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EXECUTIVE SUMMARY 

Metal culverts have served as a common structural element in highway design since the mid-1950s 
because of their low initial cost, ease of fabrication, and simple construction method. There has 
been an epidemic of corrosion of metal culverts for the last decade. Such corrosion results in loss 
of cross- section and occasionally leads to structural failure of the culvert. Numerous failures have 
taken place imposing a high cost with the need to rebuild many culverts in addition to significant 
indirect costs associated with highway closure. Glass fiber reinforced polymers (GFRP) have 
become a desirable material for structural strengthening and rehabilitation over the past two 
decades. Prior research supported by TranSET showed that GFRP profile liner can retrofit an 
existing metal culvert and provide structural capacity for the corroded metal culvert to extend its 
service for 50-100 years. New Mexico Department of Transportation (NMDOT) allocated a field 
trial site for experimentation of the technology. A mock road resembling a two-lane rural road 
with an 18-inch backfill above a 25-foot long and 24-inch diameter corroded metal culvert has 
been prepared by NMDOT. Field implementation was executed using 22 in GFRP pipe slip lined 
and grouted to the existing corroded corrugated metal culvert. Load testing was performed to 
ensure the integrity of the retrofitted culvert. This report describes the design process, the field 
experimentation steps, and the retrofitting process. The report also describes the load testing and 
the monitoring of the retrofitted metal pipe using the fit-in GFRP profile liner technology. 
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IMPLEMENTATION STATEMENT 

New Mexico Department of Transportation (NMDOT) allocated a corroded corrugated metal 
culvert in La Mesita Patrol yard in NMDOT Area 6. The corroded corrugated metal culvert was 
made available for field implementation of the GFRP technology. The PI designed and 
implemented the fit-GFRP profile liner to retrofit the corroded metal pipe. Instrumented field 
testing of the retrofitted culvert was performed to ensure proper repair and to observe the post-
repair behavior. The PI firmly believes that the outlined strengthening scheme can be effectively 
implemented in the field for extending the service life of existing metal culverts 75 years post 
repair.
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1. INTRODUCTION 

1.1 RESEARCH NEED AND SIGNIFICANCE 
Metal culverts are flexible long-spanning piped structures that facilitate the smooth conveyance of 
water without disturbing the flow or impacting the ecosystem. Typically, these structures are used 
for storm sewers, underpasses, railway, and highway bridges. Metal culverts are usually 
prefabricated using curved metal plates and connected using a locked seam [1]. Subsequently, the 
piped structures are buried with a backfill for easy transfer of the loads and for providing stability 
to the culvert structure itself. Metal culverts are mostly made of steel and aluminum. Because of 
ease of installation and low cost of fabrication, metal culverts have gained wide acceptance since 
the mid-1950s. Metal culverts have also been fabricated in different desired shapes with constant 
radius circles, ellipse in horizontal or vertical directions, and arched pipe, as shown in Figure 1 
[2]. 

 

FIGURE 1 Different profiles for metal culverts buried in soil [2] 

According to the U.S. Federal Highway Administration (FHWA), a total number of 118,394 
culverts are part of the U.S. bridge inventory [3]. These culverts are constructed either using 
concrete or corrugated steel. However, literature reports that the actual numbers are much higher, 
and several departments of transportation (DOTs) are in the process of inventory investigations to 
assess the real number of existing culverts [4]. It was also reported that there were several defects 
of corroded metal pipe (CMP) observed in the field, such as shape distortion, misalignment, joint 
defects, seam defects, circumferential seams, localized damage and dents, and durability problems 
[5]. Many of these defects can be tied to the corrosion problem of CMP. Corrosion of metal 
culverts has been a considerable challenge as it excessively lowers their life expectancy and 
significantly affects their serviceability [6]. Most of the culvert failures can be attributed to 
corrosion. This is normally caused by the contaminants in the backfill soil and the aggressive 
nature of flowing water along with the soil cover around the culverts [7,8]. Literature shows that 
life expectancy for metal culverts is around 50 years [9]. However, heavy corrosion dropped this 
life expectancy to lower than 30 years, creating significant financial overburden on metal culverts 
[9]. A Transportation Research Board (TRB) report in 2004 indicated that the failure of metal 
culverts had been significantly increasing all over the country, which is a relatively expensive 
event. The high cost attributed to rebuilding failing metal culverts is not only related to material 
and construction costs but also associated with road closures and traffic delays [10]. Therefore, 
retrofitting metal culverts is a viable alternative when compared with metal culvert replacement.  
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1.2 REPORT ORGANIZATION 
This report is subdivided into five chapters. Chapter 1 presents an introduction and objectives. 
Field implementation of GFRP retrofit technique is presented in Chapter 2. Chapter 3 includes 
the findings made during field implementation. Chapter 4 describes the design methodology and 
guidelines for structural design and field implementation. Chapter 5 summarize the conclusions 
of the report.  
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2. OBJECTIVES 

The objective of this research project is to conduct full-scale field implementation and testing of 
the field retrofit of CMP using GFRP slip-lining and provide an implementation guidebook for 
future application. This report provides information on the technical aspects of the above project 
including:  

 Structural design of GFRP liner retrofit for a field corroded metal culvert. 

