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6. EXECUTIVE SUMMARY 

Most state QA programs are based on pavement construction procedures that encompass in-situ 

coring for layer thickness determination, density measurements, and laboratory testing to measure 

volumetric properties.  In general, these methods are slow, costly, and time-consuming.  Research 

studies indicate that Non-Destructive Testing (NDT) methods have the potential for use in the 

Quality Assurance (QA) of pavement construction since they allow for (a) fast evaluation of the 

product uniformity in real time as construction progresses; (b) identifying potential defects during 

construction to allow for timely corrective actions; (c) more frequent inspecting, testing, and 

replicating without the damaging effects of coring and other destructive testing; and (d) reducing 

the testing and inspections costs, while improving construction quality.  

The use of pavement smoothness in QA programs has increased significantly in recent years. 

Pavement smoothness is measured using a profilometer or a laser-based surface tester, also known 

as an inertial profiler. Including surface profile smoothness tolerance requirements in 

specifications also allows for an additional payment incentive (bonus) or penalty based on the 

contractor’s performance.  While the use of smoothness specifications is a positive development 

in QA programs to assess construction quality, the availability of a profiler in most of the road 

construction projects is a major obstacle for widespread implementation of this practice.  Hence, 

the measurement of pavement smoothness and the detection of aggregate segregation in real-time 

or upon completion of the construction process is limited by the availability of an inertial profiler.  

This may result in inadequate construction quality, early pavement failure, poor ride quality, and 

the inability to introduce timely remedies to address the noted deficiencies. 

The objective of this study was to develop and validate machine learning models based on 

Convolutional Neural Networks (CNN) and digital image analysis that can be used to classify 

pavement surface into different IRI categories, to predict IRI values, and to detect the presence of 

aggregate segregation on the pavement surface of a newly-constructed road section.  To achieve 

this objective, two CNN models were developed based on the ResNet Architecture; one model 

predicted the roughness categories (Good or Very Good) from the feature analysis of the pavement 

images.  The second model predicted the roughness values using IRI from the feature analysis of 

the pavement images.  These models were trained, tested, and validated using 600-pavement 

surface images extracted from the LaDOTD pavement management system and 129 pavement 

images collected from three construction sites.  These images were randomly divided into 70%, 

15%, and 15% for the training, testing, and validation phases, respectively.  The images from the 

two data sources were used in the three phases to adapt the model to accurately respond to both 

types of pavement images.  

For the development of the segregation model, a segregation parameter (S) was introduced to 

assess the relative distribution of particle aggregate sizes on a grid defined by 4,096 equally-

distributed squares. The calculated S-value was then used to detect and quantify the presence of 

segregation on the pavement surface. A S-value of zero indicates no aggregate segregation, a 

positive value indicates a coarse aggregate segregation, while a negative value indicates a fine 

aggregate segregation.  By categorizing the S-value for each square on a captured image, a colored 

map was generated based on the calculated S-values for the 4,096 squares.  Multiple examples are 

presented to detect segregation based on this innovative approach. 

Based on the results of the analysis, it was determined that the roughness classification model 

achieved an overall accuracy of 93.8% in the training phase and 92.6% in the validation phase.  In 



x 

addition, the IRI prediction model had an acceptable accuracy with a coefficient of determination 

(R2) of 0.99 and a root-mean-square error (RMSE) of 3.5%.  Visual comparison between the digital 

images and the colored segregation maps showed good agreement.  The developed segregation 

detection procedure adequately described the relationship between mix density and segregation by 

predicting an increase in S-value with the decrease in mix density.    

Based on the results of this study, a computer application was developed for the AI models by 

creating a standalone tool, which would allow the site engineers to use the developed models 

without the need for coding software on their device. Future development of the application may 

allow the users to retrain the adaptive models to ensure up-to-date accuracy. 
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1. INTRODUCTION 

1.1 Problem Statement 

Research studies indicate that Non-Destructive Testing (NDT) methods have the potential for use 

in the Quality Assurance (QA) of pavement construction since they allow for (a) fast evaluation 

of the product uniformity in real time as construction progresses; (b) identifying potential defects 

during construction to allow for timely corrective actions; (c) more frequent inspecting, testing, 

and replicating without the damaging effects of coring and other destructive testing; and (d) 

reducing the testing and inspections costs, while improving construction quality. Results of 

NCHRP 10-65 recommended to use the GeoGauge for estimating the modulus of unbound layers 

and the portable seismic pavement analyzer (PSPA) for estimating the modulus of Hot Mix 

Asphalt (HMA) layers (1). However, in spite of their high potential and usefulness, the transition 

of NDT methods from research to practice has been limited, and the destructive and time-

consuming process of coring and laboratory testing continues to be the most widely used QA 

methods in the US.  

The use of pavement smoothness in QA programs has increased significantly in recent years. 

Pavement roughness, which is the opposite of pavement smoothness, is described in terms of the 

International Roughness Index (IRI) and is a measure of ride quality and driver’s comfort.  IRI 

represents the deviation of the pavement surface from the leveled plan that affects vehicle 

movement and ride quality (2).  Pavement smoothness is measured using a profilometer or a laser-

based surface tester, also known as an inertial profiler.  Technically, IRI is the cumulative vertical 

displacement of an axle from a reference quarter-car divided by the distance traveled over the 

pavement profile at a standard speed of 50 mph.  Many new specifications require all mainline 

paving meet surface profile smoothness tolerance using IRI for quality assurance requirements.  

