually, the optimal convergence rate of the stan-

dard P1 �nite element is recovered, i.e., the convergence rate of wk to w in the

H1-norm will be O(h) (cf. Theorem 5.5.3).

5.4 The Algorithm

Consider a sequence of triangulations {T1, · · · ,TN} of Ω, where the triangulations

are aligned with the interface between subdomains. Suppose T1 is given and let

Tk, k ≥ 2, be obtained from Tk−1 via a regular subdivision, i.e., edge midpoints

in Tk−1 are connected by new edges to form Tk. Let Vk be the P1 �nite element

space associated with Tk (cf. Section 2.4), and Ṽk be the subspace of Vk such that

vk ∈ Ṽk i� (µvk, 1) = 0. Let hk = max
T∈Tk

diam T . We introduce a discrete inner

product (·, ·)k on Vk by

(v1, v2)k = h2
k

∑
v1(p)v2(p) ∀v1, v2 ∈ Vk, (5.4.1)

where the summation is taken over all the vertices p of Tk.

The operators Mk : Vk → Vk, Ak : Vk → Vk, I
k−1
k : Vk → Vk−1, Qa,k : Vk → Ṽk,

where a = µ or 1, are de�ned by

(Akv1, v2)k =

∫
Ω

ε−1∇× v1 · ∇ × v2dx ∀v1, v2 ∈ Vk, (5.4.2)

(Ik−1
k v, w)k−1 = (v, w)k ∀v ∈ Vk, w ∈ Vk−1(⊂ Vk), (5.4.3)

(Mkv1, v2)k =

∫
Ω

µv1v2dx ∀v1, v2 ∈ Vk, (5.4.4)

and Qa,k : Vk → Ṽk, where

Ṽk = {v ∈ Vk : (µv, 1) = 0}

or

Ṽk = {v ∈ Vk : (v, 1) = 0},
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is the orthogonal projection with respect to the inner product (·, ·)k, i.e.,

(Qa,kv1, v2)k = (v1, v2)k ∀v1 ∈ Vk, v2 ∈ Ṽk. (5.4.5)

For the convergence analysis, we also de�ne the Ritz projection operators Pk :

H1(Ω)→ Ṽk and Pk,µ : H1(Ω)→ Vk. If α = 0 in (5.1.5), then Pk : H1(Ω)→ Ṽk is

de�ned by

(ε−1∇× (ζ − Pkζ),∇× v) = 0 ∀ζ ∈ H1(Ω), v ∈ Ṽk. (5.4.6)

If α 6= 0 in (5.1.5), then Pk,µ : H1(Ω)→ Vk is de�ned by

(ε−1∇× (ζ − Pkζ),∇× v) + α(µ(ζ − Pkζ), v) = 0 ∀ζ ∈ H1(Ω), v ∈ Vk. (5.4.7)

The following is the standard two-sided symmetric kth level multigrid iteration

scheme. For p = 1 it is the V-cycle algorithm with m presmoothing steps and m

postsmoothing steps, and for p = 2 it is the W-cycle algorithm with m presmooth-

ing steps and m postsmoothing steps.

5.4.1 The kth Level Iteration

The kth level iteration with initial guess z0 yields MG(k, z0, g) as an approximate

solution to the equation  Akz = g,

(µz, 1) = 0,
(5.4.8)

or

Akz + αMkz = g (5.4.9)

when α 6= 0. For k = 1, MG(1, z0, g) is the solution obtained from an exact solver.

For k > 1, MG(k, z0, g) is obtained recursively in three steps.

Presmoothing Step. For 1 ≤ l ≤ m,
z̃l = zl−1 +

1

Λk

(g − Akzl−1),

zl = Qµ,kz̃l,

(5.4.10)
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or

zl = zl−1 +
1

Λk

(g − αMkzl−1 − Akzl−1) (5.4.11)

when α 6= 0, where m is a positive integer independent of k, and Λk dominates the

spectral radius of Ak + αMk.

Correction Step. Let ḡ = Ik−1
k (g − Akzm) or ḡ = Ik−1

k (g − αMkzm − Akzm) and

qi ∈ Vk−1(0 ≤ i ≤ p, p = 1 or 2) be de�ned recursively by

q0 = 0 (5.4.12)

and

qi = MG(k − 1, qi−1, ḡ) for 1 ≤ i ≤ p. (5.4.13)

Then

zm+1 = zm + Ikk−1qp. (5.4.14)

Postsmoothing Step. For m+ 2 ≤ l ≤ 2m+ 1, let
z̃l = zl−1 +

1

Λk

(g − Akzl−1),

zl = Qa,kz̃l,

(5.4.15)

or

zl = zl−1 +
1

Λk

(g − αMkzl−1 − Akzl−1) (5.4.16)

if α 6= 0. Then the �nal output of the kth level iteration is

MG(k, z0, g) = z2m+1. (5.4.17)

5.4.2 The Full Multigrid Algorithms

We use a nested iteration to compute κξl,k and wk ∈ Vk so that κξk,l approximates

the stress intensity factor κξl , and ξk =
∑

0<σl<1

κξl,ksl +wk approximates the solution

ξ of (5.1.5). Then we approximate ξ in (5.1.3) by ξN (the approximation of ξ on

the �nest level), and use a nested iteration to compute κφl,k and vk ∈ Vk so that
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φk =
∑

0<σl<1

κφl,ks+ vk approximates φ. The full multigrid algorithm is described as

follows.

Algorithm 5.4.1. (Full Multigrid Algorithm for ξ.) Let Qa,k = Qµ,k in (5.4.10)

and (5.4.15) when α 6= 0. For k = 1, ξ1 is the exact solution of (5.4.8), where

g1 ∈ V1 is de�ned by

(g1, v)1 = (f , ε−1∇× v) ∀v ∈ V1,

and we set w1 = ξ1.

For 2 ≤ k ≤ N , the stress intensity factors κξl,k are computed by the following

extraction formula:

κξl,k =
1

2σl
{
∫

Ω

(ε−1(∇× f)s∗l − αµξk−1s
∗
l + ε−1ξk−1∆s∗l )dx

−
∫
∂Ω

ε−1(n× f)s∗l ds−
∫

Γ

[ε−1n× f ]s∗l ds}, (5.4.18)

and wk ∈ Vk is obtained recursively by
wk,0 = wk−1,

wk,l = MG(k, wk,l−1, gk) for 1 ≤ l ≤ n,

wk = wk,n,

(5.4.19)

where n is a positive integer independent of k, and gk ∈ Vk is de�ned by

(gk, v)k =

∫
Ω

{f ·(ε−1∇×v)−ε−1
∑

0<σl<1

κξl,k∇sl ·∇v−αµv
∑

0<σl<1

κξl,ksl}dx ∀v ∈ Vk.

(5.4.20)

Then we de�ne

ξk = wk +
∑

0<σl<1

κξl,ksl. (5.4.21)

Similarly, we de�ne a full multigrid algorithm for φ.
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Algorithm 5.4.2. (Full Multigrid Algorithm for φ.) Let Qa,k = Q1,k in (5.4.10)

and (5.4.15). For k = 1, φ1 is the exact solution of (5.4.8), where g1 ∈ V1 is de�ned

by

(g1, v)1 = (µξN , v) ∀v ∈ V1,

and we set v1 = φ1.

For 2 ≤ k ≤ N , the stress intensity factors κφl,k are computed by the extraction

formula:

κφl,k =
1

2σl

∫
Ω

(µξNs
∗
l + ε−1φk−1∆s∗l )dx (5.4.22)

and vk ∈ Vk is obtained recursively by
vk,0 = vk−1,

vk,l = MG(k, vk,l−1, gk) for 1 ≤ l ≤ n,

vk = vk,n,

(5.4.23)

where gk ∈ Vk is de�ned by

(gk, v)k =

∫
Ω

(µξNv − ε−1
∑

0<σl<1

κφl,k∇sl · ∇v)dx ∀v ∈ Vk. (5.4.24)

Then we de�ne

φk = vk +
∑

0<σl<1

κφl,ksl (5.4.25)

and the approximation of ů by

ůh = ε−1∇× vk +
∑

0<σl<1

κφl,kε
−1∇× sl.