 Field application of GFRP profile liner to retrofit corroded metal culvert.  

 Monitoring the behavior of the retrofitted CMP-GFRP culvert subjected to traffic 
loads. 
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3. LITERATURE REVIEW 

The four most common techniques for retrofitting metal culverts are slip-lining, cured in place, 
sprayed-on liners, and pipe bursting. Among the presented techniques, as shown in Figure 3, slip-
lining is the most commonly used technique for the comprehensive retrofit of metal culverts. The 
challenge is that when a metal liner is used, it is still prone to corrosion as depicted in Figure 2. 
Materials like PVC pipes and high density polyethelene (HDPE) pipes have gained acceptance as 
slip-lining materials [11]. The literature identifies that HDPE, being a thermoplastic, viscoelastic 
material, has a significantly low long-term strength [4]. Moreover, several reports indicated 
problems with HDPE and PVC pipes when used for new culverts [12,13]. A study investigated 
191 HDPE pipelines in 10 U.S. states and found that the structural health of all the tested culverts 
was well below acceptable service levels [12].  

 

 (a) (b) 

FIGURE 2 Failure of corroded metal culverts [2]. 

 
FIGURE 3 Culvert retrofit using HDPE pipes [2]. 

It is also important to consider the hydraulic capacity of culverts before conducting a retrofit for 
an existing culvert. The pipes currently used for retrofitting, such as HDPE and glass fiber 
reinforced polymer (GFRP) filament wound sections, have a much lower surface roughness 
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coefficient. Surface roughness is typically identified in the form of a Manning’s coefficient. 
Manning’s coefficient of a CMP is 0.022, which is typically the host pipe, and Manning’s 
coefficient for GFRP is as low as 0.009, and for other thermoplastic pipes is in the same order. 
The literature indicates no loss or increased hydraulic capacities can be achieved by using GFRP 
[8]. Several field investigations were conducted to study Manning’s coefficients, and the effect of 
thermoplastic smooth slip-lining materials for retrofit corrugated metal pipes was higher or 
equivalent to the cost of higher diameter pipes [8,14]. 

With improved manufacturing techniques and lower costs, GFRP has emerged as a desirable 
material for structural applications. GFRP is essentially corrosion-free as it has no electrochemical 
effect. This makes GFRP a preferred material over steel for structures serving in harsh 
environmental conditions. Fiber reinforced polymer (FRP) has gained wide acceptance for 
retrofitting existing structures (bridges and buildings) because of ease in installation and the high 
strength-to-weight ratio [15]. Shear and flexural strengthening for structural concrete using FRP 
has become standard practice in today’s market. Design guidelines using FRP in concrete 
structures are detailed by the American Concrete Institute [16]. However, using FRP to retrofit 
metal culverts is relatively new, and very few investigations have been completed. This report 
discusses the use of GFRP as a potential material for retrofit of corroded CMP culverts. The 
method of designing GFRP slip liner pipe for retrofitting a 25 ft corroded metal CMP culvert is 
discussed. A finite element (FE) model is developed to investigate the retrofitted culvert response 
under service conditions including standard traffic loads.  

After designing the GFRP pipe required to retrofit the corroded culvert, the FE model was used to 
investigate the level of strains expected during testing. The corroded culvert was then tested via a 
truckload after burial, then the GFRP pipe was slip-lined and finally tested again with the truckload 
to ensure structural integrity.  
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4. METHODOLOGY 

4.1 STRUCTURAL DESIGN OF GFRP LINER RETROFIT FOR A 
FIELD CORRODED METAL CULVERT 

The GFRP slip liner's design follows AASHTO Load and Resistance Factor Design (LRFD) for 
new culverts [19], discarding any structural contribution from the existing corroded culvert. The 
soil loads are calculated using soil column load and soil arch load techniques. The soil column 
load is the weight of the soil directly above the pipe, calculated as 𝑊 = 𝛾௦. 𝐻. 𝑑, where, H is 
burial depth (ft.), 𝛾௦ is the unit weight of soil (pcf), and 𝑑 (in) is the outside diameter of GFRP 
pipe. The soil arch load 𝑊 (psi) is calculated using the Vertical Arching Factor (VAF). This factor 
reduces the load proportional to the stiffness of the pipe. The soil arch load could be calculated as: 

 𝑊 = 𝑃௦. 𝑉𝐴𝐹                                                                                                                                     (1) 

𝑃௦ = (𝛾௦). (𝐻 + 0.11𝑑)                                                                                                                    (2) 

𝑉𝐴𝐹 = 0.76 − 0.71 ቀ
ௌିଵ.ଵ

ௌାଶ.ଽଶ
ቁ                                                                                                             (3) 

where: 𝜙௦ = Capacity modification factor for soil, 𝑀௦ = Secant constrained soil modulus (psi), R 
= Effective radius of pipe (in.), 𝐴 = Section area (𝑖𝑛.ଶ), 𝐸 = Off-axis modulus of GFRP (psi), and 
𝑆 = Hoop stiffness factor. The design traffic is conducted using the AASHTO HS-25 wheel load 
configuration [19]. The current structural design is based on the direct burial approach based on 
AASHTO LRFD section 12 design criteria [19]. The current design is developed based on four 
critical failure mechanisms, illustrated in Figure 4: wall thrust, wall buckling, deflection, and 
bending strain. Besides the structural design, the hydraulic design should be satisfied as well. The 
values used for this report and given GFRP pipe (thickness of 0.35 in) are an off-axis modulus of 
1088 ksi and tensile strength of 5500 psi. 