Including surface profile smoothness tolerance requirements in specifications also allows for an 

additional payment incentive (bonus) or penalty based on the contractor’s performance. 

 

Figure 1. Aggregate Segregation and Non-Uniform Texture after Construction (3) 

While the use of smoothness specifications is a positive development in QA programs to assess 

construction quality, the availability of a profiler in most of the road construction projects is a 

major obstacle for widespread implementation of this practice.  Hence, the measurement of 

pavement smoothness and the detection of aggregate segregation in real-time or upon completion 

of the construction process is limited by the availability of an inertial profiler.  This may result in 

inadequate construction quality, early pavement failure, poor ride quality, and the inability to 

introduce timely remedies to address the noted deficiencies. 
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1.2 Background 

Until the early 2000s, the collection of pavement condition data and distress survey were mostly 

conducted using manual visual methods (4).  However, manual visual methods are slow, costly, 

and presents safety risk to the surveyor; these limitations led state agencies to adopt automated 

distress survey using devices such as Roadware’s Automatic Road Analyzer (ARAN) system and 

Road Measurement Data Acquisition System (ROMAS), which allow to collect pavement 

condition data at traffic speed and without traffic disruption.  In Louisiana, ARAN surveys are 

conducted every two years on in-service roads to collect pavement surface conditions. Yet, ARAN 

costs around $1.2 million and has an annual operating cost of $70,000.  In these surveys, pavements 

are scanned with a vehicle equipped with cameras, lasers, sensors, and computers, to collect high-

definition digital images of pavement surfaces, which are then used to assess in-service pavement 

conditions.   

Concurrent with the introduction of automated distress surveys, researchers have developed 

computer vision and machine learning techniques to automate the process of pavement data 

collection and condition evaluation (2). Most of these applications focused on detecting, 

classifying, and quantifying existing distresses including cracks, rutting, and roughness. However, 

the application of computer vision for the extraction of features such as pavement roughness has 

not been thoroughly investigated. Recently, Convolutional Neural Networks (CNN) have been 

successfully implemented in object recognition and image classification. In transportation, CNN 

have received considerable attention in pavement condition evaluation and crack detection and 

quantification (5-6). CNN do not require extensive pre-processing steps; in addition, they can 

identify and differentiate many features such as cracks and potholes from the analyzed images. 

While pavement condition evaluation has successfully transitioned to automated inspection and 

data collection, construction monitoring, and quality assurance practices are still based on costly 

and destructive methods.  In addition, most state QA programs are based on pavement construction 

procedures that encompass in-situ coring for layer thickness determination, density measurements, 

laboratory testing to measure volumetric properties, and smoothness measurements in case of the 

availability of an inertial profiler.  In general, these methods are slow, costly, and time-consuming.  

Furthermore, QA programs are based on empirical specifications that are principally designed to 

ensure that all the critical raw ingredients are used in the installed paving mat.  This approach leads 

to poor construction quality, rough surfaces, segregated asphalt mixes, and premature pavement 

failure. 
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2. OBJECTIVES 

The aim of this study was to develop non-destructive tools based on pavement surface image 

analysis and machine learning models; these tools can be used to assess the quality of asphalt 

paving construction by predicting surface roughness and by detecting aggregate segregation.  To 

achieve this goal, the main objectives of this study were to develop and validate machine learning 

models based on Convolutional Neural Networks (CNN) and digital image analysis that can be 

used to classify pavement surface into different roughness categories, to predict IRI values, and to 

detect the presence of aggregate segregation on the pavement surface of a newly-constructed road 

section.  
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3. LITERATURE REVIEW 

3.1 Computer Vision Applications in Transportation  

In pavement engineering, computer vision approaches have been successfully used and 

implemented to extract features in the pavement surface from captured images.  Researchers have 

applied different computer vision approaches to detect and classify distresses such as cracks, 

potholes, and raveling. Furthermore, researchers have used computer vision applications in 

estimating the type and extent of detected pavement distresses.  

The early efforts in developing crack extraction algorithms were focused in statistical intensity 

thresholding approaches.  Till date, this technique has been used by many researchers due to its 

simplicity and efficacy.  Maser in 1987 proposed a threshold-based segmentation for image 

analysis by enhancing the image using histogram equalization (7). Li et al. employed a 

combination of image histogram and projection histogram to separate the non-distress objects such 

as road markings, oils, and tire marks from major distresses on flexible pavements (8).  

Koutsopoulos and Downey employed the regression-based histogram method to provide best 

results compared to other three intensity thresholding methods (9), which included Otsu’s method 

(10), relaxation method, and Kittler’s method (11).  The authors developed image enhancement, 

segmentation, and distress classification algorithms to address different distress types in flexible 

pavements.  A different approach was suggested for image binarization, which assigned a value of 

0 to 3 to each pixel based on its probability of belonging to the object (9).  

