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EXECUTIVE SUMMARY 

The overall goal of this study is to develop a framework integrating infrastructure 

performance evaluation leveraging an advanced evaluation system, so-called automatic crack 

evaluation system (ACES), and advanced machine learning (ML) techniques (e.g., convolutional 

neural network (CNN)). Ultimately, the results of developed framework 1) enable reliable traffic 

disruption-free assessment, 2) provide structural performance data incorporating with the damage, 

and 3) help accurate prediction of structural damage with proper damage classification. The proper 

maintenance and operation of deteriorating infrastructures require timely detection, precise 

diagnosis, and accurate estimation of possible structural performance degradation induced by 

various damages. Many advanced bridge assessment techniques have been recently practiced to 

evaluate and monitor concrete structures while requiring the evaluation of numerous measurement 

data for more accurate interpretation and assessment. Current technologies have been developed 

to prevent time-consuming and labor-intensive field tests. However, most high-speed techniques 

still present practical challenges, such as 1) limitations in accuracy, sensitivity, and coverage by 

focusing on indirect response and external surface conditions, and 2) not considering structural 

performances that are not readily available for engineers, decision-makers, and stakeholders. In 

detail, many field data present a challenge due to unexpected signals such as noise, which may 

greatly affect signal analysis results, leading to over- or under-estimation of structural damage 

prediction.  

The primary objectives of this study are 1) to improve nondestructive testing (NDT)  

systems by using ACES with the high-speed traffic disruption-free damage detecting system and 

state-of-art signal processing algorithms to enhance damage recognition capability and speed in 

field environments, 2) to perform finite element (FE) modeling for an efficient structural 

performance incorporating ACES data; and 3) to develop a CNN framework that provides a quick 

decision of its structure performance to make reliable asset management decisions. This study 

presents a hybrid model featuring field assessments with NDT and deep learning (DL) to improve 

the accuracy of damage detection and predict the structural behavior of a bridge deck. Seismic 

wave that is obtained from sensors in the field is reflected from internal objects such as a crack to 

evaluate different damages. Since various uncertainty factors may affect collected data, such as 

field NDT results on surface conditions, road slope, and bridge material, a more comprehensive 

and in-depth study should be performed on the analysis of sensing signals. A series of procedures 

for damage prediction is devised and applied based on a comparative assessment. The steps are 

described below: 1) The NDT field test results are produced, 2) an in-depth study of the 

relationship between the DL model and NDT results with several parameter studies to improve 

NDT results, 3) develop FE model based on a field test result to obtain structural performance, 4) 

FE model maps to develop DL model for structural performance identification and prediction 

model. The results indicate that an image-based CNN can improve NDT results by using signals 

to identify delamination and noise or insignificant signals. Also, using the FE model and NDT 

results, CNN can identify and predict different kinds of structural levels. Ultrimaty, for roadway 

safety and bridge deck service life, these results significantly contribute to maintaining the bridge 

deck in the early-stage deterioration to ensure the infrastructure is operating safely and efficiently.  
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1. INTRODUCTION 

The maintenance of transportation infrastructures (e.g., bridges) has become a major 

concern for safety and economic loss due to many factors. In particular, infrastructure deterioration 

(e.g., external and internal damages) can significantly impact service life of bridges and other 

infrastructures and often require extensive repairs or replacements. Thus, reliable inspections and 

monitors of bridge conditions are required to improve the service life to ensure roadway safety and 

provide proper time for appropriate preservation and rehabilitation treatments for asset owners or 

transportation agencies.  

 The most serious problem in bridge monitoring is internal damages like vertical cracks or 

delamination, which crack horizontally, mainly caused by corroded steel reinforcements. 

Generally, reinforcement corrosion in bridge decks occurs due to environmental conditions such 

as migrated moisture and chemicals (e.g., chloride ions). The formation of corrosion products 

causes volume expansion of the reinforcement—eventually, delamination forms due to this 

mechanism. In addition, the produced delamination also causes vertical cracks to extend the 

delamination to the surface. Increased levels and a number of these vertical crack damages even 

accelerate the corrosion process. As a result, further degradation (e.g., potholes) can be caused by 

the negative interactions among delamination, vertical cracks, and reinforcement corrosion with 

external environmental factors such as traffic load and freeze-thaw cycle).  

 

Proper maintenance and inspection operation for deteriorated infrastructure require timely 

detection, precise diagnosis, and accurate estimation of possible structural performance 

degradation induced by various damages. Many advanced bridge assessment techniques have been 

recently practiced to evaluate and monitor bridge structures. In addition serveral technologies have 

been developed to prevent time-consuming and labor-intensive field tests. However, these high-

speed inspection techniques still present practical challenges such as 1) limitations in accuracy, 

sensitivity, and coverage by focusing on visual inspection and external surface conditions, 2) not 

considering structural performances that are not readily available for engineers, decision-makers, 

and stakeholders.  

To improve the current system, a rapid damage inspection system, was developed without 

interrupting traffic using noncontact microelectromechanical systems (MEMSs) and multichannel 

acoustic scanning called automatic crack evaluation system (ACES). The noncontact manner in 

the system enables faster, easier, and more accurate evaluations for improving timely maintenance. 

Finite element (FE) analysis was also performed to simulate damaged structures incorporating the 

damage index map obtained from ACES. However, there still challenge to simulate and evaluate 

damage for each bridge, while ACES will provide quick and real-time internal damage. In addition, 

many field data present challenges due to unexpected signals such as noise, which may greatly 

affect signal analysis results, leading to over- or underestimation of structural damage prediction. 