 
FIGURE 4 Structural design criteria for culvert pipes 
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4.1.1 Wall Thrust 
The stress in the pipe wall is determined based on the total live load and the dead load acting on 
the pipe. The pipe wall factor thrust demand could be calculated as: 

 𝑇ଵ = 1.3(1.5𝑊 + 1.67. 𝑃 . 𝐶 + 𝑃௪). ቂ
ௗబ

ଶ
ቃ                                                             (4) 

where, 𝑃 is the live load transferred from HS-25 (lbf), 𝐶 is the live load distribution coefficient, 
and 𝑃ௐ is the hydrostatic pressure at the spring line (psi). Based on pipe wall factored resistance, 
the wall area can be decided for the pipe wall. The required GFRP thickness can be calculated as: 

 𝑡ீிோ = భ்

థ. 
                                                                                                                                      (5) 

where, 𝑇ଵ is the calculated wall thrust, 𝜙 is the capacity modification factor for pipe, 𝐹 is the 
tensile strength of GFRP (psi). The GFRP pipe thickness shall be rounded to one quarter of an 
inch.  The values used for this report and given GFRP pipe (thickness of 0.35 in) are with an off-
axis modulus of 1088 ksi and tensile strength of 5500 psi. 

4.1.2 Wall Buckling 
The buckling of the pipe wall is a function of the pipe’s wall properties and the off-axis modulus 
of elasticity of the pipe material. To demonstrate buckling resistance, the pipe wall capacity must 
be greater than the tensile strength of the pipe. If the critical buckling stress is lower than the tensile 
strength of GFRP, then wall thrust shall be recalculated based on buckling resistance. The critical 
buckling resistance for a unit length of the pipe can be calculated as: 

 𝑓 = 9.24.
ோ


. ቈට𝐵. 𝑅௪. 𝜙௦. 𝑀௦. ቂ

ா.ூ

ோయ
ቃ                                                                                          (6) 

where, 𝑀௦ is the secant constrained soil modulus (psi), 𝑅 is the effective radius of pipe (in), 𝐵 is 

the nonuniform stress distribution factor, 𝐼 is the moment of inertia (
.ర

.
), 𝐸 is the off-axis 

modulus (psi), 𝑅௪ is the water buoyancy factor, and 𝜙௦ is the resistance factor for soil stiffness. 

4.1.3 Deflection 
The change in diameter of the pipe under the soil and live loads is considered as pipe deflection. 
The vertical dimension of the pipe is limited to a deflection of 7.5% of the base inside diameter. 
The pipe deflection is a function of the pipe stiffness. The pipe stiffness for the GFRP pipe could 
be estimated as in [17]. The pipe deflection of a unit length of the pipe can be calculated as:  

Δ௬ =
[(భ)(ௐ)ାௐభ]

(.ସଵଽ)൫ௌ൯ା(.ଵ)(ாೄ)
                                                                                                              (7) 

where, 𝐷ଵ is the deflection lag factor, 𝐾 is the bedding factor, 𝑃𝑆 is the pipe stiffness of GFRP 
(psi), 𝑊ଵ is the live load (lbf/in), and 𝐸ௌ is the modulus of soil reaction (psi).  

If corrosion and loss of a section of the existing culverts took place, the soil above the culvert 
might have moved and caused voids/gaps above the culvert, the Engineer shall consider designing 
the GFRP section to accommodate the unbalanced loading associated with voids in the soil. 
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4.1.4 Bending Strains 
AASHTO design method requires that the bending strain shall be evaluated and within the 
permissible strain limits of the GFRP pipe section. The deflection of a unit length of the due to 
bending (Δ) can be evaluated as: 

 Δ = Δ . 𝐷 − ൬ భ்

ாఊ
൰                                                                                                                (8) 

Where, Δ is the deflection of pipe (in), construction induced deflection, limit 5%, 𝐷 is the mean 
pipe diameter (in.), 𝛾 is the load factor for vertical earth pressure, 𝐸 is the off-axis modulus (psi). 
The factored bending strain could be calculated as: 

 𝜀௨ = 𝛾. 𝐷 ቀ


ோ
ቁ ቀ




ቁ                                                                                                                 (9) 

where, 𝐷  is the shape factor, 𝛾 is the load factor for combined strain, 𝑅 is the effective radius of 
pipe (in), 𝐷 is the mean pipe diameter (in), and 𝐶 is the distance from the inside diameter to the 
neutral axis (in). The off-axis modulus shall be provided by the manufacturer. Standard GFRP pipe 
design values for thicknesses up to 1.00 in are with an off-axis modulus of 1088 ksi and tensile 
strength of 5500 psi. Alternatively, the designer might obtain specific values for the off-axis 
modulus and the tensile strength from the GFRP manufacturer. 