Georgopoulos et al. developed an algorithm based on a software known as ‘APDIS’ to 

automatically identify the type, extent, and severity of pavement cracking (12).  Xu and Huang 

developed an algorithm based on ‘grid cell’ analysis, which divides the pavement into small cells 

and a cell is classified as a crack or non-crack based on the statistical characteristics (13).  Wu et 

al. developed a crack recognition and segmentation algorithm namely MorphLink-C; the algorithm 

mainly consisted of two processes; (a) using morphological dilation transform to group crack 

fragments and (b) using thinning transform to connect the fragments (14). 

Wavelet transforms, edge detection, and texture analysis are three others widely used techniques 

in pavement crack detection (15).  Zhou et al. used wavelet transform to separate road distresses 

into high-amplitude wavelet coefficients and pavement noise to low-amplitude wavelet 

coefficients before applying statistical functions to detect and classify cracks (16).  Ying and Salari 

proposed a beamlet transform based technique in order to extract linear features such as cracks in 

pavement after application of an image enhancement algorithm (17).  A method based on 2D 

wavelet continuous wavelet transform was applied to detect pavement cracks by Subirats et al. 

(18).  A multiscale complex coefficient maps were created before the application of an algorithm 

to search wavelet coefficient maximal values and their propagation through the scales for crack 

detection.  However, the wavelet transform techniques has limitation in detecting high curvature 

or low continuity cracks (15).  

In edge detection techniques, algorithms are applied to search and detect edges (defined as sharp 

intensity transitions) without any inputs or human interference.  Abdel-Qader et al. used 

bidimensional empirical mode decomposition (BEMD) smoothing method to remove noise and 

applied sobel edge detection technique to detect cracks (19).  The sobel edge detection technique 

was observed to produce better results for images with less irregularities and noise (20).  Maode 

et al. employed morphological operation tools to detect, extract, and fill the crack edges.  The 



2 

procedure consisted of the application of morphological gradient operator with morphological 

closing operator after the use of median filter to smooth and enhance pavement image (21).  The 

texture analysis techniques employ crack extraction algorithms to separate cracks from highly 

textured pavements.   

Song et al. presented an algorithm based on Wigner distribution to segment cracks from complex 

textured background.  This model was found highly effective and was more accurate than Fourier 

based crack detector in terms of locality and discriminatory power (22).  In a study by Hu and 

Zhao, a gray-scale and rotation invariant operator known as local binary pattern (LBP) was used 

for texture classification and crack detection (23).  Despite certain improvements in various image 

processing techniques, researchers still encounter various challenges in image processing due to 

texture inhomogeneity of pavement aggregate, random non-crack background noises, spots and 

stains, oils, road markings and so forth.  These challenges demand further advancement in image 

preprocessing and thresholding techniques to precisely assess flexible pavement conditions. 

3.2 Latest Advancements in Image-Based Crack Detection Techniques 

3.2.1 Convolution Neural Networks (CNN) 

Computer vision approaches based on Deep Learning (DL) techniques have gained significant 

attention in recent years in pavement engineering particularly for distress detection and 

classification.  The four main DL architectures include Restricted Boltzman Machines (RBMs), 

Deep Belief Networks (DBNs), Autoencoder (AE), and Deep Convolutional Neural Networks 

(DCCNs or Deep ConvNets) (24).   

CNN are a specialized type of Artificial Neural Networks (ANN) that employs a mathematical 

operation known as convolution instead of general matrix multiplication.  They are well suited for 

the handling of image-based (pixel) data (25).  A deep convolutional neural network is a part of 

an ANN with one or more convolutional layers, which are mainly used for image processing, 

classification, and segmentation (26).  The feature extraction network analyzes the input image, 

and the classification neural network operates on the image based on its features.  It automatically 

detects the features on the images using multiple convolutional layers, pooling layers, and fully 

connected layers.  The first two layers focus on extracting features from the image, and the fully 

connected layer provides features as output.  This model is developed using a deep learning method 

through transfer learning. A detailed overview of the use of CNN in pavement applications has 

been presented by Dhakal (27). 

3.2.2 Use of Deep Learning Techniques in Pavement Applications 

In recent years, there has been a significant improvement in crack recognition, classification, and 

characterization approaches that use computer vision techniques.  These techniques are considered 

as promising approaches to automatically assess pavement conditions in terms of cracking by 

analyzing the pavement images.  Koch et al. in their review reported the increasing use of high-

level computer vision techniques such as neural models and support vector machines (SVM) with 

image processing in segmentation, classification, and feature extraction of pavement cracks (28).  

Moussa and Hussain used SVM to classify surface cracks as transverse, longitudinal, block, and 

alligator cracking after the images were segmented using graph cut segmentation procedure (29).  

Nguyen et al. combined Conditional Texture Anisotropy (CTA) method of crack segmentation 
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with multi-layer perceptron neural network and classified the detected defect as cracks, joint, and 

bridged (30).   

Mokhtari et al. compared four computer-vision based crack detection systems namely artificial 

neural network (ANN), k-nearest neighbor, decision tress, and adaptive neuro-fuzzy inference 

system (ANFIS).  ANN and ANFIS methods were observed to be more accurate in terms of 

performance prediction, computation time, and stability of the results and classifiers’ performance 

(31).   