5.5 Convergence Analysis

In this section we prove the convergence of Algorithm 5.4.1 and Algorithm 5.4.2

for the case when α ≥ 0.

In order to avoid the proliferation of constants, we will use the notation A . B

to represent the statement that A is bounded by B multiplied by a constant which
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is independent of the variables, the mesh sizes and the grid levels. The notation

A ≈ B means that A . B and B . A, and the notation A .ε B indicates that

the constant may depend on ε.

First we derive a convergence result for the kth level symmetric W-cycle multi-

grid algorithm applied to our interface problems. Recall that MG(k, z0, g) is the

approximate solution of (5.4.8) obtained by the kth level iteration scheme with

initial guess z0.

Lemma 5.5.1. Let p = 2 in the kth level iteration scheme. Let δ ∈ (0, 1), ε ∈ (0, σ1)

and σε = 1− σ1 + ε, we have

‖z −MG(k, z0, g)‖H1(Ω) ≤ δ‖z − z0‖H1(Ω) ∀k ≥ 1, (5.5.1)

and

‖z −MG(k, z0, g)‖Hσε (Ω) ≤ δ‖z − z0‖Hσε (Ω) ∀k ≥ 1, (5.5.2)

provided that the number of smoothing steps m is su�ciently large.

Proof. The proof of (5.5.1) is essentially identical to the proof of Theorem 1 in the

paper [4]. The proof of (5.5.2) below is similar to the proof of Lemma 3.2 in [22],

where the boundary condition is di�erent.

We follow the methodology in [22]. For simplicity, we assume that α = 1 in

(5.1.5). Let Ãk = Ak + Mk. First we consider the two-grid algorithm where qp in

(5.4.14) is replaced by

q = (Ãk−1)−1ḡ = Pk−1(z − zm), (5.5.3)

and there is no postsmoothing steps.

Let Rk : Vk −→ Vk be de�ned by

Rk = I − 1

Λk

Ãk. (5.5.4)
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Then, by (5.5.4) and (5.4.11), we have

z − zm = Rm
k (z − z0). (5.5.5)

It follows from (5.5.3) and (5.5.5) that the error of the output z̃ = zm + q of the

two-grid method is given by

z − z̃ = z − zm − q = (I − Pk−1)(z − zm) = (I − Pk−1)Rm
k (z − z0). (5.5.6)

For 0 ≤ s ≤ 1, we de�ne

|||v|||s =

√
(Ãskv, v)k ∀v ∈ Vk. (5.5.7)

By the spectral decomposition for positive de�nite operators, (5.5.7) and a slight

modi�cation of [20, Lemma 6.2.8], we have

|||v|||1 ≤ [ρ(Ã1−s
k )]1/2 |||v|||s . hs−1

k |||v|||s ∀v ∈ Vk, 0 ≤ s ≤ 1, (5.5.8)

and since Λk = Ch−2
k dominates the spectral radius of Ãk,

|||Rkv|||s ≤ |||v|||s ∀v ∈ Vk, 0 ≤ s ≤ 1. (5.5.9)

The e�ect of the smoothing step is measured by the following smoothing property:

|||Rm
k v|||1 = ((ÃkR

m
k v,R

m
k v)k)

1/2 = ((ÃkR
2m
k v, v)k)

1/2

≤ Λ
s/2
k

[
ρ(Λ−sk ÃskR

2m
k )
]1/2

(Ã1−s
k v, v)

1/2
k (by spectral decomposition)

. h−sk [ sup
0≤t≤1

ts(1− t)2m]1/2 |||v|||1−s

. h−sk m−s/2 |||v|||1−s ∀v ∈ Vk, 0 ≤ s ≤ 1. (5.5.10)

The e�ect of the correction step is given by the following approximation property:

‖v − Pk−1v‖Hσε (Ω) .ε h
σ1−ε
k |v − Pk−1v|H1(Ω) ∀v ∈ H1(Ω). (5.5.11)
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We will establish (5.5.11) by a duality argument. Let L ∈ [Hσε(Ω)]′ and ζ ∈

H1(Ω) satisfy

(ε−1∇× ζ,∇× v) + (µζ, v) = L(v) ∀v ∈ H1(Ω). (5.5.12)

It is well known (cf. [53]) that ζ ∈ H1+σ1−ε(Ω) and

‖ζ‖H1+σ1−ε(Ω) .ε ‖L‖[Hσε (Ω)]′ . (5.5.13)

Let Πk be the nodal interpolation operator associated with Vk. It follows from

standard interpolation error estimates (cf. Section 2.4) that

‖ζ − Πkζ‖H1(Ω) .ε h
σ1−ε
k ‖L‖[Hσε (Ω)]′ . (5.5.14)

We can modify the proof for Friedrichs' inequality (cf. [20, Lemma 4.3.14]) and

have

‖u− ũ‖H1(Ω) . |u|H1(Ω), (5.5.15)

where u ∈ H1(Ω) and ũ = 1
|Ω|

∫
Ω
µu dx.

Using (5.4.7), (5.5.12), (5.5.15) and (5.5.14), we have

L(v − Pk−1v) = (ε−1∇× ζ,∇× (v − Pk−1v)) + (µζ, v − Pk−1v)

= (ε−1∇× (ζ − Πkζ),∇× (v − Pk−1v)) + (µ(ζ − Πkζ), v − Pk−1v)

. ‖ζ − Πkζ‖H1(Ω)‖v − Pk−1v‖H1(Ω)

. hσ1−ε
k ‖L‖

[Hσε (Ω)]
′ |v − Pk−1v|H1(Ω). (5.5.16)

The estimate (5.5.11) follows from (5.5.16) and the duality formula

‖η‖Hσε (Ω) = sup[L(η)/‖L‖[Hσε (Ω)]′ ] ∀η ∈ Hσε(Ω), (5.5.17)

where the supremum is taken over all L ∈ [Hσε(Ω)]′ \ {0}.
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The �nal ingredient is the relation between the mesh dependent norm |||·|||s and

the Sobolev norm ‖ · ‖Hs(Ω) on Vk. First of all, we have |v|H1(Ω) ≈ |||v|||1 and

‖v‖L2(Ω) . |||v|||0 for all v ∈ Vk. Interpolating these estimates (cf. [20, Proposi-

tion 14.1.5]), we have

‖v‖Hs(Ω) . |||v|||s ∀v ∈ Vk, 0 ≤ s ≤ 1. (5.5.18)

Meanwhile, there exists (cf. [26, 59]) an interpolation operator πk : L2(Ω) −→ Vk

such that

|||πkv|||0 . ‖πkv‖L2(Ω) . ‖v‖L2(Ω) ∀v ∈ L2(Ω), (5.5.19)

|||πkv|||1 . ‖πkv‖H1(Ω) . ‖v‖H1(Ω) ∀v ∈ H1(Ω), (5.5.20)

πkv = v ∀v ∈ Vk. (5.5.21)

For 0 < s < 1, we can interpolate (5.5.19) and (5.5.20) (cf. [20, Proposition 14.1.5,

Theorem 14.2.3]) to obtain

|||πkv|||s . ‖v‖Hs(Ω) ∀v ∈ Hs(Ω), 0 ≤ s ≤ 1. (5.5.22)

Combining (5.5.21) and (5.5.22), we �nd

|||v|||s . ‖v‖Hs(Ω) v ∈ Vk, 0 ≤ s ≤ 1. (5.5.23)

Therefore, from (5.5.6),(5.5.10), (5.5.11), (5.5.18) and (5.5.23), we have the fol-

lowing error estimate for the two-grid algorithm:

‖z − z̃‖Hσε (Ω) . hσ1−ε
k |Rm

k (z − zm)|H1(Ω)

. m[−σ1+ε]/2‖z − z0‖Hσε (Ω). (5.5.24)

Now we estimate the error for the one-sided W-cycle kth level iteration. Let

γm = m[−σ1+ε]/2 and suppose that the error of the (k − 1)st level iteration in the
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Hσε(Ω) norm is reduced by a factor η. Then it follows from (5.4.14), (5.5.6) and

(5.5.24) that

‖z −MG(k, z0, g)‖Hσε (Ω) ≤ ‖z − z̃‖Hσε (Ω) + ‖q − q2‖Hσε (Ω)

≤ Cεγm‖z − z0‖Hσε (Ω) + η2‖q‖Hσ(Ω). (5.5.25)

From (5.5.8), (5.5.11), (5.5.18) and (5.5.23), we have

‖Pk−1v‖Hσε (Ω) ≤ ‖v − Pk−1v‖Hσε (Ω) + ‖v‖Hσε (Ω)

.ε h
σ1−ε
k |v|H1(Ω) + ‖v‖Hσε (Ω)

.ε ‖v‖Hσε (Ω) ∀v ∈ Vk. (5.5.26)

Combining (5.5.5), (5.5.9), (5.5.18), (5.5.22) and (5.5.26), we obtain

‖q‖Hσε (Ω) = ‖Pk−1(z − zm)‖Hσε (Ω) ≤ C
′

ε‖z − z0‖Hσε (Ω). (5.5.27)

The estimates (5.5.23), (5.5.25) and (5.5.27) together imply that

‖z −MG(k, z0, g)‖Hσε (Ω) ≤ (Cεγm + C
′

εη
2)‖z − z0‖Hσε (Ω). (5.5.28)

For m su�ciently large, we have γm < (4CεC
′
ε)
−1 and

ηm =
[
1− (1− 4CεC

′

εγm)1/2
]
/(2C

′

ε) (5.5.29)

is a �xed point of the map T (η) = Cεγm +C
′
εη

2. Since the �rst level iteration is an

exact solver, it follows from (5.5.29) and mathematical induction that

‖z −MG(k, z0, g)‖Hσε (Ω) ≤ ηm‖z − z0‖Hσε (Ω) for k ≥ 1. (5.5.30)

As limm→∞ ηm = 0, the estimate (5.5.2) follows from (5.5.30).

Remark 5.5.2. For the symmetric W-cycle kth level iteration, we have

z −MG(k, z0, g) = Rm
k (z − zm+1). (5.5.31)
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Combining (5.5.9) and (5.5.31), we can prove (5.5.2) for the symmetric W-cycle

kth level iteration.

With the help of Lemma 5.5.1, we can prove the following result by following

the methodology of [23].

Theorem 5.5.3. Let p = 2 in the kth level iteration scheme, ε ∈ (0, σ1), σε =

1 − σ1 + ε, and the number of smoothing steps m be su�ciently large so that the

kth level iteration scheme is a contraction. If the number of nested iterations n is

su�ciently large, then we have

∑
0<σl<1

|κξl − κ
ξ
l,k| ≤ Cεh

1+σ1−ε
k ‖∇ × f‖L2(Ω) ∀k ≥ 1 (5.5.32)

and

‖wξ − wk‖Hσε (Ω) ≤ Cεh
1+σ1−ε
k ‖∇ × f‖L2(Ω) ∀k ≥ 1. (5.5.33)

Moreover we have the following estimates in the H1 norm:

‖wξ − wk‖H1(Ω) ≤ Chk‖∇ × f‖L2(Ω) ∀k ≥ 1. (5.5.34)

Let

ξk =
∑

0<σl<1

κξl,ksl + wk, (5.5.35)

then (5.5.33) and (5.5.34) lead to the following estimate:

‖ξ − ξk‖H1(Ω) ≤ Chk‖∇ × f‖L2(Ω) ∀k ≥ 1. (5.5.36)

Proof. We will establish (5.5.32) and (5.5.33) through recursive estimates. By

(5.3.7) and (5.4.18) along with (5.3.3) and (5.4.21), we know that, for 1 ≤ l ≤ L,

|κξl − κ
ξ
l,k| =

1

2σ1

|
∫

Ω

ε−1(ξ − ξk−1)∆s∗l dx| (5.5.37)

. ‖ξ − ξk−1‖L2(Ω)‖∆s∗l ‖L2(Ω)
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. ‖ŵk−1 − wk−1‖Hσε (Ω),

where

ŵk = ξ −
∑

0<σl<1

κξl,ksl =
∑

0<σl<1

(κξl − κ
ξ
l,k)sl + wξ = (ξ − ξk) + wk. (5.5.38)

Let ak =
∑

0<σl<1

|κξl − κ
ξ
l,k|, and bk = ‖ŵk − wk‖Hσε (Ω). So (5.5.37) says that

ak . bk−1. (5.5.39)

To estimate bk, we begin with

bk ≤ ‖ŵk − Pkŵk‖Hσε (Ω) + ‖Pkŵk − wk‖Hσε (Ω). (5.5.40)

For the �rst term on the right-hand side of equation (5.5.40), by using the elliptic

regularity estimate (5.3.5) and standard �nite element tools (cf. Section 2.4), we

have the following estimate

‖ŵk − Pkŵk‖Hσε (Ω) ≤ ‖wξ − Pkwξ‖Hσε (Ω) +
∑

0<σl<1

|κξl − κ
ξ
l,k|‖sl − Pksl‖Hσε (Ω)

(5.5.41)

.ε h
1+σ1−ε
k ‖∇ × f‖L2(Ω) + h

2(σ1−ε)
k ak.

The second term on the right-hand side of (5.5.40) can be estimated as follows:

‖Pkŵk − wk‖Hσε (Ω) ≤ δn‖Pkŵk − wk−1‖Hσε (Ω), (5.5.42)

by Lemma 5.5.1, since Pkŵ is the exact solution of (5.4.9) whose right-hand side

is given by (5.4.19) and wk is its approximate solution.

Now we estimate ‖Pkŵk − wk−1‖Hσε (Ω) as follows:

‖Pkŵk − wk−1‖Hσε (Ω) ≤ ‖Pkŵk − ŵk‖Hσε (Ω) + ‖ŵk − wξ‖Hσε (Ω)

+ ‖wξ − ŵk−1‖Hσε (Ω) + ‖ŵk−1 − wk−1‖Hσε (Ω)
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.ε h
1+σ1−ε
k ‖∇ × f‖L2(Ω) + ak + ak−1 + bk−1, (5.5.43)

by (5.5.38), (5.5.41) and the de�nitions of ak and bk.

Combining (5.5.39)-(5.5.43) we �nd, for k ≥ 2,

bk .ε (h1+σ1−ε
k ‖∇ × f‖L2(Ω) + h

2(σ1−ε)
k ak) + δn(h1+σ1−ε

k ‖∇ × f‖L2(Ω)

+ ak + ak−1 + bk−1)

≤ Cε(h
2(σ1−ε)
k + δn)bk−1 + Cεδ

nbk−2 + Cεh
1+σ1−ε
k ‖∇ × f‖L2(Ω), (5.5.44)

where Cε is a positive constant.

Therefore (5.5.44) leads to the estimate

bk ≤ βbk−1 + βbk−2 + C∗h
1+σ1−ε
k , (5.5.45)

provided that Cεh
2(σ1−ε)
k + Cεδ

n < β for some positive constant β and

C∗ = Cε‖∇ × f‖L2(Ω). (5.5.46)

Later we will identify the choice of β.

We reformulate (5.5.45) asbk−1

bk

 ≤
0 1

β β


bk−2

bk−1

+ C∗h
1+σ1−ε
k

0

1

 , (5.5.47)

where the vector inequality is interpreted component-wise.