4.1.5 Hydraulic Design 
It is crucial to consider the hydraulic capacity of culverts before conducting a retrofit for the 
existing culvert. The reduction in hydraulic radius is a common phenomenon of slip lining a 
culvert. However, the pipes currently used for retrofitting, such as HDPE and GFRP filament 
wound sections, have a much lower surface roughness coefficient. This is typically identified in 
the form of a Manning’s coefficient. The hydraulic capacity of the pipe is calculated based on 
Manning’s equation for gravity pipe flow as: 

 𝑄௦ = ቂ
ଵ.ସଽ

ೞ
. 𝐴௦. 𝑅௦

మ

య√𝑆ቃ                                                                                                                  (11) 

where, 𝑄௦ is the hydraulic flow in (cfs), 𝑛௦ is Manning’s roughness coefficient, 𝑅௦ is the hydraulic 
radius and S is the slope. Manning’s coefficient for the corrugated metal pipe is 0.024, and for the 
GFRP pipe is 0.00914.  

GFRP has shown an excellent abrasion behavior and wear resistance [20]. GFRP used for water 
tanks with stringent leakage performance demands have shown a minimum life expectancy of 30 
years. Expected service life of the GFRP retrofit is 50-75 years. 
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4.2 FIELD APPLICATION OF GFRP PROFILE LINER TO RETROFIT 
CORRODED METAL CULVERT 

The design method was applied for future implementation on a steel CMP of 25 ft, shown in 
Figure 5. The steel pipe had a nominal diameter of 24 in, and an average corroded thickness of 
0.05 in. The retrofitted pipe will be buried under 18 in of soil, with a slope of 0.001. A grout 
thickness of 1.5 inches was assumed, resulting in a GFRP outside diameter of 21 in. The culvert 
was provided by NMDOT in La Mesita Patrol Yard.  

 
FIGURE 5 Corroded metal steel pipe 

The design process is iterative in nature to find the optimal GFRP thickness to satisfy all design 
requirements. For a GFRP thickness of 0.35 in, with an off-axis modulus of 1088 ksi and tensile 
strength of 5500 psi:  

1) Pipe thrust was found to be 𝑇ଵ = 535.7 lb/in, with a factor of safety of 3.6 against chosen 
thickness,  

2) The critical buckling resistance was found to be 𝑓 = 6.1 ksi, with a factor of safety of 1.1 
against tensile strength,  

3) The deflection Δ௬ = 0.7in, with a factor of safety of 2.3 against the deflection limit,  

4) The maximum bending strain 0.5%, with a factor of safety of 1.2 against the ultimate GFRP 
strain, and  

5) Hydraulic capacity of 6.53 cfs, which is larger than the original hydraulic capacity of CMP pipe 
of 3.89 cfs.  
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4.3 NUMERICAL MODELING 
Two FE models of the CMP and CMP-GFRP composite section were developed using ABAQUS 
simulation environment. Both models aim to estimate the strains in the CMP and CMP-GFRP 
under service loading conditions. The models were developed making use of the 3D geometry in 
ABAQUS. Since CMP would be buried in a semi-infinite soil space, and the load redistribution is 
expected to take place over cover depth, the models were constructed with a soil volume extending 
8 times the soil cover in all directions of the pipe, as shown in Figure 6. The soil modulus was 
assumed to be 13 ksi. The element used to represent the soil was a 3D solid element. The CMP 
was modeled using a shell element with a thickness of 0.05. Since the pipe is corrugated, a reduced 
elastic modulus of  8000 ksi was assumed to account for additional deformation [2,17]. Poisson’s 
ratio was assumed to be 0.26. The CMP elements were constrained via an embedment constraint 
to the soil elements adjacent to them. The grout was modeled using 3D solid elements, with a 
thickness of 1.5 in, and isotropic material with a modulus of elasticity of 3625 ksi. The GFRP pipe 
is also modeled as a 3D solid element with a thickness of 0.35 in. The material used for GFRP was 
modeled using a composite layup toolbox in ABAQUS. The composite layup was been carried out 
in 10 layers with a repeated inner layup of +45° and -45°, in between outer layers of 0°.  

The material properties for the GFRP pipe section were defined based on the orthotropic elastic 
properties based [2]. Service loads were applied as two wheels, 16 kips each representing HS-20 
truck. Each wheel was presented by a ramping pressure of 80 psi over an area of 20 in x 10 in, 
placed 3 ft from the center of the pipe, as shown in Figure 6. It was expected that at this service 
load, all materials will exhibit elastic response [18]. Finally, tie constraints were implemented 
between GFRP-grout-CMP, assuming a perfect bond between them. Since the model was only 
subjected to service loading conditions, elasticity was assumed for all materials involved.  

