
 

 

 
 

An Innovative Thermo-Electric Energy 
Harvesting Module for Asphalt Roadway 

 
Project No. 20PUTSA42 

Lead University: University of Texas at San Antonio 

 

Final Report 

October 2021 



i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts 

and the accuracy of the information presented herein. This document is disseminated in the 

interest of information exchange. The report is funded, partially or entirely, by a grant from the 

U.S. Department of Transportation’s University Transportation Centers Program. However, 

the U.S. Government assumes no liability for the contents or use thereof. 

Acknowledgments 

This project was conducted in cooperation with the City of San Antonio Transportation and 

Capital Improvements (TCI) division. The authors would like to cordially thank the following 

TCI employees who provided guidance or assistance during the project, assisted with data 

collection, and offered helpful suggestions: Rebecca Pacini, Gregory Reininger, Trish 

Wallace, Bianca Thorpe, Jillian Harris, and Arthur Reinhardt. 

Christine Yager (lab study, closed-course study), associate transportation researcher. Dan 

Walker (closed-course study), assistant research specialist. 

 



ii 

 

TECHNICAL DOCUMENTATION PAGE 

1. Project No. 

20PUTSA42 

2. Government Accession No. 

 

3. Recipient’s Catalog No. 

 

4. Title and Subtitle 

An Innovative Thermo-Energy Harvesting Module for Asphalt 

Roadway Pavement 

5. Report Date 

Oct. 2021 

6. Performing Organization Code 

 

7. Author(s) 

Seyed Amid Tahami https://orcid.org/0000-0003-2100-8805    

Samer Dessouky https://orcid.org/0000-0002-6799-6805  

8. Performing Organization Report 

No. 

 

9. Performing Organization Name and Address 

Transportation Consortium of South-Central States (Tran-SET) 

University Transportation Center for Region 6 

3319 Patrick F. Taylor Hall, Louisiana State University, Baton 

Rouge, LA 70803 

10. Work Unit No. (TRAIS) 

 

11. Contract or Grant No. 

69A3551747106 

12. Sponsoring Agency Name and Address 

United States of America 

Department of Transportation 

Research and Innovative Technology Administration 

13. Type of Report and Period 

Covered 

Final Research Report  

Sep. 2020 – Aug. 2021 

14. Sponsoring Agency Code 

 

15. Supplementary Notes 

Report uploaded and accessible at: http://transet.lsu.edu/  

16. Abstract 

The importance of green technologies for generating renewable energy and sustainable development is 

widely accepted. Road surfaces are exposed to solar radiation that generates thermal gradients and heat flow 

in the pavement layers. The heat stored can be harvested providing an untapped source of renewable energy. 

This report presents the design, construction, and assessment of an improved thermoelectric energy 

prototype for harvesting heat energy from roadway pavements. To accomplish this, various prototype 

designs were simulated using Finite Element (FE) analysis, followed by design construction and laboratory 

testing of the most promising prototypes to evaluate their power harvesting capabilities. The main design 

components of these prototypes are a heat collector/transfer plate, thermoelectric generators (TEG), and a 

cooling module consisting of a heat sink, phase change material, and an insulation box. The results suggest a 

direct relationship between thermal gradients and power generation and point out the importance of the 

cooling module in maintaining the efficiency of the harvester.  An optimum harvester design would generate 

an average power output of 29 mWatt or 835 J over 8 hours per day in South Texas.  Extrapolating this 

output for an installation that covers a length of 1 kilometer of a roadway could produce an average of 23.2 

kWh/day, which appears to be a promising independent source of power for roadside signage and sensors. 

17. Key Words 

Energy Harvesting, Thermoelectric, Pavement 

18. Distribution Statement 

No restrictions. 

19. Security Classif. (of this 

report) 

Unclassified 

20. Security Classif. (of this page) 

Unclassified 

21. No. of 

Pages 

44 

22. Price 

Form DOT F 1700.7 (8-72)        Reproduction of completed page 

authorized.

https://orcid.org/0000-0003-2100-8805
https://orcid.org/0000-0002-6799-6805
http://transet.lsu.edu/


iii 

 

 
  

SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 

LENGTH 
in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in

2
square inches 645.2 square millimeters mm

2

ft
2 

square feet 0.093 square meters m
2

yd
2 

square yard 0.836 square meters m
2

ac acres 0.405 hectares ha 
mi

2
square miles 2.59 square kilometers km

2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 
ft

3 
cubic feet 0.028 cubic meters m

3 

yd
3 

cubic yards 0.765 cubic meters m
3 

NOTE: volumes greater than 1000 L shall be shown in m
3

MASS 
oz ounces 28.35 grams g

lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
o
F Fahrenheit 5 (F-32)/9 Celsius 

o
C 

or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m

2 
cd/m

2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in

2
poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 

Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 

km kilometers 0.621 miles mi 

AREA 
mm

2
 square millimeters 0.0016 square inches in

2 

m
2
 square meters 10.764 square feet ft

2 

m
2
 square meters 1.195 square yards yd

2 

ha hectares 2.47 acres ac 
km

2 
square kilometers 0.386 square miles mi

2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 
m

3 
cubic meters 35.314 cubic feet ft

3 

m
3 

cubic meters 1.307 cubic yards yd
3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
o
C Celsius 1.8C+32 Fahrenheit 

o
F 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m

2
candela/m

2
0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 

kPa kilopascals 0.145 poundforce per square inch lbf/in
2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e

(Revised March 2003) 



iv 

 

TABLE OF CONTENTS 

TECHNICAL DOCUMENTATION PAGE .................................................................................. ii 

TABLE OF CONTENTS ............................................................................................................... iv 

LIST OF FIGURES ....................................................................................................................... vi 

LIST OF TABLES ....................................................................................................................... viii 

ACRONYMS, ABBREVIATIONS, AND SYMBOLS ................................................................ ix 

EXECUTIVE SUMMARY ............................................................................................................ x 

1. INTRODUCTION ...................................................................................................................... 1 

2. OBJECTIVES ............................................................................................................................. 2 

3. LITERATURE REVIEW ........................................................................................................... 3 

3.1. Introduction .......................................................................................................................... 3 

3.1.1. Existing Energy Harvesting Technologies .................................................................... 4 

3.1.2. Asphalt Solar Collector Combined with Piping System ............................................... 6 

3.1.3. Sound Barrier PV Panels .............................................................................................. 8 

3.1.4. Solar Roadways .......................................................................................................... 10 

3.1.5. Piezoelectric Energy Harvester Systems .................................................................... 13 

3.1.6. Thermoelectric Energy Harvesting ............................................................................. 13 

4. METHODOLOGY ................................................................................................................... 16 

4.1. Introduction ........................................................................................................................ 16 

4.2. Objective ............................................................................................................................ 16 

4.3. Theoretical Background ..................................................................................................... 16 

4.4. Design Concept and Fabrication ........................................................................................ 17 

4.5. Finite Element Analysis ..................................................................................................... 20 

4.6. Field Testing, Results and Discussion ............................................................................... 24 

5. ANALYSIS AND FINDINGS ................................................................................................. 27 

5.1. Description of Prototype .................................................................................................... 27 

5.2. Experimental Setup ............................................................................................................ 28 

5.3. Thermoelectric Theory ....................................................................................................... 30 

5.4. Finite Element Analysis ..................................................................................................... 31 



v 

 

5.5. Laboratory Test Results ..................................................................................................... 34 

6. CONCLUSION ......................................................................................................................... 39 

6.1. Economic Analysis ............................................................................................................ 40 

REFERENCES ............................................................................................................................. 41 

 

 

  



vi 

 

LIST OF FIGURES 

Figure 1. Lane Miles, Population, and VMT Percent Change over 50 Years (TxDOT, 2016) ...... 3 

Figure 2. The increase rate of U.S. Sales of Plug-in Vehicles over a period of three Years 

(HybridCARS, 2016) ...................................................................................................................... 4 

Figure 3. Power Density of Various Energy Harvesting Methods (Voigt et al. 2003) ................... 5 

Figure 4. Asphalt solar collector system under construction on a bridge in Rotterdam (De Bondt 

2003) ............................................................................................................................................... 6 

Figure 5. Variation of surface condition on a heated pavement slab during the snow melting 

process (Liu et al. 2007).................................................................................................................. 7 

Figure 6. Experimental system developed by Gao et al. (2010). .................................................... 7 

Figure 7. Concept of harvesting energy from pavements and reducing pavement temperature, 

(Mallick et al. 2009) ........................................................................................................................ 8 

Figure 8. Various PV Noise Barriers Configurations (Nordmann et al. 2000) ............................... 9 

Figure 9.  Photovoltaic noise barrier along the A13 highway in Switzerland (Nordmann and 

Clavadetscher 2004)...................................................................................................................... 10 

Figure 10. Solar panel modular (Solar Roadways 2016) .............................................................. 11 

Figure 11. Solar bike lane in the Netherland (SolaRoad 2016). ................................................... 11 