Let M =

0 1

β β

 and rewrite (5.5.47) as

bk−1

bk

 ≤M
bk−2

bk−1

+ C∗h
1+σ1−ε
k

0

1

 . (5.5.48)

For any given ε ∈ (0, σ1) and β > 0, there exist su�ciently large k∗ and n∗

depending on β such that Cεh
2(σ1−ε)
k + Cεδ

n < β for k ≥ k∗ and n ≥ n∗. So for

k ≥ k∗ and n ≥ n∗, (5.5.48) is valid.
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By iterating (5.5.48), we obtainbk−1

bk

 ≤M k−k∗

bk∗−1

bk∗

+ C∗(h
1+σ1−ε
k

0

1

+ h1+σ1−ε
k−1 M

0

1

 (5.5.49)

+ . . .+ h1+σ1−ε
k∗+1 M k−k∗−1

0

1

).

By a direct computation, we have

M 2 = β(I +M ), (5.5.50)

where I is the 2× 2 identity matrix.

By (5.5.50), we have

‖M 2‖∞ ≤ 2β

and hence

‖M 2ι‖∞ ≤ (2β)ι

and

‖M 2ι+1‖∞ ≤ (2β)ι,

where ι is a positive integer. So for su�ciently small β, i.e., for k and n su�ciently

large, we have

‖M t‖∞ ≤ 2−(1+σ1)t for t = 2, .... (5.5.51)

Then (5.5.49) and (5.5.51) implies that, for k ≥ k∗ + 1 and n ≥ n∗,

bk ≤2−(1+σ1)(k−k∗)bk∗ + C∗h
1+σ1−ε
k (1 + 2−ε + . . . (5.5.52)

+ 2−(k−k∗−1)ε)‖∇× f‖L2(Ω),

≤2−(1+σ1)(k−k∗)bk∗ +
C∗

1− 2−ε
h1+σ1−ε
k ‖∇× f‖L2(Ω).

On the other hand, we have

a1 =
∑

0<σl<1

|κl| . ‖∇ × f‖L2(Ω), (5.5.53)
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b1 = ‖ξ − P1ξ‖Hσε (Ω) . ‖ξ‖H1(Ω) . ‖∇ × f‖L2(Ω), (5.5.54)

Combining (5.5.44),(5.5.53) and (5.5.54), we obtain, for 1 ≤ k ≤ k∗,

bk .ε ‖∇ × f‖L2(Ω) .ε h
1+σ1−ε
k ‖∇ × f‖. (5.5.55)

Combining (5.5.52) and (5.5.55), we conclude that

bk .ε h
1+σ1−ε
k ‖∇ × f‖L2(Ω) for k ≥ 1. (5.5.56)

We have established (5.5.33), and (5.5.32) follows directly from (5.5.39).

Now we consider the error estimate (5.5.34). First note that if we let ε be σ1

2
in

(5.5.32) , then we obtain

ak ≤ Ch
1+σ1/2
k ‖∇ × f‖L2(Ω), (5.5.57)

where the constant C no longer depends on ε.

Let us denote

b̄k := ‖ŵk − wk‖H1(Ω). (5.5.58)

We have the following estimate

‖wξ − ŵk‖H1−σ1+ε(Ω) . ‖wξ − ŵk‖H1(Ω) . ak (5.5.59)

by (5.5.38).

Also, by the elliptic regularity estimate assumption, we have the estimate

b̄1 = ‖ŵ1 − w1‖H1(Ω) = ‖ξ − P1ξ‖H1(Ω) . ‖∇ × f‖L2(Ω). (5.5.60)

We may also obtain the analogue of (5.5.40)-(5.5.43). From (5.5.58), we have

b̄k ≤ ‖ŵk − Pkŵk‖H1(Ω) + ‖Pkŵk − wk‖H1(Ω). (5.5.61)

By (5.5.38), (5.5.57) and the analogue of (5.5.41), we have

‖ŵk − Pkŵk‖H1(Ω) . hk‖∇ × f‖L2(Ω) + hσ1−ε
k ak (5.5.62)
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. hk‖∇ × f‖L2(Ω).

By Lemma 5.5.1, we have

‖Pkŵk − wk‖H1(Ω) ≤ δn‖Pkŵk − wk−1‖H1(Ω). (5.5.63)

By the analogue of (5.5.44), we have

‖Pkŵk−wk−1‖H1(Ω) . hk‖∇×f‖L2(Ω) +ak +ak−1 + b̄k−1 . hk‖∇×f‖L2(Ω) + b̄k−1.

(5.5.64)

So (5.5.61)-(5.5.64) imply that

b̄k . δnb̄k−1 + hk‖∇ × f‖L2(Ω) (5.5.65)

or

b̄k ≤ C†(δ
nb̄k−1 + hk‖∇ × f‖L2(Ω)) (5.5.66)

for some constant C†. For n su�ciently large so that C†δ
n < 1/4, we can iterate

(5.5.66) and apply (5.5.60) to get the estimate

b̄k ≤ (C†δ
n)k−1b̄1 + C†‖∇× f‖L2(Ω)

k∑
i=2

(C†δ
n)k−ihi

. hk‖∇ × f‖L2(Ω) for k ≥ 1, (5.5.67)

which is (5.5.34).

Remark 5.5.4. Because of (5.3.3), (5.5.35), (5.5.32), and (5.5.33), we also have the

estimate

‖ξ − ξk‖L2(Ω) ≤ Ch1+σ1−ε
k ‖∇ × f‖L2(Ω) ∀k ≥ 1. (5.5.68)

Remark 5.5.5. For the case α < 0, it is a symmetric inde�nite problem and there

are several multigrid schemes developed [3, 47, 48, 9, 63, 8] in the literature. We

will not discuss this case here.
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We use ξN =
∑

0<σl<1

κξl,Nsl + vN , where TN is the �nest triangulation, as the

approximation to the solution ξ of (5.1.5) in (5.1.3). Applying Algorithm 5.4.2 to

the equation (5.1.3), we obtain the approximation κφl,k and vk, for 1 ≤ k ≤ N ..

Theorem 5.5.6. Let p = 2 in the kth level iteration scheme, ε ∈ (0, σ1), σε =

1 − σ1 + ε, and the number of smoothing steps m be su�ciently large so that kth

level iteration scheme is a contraction scheme. If the number of nested steps n is

su�ciently large, then we have

∑
0<σl<1

|κφl − κ
φ
l,k| ≤ Ch1+σ1−ε

k ‖∇ × f‖L2(Ω) ∀k ≥ 1, (5.5.69)

‖wφ − vk‖H1(Ω) ≤ Chk‖∇ × f‖L2(Ω) ∀k ≥ 1. (5.5.70)

Let φk =
∑

0<σl<1

κφl,ksl + vk, then we have the following estimates in the H1 norm:

‖φ− φk‖H1(Ω) ≤ Chk‖∇ × f‖L2(Ω) ∀k ≥ 1. (5.5.71)

Proof. Let φ̂ ∈ H1(Ω) be the exact solution of the following problem:

(ε−1∇× φ̂,∇× v) = (µξN , v) ∀v ∈ H1(Ω), (5.5.72a)

(φ̂, 1) = 0. (5.5.72b)

Then φ̂ is an approximation of φ, which is the exact solution of the problem:

(ε−1∇× φ,∇× v) = (µξ, v) ∀v ∈ H1(Ω), (5.5.73a)

(φ, 1) = 0. (5.5.73b)

We denote the singular representation for φ̂ by

φ̂ =
∑

0<σl<1

κφ̂l sl + wφ̂.