 

(a)                                                   (b)                                                     (c) 
FIGURE 6 Finite element model of the GFRP slip-liner (a) and illustrative sections (b and c). 

Figure 7 shows the strain results of the CMP model. As expected from the literature, the dominate 
response could be observed in a high level of tangential strains under wheel positions. It is also 
important to note that, because of the flexibility of the culvert, longitudinal strains were also 
present, reflecting a flexural-like response for the culvert. Figure 8 shows the strain results in the 
GFRP pipe of the CMP-GFRP model. It can be observed that the magnitude of strains in this model 
is lower than the previous model, due to the reinforcement and composite action via adding the 
GFRP pipe. Similar to the previous model, the tangential strains were higher than longitudinal 
strains.  
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(a) 

 
(b) 

FIGURE 7 Steel strain for CMP model. (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

 

FIGURE 8 GFRP strains for CMP-GFRP model. (a) tangential strains. (b) longitudinal strains. 
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4.4 FIELD IMPLEMENTATION GUIDELINES OF GFRP LINER 
RETROFIT FOR A FIELD CORRODED METAL CULVERT 

Once the structural design has been performed, a new pipe that is smaller in diameter than the host 
pipe is slid inside the existing host pipe. The annular space between the host pipe and the slip liner 
will then be filled using a polymer-based grout material. Once the grout material is cured, the 
culvert is ready for service. Essentially any pipe material can be used as the slip liner. This 
document is focused on using GFRP pipes. CMPs are the prominent materials used for the slip-
lining technique. Below are the outlined steps for the slip-lining process: 

 Inspect the culvert for any diameter changes along the length of the culvert, connections, 
protrusions, and sediments. This step is critical to ensure that the slip lining GFRP pipe 
will fit inside the host pipe. The presence of sediments can potentially affect the bond 
between the host pipe and the GFRP slip lining pipe. 

 Prior to starting the work, the engineer and the contractor shall review the 2014 Edition of 
the New Mexico Department of Transportation Standard Specifications for Highway and 
Bridge Construction and the 2017 Special Provision for Section 570-B: Culvert Slip 
Lining. 

 Determine the diameter of the GFRP slip line pipe. Based on the field implementation, it 
is recommended to use a 2-inch minimum annular space. This means a 4-inch total 
difference in diameter between the GFRP pipe and the existing culvert shall be used. This 
spacing should account for protrusions in the hosting pipe.  

 If corrosion and loss of a section of the existing culverts took place, the soil above the 
culvert might have moved and caused voids/gaps above the culvert. the Engineer shall 
consider designing the GFRP section to accommodate the unbalanced loading associated 
with voids in the soil. 

 For long culverts (longer than 10 ft.), the GFRP slip lining pipe shall be divided into 
segments. Each of these segments shall not exceed 10 ft. The segments must be connected 
with polymer-based material as specified by the manufacturer. This step might be done 
prior to the slip lining process. For very long stretches, the segments could be joined as slip 
lining proceeds. The contractor needs to inspect the connected GFRP pipe to ensure proper 
sealing takes place.  

 Approval of the GFRP materials by EPA might be necessary if running water is to pass 
through this GFRP retrofit. 

 Clean the host culvert to clear out any sediments present.  
 Control the water passage by setting up a flow bypass where necessary. 
 Any necessary repairs for the existing culvert must be conducted prior to slip lining. Such 

repairs include embankment repairs, identifying and filling the voids. 
 Construct a guide path to ensure the location and facilitate the slip-lining of the GFRP pipe 

into the host pipe. 
 Based on the total length of the GFRP pipe, it might be necessary to use a forklift to 

transport and align the GFRP pipe at the entrance of the culvert.  
 A thin wood plate might be needed to exert uniform pressure at the GFRP pipe end to allow 

its slip lining into the culvert. Hydraulic equipment might also be used to exert this 
pressure. The above condition will only be needed if a tight annular space is developed. 
Providing a 2-inch annular spacing between the GFRP pipe and the existing culvert, as 
pointed out above, shall avoid the need for exerting pressure to slip line the GFRP pipe.  
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 Spacers at the top might be needed to prevent the GFRP pipe from moving upward due to 
the buoyancy of fresh concrete. The contractor will need to address the issue of buoyancy, 
and to making sure, the GFRP pipe is aligned. 

 Install the continuous slip liner into the host pipe. Rigorous alignment of the GFRP slip 
lining pipe must be performed prior to the placement inside the host culvert. It is possible 
to connect the joints while sliding the GFRP inside the existing culvert. The contractor 
needs to inspect the connected GFRP pipe to ensure proper sealing takes place. 

 A 24-hour relaxation period is recommended upon completion of slip-lining, followed by 
inspection for any leakages or other tests where necessary. 

 Stabilize end injection and purging pipes for the grout and fill the annular space with a 
polymer grout material and allow it to cure.  

 The polymer grout shall incorporate aggregate to reduce shrinkage. Sand with a nominal 
maximum size of 5 mm (# 4) must be used as a filler. 

 If a relatively thin annular space (less than 1/2 inch) is to be filled, a polymer grout without 
a filler might be used.  