Thus, advanced deep learning (DL) techniques introduced in this study can help identify structural 

damages and process and compile raw sensing data and ensuing damage map results to improve 

accuracy. The NDT field test results are used to reference to design FE model, which used as 

training input for DL. Results so far show that the proposed DL model trained with field test and 

simulation data significantly enables improved assessment results for bridge damage identification 

and prediction. 
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2. OBJECTIVES 

Overall goal of this study is to develop a framework integrating infrastructure performance 

evaluation leveraging an advanced evaluation system and advanced ML techniques (e.g., 

convolutional neural network (CNN)), which ultimately enable reliable traffic disruption-free 

assessment, provide structural performance data incorporating with the damage, and help accurate 

prediction of structural damage with proper damage classification. 

 

To achieve the goall, the primary objectives of the proposal are i) to improve NDT systems by 

using ACES with the high-speed reference-free damage detecting system and state-of-art signal 

processing algorithms to enhance damage recognition capability and speed, and ii) to perform FE 

modeling for an efficient structural performance incorporating ACES data; and 3) to develop a 

CNN framework that provides a quick decision of its structure performance to make reliable asset 

management decisions.  
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3. LITERATURE REVIEW 

 The National Bridge Inspection program regulations require states to inspect highway 

bridges persistently on a reoccurring timetable that can vary depending on the type of 

infrastructure. Bridges are critical components of transportation infrastructure. Bridge decks, in 

particular, are the most susceptible components in a bridge to traffic safety and material 

deterioration due to direct exposure to traffic and deteriorating factors (e.g., temperature, moisture, 

deicing agents). Their service life is shorter than other components. Thus, monitoring the degree 

of deterioration of bridge decks is important for determining appropriate maintenance and 

rehabilitation strategies. 

Structural health monitoring (SHM) and NDT techniques have been widely studied and 

utilized in infrastructure evaluation for maintenance over the past decades. Traditional SHM and 

NDT techniques are time-consuming, labor-intensive, and error-prone to realize in some 

situations[1]. Advanced sensing has gained more attention in addressing these limitations: 

advanced sensing for surface condition assessments (e.g., smartphones, automated vehicles) [2], 

acoustic-ultrasound[3], electrochemical sensors[4], and fiber Bragg grating sensors [5]. There are 

also current NDT techniques focusing on crack evaluation: a damage monitoring system with GIS 

and acceleration[6], crack development studdies[7], [8], and in-situ monitoring[9], [10]. Previous 

attempts have persistent issues in identifying the damage, especially “internal” deteriorations (e.g., 

delamination, cracks) requiring lane closure due to their slow speed or stationary measurement on 

a bridge (e.g., chain drag, impact-echo, contact 3D tomography). There are also advanced studies 

for high-speed bridge deck scanning for crack detection by several researchers using infrared 

thermography[11], ground-penetrating radar (GPR), light detection and ranging (LiDAR), and 

mechanical wave-based evaluation[11]. In spite of these efforts, several high-speed systems (e.g., 

thermography, GPR, LiDAR) provide indirect crack information or superficial information and 

weather-induced variations. In addition, most “high-speed” mechanical wave-based approaches 

provide limited internal damage identification or present relatively slow inspection requiring lane 

closure. For performing accurate structural assessments in a real-time manner, rapid traffic 

disruption-free damage inspection without lane closure so-called automated crack evaluation 

system (ACES) has been developed[11]. The noncontact manner in the system enables faster, 

easier, and more accurate evaluations for timely maintenance. The rapidly obtained mechanical 

waves propagate through infrastructure elements (e.g., bridge decks) to provide a 2-D or 3-D 

damage image similar to an MRI, to show a hidden damage map.  

However, there are a couple of questions and challenges as following for improving 

infrastructure maintenance: 1) can we evaluate both potential driving safety (e.g., potholes, cracks) 

and structural performance using the data from ACES? 2) how to evaluate the bridge capacity and 

how to compare it with a hidden damage map? 3) what are the appropriate and quick approaches 

to evaluate its structural performance, aiding FE modeling results? To addresses challenges 

considering these questions, advanced machine-learning (ML) techniques (e.g., convolutional 

neural network (CNN), artificial neural networks (ANN), which ultimately enable reliable traffic 

disruption-free assessment, provide structural performance data incorporating with the damage, 

and help accurate prediction of structural damage with proper damage classification. The accuracy 

of structural damage evaluated by NDT needs to be improved by incorporating advanced 

technology.  
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To achieve the goal of developing a framework, three objectives are to 1) to enhance 

inspection system and data using ML and ACES for high-speed reference-free damage detecting 

system and state-of-art signal processing algorithms, 2) to perform FE modeling for an efficient 

structural performance incorporating field data; and 3) to develop an ANN and CNN framework 

that provides a quick decision of its structure performance to make reliable asset management 

decisions.  

 

 

Figure 1. The concept of collecting and post-processing field data obtained from ACES  

In recent years, the influence of information technology (IT) has grown tremendously with 

regard to different aspects of today’s society. One of the most well-known IT is machine learning. 

Machine learning (ML) in the field of computer science of using statistical techniques to enable 

computers to act and make data-driven decisions and progressively learn and improve over time 

without being explicitly programmed. The ML is the dicision maker to find the optimal output, 

which has the minimum data loss value(e.g., mean square error). There are several important 

parameter affect ML performance and effiecny, which including loss function, active function, 

optimizor and learning rate. Jaocha et al. studied about the loss function for deep neural networks 

especially for classification. They investigate how the specific loss function affect ML models and 

their restuls[12]. For active function, Nwankpa et al. compared the commonly used active function 

and their trends in different purpose for deep learning to provide the advise of active functions[13]. 