Because of the estimate (5.5.68) the error between φ and φ̂ can be estimated by

‖φ− φ̂‖H1(Ω) ≤ C‖ξ − ξN‖L2(Ω) . h1+σ1−1
N ‖∇× f‖L2(Ω). (5.5.74)
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Moreover, from (5.5.74) and the extraction formulas for κφl and κ
φ̂
l , we have

|κφl − κ
φ̂
l | ≤

1

2σ1

|
∫

Ω

µ(ξ − ξN)s∗l + (φ− φ̂N)∆s∗l dx|

. h1+σ1−ε
N ‖∇× f‖L2(Ω) (5.5.75)

and

‖wφ − wφ̂‖H1(Ω) . ‖ξ − ξN‖L2(Ω) +
∑

0<σl<1

|κφl − κ
φ̂
l |

. h1+σ1−1
N ‖∇× f‖L2(Ω). (5.5.76)

We know that φk is an approximation of φ̂. A similar argument to the proof of

Theorem 5.5.3 gives the following estimates:

∑
0<σl<1

|κφ̂l − κ
φ
l,k| ≤ Ch1+σ1−ε

k ‖∇ × f‖L2(Ω) ∀k ≥ 1, (5.5.77)

‖wφ̂ − vk‖H1(Ω) ≤ Chk‖∇ × f‖L2(Ω) ∀k ≥ 1. (5.5.78)

Let φk =
∑

0<σl<1

κφl,ksl + vk, then we have the following estimates in the H1 norm:

‖φ̂− φk‖H1(Ω) ≤ Chk‖∇ × f‖L2(Ω) ∀k ≥ 1. (5.5.79)

Now (5.5.74)-(5.5.79) imply (5.5.69)-(5.5.71).

5.6 Numerical Results

In this section we present the results of several numerical tests that illustrate the

performance of our algorithm. The �rst two numerical examples are performed

on the L-shaped domain Ω = (−1, 1)2 \ [0, 1]2 , where the subdomains are Ω1 =

(−1, 0)× (0, 1), Ω2 = (−1, 0)2, and Ω3 = (0, 1)× (−1, 0) (See Figure 5.1). We use

the P1 �nite element in the experiments. The mesh size hk for the kth level grid

is taken to be 1/(3 · 2k). All the computations are done using a W -cycle kth level

iteration with 50 smoothing steps, and the number of nested iterations in both full
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p

Ω1

Ω2 Ω3

FIGURE 5.1. The domain Ω and its subdomains.

m k = 4 k = 5 k = 6 k = 7
11 0.4662 0.6128 0.8082 0.9803
12 0.4461 0.5874 0.7528 0.9545
13 0.4286 0.5645 0.7028 0.9236
14 0.4131 0.5437 0.5824 0.8903
15 0.3993 0.5249 0.6416 0.8560
16 0.3870 0.5079 0.6218 0.8217

TABLE 5.1. Contraction numbers for the symmetric W -cycle algorithm on the L-shaped

domain with m smoothing steps for the case ε = [1/350, 1, 1/350]

multigrid algorithms (See Algorithm 5.4.1 and Algorithm 5.4.2 in Subsection 5.4.2)

is also 50.

We will consider the case where ε = [1/350, 1, 1/350]. In this situation, the

contraction numbers for the symmetric W-cycle algorithm are given in Table 5.1.

Example 5.6.1. We solve equations (5.1.5), (5.1.3) on the domain Ω where α = 0,

ε = [1/350, 1, 1/350] and µ = [350, 1, 350]. The vector function f is given by

f(x) =

 rσ1%′cut(Aj sin((σ1 + 1)θ)−Bj cos((σ1 + 1)θ))

rσ1%′cut(−Aj cos((σ1 + 1)θ)−Bj sin((σ1 + 1)θ))

 , (5.6.1)

for x in the subdomain Ωj, 1 ≤ j ≤ J , where (r, θ) are the polar coordinates of the

point (0, 0), λ1 = σ2
1 is the �rst eigenvalue of the related Sturm-Liouville problem

(cf. Subsection 2.2.2), σ1 = 0.048066746316346..., Aj, Bj are coe�cients appearing
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in the eigenfunction Θ, and %cut is the cut-o� function de�ned by

%cut(r) =


1, 0 ≤ r ≤ 1/4

−192r5 + 480r4 − 440r3 + 180r2 − 135
4
r + 27

8
, 1/4 < r < 3/4

0, r ≥ 3/4.

(5.6.2)

In this case the exact solution ξ = s = rσ1Θ(θ)%cut. The numerical results

are tabulated in Table 5.2. For comparison, we solved the same problem by full

multigrid without using the extraction formula. The numerical results are tabulated

in Table 5.3.

From Table 5.2, we see that the approximate stress intensity factor κξk is very

accurate when using the new full multigrid with the extraction formula . Actually,

the relative error between κξ8 and the exact one κξ = 1 is less than 0.1%. However,

when using the full multigrid without the extraction formula, we see from Table 5.3

that the relative error between κξ8 and the exact one κξ = 1 is larger than 30%.

Because the equation (5.1.3) has ξ as the right-hand side input function, we need

a good approximation to ξ to obtain a good approximation to φ. Therefore, the

numerical results tell us that the standard full multigrid method can not obtain

a reliable approximation to φ, but the new full multigrid method with extraction

formula has a much better performance than the standard and it can give us a

reliable approximation to φ.

Furthermore we consider the error between the values of the exact solution and

the numerical solution at a particular nodal point. Also, we consider the L∞ error

between the values of the exact solution and the numerical solution. Those errors

provide another way to check the accuracy of our algorithm.

We choose two particular nodal points (1/3,−1/3) and (2/3,−2/3) and use the

following notations to denote the errors between the values of the exact solution
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and the numerical solutions ξk = wk + κξks (obtained by full multigrid using the

extraction formula) or ξk = wk (obtained by full multigrid without using the

extraction formula) at the two points:

e1
k = |ξk(1/3,−1/3)− ξ(1/3,−1/3)| (5.6.3)

and

e2
k = |ξk(2/3,−2/3)− ξ(2/3,−2/3)|. (5.6.4)

The kth level convergence rates are computed and denoted by:

η1
k = log2(

e1
k

e1
k+1

) (5.6.5)

and

η2
k = log2(

e2
k

e2
k+1

). (5.6.6)

We also denote the errors in L∞ norm and their convergence rates by:

e∞k = ‖ξk − Πhξ‖∞ = max
p is a nodal point

|ξk(p)− ξ(p)| (5.6.7)

and

η∞k = log2(
e∞k
e∞k+1

), (5.6.8)

where Πh is the nodal interpolant (cf. Subsection 2.4 ). The numerical results

are tabulated in Table 5.4 and Table 5.5. From Table 5.4 we clearly see that the

numerical solutions obtained by the full multigrid methods using the extraction

formulas converge quickly. Meanwhile, from the results in Table 5.5 we see that

the numerical solutions obtained by the full multigrid methods without using the

extraction formulas converge very slowly.