Figure 12. The prototype and pattern of In-situ Energy Harvester Placement (Xiong et al. 2014)

....................................................................................................................................................... 13 

Figure 13. The thermoelectric energy harvesting prototype: (a) schematic of prototype; (b) 

description of components. ........................................................................................................... 17 

Figure 14. Heat collector plate with Thermoelectric Generator. .................................................. 18 

Figure 15. Coolant module: (a) Heat sink; (b) Process of phase changing of PCM (Fernandes et 

al. 2014); (c) Used microencapsulated PCM. ............................................................................... 19 

Figure 16. Insulation box .............................................................................................................. 19 

Figure 17. Measured temperature profile (three depths) for five days in San Antonio, TX. ........ 20 

Figure 18. FE analyses of Z-shape and L-shape models. ............................................................. 22 

Figure 19. FE analyses results of three different widths models. ................................................. 23 

Figure 20. Field installation and data collection. .......................................................................... 25 

Figure 21. Temperature profile at four depths. ............................................................................. 26 

Figure 22. Output power and Temperature Gradient versus Time from Field Tests. ................... 26 

Figure 23. Components of prototype ............................................................................................ 28 



vii 

 

Figure 24. (a) TEG roadway harvester embedded in the road pavement, (b) prototypes with 

TEGs on one side, (c) prototype with 4 TEGs (2 per side) ........................................................... 29 

Figure 25. Measured temperatures at three depths over five days. ............................................... 32 

Figure 26. Different FE models: (a) 1 TEG, (b) 2 TEGs, (c) 3 TEGs, (d) 4 TEGs (one side), (e) 4 

TEGs (two TEGs per side); (f) thermal distribution of prototype, (g) thermal distribution of 

coolant system ............................................................................................................................... 32 

Figure 27. Different FE simulations: (a) 1 TEG model, (b) 2 TEG model, (c) 3 TEG model, (d) 4 

TEG in one side model. (e) 4 TEG (two per side) model. ............................................................ 34 

Figure 28. (a) Electrical output from different TEG energy harvesters under (a) 65˚C, (b) 55˚C, 

45˚C; temperature profile at different spots under (d) 65˚C, (e) 55˚C, (f) 45˚C........................... 36 

 

 

 

 

  



viii 

 

LIST OF TABLES 

Table 1 FE analyses results for determination of optimized design ............................................. 24 

Table 2 Details of each tested prototype. ...................................................................................... 29 

Table 3 Summary of temperature gradient for each model. ......................................................... 33 

Table 4 The summary of power outputs generated by different prototypes ................................. 37 

Table 5 Energy generation of current road energy harvester technologies. ................................. 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

AADT   Annual Average Daily Traffic 

FHWA   Federal Highway Administration 

TxDOT   Texas Department of Transportation  

USDOT  United States Department of Transportation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

EXECUTIVE SUMMARY 

Securing renewable energy sources is essential for long-term environmental sustainability. The 

depletion of fossil fuels and the adverse effects of their combustion create an urgent need for the 

advent of alternative green energy sources.  Harvesting energy from asphalt pavements has shown 

promise in generating green electrical energy.  Asphalt pavements are one of the most prominent 

components of civil engineering infrastructure. In the United States alone, they extent to over 6 

million lane-km. Tapping into the energy stored in them has been the subject of several recent 

research efforts. The harvested energy can have multiple potential applications including powering 

pavement health monitoring devices, road-side or traffic lights, infrastructure sensors, and near-

field communication systems. Therefore, there is a considerable research interest and effort to 

effectively harvest energy from pavements as supported by several studies recently been conducted 

to assess the feasibility of using roadways to generate green energy.  One of these studies are to 

harvest thermal energy from asphalt pavement using thermoelectric generators (TEGs) inside the 

pavement structure. Solar radiation absorbed by pavement surface causes temperature gradient 

which can be converted into electric energy by TEG. TEG can convert heat into electrical energy 

based on the Seebeck effect. Using TEGs offers several benefits such as environmentally friendly 

energy, no moving mechanical components and low maintenance requirements. In this report, the 

researchers optimized their original design to improve efficiency and longevity in the material 

choice, fabrication and dimensions. To accomplish this, various prototype designs were simulated 

using Finite Element (FE) analysis, followed by design construction and laboratory testing of the 

most promising prototypes to evaluate their power harvesting capabilities. The main design 

components of these prototypes are a heat collector/transfer plate, TEG, and a cooling module 

consisting of a heat sink, phase change material, and an insulation box. The results suggest a direct 

relationship between thermal gradients and power generation and point out the importance of the 

cooling module in maintaining the efficiency of the harvester.  An optimum harvester design would 

generate an average power output of 29 mWatt or 835 J over 8 hours per day in South Texas.  

Extrapolating this output for an installation that covers a length of 1 kilometer of a roadway could 

produce an average of 23.2 kWh/day, which appears to be a promising independent source of 

power for roadside signage and sensors. 
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1. INTRODUCTION 

Population growth and rising living standards have dramatically increased worldwide energy 

needs. Reliance on fossil fuels for generating this energy has undesirable environmental 

consequences (1-2). The United States Department of Energy (US DOE) reports that the world 

energy consumption is anticipated to rise by 44% from 2006 to 2030 (3). Although non-renewable 

fossil fuels supply 80% of the requirements of energy, this type of energy is about to be exhausted. 

Therefore, finding alternative energy sources is critical in providing a sustainable future (4). 

Recently, renewable energy sources have attracted significant attention due to their social 

acceptance and capability of supplying sustainable energy (5).  Harvesting renewable energy has 

practically no adverse environmental impacts compared to the traditional processes used for 

extracting fossil fuels. Furthermore, using renewable energy has considerable environmental 

benefits, including a reduction in harmful emissions of carbon monoxide (CO), nitrogen oxides 

(NOx), and sulfur dioxide (SO2) (6).  

Roadways play a fundamental role in the worldwide transportation system. For instance, the US 

and China transportation systems consist of about 6.0 and 4.7 million center-line kilometers of 

paved roadways, respectively (1, 7). These roadway pavements are continuously exposed to solar 

energy and absorb heat. Harvesting this heat can provide an untapped source of renewable energy 

(8). 

The importance of green technologies for generating renewable energy and sustainable 

development is widely accepted. Road surfaces are exposed to solar radiation that generates 

thermal gradients and heat flow in the pavement layers. The heat stored can be harvested providing 

an untapped source of renewable energy. This paper presents the design, construction, and 

assessment of an improved thermoelectric energy system prototype for harvesting heat energy 

from roadway pavements. To accomplish this, various prototype designs were simulated using 

Finite Element (FE) analysis, followed by design construction and laboratory testing of the most 

promising prototypes to evaluate their power harvesting capabilities. The main design components 

of these prototypes are a heat collector/transfer plate, thermoelectric generators (TEG), and a 

cooling module consisting of a heat sink, phase change material, and an insulation box. The results 

suggest a direct relationship between thermal gradients and power generation and point out the 

importance of the cooling module in maintaining the efficiency of the harvester. An optimum 

harvester design can produce on average a power output of 29 mW over a period of 8 hours of 

summer sunshine in South Texas. Extrapolating this output for an installation that covers a length 

of one kilometer of a roadway could produce an average of 32.2 kWh/day which appears to be a 

promising independent source of power for roadside signage and sensors. 
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2. OBJECTIVES 

• Introduce the thermoelectric energy harvester system that aims to produce electrical power 

from unused thermal energy available in regular asphalt pavements. 

• Examine different designs of the system under field-simulated conditions in the laboratory  

• Examine the systems with simulated field conditions using Finite Element analysis 
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3. LITERATURE REVIEW 

3.1. Introduction 

The concept of energy conservation and the need for developing alternative energy resources has 

become pressing due to the environmental impact of fossil fuels.  The massive accumulation and 

generation of greenhouse gases is altering the Earth’s climate, while conventional energy sources 

are non-renewable and being depleted. Consequently, the search for environmental-friendly, low-

cost energy resources becomes increasingly necessary (9-11). 

Energy harvesting (scavenging) is a process that captures unused ambient energy that would 

otherwise be lost in the form of heat, light, sound, vibration, stress or movement. The United States 

transportation system consists of about 6 million kilometers of roadways. These roadways are 

exposed to energy from vehicle vibrations, traffic loading strains, and thermal gradients that can 

be harnessed. These resources can be potentially converted into usable energy such as electric 

power. Capturing this unused energy is the challenging aspect of the harvesting process. Successful 

energy harvesting from highway pavements can lead to sustainable transportation infrastructure 

systems.   