The learning rate is control the effiency to find the minimum loss value. If learning rate is too long, 

it is never find the global minimum value. However, if  learning rate is too short, the computation 

time will be increased more. Thus, to find the reasonable learning rate is important. Smith provides 

new approach to set the learning rate, which practically eliminates the need to experimentally find 

the best values and schedule for the global learning rates[14]. Besides the conventional ML model, 

there are many more advanced ML as known as deep learning (DL) which applied with different 

algorithms. The most two common DL model is ANN and CNN. ANN already applied in many 

field, for example, Mirhosseini et al. develop and predict rainfull intensity model for future climate 
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change[15] ; Neves et al. studied the damage detection for strcutrual healthy monitoring applied 

with ANN [16]. Jerome et al. deeply studied about how to improve the effiency of computation 

time and accuracy with new algorithms[17]. There are more recently developed DL model, for 

example, the generative adversarial network, which has two training structures in one model. The 

first is generator and the other is discriminator. Unlike ANN or CNN, GAN can create fake sample 

itself and use these fake sample mixed with real sample to train the model. GAN commonly applied 

on face identification in real time[18]. Overall, the ML techniques already developed and applied 

in different area, and it still growing with engineers efforts, therefore, people start to believe ML 

can make better decision regarding data analysis.   

In this project, two deep learning techniques are used, data-based ANN, and image-based 

CNN. The difference between these two is ANN uses data, while CNN uses image information 

known as a pixel value. Khan et al. [19]use STFT to convert time signals to spectrum imaging, 

which can present the frequency within a certain time frame, and uses the input for CNN to identify 

delamination [19]. [20]Willard et al. provide the approach to analyze spectrograms, which is used 

for CNN by pixel value to identify signal differences [20].[21] Ahmadvand et al. used structural 

responses obtained from the GPR as input images to identify defects [21]. The research results 

showed that CNN can identify signals correctly with high accuracy. For ANN, 

[16][22]Dworakowski et al.  use ANN to identify damage in aircraft [22] and [23] Güemes et al. 

identify structural damage based on the SHM system [23]. Thus, ANN and CNN have already 

proved the ability to identify damage or signals. In this project, they are used to 1) identify 

delamination signal, non-delamination signal, and noise signal to improve NDT results; 2) identify 

structural performance simulated from FE models to predict four concentrated stress level. 
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4. METHODOLOGY 

In this section, the research tasks will be explained sequentially. Task 2 and 3 provide the 

evaluation principle of bridge inspection using ACES and a detailed procedure of field signal data 

enhancement using CNN. In Task 4, the FE modeling and analysis of structural performance are 

established based on the field test results. Depending on the damage index of inspection results, 

the FE model is designed with different damage levels. In Task 5, the machine learning framework 

is developed and discussed. The field test data (from Task 2) and FEM data (from Task 4) are the 

main resources as input or training data to develop an ML model for damage prediction. All results 

are shown in Chapter 5, which include: 1) the NDT evaluation of bridge inspection and signal 

enhancement, 2) The FE model development with actual defect, 3) the in-depth study of the 

damage prediction model developed with field test and FE data, and 4) the structural performance  

prediction with four different levels. According Figure 2, the CNN procedure to improve 
delamination map. First is a field test to obtain data; secondly, try to find the relationship 
between input signal images and CNN identification accuracy to develop the optimal CNN 
model. Thus, the delamination map are improved by CNN classification. The CNN 

procedure for structural performance identification and prediction(concentrated stress value). 

After obtaining improved delamination maps, 110 FE models are created, which include low 

damage index and artificial delamination maps. Four different levels of stress concentration are 

calculated from the post-processed map and used for labeling. The final step is to use labeled FE 

model images with CNN to predict stress distribution results from the damage map in Figure 3. 
 

 

 

Figure 2. Overview of Objective 1 to enhance NDT inspection.  
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Figure 3. Overview of Objectives 2 and 3 for performing FE structure performance and prediction.  

4.1 Task2: Select the bridges to deploy ACES along critical Texas corridors 

During the early stage of this project, the research team evaluated the Texas highway bridge 

deck for identifying internal damages. Two bridges are C is significantly higher than on other 

bridges. The location of bridge 1 as shown in Figure 4. The scanning length of the first bridge 

referred to as Bridge 1 is 200 ft., and the bridge deck depth is 6.75 inches, covered with hot mix 

asphalt, as shown in Figure 55. The length of a second bridge, referred to as Bridge 2, is 312 ft, and 

there are two bridge deck depths, which are 6.75 inches and 7.25 inches, as shown in Figure 66. 

The scanned width of ACES is 6.6 feet, as shown in Figure 77; thus, we have three scanning lanes 

on Bridge 1 and four scanning lanes on Bridge 2. To ensure the correctness and decrease the 

uncertainty (e.g., the vehicle speed and moving direction) of inspection results, all lanes are 

scanned twice. After finishing one lane scan, the inspection team goes back to the bridge and scan 

for 10 minutes. The inspection results provide information about the severity of damage by 

performing the quantified damage evaluation proposed in the data analysis. The fundamental 

background and detailed data analysis process of NDT are discussed in Task 3. 
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Figure 4. Inspection area and the sectional view of slabs of the first bridge. 

 

 

Figure 5. The information on the first bridge. Scanning length:200 ft. and the bridge deck is 6.75 

inches. 
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Figure 6. The information of the second scanned bridge. Length is 312 ft. with two types of deck 

(depth:6.75 in and 7.25 in). 

 

 
Figure 7. The ACES scanned range is 6.6 feet, which can cover the bridge lane by lane. 