Deep Learning (DL) based computer vision approaches have gained significant acceptance 

amongst pavement researchers in recent years, particularly for distress classification (32).  Deep 

Convolutional Neural Networks (DCCNs) are typically composed of convolutional, pooling and 

fully connected layers; a filter bank, which is a set of weights connects units in the feature maps 

of convolutional layers to local patches in the feature maps of the input data. In addition, the 

pooling layer units receives the maximum of a local patch of units in one feature map and also 

reduces the resolution of feature maps to select the spatial invariance, and the fully connected 

layers are like traditional multi-layer perceptron in which all units in the feature maps are 

concatenated together into a form of a vector (33).   

Zhang et al. developed an automatic crack detection DCNN based on the manually annotated 

image patches as inputs (34).  The dataset consisted of 500 pavement images of size 3264x2448 

collected using a smart phone.  The collected pavement images were sampled to generate one 

million three-channel (RGB) 99x99-pixel image patches; 640,000 samples were used for training, 

160,000 samples were used for validation, and 200,000 samples were used for training.  The 

developed solution classified the crack and non-crack pixels referred to as positive and negative 

patches respectively based on a ConvNet trained in square image patches.  The training process 

was amplified using the rectified linear units (ReLU) activation function.  Figure 2 illustrates the 

architecture of proposed DCNN (34). 

 

Figure 2. Architecture of Proposed DCNN (34) 

Elisenbach et al. (2017) developed a convolutional neural network for road crack detection and 

named it as RCD net, which used the same four-block ConvNet developed by Zhang et al. (35).  

The German Asphalt Pavement Distress (GAPs) dataset was introduced as an attempt to create a 

standard benchmarking pavement distress dataset for DL applications (36).  A DL approach, 
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ASINVOS, which consisted of eight convolutional layers, three max-pooling layers, and three 

fully-connected layers was implemented to study the regularization effects on the generalization 

ability of DCNN; the proposed approach was observed to outperform the traditional distress 

detection approaches with higher generalization ability (36).   

Fan et al. proposed an automated crack detection procedure based on structural prediction using 

CNN.  The CNN modeled as a multi-label classification problem consisted of four convolutional 

layers, two max-pooling layers, and there fully-connected layers.  The overall pavement condition 

was presented by probability map obtained by summing the center patch structure predictions of 

the trained CNN applied on all pixels.  The proposed method was observed to be superior 

compared with other existing methods of crack detection (37).  The CNN used by the authors is 

illustrated in Figure 3.  The convolutional layers were with kernel of 3 x 3, stride 1 and zero 

padding and max pooling was performed with a stride 2 over a 2 x 2 window. 

 

Figure 3. CNN Architecture (37) 

3.3 Roughness Prediction 

Several approaches were developed during the last two decades for the prediction of IRI values 

from pavement characteristics such as pavement age, structural capacity, traffic volume, and 

climatic data. Rosa et al. conducted a study to predict the IRI value from the initial IRI value and 

pavement age based on data collected from the Texas Department of Transportation from 2005 to 

2014. The pavement sections were categorized based on climatic conditions, subgrade soil, 

treatment type, pavement type, traffic loading, and functional level. The regression coefficients 

were then fitted for each category (38). The proposed regression model was as follows: 

 ln(
𝐼𝑅𝐼𝑖

𝐼𝑅𝐼𝑛−𝐼𝑅𝐼𝑖
) = 𝛽3 + 𝛽2𝑒

𝑇𝑖𝑚𝑒𝛽1 (1) 

where, 

IRIi = initial IRI; 

IRIn = IRI in year n; 

Time = number of years since IRIi; and 
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β1, β2, β3 = calibration parameters. 

A nonlinear least-square method was used to determine the calibration coefficients. A comparison 

between measured versus predicted IRI is presented in Figure 4. The error in prediction was around 

20 in./mile, which was deemed reasonable at the network level. In addition, the empirical model 

was more accurate for low to medium traffic loading with a RMSE of around 7%. 

 

Figure 4. Predicted versus Measured IRI in 2015 (38) 

 

Similarly, Khattak et al. developed a model to predict IRI value for Asphalt Concrete (AC) overlay 

based on climatic and traffic data, age of treatment, functional classification, and pavement 

thickness (39). Performance data from Louisiana were used to calibrate and validate the models. 

For flexible pavements, the following regression model was developed: 

 ln(IRI) = 𝑎0 + 𝑎1 (
1

𝐹𝑛
) + 𝑎2 (

ln(𝐶𝐸𝑆𝐴𝐿)

𝑇0
) + 𝑎3.  𝑇1 + 𝑎4. 𝐶𝑃𝐼. 𝑡 + ∆  (2) 

where, 

IRI = International Roughness Index (m/km); 

Fn = functional classification; 

CESAL = cumulative equivalent single-axle load (ESAL); 

To = thickness of overlay; 

T1 = temperature index; 
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T = age of treatment; 

CPI = cumulative precipitation index;  

 = 4.388 + 0.723 . ln (SDo) + 0.513 . ln (IRIpp); 

SDo = initial Standard Deviation (SD); 

IRIpp = predicted IRI of the previous year. 

 

Figure 5 presents a comparison of the predicted versus measured IRI. As shown in the figure, the 

model predicted IRI with an overall accuracy of 0.47 as depicted by the coefficient of 

determination (R2). 