Energy harvesting technology can be used to overcome growing challenges facing the Texas 

Department of Transportation (TxDOT) as demand for services stretches further from an efficient 

and reliable source of revenue.  This imbalance is in part, catalyzed by Texas’s rapidly growing 

population.  This population growth places tremendous strain on TxDOT’s mission to provide 

better transportation services.  Gas tax revenues have long provided TxDOT with the supporting 

revenue.  However, gas tax revenues are declining and are becoming less dependable, as electric 

vehicles absorb a larger percentage of the automobile market share and as vehicles become more 

fuel efficient.  Thus, the opportunity of energy harvesting from road infrastructure provides 

TxDOT a possible alternative financial resource that could supplement conventional fuel tax 

income.  Error! Reference source not found. depicts the projected disproportionately increasing 

rates in available roadway lane-miles, population, and vehicle-miles travelled. Clearly, there will 

be a growing gap between transportation infrastructure demand and supply. 

 

Figure 0. Lane Miles, Population, and VMT Percent Change over 50 Years  
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A major and declining financial resource for the construction and maintenance of roadway 

infrastructure is the State fuel tax of 20 cents/gal.  As vehicles become more fuel efficient, as more 

electric (i.e., plug-in) vehicles are introduced, and as an increasing population demands the 

building of more lane miles, roadways will suffer great deterioration if not properly funded and 

maintained.  Error! Reference source not found. depicts the trend of increasing sales of electrical 

vehicles.  Every electric vehicle generates vehicle miles traveled without contributing to roadway 

taxes.  Texas roads are continuously subject to vibrations, impact, solar heat, and repeated strains.  

Upon these roadways, the mechanical energy of millions of passing vehicles is left untapped and 

wasted. Harvesting and transforming these energy into electric power can potentially be stored in 

roadside batteries, fed directly into the grid, recharge electric cars, power monitoring sensors, and 

illuminate traffic lights.  This will lead to a sustainable roadways infrastructure system that can 

offset the financial cost of maintaining these roadways. 

 

Figure 0. The increase rate of U.S. Sales of Plug-in Vehicles over a period of three Years (12) 

The objective of this chapter is to present some of the current technologies and conceptual 

approaches to harvest energy from infrastructure, in particular asphalt pavement roadways. These 

include, solar roadways, solar collector systems, Photovoltaic, thermal gradient devices, and 

piezoelectric materials.   

3.1.1. Existing Energy Harvesting Technologies 

Technologies and techniques available for the energy harvesting process include thermoelectricity, 

solar radiation, ocean currents, wind energy, and mechanical motions.  Some of these technologies 

are commercially available, while others are still in the development stage. Storage of the energy 

harvested is another technical challenge, which needs to be resolved in order to prove the feasibility 

of the harvesting process. Examples of commonly available energy sources include: 
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• Solar energy using photovoltaic (PV) cells. The PV cells convert light energy from solar 

radiation into electrical energy.  However, PV systems are highly dependent upon tilting angle, 

exposure durations, and exposure intensities.  

• Thermal energy from roadway surfaces, heaters, and human body using thermoelectric 

generators (TEG). The TEGs consist of thin thermocouples in a configuration capable of 

exploiting temperature gradients a low as 2 degrees Celsius.  These gradients can occur 

between interfaces such as skin to air and ground to air.  This technology has been used for 

homeland defense (to detect high skin/body temperatures), energy harvesting, and agricultural 

management.  

• Electromagnetic energy using transformers, inductors, and coils.  This technology utilizes a 

magnetic field to convert mechanical energy into electrical energy.  An oscillating mass 

attached to a coil passes through a magnetic field thus producing electric energy.  The coil 

passes through a magnetic flux, inducing a voltage in accordance with Faradays’ Law.  

• Mechanical energy in the form of vibrations, strain, mechanical stress, pressure, and rotations.  

One method of capturing mechanical energy is with piezoelectric materials.  Piezoelectric 

materials are transducers that generate electric energy when mechanically deformed or strained 

but can also generate mechanical vibrations when exposed to an electric potential.  

Error! Reference source not found. shows a comparison between the aforementioned harvesting 

technologies and their power densities.  Power density is the amount of power stored within a 

given unit of mass or region of space per unit volume.  The figure relates power density per unit 

volume with various energy harvesting methods including variable illumination states for PV 

materials (13).  As shown in the figure, the PV cell is one of the highly effective to power producer 

particularly in peak hours among the other technologies. More details on existing harvesting 

technologies on roadways are explained in the next sections.  

 

Figure 3. Power Density of Various Energy Harvesting Methods (13) 
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3.1.2. Asphalt Solar Collector Combined with Piping System 

The temperature of asphalt pavement increases throughout the day due to the absorption of solar 

radiation.  The materials incorporated into asphalt pavement have the property of high absorptivity 

coupled with low conductivity.  These characteristics along with the high thermal capacity means 

that pavements can reach a very high temperature, even higher than the temperature of the 

surrounding air.  This characteristic makes asphalt pavement an attractive source for potential 

energy harvesting.  Also, when the temperature rises significantly, the asphalt can cause what is 

known as an urban heat island effect (27-28).  This can lead to high ambient air temperatures and 

thus deteriorating air quality.   The asphalt solar collector (ASC) concept involves a piping system 

within the pavement layers to conduct heat through an appropriate fluid.  Heat from this fluid can 

be transferred and stored to insulated chambers and used for a variety of purposes such as anaerobic 

digesters, deicing or domestic uses (29). Error! Reference source not found. shows an example 

of an ASC installation in Holland during construction.  A positive side effect of ASC systems is 

that they reduce the temperature in the asphalt pavement and hence reduce heat island effects 

during the summer.  

 

Figure 4. Asphalt solar collector system under construction on a bridge in Rotterdam (14) 

In 2007, Liu et al. analyzed the snow-melting process on a heated pavement surface using a 

numerical model involving a hydronic energy harvesting system. They studied the heat fluidity of 

the pavement surface under different environmental conditions and predicted the corresponding 

pavement surface temperatures. The modeling of this hydronic heat system in a bridge deck 

(Error! Reference source not found.), illustrated that the required time for pre-heating the bridge 

and the distance between water pipes are two significant factors affecting the snow melting 

performance and the maximum fluid temperature. They suggested that the required heating system 

capacity, the fluid temperature and the density of the embedded piping system are the primary 

criteria in designing an effective pavement energy harvesting system. 
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Figure 5. Variation of surface condition on a heated pavement slab during the snow melting process (15). 

Similarly, Dawson et al. (2011) developed a “Thermally Optimized Pavement” using pipes 

installed at two positions in the pavement.  To improve hydronic performance, they suggested 

embedding the pipes close to the pavement surface, and install a low-grade heat source and a heat-

sink at bottom of the pavement to improve performance during the winter and the summer months, 

respectively (16).  Another study performed by Gao et al. (2010) demonstrated a roadway ice-

snow melting system.  As shown in Error! Reference source not found., the system was 

combined with a “Slab Solar Connection” containing a series of embedded pipes and underground 

thermal energy storage. The results showed that, higher flow rate and denser pipe arrangement 

increased the effectiveness of this energy harvesting system. Also, they found that wind speed, 

ambient temperature, and solar radiation are other important factors. When they increased the flow 

rate in the pipes, the effective time of collecting the heat from the fluid in the pipes decreased. 

They concluded that an arrangement of closely-spaced pipes achieves 42% heat collecting 

efficiency (17). 
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Figure 6. Experimental system developed (17). 

In an attempt to build an efficient solar collector system for pavements (9), researchers studied the 

effects of temperature, rate and inlet water flow, and pipe arrangement on heat conduction, 

convention, and radiation (Error! Reference source not found.). The researchers concluded that 

the diameter of the pipes is the most significant factor influencing the temperature distribution and 

cooling effect. Also, they found that the flow rate of the fluid that moves inside the pipes does not 

have considerable effect on the temperature of the pavement and surrounding area. As a result, the 

larger pipe diameter gave steeper temperature differences between the pipe and the pavement 

surface, therefore it made the water cooler and led to lowering the temperature at the surface of 

the pavement (9-10). 

Work by Wu et al. (2011) suggested that “Thermal collection starts as long as the temperature at 

the location of the pipes reaches the balance temperature needed for specific heat transfer flow 

rate, wind speed, irradiation intensity and other conditions”. Since the top surface of the cooled 

pavement has a lower temperature, it might increase the pavement stiffness and improve its 

resistance against deformation in hot climates, and consequently results in a longer life. Overall, 

in order to harvest energy from the pavement along with decreasing urban heat island effects, the 

interactions among pavement thickness, weather conditions, albedo effect, and type of the 

materials should be considered carefully (29). 

 

 

Figure7. Concept of harvesting energy from pavements and reducing pavement temperature, (9) 



9 

 

3.1.3. Sound Barrier PV Panels 

Sound walls, or noise barriers, are exterior structures designed to shield inhabitants located in 

sensitive land use areas from noise pollution.  These structures are commonly found running 

parallel to roadways, railways, and airports.  For roadways, the sounds are generated by vehicle 

aerodynamics, vehicle engines, and tire noise which vary in intensity with speed.  These barriers 

are usually constructed with concrete, steel, and/or masonry.  Such structural materials can easily 

be designed to support the additional loading of photovoltaic (PV) panels for energy harvesting.  