3.2 Task3: Obtain Field Data and Perform Data Analysis  

The method called the impact-echo principle is the main technique was used in this project. 

There are wave generators, transducers, noncontact sensors and data acquisition. Based on the 
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laboratory test system, this task focus on further improvement of signal processing obtained from 

ACES using advanced ML such as CNN. ACES is an automatic rapid damage inspection system 

that will be unitized. Previously, the research team developed an ACES based on the high-speed 

reference-free acoustic crack measurement method, which detects early-stage internal damages in 

real time. ACES is also composed of a novel acoustic scanning system of rapid stress wave 

excitation sources, air-coupled sensors, a GPS positioning system, and an advanced post-

processing system. The ACES system will be used to image internal damage information on 

transportation pavements. 

  

 The design of the ACES aims to perform rapid traffic disruption-free bridge inspection 

with enhanced scanning qualities leveraging the integrated scanning platform, advanced impacting 

system, and a multichannel acoustic sensing unit [11]. The system comprises 22 noncontact 

MEMS sensors, GPS, GPR antennas, data acquisition, and a control panel, as shown in Figure 8. 

The MEMS is used to obtain mechanical waves reflected from bridge interior damage. The signal 

is transferred to the frequency domain to identify the healthy condition. The peak (or energy) 

appears in the range between 1kHz-5kHz, presenting delamination, while the range above 5kHz 

presents healthy conditions. The two examples of delamination and non-delamination field test 

data as shown in  Figure 9. The following delamination map presents the total energy in the 

frequency domain between 1-5kHz; the higher value of energy means the damage severity is higher 

in the location.  

 

Figure 8. Photo of ACES. The system comprises 22 MEMS, GPS antenna, GPR antennas, data 

acquisition and a control panel. 
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(a) 

 

(b) 

Figure 9. The examples of signal analysis from field test data on (a) delamination and (b) non-

delamination. 

4.3 Task4: Perform FE Modeling and Analysis for Structural Performance 

Evaluation 

After processing the delamination map and damage index from Task3, the FE model is 

designed based on delamination map results. In this study, ABAQUS/EXPLICIT is used to 

simulate a 3-D FE model representing concrete structures wherein both cases, the same isotropic, 

elastic plate with Young’s modulus (E), Poisson’s ratio, and the structure’s thickness. The model 

element type is a four-node plane stress element defined as C3D8R. The mesh size for the plain 

solid 3-D simulation is 25 mm. Typical values of material properties are assumed for concrete 

(2400 kg/m3, E = 30 GPa, and t = 0.2). A computer workstation with 16 GB RAM and eight CPUs 

with a clock speed of 1.90 GHz and a 250 GB hard drive is used to carry out the computations. 

The kinematic contact enforcement method (KCE) simulates various delamination conditions by 

giving interaction boundary conditions to simulate mechanical waves reflected by damage. The 

main result of the FE model is the stress changing at a time when an external force is applied. The 

stress change can help us to understand the structural performance with certain damages. Besides, 

this result is one of the significant CNN inputs to identify damage severity.  
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4.4 Task5: Development of a machine learning framework 

In Task 5, there are two parts needed to be solved. The first part is related to Objective 1 

which is to improve the NDT accuracy because the existing data processing algorithm is not fit for 

all bridges. Sometimes noise or insignificant signals are chosen as the correct signal to result in 

the wrong evaluation. Thus, image-based ML CNN is used to identify whether it is a correct signal 

or noise. Also, the data-based ML ANN is used to compare with CNN. The second part is related 

to Objective 3 in which once the NDT delamination results are improved, the FE model and 

damage index will be training data for the advanced MI model to predict structure performance 

levels from the different severity of damage case. Besides,  the relationship between CNN accuracy 

and computation time was also studied. The goal is to find the optimal NDT results input for CNN 

to identify damage severity.  

4.4.1 Artificial neural networks (ANN) study 

For the training data of ML, in this ANN model, the maximum value and energy area between 

1kHz-6kHz and 7 kHz -12kHz are used as data features, which means the value can be used to 

represent a significant characteristic of signal:  

𝒎𝒂𝒙(𝑨𝒎𝒑(𝒕)𝒙,𝒚)     Eq. 1 

𝒎𝒂𝒙(𝑨𝒎𝒑(𝒇)𝒙,𝒚)     Eq.2 

∑ 𝑬(𝒇)𝟔𝒌𝑯𝒛
𝟏𝒌𝑯𝒛  𝒂𝒏𝒅 ∑ 𝑬(𝒇)𝟏𝟐𝒌𝑯𝒛

𝟕𝒌𝑯𝒛    Eq. 3 

The road surface condition is related to the amplitude value in Eq.1, if the surface condition is bad, 

the amplitude is lower; the maximum frequency and frequency energy are used to present whether 

there is interior damage or not. The delamination happened if the peak and energy were high at 1-

6kHz.  

4.4.2 Convolutional neural network (CNN) study 

For the CNN model, the input data always important, which includes time-domain signal, 

frequency domain signal, and short-time Fourier transformation (STFT). There are four parametric 

studies for signal, 1) different signal duration (D) study, 2) different starting time (S) study, 3) 

different image resolution study (R), and 4) a different number of image studies (N). The input 

efficiency is used to present the relationship between accuracy and computation time(CP): 

𝑰𝒏𝒑𝒖𝒕 efficiency = 
𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑨𝒄𝒄.

𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑪𝑻.
    Eq. 4 

An example of input studies is shown in Figure 10. There are 10 different duration (D) from 0.2 

milliseconds to 2 milliseconds in the signal duration study. The signal starts at a zero-crossing 

point which is the time right before obtained structural signal. For different starting times (S) study, 

there are 8 different starting times. The first case starts from the zero-crossing point with three 

different durations(D=0.3ms, 0.6ms, and 1ms). For later cases, the starting time is delayed 0.1ms 

compared with the previous case. For example, the second case starting time is 0.1ms late from 

zero-crossing; the third case is 0.2ms later from zero-crossing as shown in Figure 11. An example 

of different resolutions is shown in Figure 12. There are 10 different resolutions that start from 

10x10 to 500x500. The image resolution affects accuracy and computation time dramatically; thus, 
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how to find the balance to save computation time and obtain good accuracy is the main goal of 

this study. After the time-domain signal study is completed with the optimal time-signal parameter 

setting, the frequency-domain signal is combined with the time-signal to become a new input 

image, as shown in Figure 13. 

The number of image used in the parametric study mentioned above, duration(D) study use 3000 

images (300images*10cases); stating time (S) study use 2400 images (300images*8cases); image 

resolution (R) study use 3000images (300images*10cases), and combined study each also use 

3000images (300images*10cases). And 70 % of data is used for training a CNN model, and the 

other 30% is used for testing accuracy.  

 

Figure 10. The example signal of different time duration studies. There are 10 different duration (D) 

from 0.2 milliseconds to 2 milliseconds in the signal duration study. The signal starts at the zero-

crossing point, the time right before the obtained structural signal. 

 

Figure 11. The example signal of different starting time study. There are 8 different starting time, 

the first case starts from a zero-crossing point, and the second case starting time is 0.1ms late from 

zero-crossing. 
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Figure 12. The example of different image resolutions indicates that finding the balance is to save 

computation time and to obtain good accuracy.   

 

 

Figure 13. The example of the combined input image for CNN training. Top: time-domain signal + 

frequency-domain signal (T+F); Bottom: frequency-domain signal + STFT(F+STFT) 
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5. RESULT, ANALYSIS, AND FINDINGS 

5.1 Preliminary study of the CNN model    

These results and findings are for Task 1 and Task 5. For a preliminary study of the CNN 

model, there are three different input models: time-domain signal, frequency-domain signal, and 

STFT. Note that the preliminary test input hasn’t gone through in-depth study yet. In this stage, 

only for testing whether CNN can work properly with these input signals. The example of the CNN 

framework is shown in Figure 14. There are several sets of convolution layer and polling layer, 

which convolution layer is used to calculate with certain algorithm(e.g., averaging value in 5x5 

pixels) to find a significant value(as known as a feature) from pixel number. And the pooling layer 

is used to further pool out the most important feature from the convolution layer. The tail part of 

CNN is connected with a multilayer perceptron(MLP), which uses features extracted from the 

pooling layer to find the regression relationship. The preliminary results of the convolution layer 

as shown in Figure 15. The left matrix (6x6) is manually created by the research team to present 

pixel numbers in an image. The kernel (3x3) with the average algorithm is used to find the average 

with those 9-pixel numbers covered by the kernel. After the kernel scans the whole image, the 

original image (6x6) becomes a convolution feature image (4x4) which represents the significant 

character of the image. This convolution feature is sent to the pooling layer to extract features 

further. The pooling layer results are shown in Figure 16; in this case, the kernel(2x2) is using a 

maximum algorithm that only pools out the maximum feature from the covered pixel to make a 

new pooling feature map.  

 

Figure 14. The framework of CNN.  

There are several sets of convolution layer and polling layer, which convolution layer is 

used to calculate with certain algorithm (e.g., averaging value in 5x5 pixels) to find a significant 

value (as known as a feature) from pixel number. And the pooling layer is used to further pool out 

the most important feature from the convolution layer. The tail part of CNN is connected with a 

multilayer perceptron(fully connected layer), which is the layer that uses and classifies features. 
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Figure 15. The preliminary results of convolution layer.  

In Figure 15, the left matrix (6x6) is manually created by the research team to present pixel 

numbers in an image. The kernel(3x3) with the average algorithm is used to find the average with 

those 9-pixel numbers covered by the kernel. After the kernel scans the whole image, the original 

image(6x6) becomes a convolution feature image (4x4) representing the image’s significant 

character. 

 

Figure 16. The kernel(2x2) uses a maximum algorithm that only pools out the maximum feature from 

the covered pixel to make a new pooling feature map. 
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The CNN signal identification accuracy is shown in Figure 17. It should be reminded that 

there are 210 images for training and 90 images for testing. For e.g., in Figure 17(a), 33.3% is 

calculated from the correct predicted sample divided by the total testing image (30/90=33.3%); 

The number of 85.7% on the bottom is calculated from the correct predicted class sample divided 

by the total class sample (30/35=85.7%); The number represents 73.2% is the accuracy of CNN 

model, which is a summation of corrected prediction of each class (33.3%+23.3%+16.6%=73.2%). 

Among three different inputs, STFT has higher prediction accuracy, and it has the highest accuracy 

for predicting noise class. 

 

(a) Time-domain signal result 

 

(b) Frequency-domain signal result 
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(c) STFT result 

Figure 17. The preliminary test of CNN with different inputs.  