Example 5.6.2. We solve equations (5.1.5) and (5.1.3) on the domain Ω where

α = 1, ε = [1/350, 1, 1/350], µ = [1, 1, 1], and the right-hand side vector function
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k
‖wk+1−wk‖L2

‖f‖L2
Order

|wk+1−wk|H1

‖f‖L2
Order κξk Order

k= 3 4.13089E-002 2.32 9.54251E-002 2.27 1.33663 2.40
k= 4 8.25511E-003 2.70 1.97396E-002 2.65 1.06363 1.65
k= 5 1.26805E-003 1.75 3.13929E-003 1.69 1.02034 1.55
k= 6 3.76819E-004 1.60 9.71532E-004 1.53 1.00695 1.58
k= 7 1.24339E-004 - 3.35502E-004 - 1.00233 1.63
k= 8 - - - - 1.00075 -

k
‖vk+1−vk‖L2

‖f‖L2
Order

|vk+1−vk|H1

‖f‖L2
Order κφk Order

k= 3 4.97390E-002 2.24 1.12834E-001 2.08 1.55132 0.54
k= 4 1.05195E-002 0.04 2.65966E-002 0.04 1.87351 0.96
k= 5 1.02509E-002 0.88 2.59071E-002 0.81 2.21573 1.13
k= 6 5.58506E-003 1.17 1.48107E-002 1.08 2.41218 1.18
k= 7 2.48641E-003 - 6.99230E-003 - 2.50392 1.05
k= 8 - - - - 2.54140 -

TABLE 5.2. Results of the full multigrid method with exaction formulas for Example 5.6.1

k
‖wk+1−wk‖L2

‖f‖L2
Order

|wk+1−wk|H1

‖f‖L2
Order κξk Order

k= 3 1.60827E-003 0.15 1.36642E-002 0.79 1.33663 0.83
k= 4 1.45351E-003 0.05 7.89844E-003 0.54 0.81059 -0.76
k= 5 1.40607E-003 0.03 5.48214E-003 0.22 0.68034 -0.10
k= 6 1.37394E-003 0.03 4.69297E-003 0.04 0.65850 0.02
k= 7 1.34356E-003 - 4.54985E-003 - 0.66423 0.05
k= 8 - - - - 0.67665 -

h
‖vk+1−vk‖L2

‖f‖L2
Order

|vk+1−vk|H1

‖f‖L2
Order κφk Order

k= 3 8.76793E-003 0.02 2.39732E-002 -0.06 -3.6208 -
k= 4 8.61832E-003 0.03 2.49235E-002 -0.05 -3.7190 -
k= 5 8.46529E-003 0.03 2.57451E-002 -0.04 -3.8143 -
k= 6 8.30104E-003 0.03 2.64454E-002 -0.03 -3.9076 -
k= 7 8.12447E-003 - 2.70319E-002 - -3.9989 -
k= 8 - - - - -4.0882 -

TABLE 5.3. Results of the full multigrid method without extraction formula for Exam-

ple 5.6.1
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k e1
k η1

k e2
k η2

k e∞k η∞k
k= 3 2.44230E-002 1.64 2.44371E-002 1.64 2.49002E-002 1.64
k= 4 7.87278E-003 2.46 7.85942E-002 2.46 7.96934E-003 1.45
k= 5 1.42442E-003 1.71 1.42349E-003 1.71 1.45365E-003 1.70
k= 6 4.36182E-004 1.61 4.35866E-004 1.61 4.48301E-004 1.60
k= 7 1.42605E-004 1.64 1.42499E-004 1.64 1.47737E-004 1.63
k= 8 4.58088E-005 - 4.57748E-005 - 4.78813E-005 -

TABLE 5.4. Pointwise errors for Example 5.6.1 using the full multigrid algorithms with

extraction formulas, where e1
k, η

1
k, e

2
k, η

2
k, e
∞
k and η∞k are de�ned by (5.6.3)�(5.6.8)

k e1
k η1

k e2
k η2

k e∞k η∞k
k= 3 2.44230E-002 - 2.44371E-002 - 2.49002E-002 -
k= 4 2.33570E-002 - 2.33482E-002 - 2.36740E-002 -
k= 5 2.23848E-002 - 2.23700E-002 - 2.28435E-002 -
k= 6 2.14447E-002 - 2.14313E-002 - 2.20428E-002 -
k= 7 2.05315E-002 - 2.05161E-002 - 2.12710E-002 -
k= 8 1.96366E-002 - 1.96218E-002 - 2.05272E-002 -

TABLE 5.5. Pointwise errors for Example 5.6.1 using the full multigrid algorithms without

extraction formulas, where e1
k, η

1
k, e

2
k, η

2
k, e
∞
k and η∞k are de�ned by (5.6.3)�(5.6.8)

is given by

f(x) =



1

0

 if x ∈ Ω1 or Ω2

0

1

 otherwise.

(5.6.9)

The numerical results are tabulated in Table 5.6. For comparison we solved the

same problem by full multigrid without using the extraction formula. The numer-

ical results are tabulated in Table 5.7.

Comparing Table 5.6 and Table 5.7, we can clearly see the improvement of the

order of convergence for κξk and wk while using the algorithm with extraction

formulas. The order of convergence for κξk and wk matches the estimates (5.5.32)

and (5.5.33).
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k
‖wk+1−wk‖L2

‖f‖L2
Order

|wk+1−wk|H1

‖f‖L2
Order κξk Order

k= 3 1.30236E-002 2.32 8.84351E-002 0.96 0.40726 0.54
k= 4 2.60059E-003 0.01 4.54224E-002 0.87 0.48641 0.99
k= 5 2.58557E-003 0.91 2.48881E-002 0.91 0.57346 1.17
k= 6 1.37815E-003 1.20 1.32454E-002 0.94 0.62234 1.20
k= 7 5.99051E-004 - 6.91438E-003 - 0.64457 1.05
k= 8 - - - - 0.65340 -

h
‖vk+1−vk‖L2

‖f‖L2
Order

|vk+1−vk|H1

‖f‖L2
Order κφk Order

k= 3 1.26544E-002 2.20 2.91030E-002 1.97 -0.39397 0.55
k= 4 2.75549E-003 0.06 7.34879E-003 0.11 -0.47836 0.96
k= 5 2.64996E-003 0.88 6.80194E-003 0.81 -0.56680 1.13
k= 6 1.44195E-003 1.17 3.86959E-003 1.08 -0.61752 1.18
k= 7 6.41671E-003 - 1.82865E-003 - -0.64119 1.05
k= 8 - - - - -0.65086 -

TABLE 5.6. Results of the full multigrid method with extraction formulas for Exam-

ple 5.6.2

k
‖wk+1−wk‖L2

‖f‖L2
Order

|wk+1−wk|H1

‖f‖L2
Order κξk Order

k= 3 1.65040E-003 0.69 8.33942E-002 0.89 0.40726 -0.05
k= 4 1.02427E-003 0.12 4.50228E-002 0.90 0.41681 0.01
k= 5 9.40852E-004 0.04 2.41734E-002 0.89 0.42670 0.03
k= 6 9.14799E-004 0.04 1.30572E-002 0.83 0.43647 0.03
k= 7 8.92539E-004 - 7.34235E-003 - 0.44611 -
k= 8 - - - - 0.45551 -

h
‖vk+1−vk‖L2

‖f‖L2
Order

|vk+1−vk|H1

‖f‖L2
Order κφk Order

k= 3 1.00389E-003 0.06 5.63034E-002 0.59 -0.40462 -0.05
k= 4 9.65823E-004 0.03 3.73602E-003 0.26 -0.41468 0.01
k= 5 9.44524E-004 0.03 3.13045E-003 0.06 -0.42507 0.02
k= 6 9.25241E-004 0.03 3.01696E-003 -0.01 -0.43541 0.03
k= 7 9.05325E-004 - 3.02828E-003 - -0.44557 -
k= 8 - - - - -0.45551 -

TABLE 5.7. Results of the full multigrid method without extraction formulas for Exam-

ple 5.6.2
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Ω3 Ω4

FIGURE 5.2. The domain Ω and its subdomains.

The last numerical example is performed on the domain Ω = (−1, 1)2 , where

the subdomains are Ω1 = (0, 1) × (0, 1), Ω2 = (−1, 0) × (0, 1), Ω3 = (−1, 0)2,

and Ω4 = (0, 1) × (−1, 0) (See Figure 5.2). We use the P1 �nite element in the

experiments. The mesh size hk for the kth level grid is taken to be 1/2k−1. All

the computations are done using a W -cycle kth level iteration with 50 smoothing

steps, and the number of nested iterations in both full multigrid algorithms (See

Algorithm 5.4.1 and Algorithm 5.4.2 in Subsection 5.4.2) is also 50.