PV panels convert solar radiation into direct electric current using semi-conductors and the 

photoelectric effect.  The photoelectric effect occurs when photons are absorbed by 

semiconducting materials like silicon when sunlight strikes a photovoltaic material.  The energy 

from the photons knocks electrons loose and allows them to flow in a current in the presence of an 

electric field.  The electric field is created by the separation of charge carriers.  This energy 

harvesting method employs composite solar panels of PV material.  PV materials include mono-

crystalline silicon, amorphous cells, cadmium telluride, and polycrystalline silicon. Error! 

Reference source not found. shows various PV noise barrier configurations.  Configurations 

include conventional and state-of-the-art ideas.  For example, the N-S vertical bifacial 

configuration is a PV-module that is light sensitive on both sides and simultaneously acts as a 

noise reflective element (18).  Additionally, the PV modules can be placed on the opposite side of 

the sound barrier and does not have to face the road. 

 

Figure 1. Various PV Noise Barriers Configurations (18) 

In 1989, the first PV noise barrier was a 100 kW strip installed along the A13 highway in 

Switzerland (Error! Reference source not found.). The Swiss National Energy Research with 

the cooperation of the German Federal Ministry of Education, Science, Research and Technology 

funded this PV installation to investigate its application in roadways. This installation has proven 

to be highly efficient with low maintenance.  The glass surface has never been cleaned but has had 

no significant degradation of the array efficiency (19) without any major interruptions for 10 years.  

In another study performed by Nordman et al. (2000) summarized the capability of electricity 

production from existing PV sound barriers technologies from six European countries. The 

researchers highlighted that the existing technologies are able to potentially produce 800 MWp 

which is about 680 GWh electrical energy per year in those six countries. To achieve that purpose, 

it was suggested to plan and design the noise barrier and PV plant simultaneously as a single 

project with close cooperation of PV and sound experts (18). In 2007, Grasselli et al. tested six 
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different PV sound barrier for road application to evaluate their energy performance and acoustical 

functioning. They investigated motorist safety in case of crashes, appropriate plant construction, 

long-term performance, and acoustic functioning. The researchers concluded that PV systems 

require maintenance. Also, the results showed that the overheating of PV and the pollution 

produced by vehicles should be considered over the life of these systems (20). 

 

Figure 9. Photovoltaic noise barrier along the A13 highway in Switzerland (20). 

The PV sound barrier efficiency is highly dependent upon panel tilt angle (21).  This is done to 

maximize solar collection but also dependent upon the direction of the roadway to serve as a noise 

barrier.  For this reason, the optimal placement of solar panels on sound barriers are likely to be 

along roads in an east-west direction so to gather solar radiation throughout the day by tilting the 

PV cells continuously.  However, investment into a universal mounting system may further expand 

the potential miles of roadways available for mounting solar panels.  The solar panels should also 

be placed at a height sufficient to limit contamination from soil and road debris, (21). 

The PV (solar) technology is well established and ready for implementation in either self-standing 

roadside installations or as part of sound barrier systems. The drawback of stand-alone installations 

is that they require considerable roadside real estate, which makes them less attractive in urban 

areas. Unfortunately, there is an inverse relation between areas of available real estate and energy 

demand. Urban areas have a much greater energy demand, yet have less space available for the 

installation of solar panels than rural areas. 

3.1.4. Solar Roadways 

As described already, solar energy is one of the most relevant and readily applicable energy 

harvesting method to integrate into the roadway infrastructure.  A variation of PV installation 

technologies described above is imbedding it directly onto the highway infrastructure surface. That 

is, make PV panes the driving surface of the roadway.  There have been several efforts to this end.  



11 

 

In 2006, Solar Roadways Inc. designed and developed solar panels for roadways and built a 

parking lot covered by solar panels. The developed solar roadway panels are equipped with 

integrated heating component that maintain a temperature above freezing. This helps the roads to 

be free of snow, and ice during cold seasons (Error! Reference source not found.). There are 

also  

 

Figure 10. Solar panel modular (22) 

LED lights embedded in the panels that can highlight edge-lines and signage on the road. Taking 

advantage of the LED lights could be eliminate the needs for painting and marking the roads. The 

company claims that it can produce more than 698 Megawatt-hours from one mile square of 

covered solar panels in one year (22). 
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Figure 11. Solar bike lane in the Netherland (22). 

In a similar attempt in the Netherland, the engineers of SolaRoad installed solar panels in a 230-

feet bike lane (Error! Reference source not found.). The fragile parts were encased in thick glass 

layers to be able to withstand the heavy loads caused by traffic. SolaRoad claims that the output 

power during the first six months is around 3 megawatt-hours which is approximately equal to the 

amount of electricity required for a single occupancy house for one year. 

In 2010, researchers in South Korea (23) utilized PV cells inside the pavement.  Recognizing the 

strength limitations of conventional PV panels, they tried to develop appropriate cells to bear the 

traffic loads. They investigated the feasibility of PV technologies as a harvest energy system in 

roadway pavements by developing thin solar cells that can properly function and meet roadway 

conditions.   

A problem facing solar roadways, regardless of the installation technique is the effect of shading 

or partial shadowing.  This is usually caused by obstructions such as from buildings, trees, and 

cloudy conditions.  However, a solar roadway experiences additional shading from passing 

vehicles.  The two most important factors for computing the reduction on PV panel efficiency from 

vehicle shading is their number, type (i.e., it defines their length) and their speed (24).  There are 

also fluctuations in energy output due to variations in temperature. Optimal temperature for solar 

panel efficiency is around 25 degrees Celsius and with every 1 degree increase in the temperature, 

there is a 0.44% decrease in maximum power output (24).  

Another reason of efficiency loss is soiling of the surface (particulate accumulation). Energy losses 

from soiling typically range between 5 and 15% (24). Frequently traveled solar roadways would 

have the potential of accumulating a heavy amount of particulate material making soiling a serious 

concern.  Tilting angles must also be considered for solar roadways. Tilting angle effects are the 

losses of energy output due to the directional travel of solar rays being less than perpendicular 

relative to the surface of the solar panel. Obviously, solar highways have a fixed titling angle 

affecting their efficiency throughout the day.    

Another technical issue is the solar panel resilience to traffic loads, while providing sufficient 

friction. Current solar panel surfaces are designed to resist loads from hail impact and accumulated 

snow. Handling vehicular loads poses unique and conflicting structural requirements for the glass 

that encases PV panels, in terms of their thickness, composition and surface texture. As the 

thickness of the material increases, their structural integrity increases but their light transmissivity 

decreases. The type of material chosen affects light absorption, strength, and cost. Glass can 

theoretically be designed to have very high structural strength, however it must be manufactured 

without flaws to allow high light transmissivity. Providing surface texture could negatively affect 

translucence and absorption capabilities. 

A more conservative approach of integrating PV technology harvesting in the transportation 

infrastructure is their installation on top of covered parking areas.  In 2007, Golden et al. 

recommended the use of PV cells on parking canopies to decrease the urban heat island effect in 

those areas, while generating electric power.  Decreasing pavement temperature results in lowering 

aging, improving resistance to cracking, and extending pavement life (25). Another successful 

canopy PV installation was on Blackfriars Railway Bridge in London, where 4,400 solar panels 

were installed over railway tracks. The anticipated electricity output of this system is about 900 

MWh yearly, which will result in a reduction of 500 tons of carbon emissions (21). 
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A variation of this approach was described by Strauss et al. (2009), whereby flexible PV panels 

were installed directly over long-term parked vehicles (e.g., school buses) to generate electrical 

power.  They named this concept ‘Vehicle Surfaces Parking Lot PV Solar Energy Power 

Generation System’.  The generated electric power can be used to either run small appliances (e.g., 

AC systems to cool the parked vehicles or be converted to AC current and be fed into the electric 

network. The results suggested that such temporary PV arrays could provide sufficient power to 

electrify several nearby buildings (26).  

3.1.5. Piezoelectric Energy Harvester Systems 

The movement of vehicles on pavements is a form of kinetic energy.  A portion of this energy is 

transferred into the pavement in the form of vibrations, strains, and compression forces.  Energy 

is transferred mainly through the impact of the vehicle weight on pavement through the tires.  

There are roughly a quarter of a billion vehicles registered in the United States.  These vehicles 

impose great kinetic and strain energy through vibrations and traffic loading strains over the life 

of pavements. This energy could be potentially captured and converted to usable electric power. 

This energy can be harvested using piezoelectric transducers (PZT) (30- 31). The PZT are capable 

of generate electric voltage due to the application of loading stresses and vibrations.  PZT has the 

special property of generating an electric voltage when subjected to deformation by dimensional 

alteration or vibration.   