5.2 Field test results  

Tasks 2 and 3 results are presented in this section. The NDT results for Bridges 1 and 2 are 

provided. The inspection team scanned Bridge 1 three times in 2021 and 2022; thus, the changing 

of damaged delamination area can be easy to point out. Figure 1818 shows a delamination map of 

three different scanning times of bridge 1(First scanning time: 2021.10; second scanning time: 

2022.1; and third scanning time: 2022.3). Red area means high energy between 1kHz-6kHz 

represents delamination; the yellow and light blue also presents delamination but has smaller size, 

and dark blue is good condition area. The delamination is growing faster between January 2022 to 

March, while delamination is growing slower between 2021.10 to 2022.1. The delamination map 

of bridge 2 is shown in Figure 19. As shown in Figure 20, the damage index is calculated from the 

total value within a 5 ft. length from the delamination map. 
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Figure 18. The delamination map of bridge 1 with three different scanning times.  

 

Figure 19. The delamination map of bridge 2.  
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Figure 20. The total energy within a 5 ft. area are calculated for the damage index map  

5.4 In-depth Parameter Study of machine learning input with NDT signal 

These results are for Task 3 and the first step of Task 5. Because of the various 

environmental condition and field test uncertainty, the existing signal processing algorithm is not 

perfectly fitting with different bridges. To improve NDT results (e.g., delamination map), CNN is 

used to identify three different types of signals: delamination signal, non-delamination signal, and 

noise(or insignificant signal). Based on this classification, we have four types of in-depth signal 

study: different signal duration (D), different signal starting time (S), different image resolutions 

(R), and a different number of images (N). By using these parameters, the relationship between 

CNN accuracy and computation time can be found. It can provide the optimal input for the CNN 

model to identify signals. 

The results of different signal duration (D) are shown in Figure 21. D=1ms has higher 

prediction accuracy as, within 1ms, the important impact signal reflected structural interior 

damage. On the other hand, D=2ms has lower accuracy as it covers too much insignificant 

signal(e.g., tail resonance signal or noise).  

 

Figure 21. The result of different signal duration studies.   

The results of different signal starting times (S) with three different D are shown in Figure 

22. Six results all show a similar pattern: the highest accuracy appears when S=50(0.1ms) or 

100(0.2ms) because the front part surface wave, which dramatically affects signal behavior, is 

ignored. Besides, the significant signal always happens right after the surface wave. On the other 

hand, S=250(0.5ms) gives lower accuracy as the signal only covers noise as a target. 
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Figure 22. The results of different signal starting times (S) with three different duration and 

laboratory test delamination.   

The results of image resolution and number of an image are shown in Figure 2323. Figure 

23(a) shows that the accuracy (Acc.) reaches the threshold when N=100, while computation time 

(CT.) suddenly increases after N=200. Figure 23(b) shows the accuracy reaches the threshold when 

R=600 and computation time suddenly increases after R=600. This information helps to 

understand the relationship between the CNN model and input data. Finding the threshold of 

accuracy and computation time is important as it represents the efficacy of the CNN model. For 

e.g., in Figure 23 (b), although the accuracy slowly increased when R increased from 300 to 600, 

the computation time increased dramatically. Similar pattern can be obtained from Figure 23(a) 

when N increased from 100 to 200, the accuracy increased slowly, but computation time increased 

significantly. 
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Figure 23. The result of image resolution(R) and a number of images(N) study.   

Further slope analysis of a number of images with three image resolutions is shown in 

Figure 24. According to Figure 24(b), the first peak occurs when N=40~60 and when N=100~120, 

which means the accuracy increased dramatically between these cases (marked yellow in Figure 

24a). Only the R=600 case didn’t have a second peak because it had already reached a threshold 
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which means accuracy won’t increase dramatically if using more N. According to Figure 24(c), 

when R=100x100 and 300x300 with N=120~140 images, the slope of computation time shows the 

highest value, which means the computation time suddenly increased. The same situation can be 

found in (blue mark in Figure 24a). Besides, If N> 140 images, the computation time increases 

exponentially. 
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Figure 24. The slope analysis of a number of image studies (N) with three different image resolutions.  

The slope analysis of image resolution is shown in Figure 2525. According to Figure 25(b), 

when image resolution around R= 200x200 shows the peak, the CNN accuracy suddenly increases 

(marked yellow in Figure 25a). If R>200x200 images, the slope is decreased, which means the 

accuracy has already reached the threshold when R=200x200. According to Figure 25 (c), the 

slope exponentially increased after R=600x600 with the N=100 image case. For N=40 image, the 

computation time slope also started to increase when R=700x700, which means the CNN model 

efficiency is getting lower when using R≥600x600 images.  
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Figure 25. The slope analysis of image resolution study.  

Based on Figure 24 and 25, the CNN efficiency is shown in Figure 26. The higher value 

represents the good efficiency of the CNN model. According to Figure 26(a), the efficiency is 

higher when the number of images N≤ 100; however, there is still a need to consider the accuracy 

since accuracy is lower when N is smaller. Accuracy reaches the threshold when N≅100 (Figure 

24 a). According to Figure 26 (b) efficiency of resolution study shows there is higher efficiency 

when R ≤ 200. The accuracy threshold of image resolution is 200x200 (Figure 25 a). After an in-

depth study of an input signal, the optimized input parameter is found. Signal duration, D is 1ms, 

starting at 0.1ms after the zero-crossing point with image resolution R=200x200 and N=100 

images as our input setting. By using these parameters, the NDT results(e.g., delamination and 

damage index) are checked and improved with the CNN model.  

 

 

Figure 26. The result of CNN efficiency.  
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The higher CNN efficiency value represents the good efficiency of the CNN model. 

However, there is still a need to consider the accuracy value present in Figure 34 and Figure 35. 