 

Figure 5. Predicted versus Measured IRI for Flexible Pavement Sections (39) 

 

Albuquerque and Nunez analyzed the data collected on 45 low-volume road sections to develop 

an IRI model for AC and asphalt surface treatments. The IRI value was estimated based on a local 

climatic index, the modified structural number (SNC), and the cumulative numbers of equivalent 

single-axle loads (40). Moreover, Qian et al. presented an IRI prediction model for thin overlays 

based on data collected from 79 Long-Term Pavement Performance (LTPP) road sections. The 

data were categorized into three groups based on temperature. For each group, an IRI model was 

developed based on the variables that significantly affected the model’s accuracy (41).  

Sandra and Sarkar utilized distress data collected on a 40.0-km (24.5-mile) pavement 

segment in India to develop a model for IRI prediction (42). The authors predicted the IRI value 

based on pavement surface distresses including cracking, potholes, patching, rutting, and 

raveling (42). Similarly, Abdelaziz et al. used LTPP data to predict the IRI values from existing 

pavement surface distresses. Data from 506 sections including initial IRI, age, and pavement 

surface distresses were used to develop the regression model (43). In Canada, Patrick and 
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Soliman utilized roughness and distress data from the LTPP to develop IRI prediction models for 

dry-freeze and wet-freeze regions (44). 

3.3.1 Machine-Learning Models 

In recent years, machine-learning approaches have gained significant interest amongst pavement 

researchers. Sandra et al. collected distress data on 617 kilometers (383.4 miles) of pavement 

sections in India to train an ANN model for IRI prediction (45). The data were clustered into 

eight groups; an ANN model was then developed for each group (45). Abdelaziz et al. proposed 

a forward back propagation ANN to predict IRI values based on distress data and pavement age 

(43). Similarly, Ziari et al. developed an ANN model using data obtained from 26 flexible LTPP 

sections. Pavement age, thickness, climate, and traffic data were the input variables used to 

predict IRI (46). Hossain et al. proposed an ANN model to predict IRI for flexible pavements 

based on climatic and traffic data in Illinois (47).  

3.4 Louisiana Pavement Management System  

The pavement network in Louisiana is surveyed every two years using the Automatic Road 

Analyzer (ARAN) system, which acquires continuous high definition digital images of the 

pavement surface (48).  This specific vehicle, shown in Figure 6, is equipped with cameras, lasers, 

sensors and computers to collect high-definition digital images of the pavement surface and right 

of way and electronic data of pavement distresses namely cracking, rutting, faulting, IRI, and 

macrotexture for both primary (i.e., South to North or West to East) and secondary (North to South 

or East to West) directions.  While the ARAN is equipped with a GPS unit, the data are collected 

and reported for every 1/10th of a mile of the road network.  The continuous digital images and 

distress data (VISIDATA) acquired by ARAN are utilized by each district, and the personnel has 

been trained to use the data.  When collecting pavement images, the various types of cracks are 

identified by distress category, rated in order of severity, measured, and recorded in the database; 

see Figure 7(a).  Symbols indicate distress category and a three-color system is used to distinguish 

severity levels as shown in Figure 7(b) (49). 

 

Figure 6. The Automatic Road Analyzer (ARAN) system 
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(a) Image by ARAN 

 

(b) Distress Identification 

Figure 7. The Automatic Road Analyzer (ARAN) system (49) 

The Louisiana Department of Transportation and Development (LaDOTD) also measures and 

monitors pavement roughness conditions based on the measurements of an inertial profiler 

(automated profiler). Inertial profilers approximate the actual pavement profile using non-contact 

sensors to quantify the relative vertical shift between the vehicle frame and the road surface. The 

collected data are then used to calculate the IRI values using a quarter-car mathematical model 

(TR 6442017). Pavement sections are categorized and ranked based on the measured IRI values, 

as depicted in Table 1. 

Table 1. IRI Thresholds for Different IRI Categories (2) 

IRI Rating IRI Range (in./mile) 

1 Very Good (VG) <90 

2 Good (G) 90-180 

3 Fair (F) 180-258 

4 Poor (P) >258 
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3.5 Aggregate Segregation 

Two types of segregation can affect the quality of asphalt paving construction, namely, aggregate 

segregation and temperature segregation.  Aggregate (gradation) segregation, which is the main 

type of segregation and is the focus of this study, is caused by the concentration of coarse aggregate 

in some areas and fine aggregate in others.  On the other hand, temperature segregation is defined 

as a temperature differential exceeding 14°C in the paving mat, which may cause weak spots on 

asphalt pavements.  While the negative effects of aggregate segregation have a long history of 

thorough investigations in the literature, debate exists on the significance of thermal segregation 

on pavement performance (50).   

Aggregate segregation is a major concern for highway agencies as it can cause a reduction in 

pavement life by as much as 50% (51).  This problem has persisted even after the introduction of 

the Superpave specification system in the early 1990s and the Material Transfer Vehicle (MTV) 

in the late 1990s. A segregated asphalt mixture does not conform to the original job mix formula 

(JMF) in gradation and/or asphalt binder content, creating a difference in the expected density and 

air void content of the mix as compared to the job mix formula. Research has shown that segregated 

mixes exhibit reduced service life as compared to unsegregated mixes due to diminished stiffness, 

tensile strength, and fatigue life (52). Laser profiling and infrared thermography have successfully 

been used to detect segregation.  