Xiong et al. (2014) at Virginia Tech tested nine energy harvesters in the field and laboratory. They 

installed some of their energy harvesters in the field and tested them for 18 months. There are 

typically two different coupling modes which are 33-mode and 31-mode.  To generate energy 

under a 33-mode, the piezoelectric material must be displaced along the poling direction.  To 

generate energy under a 31-mode, the piezoelectric material requires transverse displacement.  The 

choice was made to install the piezoelectric elements 3 inches below the surface and it was found 

through stresses analysis that the 33-mode was preferable to the 31-mode, which was too heavily 

dependent on vehicle speed.   The 33-mode was preferable because its power output was directly 

proportional to the stress applied to it.  Different interfacial circuits were designed to optimize the 

energy gathering from the piezoelectric harvester.  Analysis was conducted to minimize stress 

concentration on the piezoelectric material through increasing surface area using many 

piezoelectric discs and changing the materials geometry to circular shape rather than a rectangular 

shape.  The energy harvesters were installed in three locations including a weigh station without 

affecting traffic and the adjacent pavement.  Error! Reference source not found.2 depicts the 

placement of eight energy harvesters beneath the pavement for the weigh station approximately 

on the wheel path of the bypass lane.  Epoxy was applied in the pits to promote bonding and to the 

right of the image shows the straight line trenches for conduit housing the electric cables (32).   

 

Figure 12. The prototype and pattern of In-situ Energy Harvester Placement (32) 
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3.1.6. Thermoelectric Energy Harvesting 

The top surface of pavement has characteristics that make it absorb sunlight energy and store it. 

The temperature of a pavement structure varies along the pavement layers so that the temperature 

at the surface is higher and decreases with depth. A thermal gradient of variable magnitude exists 

between the pavement base and the subgrade throughout the day. This thermal gradient can be 

used to actuate thermoelectric materials to generate electric power (33). The efficiency of a 

thermoelectric system highly depends on the electric conductivity of the device, the thermal 

conductivity, the seebeck coefficient (i.e., a measure of the induced thermoelectric voltage in 

response to a temperature difference across that material), and the thermal gradient. The produced 

energy can be used to supply power for advanced sensors with applications in the transportation 

area such as pavement health monitoring (29). 

Among all energy harvesting techniques, the application of thermoelectric generators (TEGs) for 

generating electrical energy from pavement has been developed in recent years and looks 

promising. The TEG device is able to directly convert thermal energy into electricity according to 

the Seebeck effect, and it has exhibited great potential in the case of waste heat recovery. The 

application of TEGs delivers several advantages, such as being environmentally friendly, having 

long-term durability, having no moving mechanical components, and requiring low maintenance 

(34). The asphalt pavement is continuously exposed to solar radiation that can heat the pavement 

up to 70˚C due to the high absorptivity of its black materials. This source of energy, heretofore 

unused, has attracted attention as a potentially renewable and clean energy source. 

In 2006, Hasebe et al. designed and tested the TEG using heat extracted by a piping system 

incorporated into the pavement. The hot temperature of the TEG’s side was supplied by hot water 

circulating inside the heating pipe. A cooling pipe cooled by river water connected to the cold side 

of the TEG, which induced a temperature difference across the TEG’s sides and eventually 

produced electrical power (35).  

In 2012, Wu and Yu studied the TEG system to generate electrical power from the heat from 

pavement. They proposed that one side of the TEG be attached to an aluminum plate embedded 

under the pavement and the other side connected to an aluminum rod placed into the subgrade to 

facilitate the cooling process and thus increase electrical energy production (29).  

In 2015, researchers at the University of Chang in China studied the efficiency of the 

thermoelectric energy harvester in the lab. They fabricated asphalt specimens, which were heated 

up to 70°C by lamp to simulate solar radiation. The TEG modules were inserted into the specimen 

at different depths, and it was found that, with respect to system efficiency and different 

temperature gradients, the optimal depth was 2-3 cm under the pavement surface. Furthermore, 

the inserted TEGs inside the specimens were subjected to a dynamic stability test, and it was 

confirmed that the TEG harvester had proper durability at a depth of 2 cm (33). 

In 2017, Datta et al. assessed a prototype of a thermoelectric energy harvesting system using finite 

element analysis and laboratory and field testing. A Z-shape copper plate was embedded under the 

asphalt pavement to capture the heat from the pavement and carry it to the bottom, where the hot 

side of the TEGs were attached, and the cold sides of the TEGs were connected to the aluminum 

heat sink filled with soil. The proposed system was capable of producing an average of 10 mWatt 

over 8 hr (36).  
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Jiang et al. designed an enhanced TEG system composed of a rectangular aluminum heat‐
conduction plate, a thermoelectric device, and a cold‐end module. The aluminum plate’s role was 

to extract the heat and transfer it to the TEGs. Also, in the cold-end module, a water tank covered 

by a shading board was used to apply low temperature (37). 

The literature showed that previous studies explored a variety of strategies to improve the system 

efficiency by suppling more heat for the hot side of the TEG and providing lower temperature for 

the cold side of the TEG; however, some essential and influential factors should be considered for 

efficiency improvement. For instance, the heat exchangers, like the aluminum chamber, copper 

plate and aluminum bar, were not properly insulated (causing heat loss), and the coolant modules 

could not keep the temperature on the cold side of the TEG down for two reasons: a) a lack of 

insulation between the coolant module and the surrounding area; and b) the heat sinks were filled 

with soil or water, which have low thermal storage capacity.  

Although the application of pavement thermoelectric technology is feasible, published studies on 

this topic appear to be limited. Thus, the implementation of TEG technology in pavement is still 

in the early stages, and further research is required to enhance the design and increase the 

efficiency of the TEG harvester system. This study fills the research gap and evaluates and 

optimizes the performance of the thermometric-based pavement system. The paper describes the 

configuration, modeling and laboratory experiments. In order to assess different parameters 

affecting the performance of the system, the effect of the TEG size (i.e., 4 cm x 4 cm and 6.4 cm 

x 6.4 cm), the number of TEG devices (i.e. 1-4 modules), and pavement temperature (i.e., 45˚C to 

65˚C) were studied. In addition, it presents an economic analysis of the power output of system. 

Findings of this study could help progress thermoelectric technology applications in pavements 

with perspective of energy sustainability. 

In the research carried out by Wu et al., the application of TEGs for production of electrical energy 

in pavement was investigated. They showed that the temperature difference between the pavement 

surface and the surrounding soil (deep inside the ground) can be utilized to generate electricity. In 

this study, one side of the TEG device was attached directly to asphalt concrete layer and the other 

was attached to a plate embedded into the soil. This type of design, however, exposes the TEG to 

traffic loads, which may compromise their longevity (29). Wu et al. developed thermoelectric 

energy harvest system, in which one side of TEG connected to aluminum plate and the other side 

contacted with aluminum to generate power from thermal gradient between pavement and 

subgrade soil. The output power was about 0.05 mW that could be used to supply power of LED 

light (38). Liang and Li in 2015 at Chang’an University of China conducted a research to generate 

energy from asphalt pavement by using thermoelectric generator. By inserting TEG module in 

different depths within asphalt samples, durability and optimal location of module were 

investigated. The results indicated that the module could have the highest efficiency in depth of 20 

mm-30 mm below the surface and the TEG module showed proper durability at the depth of 20 mm 

(33). 

Generally, the amount of electricity generated from TEGs is mainly determined by the temperature 

gradients between hot and cold sides.  TEG harvester designs must take advantage of this thermal 

gradient and maintain it over time, that is, provide an efficient cooling mechanism for delivering 

cold temperature at cold side of TEG can affect greatly the efficiency of system (40).  
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4. METHODOLOGY  

4.1. Introduction 

As presented in the literature review chapter, one of the approaches to harvest heat energy from 

asphalt pavement is the installation of thermoelectric generators (TEGs) inside the pavement 

structure. Solar radiation absorbed by pavement surface causes temperature gradient which can be 

converted into electric energy by TEG. TEG can convert heat into electrical energy based on the 

Seebeck effect. Using TEGs offers several benefits such as environmentally friendly energy, no 

moving mechanical components and low maintenance requirements (34). 

4.2. Objective 

The cooling system can play a critical role in increasing the efficiency of thermoelectric energy 

harvesters. Lower temperature at the cold side of TEG module can maximize the power output. In 

previous studies (36, 37, 39) the applied methods of cooling did not effectively reduce the 

temperature of the cold side of TEG. For instance, the utilized coolant modules without any proper 

insulation, were directly in contact with the surrounding area (e.g. soil and air).Direct contact with 

surrounding environment reduces the externally applied thermal gradient which might have 

significantly influenced the module and imposed the module to reach surrounding temperature in 

unfavorable way. 

This chapter focuses on designing novel energy harvest system to enhance the efficiency of 

thermoelectric pavement structure by optimizing the heat transfer mechanism and proposing an 

innovative cooling technique consisting of heat sink, insulation box and phase change material 

(PCM). This chapter presents an optimized version of the earlier Z-shaped TEG prototypes (36).  