The combined input results as shown in Figure 27. There are three different combined 

siganl:1) C1:frequency and STFT; 2) C2:time-signal and frequency and 3) C3:time signal, 

frequency, and STFT. ANN results are also shown and compared. C1 gives the highest accuracy, 

while C2 has lower accuracy. Compared to C2 and C3, the time signal makes accuracy decrease 

because the noise may affect the signal dramatically. This pattern fits with the time-signal starting 

time study (Figure 22) when S=50 (0.1ms) and 100 (0.2ms) have the highest CNN accuracy. For 

ANN, when S=200(0.4ms), accuracy suddenly decreased because the signal started to be affected 

by tail part noise, which is similar to Figure 22. 

 

Figure 27. The CNN results with the combined input image.  

5.3 FE Modeling result for Structural Performance  

This result for Task 4. The FE model result is mainly used to calculate structural 

performance value(e.g., stress) to further calculate damage levels for damage prediction. The other 

purpose of the FE model is to understand the relationship between delamination and structural 

performance, especially in nearby girder areas. The delamination FE model is designed by the 

delamination inspection result, as shown in Figure 28. The artificial delamination is created in 

between the 1st and 2nd layers, which is a 2-inch depth from the top surface. The contact constraint 

enforcement method (called contact method) of Abaqus/Standard is considered to simulate 

delamination areas by using a stiff approximation of hard contact (penalty method), which is the 

condition that the upper element cannot penetrate the lower element. The spring-damper-mass 
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system, which consists of discrete elements interconnected with spring and damper, is adopted to 

define the surface behavior. The penalty stiffness and damping coefficients are provided to 

distribute the load to the lower element. The contour plot from these simulation results is shown 

in Figure 29 and 

Figure 30 with a color index. The results of the FE model with delamination show that the 

maximum principal stress (MPS) occurs at the bottom surface. The maximum principal stress 

distribution is one of the most important structural performance analysis methods related to 

concrete crack behavior. The delamination model shows a different load distribution than the 

control model on the artificial delamination region. The highlighted delamination shape on the top 

surface indicates the delamination damage affects the load distribution. From these simulation 

results, 28 elements are chosen from each model to compare the MPS at the elements. The detail 

of the elements is described in Figure 29.     
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Figure 28. Delamination FE models are designed by field test results 

 

Figure 29. The picking element  locations: left side top layer element (DLT-1-6), right side top layer 

element(DRT -1-6), left side girder element (DLG-1-6), right side girder element (DRG-1-6), and element 
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on the delamination(DT-1-4). 

Figure 30. The stress map of the delamination model 

The calculated stresses at the elements are described in Error! Reference source not 

found.. Most of the selected elements show more increased stress in the delamination model than 

in the non-delamination model. Elements DT-1, DT-2, DT-3, and DLT-4, which are on 

delamination centers, show the dramatically increased MPS. In addition, the relatively higher 

stress increment at DLG-3 (10 %) indicates the delamination on the girder affects the load 

distribution to the girder from a slab, and it is critical for structural performance. 

Table 1. Maximum Principal Stress of the selected elements 

 

Maximum Principal Stress (N/m2, Pa) 
Increase (%) 

Delamination Non-Delamination 
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DLT-1 125332 120202 4.26 

DLT-2 129105 123730 4.34 

DLT-3 115990 61675 88.06 

DLT-4 97494 93752 3.99 

DLT-5 90105 84650 6.44 

DLT-6 73725 72406 1.82 

DRT-1 125332 119692 4.71 

DRT-2 130587 123983 5.32 

DRT-3 118397 114960 2.98 

DRT-4 110144 105873 4.03 

DRT-5 101460 95937 5.75 

DRT-6 84029 79047 6.30 

DLG-1 265772 247988 7.17 

DLG-2 283465 266830 6.23 

DLG-3 281978 254880 10.63 

DLG-4 290788 289176 0.55 

DLG-5 280997 273320 2.80 

DLG-6 236347 233441 1.24 

DRG-1 265772 249579 6.48 

DRG-2 283465 269328 5.24 

DRG-3 281978 269250 4.72 

DRG-4 290788 291020 -0.07 

DRG-5 227549 225355 -7.90 

DRG-6 236347 231913 1.91 

DT-1 83167 334 24800.29 

DT-2 91266 7911 1053.65 

DT-3 72345 32117 125.25 

DT-4 295 300 -1.66 
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Figure 31. MPS bar chart of the selected elements in the delamination simulation 

 

 
Figure 32. MPS increment bar chart of the selected elements in the delamination simulation 

5.5 Structural Performance Prediction Result 

These results are related to Task 5. The structural performance prediction model has four 

different damage levels: severe stress concentration, moderate stress concentration, mild stress 

concentration, and healthy. According to Figure 33, the delamination FE model is designed and 

represents to different damage level by delamination size, element interaction scale value of 

different types of delamination, and the number of delamination shown in Table 2. The 110  FE 

models are created with these random parameters. Generally, if the model has more delamination 

with a bigger delamination size and lower scale value, then this model represents a severe damage 

condition because the stress value will concentrate around delamination. The damage level 
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classification is labeled by FE simulation stress analysis. The four damage levels are calculated 

from 𝑫𝒂𝒎𝒂𝒈𝒆 𝒍𝒆𝒗𝒆𝒍 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆= 
(𝑺𝑴−𝑺𝒎)

𝟒 𝒍𝒆𝒗𝒆𝒍𝒔
     Eq 5, the summation 

maximum stress case minus minimum stress case then divided by 4 levels. Thus, the damage level 

of all 106 models can be defined as shown in Error! Reference source not found.: Healthy ≤
2.996; 2.996 < Mild damage ≤ 3.119; 3.119 < Moderate damage ≤ 3.242; 3.242021 <Serious≤
3.365 as shown in Table 3. 