Example 5.6.3. We solve equations (5.1.5) and (5.1.3) on the domain Ω where

α = 1, ε = [1/10, 1/103, 1, 1/104], µ = [1, 1, 1, 1], and the right-hand side vector

function is given by

f(x) =



1

0

 if x ∈ Ω1 or Ω2

0

1

 otherwise.

(5.6.10)

In this case, the square root of the �rst eigenvalue of the related Sturm-Liouville

problem (cf. Subsection 2.2.2) is σ1 = 0.069817020390924... The numerical results

are tabulated in Table 5.8. For comparison we solved the same problem by full

multigrid without using the extraction formula. The numerical results are tabulated

in Table 5.9.
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k
‖wk+1−wk‖L2

‖f‖L2
Order

|wk+1−wk|H1

‖f‖L2
Order κξk Order

k=4 2.50818e-002 1.93 1.04075e-001 0.92 1.57342 1.92
k=5 6.59066e-003 0.66 5.48533e-002 0.53 1.99063 0.55
k=6 4.16937e-003 1.07 3.79186e-002 0.69 2.27528 1.01
k=7 1.98659e-003 1.32 2.35356e-002 0.77 2.41677 1.29
k=8 7.97897e-004 - 1.37912e-002 - 2.47466 1.49
k=9 - - - - 2.49524 -

h
‖vk+1−vk‖L2

‖f‖L2
Order

|vk+1−vk|H1

‖f‖L2
Order κφk Order

k=4 2.63827e-003 1.83 6.47826e-003 1.02 -0.13092 1.89
k=5 7.39617e-004 0.65 3.19478e-003 0.33 -0.16625 0.56
k=6 4.71923e-004 1.11 2.54380e-003 0.79 -0.19026 1.01
k=7 2.18638e-004 1.42 1.47385e-003 1.01 -0.20221 1.29
k=8 8.15293e-005 - 7.32761e-004 - -0.20710 1.49
k=9 - - - - -0.20885 -

TABLE 5.8. Results of the full multigrid method with extraction formulas for Exam-

ple 5.6.3

Comparing Table 5.8 and Table 5.9, we can clearly see the improvement of the

order of convergence for κξk and wk while using the algorithm with extraction

formulas. The order of convergence for κξk and wk matches the estimates (5.5.32)

and (5.5.33).
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k
‖wk+1−wk‖L2

‖f‖L2
Order

|wk+1−wk|H1

‖f‖L2
Order κξk Order

k=4 3.43595e-003 0.40 7.52331e-002 0.55 1.57342 4.67
k=5 2.60679e-003 0.17 5.12986e-002 0.51 1.63532 0.16
k=6 2.32044e-003 0.11 3.60078e-002 0.59 1.69081 0.07
k=7 2.15047e-003 0.08 2.39613e-002 0.56 1.74351 0.06
k=8 2.04033e-003 - 1.62005e-002 - 1.79395 0.06
k=9 - - - - 1.84220 -

h
‖vk+1−vk‖L2

‖f‖L2
Order

|vk+1−vk|H1

‖f‖L2
Order κφk Order

k=4 3.35034e-004 -0.03 2.35234e-003 -0.27 -0.13441 4.59
k=5 3.41577e-004 0.09 2.82980e-003 0.22 -0.13997 0.21
k=6 3.20896e-004 0.18 2.42614e-003 0.62 -0.14479 0.09
k=7 2.82526e-004 0.13 1.57991e-003 0.58 -0.14934 0.06
k=8 2.57405e-004 - 1.05698e-003 - -0.15369 0.06
k=9 - - 0.00000e+000 - -0.15787 -

TABLE 5.9. Results of the full multigrid method without extraction formulas for Exam-

ple 5.6.3
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Appendix A: Proof for Theorem 2.4.7

Let C denote a generic constant independent of the mesh size h.

Let s = rσ sin(σθ), where (r, θ) are the polar coordinates with respect to a corner

c and σ is a number between 0 and 1.

Around the corner c, we have∑
T∈Th,c∈T̄

‖s− Πhs‖2
L2(T ) ≤

∑
T∈Th,c∈T̄

∫
T

(2s2 + 2|Πhs|2)dx

= 2
∑

T∈Th,c∈T̄

∫
T

s2dx+ 2
∑

T∈Th,c∈T̄

∫
T

|Πhs|2dx (5.6.11)

and ∑
T∈Th,c∈T̄

‖∇s−∇Πhs‖2
L2(T ) ≤

∑
T∈Th,c∈T̄

∫
T

(2|∇s|2 + 2|∇Πhs|2)dx

= 2
∑

T∈Th,c∈T̄

∫
T

|∇s|2dx+ 2
∑

T∈Th,c∈T̄

∫
T

|∇Πhs|2dx. (5.6.12)

For a triangle T around the corner c, i.e. c ∈ T̄ , let xj, j = 1, 2, 3 be the coordinates

of the vertices of the triangle T , and ej, j = 1, 2, 3 be the local basis functions. Then

we have ∫
T

s2dx ≤
∫
T

r2σdx ≤ C

∫ h

0

r2σ+1dr ≤ Ch2σ+2, (5.6.13)

∫
T

|Πhs|2dx =

∫
T

(
3∑
j=1

s(xj)ej)
2dx ≤

∫
T

(
3∑
j=1

s(xj)
2)(

3∑
j=1

e2
j)dx

≤ Ch2σ

∫
T

(
3∑
j=1

e2
j)dx ≤ Ch2σ+2, (5.6.14)

∫
T

|∇s|2dx ≤ C

∫
T

r2σ−2dx ≤ C

∫ h

0

r2σ−1dr ≤ Ch2σ, (5.6.15)

and ∫
T

|∇Πhs|2dx =

∫
T

|
3∑
j=1

s(xj)∇ej|2dx ≤
∫
T

(
3∑
j=1

s(xj)
2)(

3∑
j=1

|∇ej|2)dx
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≤ Ch2σ

∫
T

(
3∑
j=1

|∇ej|2)dx ≤ Ch2σ. (5.6.16)

By (5.6.11), (5.6.13) and (5.6.14), we have

∑
T∈Th,c∈T̄

‖s− Πhs‖2
L2(T ) ≤ Ch2σ+2. (5.6.17)

By (5.6.12), (5.6.15) and (5.6.16), we have

∑
T∈Th,c∈T̄

‖∇s−∇Πhs‖2
L2(T ) ≤ Ch2σ. (5.6.18)

Let Ωh = {x ∈ Ω : |x− c| > δh} for some δ between 0 and 1 so that

T ⊂ Ωh if T ∈ Th, c /∈ T̄ .

Therefore, ∑
T∈Th,c/∈T̄

‖s− Πhs‖2
L2(T ) ≤ ‖s− Πhs‖2

L2(Ωh), (5.6.19)

and ∑
T∈Th,c/∈T̄

‖s− Πhs‖2
H1(T ) ≤ ‖s− Πhs‖2

H1(Ωh). (5.6.20)

Since s ∈ H2(Ωh), by [20, Theorem (4.4.4)], we have

‖s− Πhs‖L2(Ωh) + h|s− Πhs|H1(Ωh) ≤ Ch2|s|H2(Ωh). (5.6.21)

Note that

|s|2H2(Ωh) ≤ C

∫
Ωh

r2σ−4dx ≤ C

∫ R

h

r2σ−3dr ≤ Ch2σ−2, (5.6.22)

where R is the diameter of the domain Ω.

Therefore (5.6.21) and (5.6.22) imply

‖s− Πhs‖L2(Ωh) + h|s− Πhs|H1(Ωh) ≤ Chσ+1. (5.6.23)
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By (5.6.19), (5.6.20), and (5.6.23) we have

∑
T∈Th,c/∈T̄

‖s− Πhs‖2
L2(T ) ≤ Ch2σ+2, (5.6.24)

and ∑
T∈Th,c/∈T̄

‖s− Πhs‖2
H1(T ) ≤ Ch2σ. (5.6.25)

Now by (5.6.17), (5.6.18), (5.6.24), and (5.6.25), we have

‖s− Πhs‖L2(Ω) + h|s− Πhs|H1(Ω) ≤ Chσ+1. (5.6.26)

If β = 1, then u ∈ H2(Ω). So (2.4.8) is true by [20, Theorem (4.4.4)].