4.3. Theoretical Background 

The principle of TEG is based on the semiconductor TEG effect, which is known as the 

Seebeck/Peltier/Thomson effect, hence referred simply as Seebeck effect. This effect manifests 

itself as a voltage differential between the hot and cold site of a semiconductor in response to a 

thermal gradient (34). A thermoelectric module is typically composed of n- and p-type legs, 

providing the ability for electrons to move freely through metals and semiconductors (49). Voltage 

value is given by the following equation (41): 

𝑉 =  𝛼(𝑇ℎ − 𝑇𝑐)                                                                                              [1] 

where:  

V = the voltage of the TEG;  

Th = the hot side temperature of the TEG;  

Tc = the cold side temperature of the TEG; and  

α = the Seebeck coefficient of the TEG.  

In addition, the current, electrical power and the total amount of heat can be obtained using the 

following equations (41, 42): 

𝐼 = 𝑉/(𝑅 + 𝑅𝑙)                                                                                                 [2] 
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𝑃 = 𝑄ℎ − 𝑄𝑐 = 𝐼2𝑅𝑙                                                                                         [3] 

𝑄 = 𝛼𝐼𝑇𝑐 + 𝐾(𝑇ℎ − 𝑇𝑐) − 1/2𝐼2𝑅𝐿                                                                 [4] 

where: 

I = the current; 

R = the internal resistance of TEG; 

RL = the Load resistance; 

(Qh – Qc) = the heat flux due to temperature gradient; 

Q = the total quantity of heat, and K is the heat transfer coefficient. 

4.4. Design Concept and Fabrication 

In order to transfer the heat from the asphalt pavement surface to the TEGs, the thermoelectric 

energy harvesting prototype was developed. This shape of prototype (L-shape) was confirmed with 

FE analyses, which will be discussed later. The description and schematic of prototype are 

illustrated in Figure 13. 

 

Figure 13. The thermoelectric energy harvesting prototype: (a) schematic of prototype; (b) description of components. 
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The assembled energy harvesting system consists of four parts:   

a. An L-shape copper plate with a thickness of 0.15 cm consisting of two segments: A heat receiver 

with 50 cm length to collect pavement heat and a vertical heat conductor, with length of 18 cm to 

convey the heat to the lower pavement layers (Figure 14). The copper plate is well insulated to 

minimize heat loss. It was shown that the temperature of asphalt pavement 2–3 cm below the 

surface is about 3–4 °C less than the temperature at the pavement surface (37).  Hence, it is 

desirable to embed the heat collector 2 to 3 cm below the asphalt concrete surface.  Furthermore, 

embedding the heat receiver below the surface of the asphalt concrete layer provides additional 

protection to this component during routine pavement rehabilitation (e.g., milling and overlaying).  

 

Figure 14. Heat collector plate with Thermoelectric Generator. 

b. Two thermoelectric generators to convert thermal energy into electrical energy. The hot sides 

of the TEGs were attached to the copper plate with thermal paste, while the cold sides were 

similarly attached to the heat sink. In the presence of a temperature gradient between the two (hot 

and cold) sides of TEGs, power generation will occur. As shown in Figure 14, each thermoelectric 

generator consists of a set of alternating P–N elements which are connected in series both 

electrically and thermally. 

c. An aluminum heat sink with a size of 18 × 10 × 5 cm was used for absorbing the heat that 

inadvertently gets transferred between the hot and cold side of the TEGs (Figure 15-a). Heat sink 

was filled with a microencapsulated phase change material (MPCM), in a powder form (Figure 

15-c), to store the thermal energy by preserving initial temperature (i.e. 18 °Ϲ). PCMs are novel 

materials used in many heat conditioning applications such as heat pump insulation, solar 

engineering, and spacecraft thermal controls. PCMs have the capability to absorb/release latent 

heat during their phase transition from solid to liquid and vice-versa (Figure 15-b). Therefore, they 

are ideally suited for effectively absorbing heat while maintaining the temperature of the heat sink 

relatively constant (43).  
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Figure 15. Coolant module: (a) Heat sink; (b) Process of phase changing of PCM (44); (c) Used microencapsulated PCM. 

d. The insulation box was designed as a thermal-barrier to prevent the exchange of heat between 

the heat sink and the surrounding soil (Figure 16).  This effectively controls the temperature of the 

heat sink at the desirable level and maximizes the temperature gradient between the surface and 

the heat sink, which drives the TEGs. The insulation box consists of three layers: the first layer 

exposed to ambient temperature, is made of Polyvinylchloride with 1 cm thickness and 0.19 

W/(m*K) thermal conductivity; the second layer is expanded Styrofoam with 2 cm thickness and 

0.03 W/( m*K) thermal conductivity and the third layer, which is in contact with the heat sink, is 

Aerogel. Five faces of heat sink were fully covered by Aerogel with thickness of 1 cm and the face 

having contact with TEGs was partially covered by Aerogel with 0.5 cm thickness. Aerogel, 

developed by NASA, was used for the Stardust spacecraft as a high insulation barrier due to its 

low thermal conductivity (i.e., 0.012 W/ m*K) (45, 51).  It is currently commercially available at 

a reasonable price. 

 

Figure 16. Insulation box 
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4.5. Finite Element Analysis 

Finite element (FE) analysis was conducted using the commercial software ABAQUS to refine the 

design of the thermoelectric system. A three-dimensional (3D) model of the prototype was 

constructed for this purpose consisted of the copper plate, TEGs, heat sink and insulation box.   

Based on FE analyses, the design, length, and width were found as very influential parameters 

rather than the thickness of plate. Hence, the copper plate with thickness of 0.15 cm, commercially 

available, was selected. FE analyses provide insights into the thermal behavior of the prototype 

including thermal gradients, temperature distribution over the time and so on. 

This section presents two design models of Z-shape and L-shape plates. The Z-shape model has 

three parts including a heat collector plate placed into pavement with 50 cm length, a heat conveyor 

plate with depth of 18 cm and a heat transfer plate with 8 cm length, while the L-shape consists of 

a heat collector (50 cm) and only a heat conveyor plate (18 cm). The width of the transfer plate 

was 15 cm for both designs. Note that the idea of Z-shape plate is taken from previous study (36).  

The FE analysis was carried out under realistic transient boundary conditions using measured data 

for the San Antonio area. In this analysis the changes in temperature gradient over time that drives 

TEG is of interest. As presented in Figure 17, temperature variation at depths of 3, 15, and 20 cm 

were recorded in the field over five sunny days in San Antonio, TX (Figure 17).  This figure 

indicates the entire range of temperature field corresponding to each depth mentioned above. The 

higher the temperature, the higher the thermal energy; therefore, the time period throughout the 

day in which thermal energy can be sufficiently transferred is around 8 hours. Hence, the measured 

temperature profiles of 8 hours (i.e., 11:00 AM to 7:00 PM) at all three depths were applied on 

both the Heat collector plate and the insulation box in the FE model. 

 

Figure 17. Measured temperature profile (three depths) for five days in San Antonio, TX. 

For each material, the properties such as heat conductivity, density and specific heat were defined. 

The heat flux coming from the pavement surface was utilized as the source of energy on the heat 

collector plate. Heat flux generally can be obtained using the following equation: 
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𝑞 = 𝐾𝐴
∆𝑇

∆𝑋
                                                                                    [5] 

where: 

q = the heat flow; 

k = the conductivity;  

A = the area; 

 ΔT = the temperature difference; 

Δx = the distance corresponding to this temperature difference.  

Figure 18 represents the temperature field results of the Z-shape and L-shape designs during the 

numerical analysis. As observed in Figure 18 (a and b), top plates in both Z-shape and L-shape 

models reached the highest temperature of 46 ̊ C due to their direct contact with pavement. Moving 

away from the pavement surface, the temperature decreased to 30 ˚C. Yet, in the provided 

temperature range (20 to 46 ˚C) the temperature differences between the plates can be barely 

identified. Thus, Figure 18 (c and d) with a new temperature scale from 33 to 46 ˚C were created 

to provide a better visual observation for the temperature distributions. Note that all components 

but the top plate were removed herein. 

As depicted, the bottom portion of the Z-shape model roughly reached to 33 ˚C, while at the same 

region in the L-shape plate reaches 41 ˚C. The significant difference of 8 ˚C can be related to the 

usage of an extra horizontal component in the Z-shape model attached to the TEGs and resulted in 

a higher energy loss in the Z-shape model compared to its counterparts. Moreover, FE analyses 

suggest that in the L-shape model temperature can be transferred much faster down to the TEGs, 

and consequently a larger thermal energy can be supplied for harvesting purposes. 

The temperature distribution of hot side of TEGs connected to plate are presented in Figure 18 (e 

and f). To provide distinctions between two designs, the temperature range is limited from 20 to 

32 ̊ C. The insulation boxes enclosing the TEGs in both models reached a similar temperature after 

8 hours (i.e., 28 ˚C). However, TEGs in the L-shape model were 2 ˚C higher in magnitude as 

shown in Figure 18 (e and f). This can be used as an indication that the L-shape plate is more 

suitable to be employed as a prototype for the purpose of heat transferring. It should be noted that 

although top plates in the both designs could capture the same amount of heat (Figure 18 (c and 

d)), the heat dissipation of Z-shape model seemed to be higher. 
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Figure 18. FE analyses of Z-shape and L-shape models. 