3.6 Limitations in the Current State of Practice 

From the literature review, it can be concluded that while pavement condition evaluation has 

gradually transitioned to automated collection and computer vision methods, construction 

monitoring and acceptance are still mainly based on destructive and slow testing methods.  While 

the use of smoothness specifications is a positive development in pavement engineering to assess 

construction quality, the unavailability of a profiler in a road construction project is a major 

obstacle for widespread implementation of this practice. This may result in inadequate construction 

quality and the inability to introduce timely remedies to address noted deficiencies.  While 

regression and ANN models were developed to predict surface roughness, the following 

limitations are noted: 

• Current models, which were developed based on distress data, exhibited low accuracies 

in IRI prediction. Abdelaziz et al. obtained coefficients of determination (R2) values of 

0.57 and 0.75 for the regression and ANN models, respectively, when the measured 

and predicted IRI values were compared (43). Similarly, Patrick and Soliman reported 

an R2 of 0.76 and 0.44 for dry freeze and wet freeze regions, respectively (44).  

• Available models require a wide number of input variables, which may not be available 

to the user. For instance, the model developed by Khattak et al. requires ESALs, 

thickness of overlay, temperature index, age of treatment, precipitation index, and 

initial IRI (39).  

• Numerous models incorporated pavement structural capacity as an input for IRI 

prediction (40). The use of a pavement structural capacity component in predicting a 

functional condition index such as IRI is questionable. For example, Albuquerque et 

al. incorporated the modified structural number (SNC) as an input variable into the IRI 

prediction model (40).   
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4. METHODOLOGY 

4.1 Roughness Detection 

Figure 8 describes the general outline of the research methodology. First, the LaDOTD PMS was 

used to extract IRI data for newly constructed pavement sections, which were used in the 

development and validation of the CNN models for roughness and IRI prediction. Afterwards, the 

I-Vision software was used to extract pavement surface images for these sections at the same 

locations of the IRI measurements. These images were then categorized into two groups, “VG” 

and “G” according to Table 1.  CNN models were then trained and validated using the extracted 

PMS data.  It is worth noting that the focus of the study was only on newly-constructed roads, 

which explain the categorization of the images in the very good and good categories. 

 

 

 

Figure 8.  Outline of the Research Methodology 

Twenty-two pavement sections, which were surveyed using ARAN within two years of their 

construction, were selected for development of the IRI model.  A total of 600 images were 

collected from these sections in addition to their corresponding IRI values.  Description of these 

22 pavement sections is provided in Table 2.  As shown in Table 2, the IRI values of the selected 

pavement sections ranged from 50 in/mi (0.79 m/km) to 180 in/mi (2.84 m/km) after one to two 

years of construction, covering a wide range of initial roughness values that were needed to train 

a robust deep learning model.    

To assist in the training and validation of the roughness model and the development of the 

segregation model, three newly-constructed sites were surveyed in the study.  For these sites, 
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pavement surface images were collected using an iPhone 11 smart phone as illustrated in Figure 

9. Overall, a total of 129 pictures were collected from these sections.  The project contactor 

measured surface roughness in these pavement sections using a lightweight profiler.  Collected 

data were analyzed using PROVAL software to calculate the IRI values, which ranged from 20.1 

in./mile to 74.8 in./mile with an average of 41.0 in./mile.   

Table 2.  Description of the Pavement Sections Extracted from Louisiana PMS 

Section 
Pavement 

Length (mi.) 

Date 

Constructed 

Date of 

survey 

Years in 

Service 

Average 

IRI1 

1 1.35 2018 2019 2 168 

2 2.77 2018 2019 2 146 

3 0.99 2018 2019 2 85 

4 0.31 2018 2019 2 82 

5 10.86 2019 2019 1 73 

6 15.48 2018 2019 2 65 

7 0.67 2019 2019 1 127 

8 6.17 2018 2019 2 68 

9 1.82 2019 2019 1 62 

10 3.61 2018 2019 2 76 

11 1.70 2018 2019 2 58 

12 7.37 2018 2019 2 59 

13 2.37 2018 2019 2 113 

14 7.12 2018 2019 2 64 

15 7.27 2018 2019 1 102 

16 7.00 2018 2019 2 116 

17 5.70 2019 2019 1 156 

18 0.40 2018 2019 2 92 

19 5.41 2019 2019 1 50 

20 1.73 2018 2019 2 53 

21 6.08 2018 2019 2 124 

22 5.83 2018 2019 2 71 
1 IRI in in./mile. 
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Figure 9.  Illustration of Data Collection Process at the Construction Site 

4.2 Detection of Aggregate Segregation 

For the development of the segregation model, pavement surface images were collected from the 

construction sites a few days after construction was complete; see Figure 9. The images were 

converted into grayscale images, and image thresholding was conducted to assist in separating 

foreground and background surfaces. Afterwards, the aggregate particles were detected using 

contour, which also allowed to determine the diameter of each aggregate particle exposed on the 

pavement surface. The captured surface image was then divided into 64x64 equal squares. A 

segregation parameter (S) was then defined according to Equation (3) to assess the relative 

distribution of particle aggregate size on each of the 4,096 squares (64x64).  For each of the squares 

defined in the picture, the aggregate segregation parameter was calculated according to Equation 

(3):  

 𝑆𝑖 = (
Averagediameterofaggregateinanysquare(i)

Averagediameterofaggregateintheentirepictiure
− 1)100% (3)  

 

It is noted that a S-value of 0% would indicate no segregation while a S-value of 100% would 

indicate severe (or maximum) segregation. 