 Restore the flow and perform site cleanup as necessary.



  
 

15 

5. ANALYSIS AND FINDINGS 

5.1 FIELD APPLICATION OF GFRP PROFILE LINER TO RETROFIT 
CORRODED METAL CULVERT 

Coordination with NMDOT department personal followed the proposed plan. The final project 
plan is shown in Figure 9. First, the corroded metal pipe was instrumented on May 20th, 2021. 
Following that, the corroded metal pipe was buried prior to load testing. The testing was performed 
on May 28th, 2021. The GFRP pipe was moved to the site, instrumented, and connected on July 
7th, 2021. The GFRP piper was slipped in the corroded metal culvert on July 13th, 2021. The 
polymer was pumped in between the two pipes to ensure structure integrity on July 14th, 2021. 
Finally, the retrofitted pipe was tested on July 21st, 2021. In the following sections, each of the 
tasks are explained in detail. 

 
FIGURE 9 Final Testing Plan 

5.2 INSTALL GFRP PIPE AND INSTRUMENTATION SENSORS 

5.2.1 Corroded Metal Culvert Instrumentation 
The corroded metal culvert was planned to be instrumented via strain rosettes, to measure both 
longitudinal and tangential strains, at three different locations. The locations of interest are at the 
center of the pipe and 6 ft from each side, aligning with the positions of the truck wheels, during 
load testing. At each of the locations, as shown in Figure 10, 3 strain rosettes are placed at the 
section top, bottom, and side, to evaluate the strain profile during loading. 

 
                                                 (a)                                                                                                (b) 

FIGURE 10 Schematic of the corroded metal pipe instrumentation. (a) longitudinal view. (b) transversal view 

Upon arrival to the NMDOT La Masita Yard, the corroded metal culvert was moved to a a shed to 
install the strain gauge sensors, as shown in Figures 11 and 12. The culvert pipe was cleaned from 
dust and rust and was ground at the planned sensor locations. The sensors were soldered on the 
cleaned surface. After all sensors were placed, the pipe was buried under 18 in of soil before load 
testing.  
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FIGURE 11 Corroded metal pipe before and after instrumentation 

 
FIGURE 12 Instrumentation of corroded metal pipe 
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5.2.3 Corroded Metal Culvert Load Testing 
After the corroded corrugated metal pipe was buried at a depth of 18 inches, as shown in Figure 13, 
load testing was performed. Before testing, the truck was weighed on a weighing scale, as shown 
in Figures 14 and 15. First, an empty truck with a total weight of 25.75 kips traveled over the 
center of the culvert, with the wheels aligned with the exterior sensor arrays. The truck was then 
filled with sand, to a total weight of 48.55 kips, and traveled on the same path over the culvert. 
Finally, the loaded truck traveled near one of the ends of the culvert, with the interior wheels of 
the truck aligned with the exterior array of sensors. The breakdown of each wheel load is presented 
in Figure 16. 

 
FIGURE 13 Buried corroded metal pipe 

 

 (a) (b) 

FIGURE 14 Weighing scale used to weight the test truck before and after filling it with sand. (a) scale installation. (b) scale 
after being wired. 
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(b) 

(a) (c) 
FIGURE 15 Corroded corrugated metal culvert buried (a), load testing (b) truck getting filled with sand, (c) truck passing 
over culvert. 

Figure 17 shows a sample of longitudinal and tangential strains for each load case. The arrival of 
the first and second axels of the truck could be observed in the spike and dilation of the measured 
strains. The results show the sustainability of the CMP to vibrations due to truck loading, as present 
in the signal noise. Also, the loaded truck case has higher strains than the unloaded case, 
specifically near the top of the corroded metal culvert. Finally, the loaded culvert observed 
significant strains in both longitudinal and tangential directions, not only in the tangential 
direction. This might be attributed to the fact that the culvert was buried at a relatively close 
distance of 18 inches from the surface. The full data from this testing is presented in Appendix A, 
Figures A-1 to A-24. The strains measured were consistent with the range of strains predicted by 
the FE model, which were in the order of 50-100 microstrains.  
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(a) (b) 

  
(c) (d) 

 

FIGURE 16 Load testing cases for corroded corrugated metal culvert buried at 18 inch depth. (a) Case I-center. Empty 
truck. (b) Case II-center. Loaded truck. (c) Case I-right side. Empty truck. (d) Case II-right side. Loaded truck. 
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(a)                                                               (b) 
FIGURE 17 Corroded metal culvert loading test sample data. Strains represented in microstrains (1 me = 10-6 e). (a) Case 
I. Empty truck. (b) Case II. Loaded truck. 

5.2.4 GFRP Pipe Instrumentation 
The manufactured GFRP pipe had an outer diameter of 20.125 in, and thickness of 0.5625 in, a 
little exceeding the required design criteria. The main reason for accepting this pipe was the 
reduced cost of manufacturing a pipe with this diameter since a smaller diameter pipe would have 
required a special mold. The GFRP pipe was delivered to the UNM team in 3 segments, each was 
8 ft long, as shown in Figure 17. The middle segment was instrumented in the UNM structural 
laboratory, prior to moving to the NMDOT yard. Strain gauges were installed in the same locations 
indicated above for strain gauges installed on the corroded metal pipe. 