Since the ultimate intention of using such devices in pavements is to maximize the incoming heat 

through the surface and increase the amount of energy can be harvested. Therefore, L-shape model 

is to be considered as an optimum geometry for the rest of this study. 

There are several parameters other than geometry that may affect the efficiency of the optimum 

model. In this section top plate width as one of a key components of heat transfer was investigated. 

The model with top-plate 15 cm wide along with two different widths of 20 and 25 cm were created 

(Figure 19). The global behavior of all three models are presented in Figure 19 (a-c). Temperature 

at the top portion of the L-plate is similar for all three models (average of 47 ˚C), yet the bottom 

section of the 15 cm plate is almost 4˚C cooler compared to the wider plates. As illustrated in 

Figure 19 (d-f), due to the larger surface area subjected to the pavement, a higher temperature 

gradient was generated in 20 and 25 cm plates. 
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Figure 19. FE analyses results of three different widths models. 

In Figure 19 (g-i) top plate parts were removed for the sake of clarity. These figures present the 

final temperature for TEG and insulation box components after 8 hours of simulation. The 

significance of these plots is that although increasing the plate width (i.e. 15 cm to 20 and 25 cm) 

resulted in higher temperature gradients, model with 20 cm plate demonstrated the highest 

transferred temperature among the three models. As such, the imbedded TEGs in 20 cm model 

reached to 35 ˚C during the day, while lower temperature of 34 ˚C was captured on TEGs 25 cm 

plate. Thus, considering both the cost efficiency and performance, L-shape plate with a 20 cm 
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width was selected as the optimum model to be tested in field. Table 1 presents the numerical 

results obtained from plates and TEGs. 

Table 1. FE analyses results for determination of optimized design 

Designs 

High Temp on 

Collector Plate 

(˚C) 

Low Temp on 

Conveyor 

Plate (˚C) 

Temp on Hot 

Side of TEG 

(˚C) 

Temp on Cold 

Side of TEG 

(˚C) 

Temp 

Gradient on 

TEG (˚C) 

Z-shaped 46 33 30 19 11 

15-L-shaped 46 37 32 19 13 

20-L-shaped 48 41 35 19 16 

25-L-shaped 48 40 34 19 15 

Figure 19 (j to l) are cross sectional views of temperature distributions throughout each component. 

Based on the analyses, the surface of the outset layer of box (PVC), contacted with the surrounding 

soil, had the temperature of 30 ˚C; however, the inside of this layer showed 27 ˚C temperature. As 

it can be seen from the temperature distribution in foam layer, this thermo-barrier could retain 

more heat energy. The utilization of this layer successfully reduced the temperature of the inner 

side of the system by 14% (27 to 23 °C). The last layer was Aerogel with low thermal conductivity, 

which significantly mitigated thermal energy penetration into heat sink. The analyses results 

indicated that the temperature of heat sink surface was approximately 19 °C, which showed that 

the insulation box as a thermo-barrier could perform efficiently to reduce penetration of thermal 

energy from surrounding area.  It is worth noting  that the FE analyses, conducted in this study, 

simulated the hottest time period of the day (occurred from11:00 AM to 7:00 PM) and the proposed 

insulation box showed proper performance by keeping the heat sink temperature as low as 18-19 

°C and improving the overall efficiency of thermal gradient. 

4.6. Field Testing, Results and Discussion 

Asphalt mix slab (conventional dense graded hot mix asphalt) with thickness of 60 mm were made 

in the lab and the copper plate was inserted into depth of 30 mm to capture and transfer the 

pavement heat (Figure 20 (a)). The Heat sink and insulation box were embedded into the bucket 

filled with soil as presented in Figure 20 (b).  The temperature sensors were used to collect the 

temperature data at four points; surface of asphalt slab, the heat collector plate, inside of the heat 

sink and the soil at 10 cm depth (Figure 20(c)). The entire porotype was tested in the field between 

2:00 pm to 7:00 pm on July 21st (Figure 20 (d)). The TEGs were connected electrically in series 

into an array to attain larger values of current and voltage. The power meter (Gossen-Metrahit®) 

was employed to measure the output voltage, current and power. 



26 

 

 

Figure 20. Field installation and data collection. 

The recorded temperatures versus time are plotted in Figure 21. The asphalt surface temperature 

was varied from 55 to 62 °C. Yet, the associated temperature on the copper plate was recorded 

between 48 °C and 50 °C. It can be seen that the soil temperature at 10 cm depth increased from 

34 to 38 °C.  From Figure 21, the lowest and highest temperature magnitudes that the heat sink 

experienced were 18.3 °C and 18.8 °C, respectively. One of the major accomplishments of this 

research was to control the temperature of heat sink and maintain the temperature low for the 

cooling process of the TEGs’ cold side. Since the power generation of TEG is considerably 

affected by thermal gradient, the more temperature difference, the more power can be generated. 

Therefore, based on the simulations and field test results, the proposed coolant system can properly 

enhance the efficiency of the thermoelectric asphalt systems by increasing the thermal gradient. 
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Figure 21. Temperature profile at four depths. 

Figure 22 shows the generated power and temperature difference (ΔT) values between the top plate 

and the heat sink over time traces of 8 hrs. The effect of the diurnal temperature is clearly seen as 

the power output varies over the time. In this field test, the energy harvester system produced an 

average power output of 29 mWatt. As illustrated, the maximum power (i.e. 34 mWatt) was 

captured between 2:00 pm and 2:30 pm when the system exposed to the highest thermal gradient 

(34 degree); and as temperature decreased, the rate of electric power generation dropped 25 %. As 

expected, there is a direct correlation between thermal gradient and power output indicating that 

the higher the thermal gradient, the more the energy available. As mentioned in the literature, our 

previous study consisted of the Z-shaped plate and two types of coolant module, could generate 

the maximum power of 14 mWatt, while by incorporating a phase-changing heat sink and L-

shaped plate in this study the maximum amount of electricity was raised up to 34 mWatt, 

demonstrating the significant enhancement of the thermoelectric system generator. 

 

Figure 22. Output power and Temperature Gradient versus Time from Field Tests. 
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5. ANALYSIS AND FINDINGS 

This Chapter describes the parametric study and numerical simulation of the prototype model 

and its lab testing to assess its performance. 

5.1. Description of Prototype 

Figure 23 depicts the components of the energy harvester system, which mainly consists of four 

parts including a copper heat collector plate, a TEG device, an aluminum heat sink, and an 

insulation box. The description of each part is as follows: 

1) The heat collector plate is an elongated L-shaped copper plate that has a width of 20 cm 

and thickness of 0.16 cm. This part has two segments: a) the horizontal segment with length of 50 

cm is embedded at 3 cm depth into the pavement surface and gathers the heat from asphalt 

pavement with thickness of 10 cm, and b) the vertical segment extends up to 20 cm and conveys 

the heat from the collector down to where it is in contact with TEGs. This segment is also insulated 

with an aerogel thermal barrier to assist prevention of heat dissipation. 

2) In this study, two types of TEGs are used: a) a 4 cm x 4 cm TEG commercially named 

TXL-199-02Q TEG, and b) a 6.2 cm x 6.2 cm TEG commercially named TXL-287-03Z TEG. 

Both TEGs are designed for low thermal difference applications. The first type consists of 199 

couples (p and n junctions), while the latter one has 287 couples. The hot side of the TEGs is 

attached to the copper plate, and the cold side is in contact with the heat sink to take advantage of 

the thermal difference.  

3) In order to provide cool temperature for the TEGs, an aluminum heat sink with 

dimensions of 18 cm x 10 cm x 5 cm was employed. Different materials are usually used in heat 

sinks to make it more efficient, but in previous studies, the used materials were either soil or water, 

which could not appropriately keep the temperature down. In this study, microencapsulated phase 

change material (PCM), in powder form, with an operation temperature of 18˚C was used to ensure 

that the temperature of the heat sink was kept low (Figure 23). PCM with high latent heat storage 

capacity can absorb a great amount of heat and deliver almost constant temperature. As the 

temperature rises, the PCM’s state changes from solid to liquid, and it continues to absorb thermal 

energy without a significant increase in temperature. PCMs exhibit the possibility of being used in 

various applications, such as waste heat recovery, air conditioning in buildings, and spacecraft 

thermal controls (46).  