If β < 1, then, from Section 2.2.1, we know that

u = uS + uR, (5.6.27)

where uR ∈ H2(Ω) and uS =
∑

ωl>π
κlsl. The regular part uR ∈ H2(Ω) and hence

‖uR − ΠhuR‖L2(Ω) + h|uR − ΠhuR|H1(Ω) ≤ Ch2‖uR‖H2(Ω), (5.6.28)

by [20, Theorem (4.4.4)].

For si = rπ/ωi sin((π/ωi)θ)%cut with ωi > π, we have

si := rπ/ωi sin(π/ωi)θ)(%cut − 1) + rπ/ωi sin(π/ωi)θ).

Let si,1 = rπ/ωi sin(π/ωi)θ)(%cut − 1) and si,2 = rπ/ωi sin((π/ωi)θ). Then si,1 ∈

H2(Ω), so

‖si,1 − Πhsi,1‖L2(Ω) + h|si,1 − Πhsi,1|H1(Ω) ≤ Ch2‖si,1‖H2(Ω) ≤ Ch2. (5.6.29)

By (5.6.26), we have

‖si,2 − Πhsi,2‖L2(Ω) + h|si,2 − Πhsi,2|H1(Ω) ≤ Chσ+1. (5.6.30)

Now (5.6.27), (5.6.28), (5.6.29), and (5.6.30) together imply (2.4.9).
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Appendix B: Proof for (2.2.17)

We will follow the methodology of Example 1 in [54, Section 5] and consider a

general Sturm-Liouville problem:

Θ′′(θ) + σ2Θ(θ) = 0 for θi−1 < θ < θi, i = 1, ..., n, (5.6.31a)

Θ′(θ0) = Θ′(θn) = 0, (5.6.31b)

Θ(θi−) = Θ(θi+) for i = 1, ..., n− 1, (5.6.31c)

ρi+1Θ′(θi+) = ρiΘ
′(θi−) for i = 1, ..., n− 1, (5.6.31d)

where 0 ≤ θ0 < θ1 < ... < θn ≤ 2π, θn − θ0 6= 2π, and ρi > 0 for i = 1, 2, ..., n.

Our goal is to �nd the eigenvalues λ = σ2 of (5.6.31).

The solutions of (5.6.31a) have the general form

Θ(θ) = Ai cos(σθ) +Bi sin(σθ) for θi−1 ≤ θ ≤ θi, i = 1, ..., n.

Substituting the general solution of Θ into the boundary condition (5.6.31b) and

the interface conditions (5.6.31c)-(5.6.31d), we obtain a linear system about the

variables Ai and Bi. Denote the determinant of the coe�cient matrix of this linear

system by DN
n (σ). We also denote, by the symbol DM

n (σ), the determinant of the

coe�cient matrix of the linear system obtained from the Sturm-Liouville problem

with mixed boundary condition on the external boundary, i.e., we replace the

Neumann boundary condition Θ′(θn) = 0 in (5.6.31b) by the Dirichlet boundary

condition Θ(θn) = 0. When n = 1, the determinants DN
1 (σ) and DM

1 (σ) are given

by

DN
1 =

∣∣∣∣∣∣∣
− sin(σθ0) cos(σθ0)

− sin(σθ1) cos(σθ1)

∣∣∣∣∣∣∣ (5.6.32)
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and

DM
1 =

∣∣∣∣∣∣∣
− sin(σθ0) cos(σθ0)

cos(σθ1) sin(σθ1)

∣∣∣∣∣∣∣ . (5.6.33)

From (5.6.32) and (5.6.33), a simple computation implies

DN
1 (σ) = sin(σω1) (5.6.34a)

and

DM
1 (σ) = − cos(σω1), (5.6.34b)

where ω1 = θ1 − θ0.

When n = 2, the determinants DN
2 (σ) and DM

2 (σ) are given by

DN
2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− sin(σθ0) cos(σθ0) 0 0

cos(σθ1) sin(σθ1) − cos(σθ1) − sin(σθ1)

−ρ1 sin(σθ1) ρ1 cos(σθ1) ρ2 sin(σθ1) −ρ2 cos(σθ1)

0 0 − sin(σθ2) cos(σθ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.6.35)

and

DM
2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− sin(σθ0) cos(σθ0) 0 0

cos(σθ1) sin(σθ1) − cos(σθ1) − sin(σθ1)

−ρ1 sin(σθ1) ρ1 cos(σθ1) ρ2 sin(σθ1) −ρ2 cos(σθ1)

0 0 cos(σθ2) sin(σθ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.6.36)

Using expansion by minors with respect to the last row of DN
2 (σ), DN

2 (σ) can be

computed by

DN
2 (σ) = cos(σθ2) ∗N44 + sin(σθ2) ∗N43, (5.6.37)

where

N44 =

∣∣∣∣∣∣∣∣∣∣
− sin(σθ0) cos(σθ0) 0

cos(σθ1) sin(σθ1) − cos(σθ1)

−ρ1 sin(σθ1) ρ1 cos(σθ1) ρ2 sin(σθ1)

∣∣∣∣∣∣∣∣∣∣
(5.6.38)
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and

N43 =

∣∣∣∣∣∣∣∣∣∣
− sin(σθ0) cos(σθ0) 0

cos(σθ1) sin(σθ1) − sin(σθ1)

−ρ1 sin(σθ1) ρ1 cos(σθ1) −ρ2 cos(σθ1)

∣∣∣∣∣∣∣∣∣∣
. (5.6.39)

Using expansion by minors with respect to the last column of N43 and the last

column of N44, we obtain

N44 = ρ2 sin(σθ1)DM
1 (σ) + ρ1 cos(σθ1)DN

1 (σ) (5.6.40)

and

N43 = −ρ2 cos(σθ1)DM
1 (σ) + ρ1 sin(σθ1)DN

1 (σ) (5.6.41)

By (5.6.37), (5.6.41), (5.6.40) and trigonometry identity, we have

DN
2 (σ) = −ρ2 sin(σω2)DM

1 (σ) + ρ1 cos(σω2)DN
1 (σ), (5.6.42)

where ω2 = θ2 − θ1. Similarly, we have

DM
2 (σ) = ρ2 cos(σω2)DM

1 (σ) + ρ1 sin(σω2)DN
1 (σ). (5.6.43)

When n ≥ 3, similar to the case when n = 2, we apply expansion by minors

with respect to the last row of DN
n (σ) and the last row of DM

n (σ). We �nd that

DN
n (σ) can be determined by the following recurrence formula:

DN
n (σ) = −ρn sin(σωn)DM

n−1(σ) + ρn−1 cos(σωn)DN
n−1(σ), (5.6.44a)

DM
n (σ) = ρn cos(σωn)DM

n−1(σ) + ρn−1 sin(σωn)DN
n−1(σ). (5.6.44b)

Here ωn = θn − θn−1. The square of the solutions of the equations D
N
n (σ) = 0 are

the eigenvalues for the Sturm-Liouville problem (5.6.30).

For Example 2.2.4 in Subsection 2.2.2, we have n = 3, ω1 = ω2 = ω3 = π/2. So

using the recurrence formulas (5.6.34) and (5.6.44), we have

ρ2(ρ1 + ρ2 + ρ3) sin(σω)− (ρ2(ρ1 + ρ2 + ρ3) + ρ1ρ3) sin3(σω) = 0, (5.6.45)
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where ω = π/2. For 0 < σ < 1, we have that 0 < sin(σω) < 1 and hence (5.6.45)

implies that (2.2.17) holds.
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