Upon arrival at the NMDOT yard, the GFRP pipe pieces were moved to a shed to install the joints 
using polymer composite compatible with the GFRP material. The pipe was left for 24 hours to 
cure. As shown in Figure 18, after the joints cured and hardened, the wires of all sensors were 
secured and extended to the ends of the GFRP pipe, before the GFRP pipe was transported with a 
forklift to be installed for the slip-lining process. 
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(a) (b) 

 
(c) 

FIGURE 18 GFRP pipe (a)-(b): Transportation of 3 GFRP sections to NMDOT yard (c) instrumentation and connecting 
the GFRP pipe segments.  

 
(a) 

 
(b) 

FIGURE 19 (a) Final instrumented and connected GFRP Pipe Before Slip-Lining. (b) Transporting integrated GFRP pipe 
to slip-lining location. 
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5.2.5 GFRP Pipe Slip-Lining 
The instrumented and integrated GFRP pipe was transported using a forklift to the location of slip-
lining, as shown in Figure 19. It was then carefully aligned and placed in an extended trench 
created ahead at the culvert front, such that it could be aligned with the buried corrugated metal 
pipe.  

(a) 

(b) 
FIGURE 20 (a) Transporting GFRP pipe to slip-lining location (b) aligning and placing the GFRP pipe at slip-lining 
location. 

Due to the small tolerance of the GFRP diameter and the corrugated metal culvert diameter, the 
GFRP pipe was driven by an excavator’s small bucket to slide inside the metal pipe. After the 
GFRP pipe was placed fully inside the corroded corrugated metal pipe, the ends were sealed with 
an expansive foaming agent, in preparation for grout pumping then load testing, Figure 20. After 
placement of the GFRP pipe, the sensor alignment was as shown in Figure 21. 
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(a) (b) (c) 

  
(d) (e) 

FIGURE 21 (a)-(c) Slip-Lining Process driving the GFRP pipe inside the corrugated metal culvert. (d)-(e) GFRP pipe 
completely slid inside the corrugated metal culvert and application of the closure foam prior to grouting of the annular 
space.  

 

(a)                                                               (b) 
FIGURE 22 Schematic of the GFRP pipe instrumentation. Longitudinal (a) and transversal (b) view. 

Typically, fine aggregate is mixed with the polymer to reduce shrinkage of the grout. Due to the 
relatively small annular space, it was decided to grout the annular space between the GFRP pipe 
and the corrugated metal pipe using the polymer only. The polyester-based polymer was mixed 
and injected using a grout pump, as shown in Figure 22. Pumping was initiated at an opening 
created at the top of the metal pipe at mid span and continued until the polymer overflowed from 
both ends of the culvert. Overflow was allowed to take place for a few minutes to ensure all the 
annular space was filled with the polymer. Thin rods were inserted in the annular space at different 
heights and ensured all the annular space was filled with the polymer.  
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(a) (b) (c) 

 
(d) 

FIGURE 23 Mixing and pumping polymer in the annular space using an opening at the middle of the span. (a) perforation 
to inject polymer. (b) polymer mixing. (c) polymer pumping. (d) polymer injection. 

5.2.6 Retrofitted Culvert Load Testing 
The retrofitted corroded corrugated metal culvert was left to cure for a week before load testing 
was performed. Before testing, the truck was weighed on a weighing scale similar to that shown 
in Figure 13. First, an empty truck with a total weight of 26.1 kips traveled twice over the center 
of the culvert, with the wheels aligned with the exterior sensor arrays. Then, the truck was filled 
with sand, to a total weight of 57.05 kips, and traveled on the same path over the culvert. After 
that, the loaded truck traveled near one of the ends of the culvert, with the interior wheels of the 
truck aligned with the exterior array of sensors. Finally, the loaded truck traveled near the other 
end of the culvert, with the interior wheels of the truck aligned with the exterior array of sensors. 
The breakdown of each wheel load and travel paths are presented in Figure 23. 

Figure 24 shows sample of both longitudinal and tangential strains for each load case. The arrival 
of the first and second axels of the truck could be observed in the spike and dilation of the measured 
strains. Since the retrofitted culvert has a much higher stiffness than the corrugated metal pipe 
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alone, the impact of vibration was not observed as significant in the case of the retrofitted pipe 
compared with the bar corrugated metal pipe. Moreover, the loaded truck case has significantly 
higher strains than the unloaded case, specifically near the top of the retrofitting GFRP pipe. 
Finally, the loaded culvert did not observe any significant strains in tangential directions. This 
might be attributed to the composite action between the GFRP and the corrugated metal pipe. The 
full data from this testing is presented in Appendix A, Figures A-10 to A-24. The strains measured 
were consistent with the range of strains predicted by the FE model, which were in the order of 50 
microstrains, also lower than the strains of the corroded culvert case.  
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 
FIGURE 24 Load testing cases for GFRP retrofitting pipe culvert buried at 18 inch depth. (a) Case I-center. Empty truck. 
(b) Case II-center. Loaded truck. (c) Case I-right side. Empty truck. (d) Case II-right side. Loaded truck. (e) Case I-left 
side. Empty truck. (f) Case II-left side. Loaded truck. 
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(a) (b) 