70% of 110 models are used to train the model and 30% for test model accuracy. The input 

for damage prediction is FE delamination model; the output is the classification and prediction of 

level(Figure 3). The advantage of this approach is, that it does not require simulation results, but 

just using a model can be done performance prediction. The efficiency is better since the simulation 

time is eliminated. Moreover, the data-based ANN was also applied for damage prediction to 

compare with CNN results. The used features in ANN are the location of delamination, size of 

delamination, element interaction scale value of different types of delamination, and the number 

of delamination. The biggest difference between CNN and ANN is CNN extracts image features 

in the convolution and pooling layer, and in ANN, a user needs to provide features themselves.  

 

 

Figure 33. The example of artificial delamination FE model with different parameters 

Table 2. The design parameter for artificial delamination FE model 

Delamination size Number of delamination Contact scale value 

10x10 

20x20 

25x25 

15x20 

1 

2 

3 

0.1 

0.5 

0.8 
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𝑫𝒂𝒎𝒂𝒈𝒆 𝒍𝒆𝒗𝒆𝒍 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 =  
(𝑺𝑴−𝑺𝒎)

𝟒 𝒍𝒆𝒗𝒆𝒍𝒔
     Eq 5 

 

Table 3. The four stress concentration level calculated from the FE model   

Healthy Mild concentration Moderate concentration Serious concentration 

≤ 2.996 2.996 < x  ≤ 3.119 3.119 < x ≤ 3.242 3.242 < x 

 

The prediction results of CNN and ANN are shown in Error! Reference source not 

found.. ANN prediction accuracy is 78.1%, and CNN is 68.8%. Take Figure 34 (a) as an example; 

the target class means “real classification” of severity level, and the predicted class is the “answer” 

from CNN. There are 11 samples of moderate sample target class; however, ANN gives two wrong 

samples as an answer of severe class, while the other 9 samples are in the correct prediction class. 

The accuracy percentage of 28.1%, colored in a light blue box, means the correct CNN answer 

sample divided by the total test sample (9/32*100%=28.1%). The 60% of the gray box means the 

prediction accuracy only in the healthy class(3/5*100%=60%). The total ML accuracy is a 

summation of accuracy in each class (9.37%+28.1%+21.8%+18.7%=78.1%). Compared with 

ANN, CNN has lower accuracy, which means the input image requires more detail of 

delamination. For example, more fine resolution of delamination size, more colors to represent 

damages, and more field test delamination maps. These studies should be considered as a future 

work plan. 

For the further study of the ability to identify different levels of CNN and ANN prediction, 

the input samples are fixed in both models (severe:20, moderate:26, mild: 22, healthy: 10 samples). 

Once they use the same sample to train the model, it is clear to demonstrate which model is better 

for predicting which type of structural performance. The results, as shown in Figure 35, for the 

ANN model has 77.8% accuracy in predicting severe levels, 78.5% in predicting moderate levels, 

and 50%,33.3% for mild and healthy levels. Compared with ANN, CNN has a higher ability to 

detect severe levels, which has 88.8% accuracy, although CNN has a lower prediction for moderate 

levels. For mild and healthy cases, CNN has 33.3% accuracy for both. 
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Figure 34. The damage prediction accuracy of (a) ANN, (b) CNN.   

 

Figure 35. The accuracy in predicting different levels of structural performance.   
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6. CONCLUSIONS 

In this study, the NDT filed test result is improved by using CNN with different types of 

signal data to reduce noise and insignificant signal to decrease the error to identify delamination 

from the existing algorithm. The in-depth study of field test data with CNN provides an idea of 

how to train or input data of NDT signal to obtain a proper prediction model. The relationship 

between accuracy based on CNN process and field scanned signal is found. For time-domain 

signal, the optimal design for the CNN model is signal duration D=1ms, starting time S=0.1ms 

after a zero-crossing point, with image resolution R=200x200 and number of images N=100. The 

CNN model efficiency is also calculated from accuracy and computation time, which shows when 

N≤ 100 and R ≤ 200 have higher efficiency. Moreover, using FE structural performance and 

NDT damage index can identify and predict the different levels of structural performance, with 

93.7% accuracy in the ANN model. The study demonstrates the framework of NDT using AI 

technology to improve 1)  data post-processing procedure and also 2) provide the idea of damage 

prediction with an FE model delamination map. In the future, once the bigger database is built 

with field test data and an FE model, the ML approach developed in the project can be further 

improved and applied. 

 

• Firstly, NDT results can be improved by using signal images applied with CNN. 

• Secondly, an in-depth CNN study of the NDT time-domain signal provides an optimal 

image parameter for damage identification. 

• Thirdly, FE model 2-dimension top-view, which is designed by field test delamination 

map and artificial damage maps are input for CNN can be used to predict structural 

performance. 

• For different levels of prediction, ANN has 78.1% accuracy, while CNN has 68.8% 

accuracy. 

• For severe level prediction, ANN has 77.8% accuracy, and CNN has 88.8% accuracy; 

for moderate level, ANN has 78.5%, and CNN has 71.4% accuracy. CNN is better at 

predicting severe levels, while ANN has a better ability to predict moderate levels. 

 

This study demonstrates a framework of improvement of NDT data analysis with ML and 

also provides an idea for damage prediction with NDT results which is a more efficient way 

compared with other numerical analysis approaches. However, based on the research procedure 

and results, there are some future work needs to be considered: 1) keep adding and improving the 

database of FE model images; 2) improve FE model delamination resolution with smaller mesh 

size; 3) keep collecting field test data for the training ML model. By these three main tasks, the 

prediction accuracy could be improved.  
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