4.3 Image Processing and Filtering 

To enhance the quality of the images and the accuracy of the machine learning models, pavement 

images obtained from the LaDOTD PMS and construction sites were pre-processed as illustrated 

in Figure 10.  Image processing allowed to enhance the features of the image from the background 

and noise prior to using them as training, testing, and validation data sets in CNN.  The image pre-

processing technique involved five major steps namely image acquisition, median filtering, 

morphological erosion, contrast enhancement, and background subtraction as illustrated in Figure 

10.   
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Figure 10. Illustration of Image Processing and Filtering Steps 

4.4 CNN Model 

In this study, a deep convolutional neural network model was developed to predict the roughness 

of newly constructed flexible pavement sections. The study developed two CNN models, one 

model predicted the roughness categories (Good or Very Good) from the feature analysis of the 

pavement images. The second model predicted the roughness values using IRI from the feature 

analysis of the pavement images. To develop these models, collected pavement images were 

randomly divided into 70%, 15%, and 15% for training, validation, and testing, respectively.  

To develop the CNN models, the ResNet Architecture was selected.  The fitted ResNet architecture 

consisted of 18 deep layers, including 17 convolutional layers and one fully connected layer; see 

Figure 11. The main idea of ResNet is the use of jumping connections or identity connections. The 

connections function by hopping over one or multiple layers forming shortcuts between these 

layers. The purpose of establishing these shortcut links was to address deep networks' common 

problem of disappearing gradients. The utilization of earlier layer activations results from the 

identity mapping's initial inaction beyond skipping connections. By omitting the connection, the 

network is compressed, which speeds up network learning. The layers are then expanded once the 

connections have been compressed so that the remaining portion of the network can learn and 

explore additional feature space (53).  

 

 

Figure 11. Illustration of the Developed CNN Model Based on the ResNet 18 Architecture 
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5. RESULTS AND ANALYSIS 

5.1 Prediction of Roughness Categories 

The accuracy of the CNN model was expressed in the form of confusion matrices, which present 

the actual and predicted roughness categories (Good or Very Good) in terms of number and 

percentage. The confusion matrices have two dimensions, one with the actual class of the input 

and the other with the predicted class, and are used to present the accuracy of the system.  Figure 

12 illustrates the confusion matrices for the training and validation phases for the IRI categories 

CNN prediction model.  As shown in this figure, the roughness classification model achieved an 

overall accuracy of 93.8% in the training phase and 92.6% in the validation phase.  

 

 

Figure 12.  Confusion Matrices for IRI Categories Prediction in (a) the Training and (b) the 

Validation Phases 

5.2 IRI Values Prediction 

A second CNN model was developed to predict the IRI values of newly-constructed flexible 

pavement sections.  The model was developed using 600 pavement images collected from the 

LaDOTD PMS database and 129 pavement images collected from the construction sites.  These 

images were randomly divided into 70%, 15%, and 15% for the training, testing, and validation 

phases, respectively.  The images from the two data sources were used in the three phases to adapt 

the model to accurately respond to both types of pavement images. Figure 13(a) illustrates the 

relation between the measured and predicted IRI values. As shown in this figure, the CNN model 

predicted the IRI value with a coefficient of determination (R2) of 0.99 and a root-mean-square 

error (RMSE) of 3.5%, which was acceptable.  With respect to precision, Figure 13(a) illustrates 

a slope and intercept of 0.9879 and 0.0019 m/km of the unconstrained regression line between the 

measured and predicted values indicating no bias in the model prediction. Furthermore, Figure 

13(b) indicates that the mean absolute error was 3.5% indicating acceptable prediction of the IRI 

values. 
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(a) 

 

(b) 

Figure 13. (a) Relation between the measured and predicted IRI values and (b) Residual errors in 

the CNN predicted IRI values 

5.3 Detection of Segregation 

Aggregate segregation on the pavement surface was predicted using digital image analysis as 

presented in Equation (3). The S-value determined from Equation (3) was used to detect and 

quantify the presence of segregation on the pavement surface. A S-value of zero indicates no 

aggregate segregation, a positive value indicates a coarse aggregate segregation, while a negative 

value indicates a fine aggregate segregation.  By categorizing the S-value for each square on the 

captured image, a colored map was generated based on the calculated S-values for the 4,096 
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squares on the image. A green color, which has a S-value between 0 and 25%, implies very low 

segregation. A yellow color, which has a S-value between 25 and 50%, implies low segregation. 