FIGURE 25 Retrofitted culvert loading test GFRP sample data. (a) Case I. Empty truck. (b) Case II. Loaded truck. 
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6. CONCLUSIONS 

A retrofit design method of corroded corrugated metal pipes using GFRP slip liner was introduced, 
designed and field implemented. The GFRP slip liner was bonded to CMP using a polymer grout. 
The design method considered both structural and hydraulic design requirements including wall 
thrust, buckling, deflection, and bending requirements. The proposed method was used to design 
a GFRP slip liner to retrofit a 25 ft long and 24 in diameter corroded corrugated metal pipe, with 
an average thickness of 0.05 in. The corroded corrugated metal pipe was buried under 18 in of soil. 
With a 1.5 in grout thickness, the design thickness of GFRP thickness was found to be 0.35 in. The 
manufactured GFRP pipe was instrumented and slip lined. The GFRP pipe was bonded to the 
corroded corrugated metal pipe using polyester-based polymer. The corroded corrugated metal 
pipe culvert was tested before and after the retrofitting process via truckload. Testing proved that 
the GFRP slip liner bonded with the corroded corrugated metal pipe, improving its stiffness, and 
resisting the loads as a composite section. Testing proved that the proposed method achieves a 
structural integrity necessary to retrofit the corroded corrugated metal pipe and extend its service 
life.  
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APPENDIX A: CORRODED CULVERT LOADING DATA 

 

 
(a) 

 
(b) 

FIGURE 26 Corroded culvert top strains of the empty truck running at center. Strains represented in microstrains (1 me 
= 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 27 Corroded culvert side strains of the empty truck running at center. Strains represented in microstrains (1 me 
= 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 28 Corroded culvert bottom strains of the empty truck running at center. Strains represented in microstrains (1 
me = 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 29 Corroded culvert top strains of the loaded truck running at center. Strains represented in microstrains (1 me 
= 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 30 Corroded culvert side strains of the loaded truck running at center. Strains represented in microstrains (1 me 
= 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 31 Corroded culvert bottom strains of the loaded truck running at center. Strains represented in microstrains (1 
me = 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 32 Corroded culvert top strains of the loaded truck running at right. Strains represented in microstrains (1 me = 
10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 33 Corroded culvert side strains of the loaded truck running at right. Strains represented in microstrains (1 me 
= 10-6 e). (a) tangential strains. (b) longitudinal strains. 

 
 



  
 

39 

 
(a) 

 
(b) 

FIGURE 34 Corroded culvert bottom strains of the loaded truck running at right. Strains represented in microstrains (1 

me = 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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APPENDIX B: RETROFITTED CULVERT LOADING DATA 

 
 

 
(a) 

 
(b) 

FIGURE 35 GFRP top strains of the empty truck running at center (Travel 1). Strains represented in microstrains (1 me = 
10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 36 GFRP left side strains of the empty truck running at center (Travel 1). Strains represented in microstrains (1 
me = 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 37 GFRP right side strains of the empty truck running at center (Travel 1). Strains represented in microstrains 
(1 me = 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 38 GFRP top strains of the empty truck running at center (Travel 2). Strains represented in microstrains (1 me = 
10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 39 GFRP left side strains of the empty truck running at center (Travel 2). Strains represented in microstrains (1 
me = 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 40 GFRP right side strains of the empty truck running at center (Travel 2). Strains represented in microstrains 
(1 me = 10-6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 41 GFRP top strains of the loaded truck running at center. Strains represented in microstrains (1 me = 10-6 e). 
(a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 42 GFRP left side strains of the loaded truck running at center. Strains represented in microstrains (1 me = 10-6 
e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 43 GFRP right side strains of the loaded truck running at center. Strains represented in microstrains (1 me = 10-
6 e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 44 GFRP top strains of the loaded truck running at right. Strains represented in microstrains (1 me = 10-6 e). (a) 
tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 45 GFRP left side strains of the loaded truck running at right. Strains represented in microstrains (1 me = 10-6 
e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 46 GFRP right side strains of the loaded truck running at right. Strains represented in microstrains (1 me = 10-6 
e). (a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 47 GFRP top strains of the loaded truck running at left. Strains represented in microstrains (1 me = 10-6 e). (a) 

tangential strains. (b) longitudinal strains. 

 
 



  
 

53 

 
(a) 

 
(b) 

FIGURE 48 GFRP left side strains of the loaded truck running at left. Strains represented in microstrains (1 me = 10-6 e). 
(a) tangential strains. (b) longitudinal strains. 
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(a) 

 
(b) 

FIGURE 49 GFRP right side strains of the loaded truck running at left. Strains represented in microstrains (1 me = 10-6 
e). (a) tangential strains. (b) longitudinal strains. 
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