An orange color, which has a S-value between 50 and 75%, implies moderate segregation.  Finally, 

a red color, which has a S-value between 75 and 100%, indicates severe segregation.  Figure 14 

illustrates two contrasting locations on the pavement surface.  Figure 14(a) had significant coarse 

segregation while Figure 14(b) had low segregation levels on most of the locations.  Visual 

comparison between the digital images and the colored segregation maps presented in Figure 14 

showed good visual agreement. 

 

   

(a) 

   

(b) 

Figure 14. Pavement surface images and their corresponding S-Plots for (a) a Severely Segregated 

Location and (b) a Low Segregated Location 
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5.3.1 Relation between Mix Density and Aggregate Segregation 

Research studies have shown good correlation between aggregate segregation and mix density as 

moderate to severe segregation leads to an increase in air voids and to a decrease in mix density 

(52).  To this end, the relation between the measured mix density using a non-nuclear asphalt 

density gauge, and the predicted segregation based on the S-values was investigated for more than 

25 locations and is presented in Figure 15. As shown in this figure, there was a good correlation 

between the S-value and the measured mix density with a coefficient of determination (R2) of 0.92.  

As the measured mix density decreased, the S-value at this location increased indicating the 

detection of segregation. 

 

 

Figure 15. Relation between Mix Density and Segregation Parameter (S-Value) 

5.4 Development of a Computer Application 

This study developed a Windows-based software application that may be used to predict the 

roughness categories and IRI values based on the fitted and validated CNN models, see Figure 16.  

MATLAB-provides an app-design environment known as MATLAB App Designer, which allows 

to build the user interface and to develop stand-alone Windows-based and MATLAB-based 

applications.  After development, the MATLAB compiler generates an installation file, which can 

be used to install the application without the need for MATLAB on the user’s PC.  To use the 

Windows-based application, the following steps are conducted: 

Step 1: Upload the image.  The Upload Image button allows the user to browse and open the 

digital pavement image on their PC for image processing. 

Step 2: Image processing.  Once the user uploads the image, the application will process the raw 

pavement image as previously illustrated in Figure 10.  This step is conducted automatically 

without any action from the user. 
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Step 3: Results.  The results of the CNN prediction are predicted at the bottom of the windows.  

Two results are presented, which are the roughness categories (Good or Very Good) and the 

predicted IRI values for the conditions pertinent to the uploaded image.   

 

 

Figure 16. CNN application for the prediction of Roughness Categories and IRI value 

 

Figure 17 illustrates an example of the execution of the Windows-based computer application. The 

Pavement Roughness Classification and IRI Prediction CNN Model are directly incorporated into 

the Upload Image push button in the interface. With just one click, the user is able to browse and 

select the target image, and after a few seconds, the program shows the results for roughness 

classification and IRI value. The roughness categories are displayed in terms of Good (G) and 

Very Good (VG), whereas the IRI value can range from 0 to above. 

 



19 

 

(a) 

 

(b) 

 

(c) 

Figure 17. Illustration of the Execution of the Windows-Based Computer Application (a) Upload 

Pavement Image, (b) Processing Image, and (c) Outputs 
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6. SUMMARY AND CONCLUSIONS 

The objective of this study was to develop and validate machine learning models based on 

Convolutional Neural Networks (CNN) and digital image analysis that can be used to classify 

pavement surface into different IRI categories, to predict IRI values, and to detect the presence of 

aggregate segregation on the pavement surface of a newly-constructed road section.  To achieve 

this objective, two CNN models were developed based on the ResNet Architecture. The first model 

predicted the roughness categories (Good or Very Good) from the feature analysis of the pavement 

images.  The second model predicted the roughness values using IRI from the feature analysis of 

the pavement images. These models were trained, tested, and validated using 600-pavement 

surface images extracted from the LaDOTD pavement management system and 129 pavement 

images collected from three construction sites.  These images were randomly divided into 70%, 

15%, and 15% for the training, testing, and validation phases, respectively.  The images from the 

two data sources were used in the three phases to adapt the model to accurately respond to both 

types of pavement images.  

For the development of the segregation model, a segregation parameter (S) was introduced to 

assess the relative distribution of particle aggregate sizes on a grid defined by 4,096 equally-

distributed squares. The calculated S-value was then used to detect and quantify the presence of 

segregation on the pavement surface. A S-value of zero indicates no aggregate segregation, a 

positive value indicates a coarse aggregate segregation, while a negative value indicates a fine 

aggregate segregation.  By categorizing the S-value for each square on a captured image, a colored 

map was generated based on the calculated S-values for the 4,096 squares.  Based on the results 

of the analysis, the following conclusions were drawn: 

• The roughness classification model achieved an overall accuracy of 93.8% in the training 

phase and 92.6% in the validation phase.  

• The IRI prediction model had an acceptable accuracy with a coefficient of determination 

(R2) of 0.99 and a root-mean-square error (RMSE) of 3.5%. 

• Visual comparison between the digital images and the colored segregation maps showed 

good agreement. 

• The developed segregation detection procedure adequately described the relationship 

between mix density and segregation by predicting an increase in S-value with the 

decrease in mix density.    

Based on the results of this study, a computer application was developed for the AI models by 

creating a standalone tool, which would allow the site engineers to use the developed models 

without the need for coding software on their device. Future development of the application may 

allow the users to retrain the adaptive models to ensure up-to-date accuracy. 
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