4) One of the main challenges of the heat sink is to avoid getting warm over time since a 

heat exchange between the heat sink and the nearby environment (soil or air) is possible, which 

leads to temperature stabilization. To overcome this issue, a countermeasure is to use the proper 

insulation to prevent heat exchange. An insulation box with three low thermal conductive materials 

was developed, which was made of polyvinylchloride, Styrofoam, and aerogel, with thicknesses 

of 1 cm, 2 cm, and 1 cm, respectively. Aerogels were extensively developed by NASA as a high 

insulation barrier for its Stardust mission (45). 
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Figure 23. Components of prototype 

5.2. Experimental Setup  

Figure 24a depicts the side cross-sectional view of the TEG roadway harvester inserted into the 

road pavement. In order to mimic a real pavement, an asphalt slab with dimensions of 70 cm × 30 

cm × 10 cm was fabricated from a dense asphalt mixture (Figure 24b and 24c). The illumination 

apparatus was an incandescent lamp to simulate solar radiation and apply a realistic temperature 

to the surface. The height of the lamp can be adjusted to control the intensity of heat over the 

surface. The top plate of the prototype was inserted 3 cm below the pavement surface to capture 

heat and transfer it down to the TEGs. The temperature at five spots (the pavement surface, 3 cm 

below surface, room, bottom of plate, inside of heat sink) were measured by means of two 

thermometers. To evaluate the effects of temperature on the power output of the system, the TEG 

was tested within a range of surface temperatures from 45°C to 65°C. Since the number of TEGs 

and type of TEGs can alter the output power, nine arrangements of TEGs, including five 

configurations of 4 × 4 cm TEGs and four configurations of 6.2 × 6.2 cm TEGs, were tested at 

each temperature. The description of each prototype is given in Table 2. The prototypes with four 

TEGs, in which two TEGs were attached per side to the vertical segment of the plate, employed 

two coolant modules (Figure 24c).  
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Figure 24. (a) TEG roadway harvester embedded in the road pavement, (b) prototypes with TEGs on one side, (c) 

prototype with 4 TEGs (2 per side) 

Table 2. Details of each tested prototype. 

Prototype Number of TEGs Size of TEG Sides of Attachment 

1 TEG (4cm-1 side) 1 4 × 4 cm 1 

2 TEG (4cm-1 side) 2 4 × 4 cm 1 

3 TEG (4cm-1 side) 3 4 × 4 cm 1 

4 TEG (4cm-1 side) 4 4 × 4 cm 1 

4 TEG (4cm-2 side) 4 4 × 4 cm 2 

1 TEG (6.2cm-1 side) 1 6.2 × 6.2 cm 1 

2 TEG (6.2cm-1 side) 2 6.2 × 6.2 cm 1 

3 TEG (6.2cm-1 side) 3 6.2 × 6.2 cm 1 

4 TEG (6.2cm-2 side) 4 6.2 × 6.2 cm 2 
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5.3. Thermoelectric Theory 

Thermoelectric generators are solid-state semiconductor modules that can transform thermal 

energy directly into electricity based on the Seebeck effect. The Seebeck effect has been widely 

applied in various thermoelectric-generation technologies (47). Basically, the conductors consist 

of a uniform distribution of charge carriers, but as they are exposed to a temperature difference, 

the free carriers at the hot side are prone to spread to the cold side because of their higher kinetic 

energy. The accumulation of charge leads to a back electromotive force. By maintaining 

temperature difference across the junctions (parallel n-type and p-type semiconductors), the 

voltage is generated (47): 

𝑉 = 𝛼(𝑇ℎ − 𝑇𝑐)                                                                                 [6] 

where: 

Th = the temperature of the hot junctions; 

Th = the temperature of the cold junctions; 

α = the difference of the Seebeck coefficient of the p and n semiconductor 

The p and n semiconductors within the TEG are connected electrically in series and thermally in 

parallel. The p and n junctions are inserted between two ceramic plates of high thermal 

conductivity and low electrical conductivity.  

The efficiency of the thermoelectric module can be evaluated by the value of its figure of merit, Z. 

A higher Z will produce higher conversion efficiency. The figure of merit of thermoelectric 

efficiency can be expressed as follows (24): 

𝑍 =
𝛼2𝜎

λ 
                                                                                          [7] 

where: 

 σ and λ = the electrical and thermal conductivity of the material; 

The total amount of absorbed heat, QH, and heat rejected, QC, can be obtained using the standard 

model proposed by Hodes (30): 

𝑄ℎ = 𝐾(𝑇ℎ−𝑇𝑐) + (𝛼𝑝 − 𝛼𝑛)𝐼𝑇ℎ −
𝑅𝐼2

2
                                [8] 

𝑄𝑐 = 𝐾(𝑇ℎ−𝑇𝑐) + (𝛼𝑝 − 𝛼𝑛)𝐼𝑇𝑐 +
𝑅𝐼2

2
                                 [9] 

where: 

K = the heat transfer coefficient; 
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 I = the current; 

R = the internal load resistance; 

 𝛼𝑝and 𝛼𝑛 = the Seebeck coefficients of the p- and n-type semiconductor 

When the TEG device is connected to an external load, the TEG current and power can be 

obtained as follows (30): 

𝐼 =
𝑉

𝑅 + 𝑅𝑙
                                                                                      [10] 

𝑃 = 𝑄ℎ − 𝑄𝑐 = 𝑅 × 𝐼2                                                                  [11] 

where: 

(𝑄ℎ −𝑄𝑐) = the heat flux due to the temperature gradient; 

𝑅𝑙 = the load resistance 

5.4. Finite Element Analysis 

A finite element analysis via ABAQUS was conducted to investigate how the insulation box could 

perform as a thermal barrier, how temperature was distributed in the components, and how the 

number and arrangement of TEGs could impact the efficiency of the harvester system. For input 

data, the temperature profile of pavement and underground soil was obtained by measuring 

temperature at three depths (2 cm, 15 cm, and 20 cm) for five days in San Antonio, Texas (Figure 

25). To run the analysis, a three-dimensional steady-state heat transfer model was employed, and 

the boundary conditions applied were the temperatures of 55˚C on the surface of the top plate, 

18˚C for the heat sink, and 30˚C for the external surface of the box. Figure 26 presents the different 

models simulated and analyzed through ABAQUS. For 4 TEGs, two configurations (Figure 26d 

and e) were developed and analyzed.  
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Figure 25. Measured temperatures at three depths over five days. 

 

Figure 26. Different FE models: (a) 1 TEG, (b) 2 TEGs, (c) 3 TEGs, (d) 4 TEGs (one side), (e) 4 TEGs (two TEGs per 

side); (f) thermal distribution of prototype, (g) thermal distribution of coolant system 

Figure 26(f) presents how the thermal energy was transferred from the collector plate (horizontal 

segment) to the conveyor plate (vertical segment). It can be observed that at the top of the conveyor 

plate, the temperature was around 53˚C. Moreover, in the conveyor plate, the amount of heat 

seemed to diminish as it was conducted from top to bottom; in particular, where the TEG was 

attached, the temperature decreased as much as 32˚C since the TEG absorbed the heat. In Figure 

26(g), the temperature distribution throughout the insulation box is illustrated. It is important to 

note that the temperature dissipation occurred from the outermost layer (PVC) toward the 

innermost layer (aerogel). The reason is associated with the role of each layer to halt heat 

penetration from the nearby environment. Here, the environmental temperature of 30˚C was 

considered because actual measurements demonstrated that the soil temperature would not exceed 

30˚C (Figure 25). The heat dissipation in layers are different due to the differences in thermal 

properties, especially thermal conductivity. The temperature of the aerogel layer, which was in 

contact with the heat sink, was around 20-21˚C, indicating that the insulation box performed 

properly as a thermal barrier and preserved the heat sink from getting warm. 

The heat transfer model provided insight into the transient temperature distribution within the TEG 

for each model, which was useful for finding out how the number of TEGs affected the thermal 

gradient across the TEG. The temperature distribution of TEG surfaces for each model (1 TEG, 2 

TEGs, 3 TEGs, and 4 TEGs) is shown in Figure 27. Table 3 presents a summary of the 
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temperatures driving the thermoelectric harvesting in different models. The simulation results 

illustrated that the maximum temperatures were 34.89°C, 31.86°C, 29.97°C, 29.12°C, and 30.02°C 

for Models 1 TEG, 2 TEGs, 3 TEGs, 4 TEGs attached on one side, and 4 TEGs attached on two 

sides, respectively. Moreover, the minimum temperatures obtained were 18.63°C, 18.75°C, 

18.80°C, 20.36°C and 18.65°C for Models 1 TEG, 2 TEGs, 3 TEGs, 4 TEGs attached to one side, 

and 4 TEGs attached to two sides, respectively. It seems that the minimum temperatures were 

affected by the quantity and arrangement of TEGs. It can be seen that the minimum temperature 

of models having up to 3 TEGS were almost similar, while using 4 TEGs (one side) led to an 

increase of low temperature in the TEGs, which is not desirable for power efficiency. These results 

indicate that each coolant module might be able to provide low temperature for up to 3 TEG 

modules, and higher than three modules would exceed the capacity of the coolant module. 

However, it can be observed that in the model with 4 TEGs attached at two sides, the addition of 

another coolant module helped keep the temperature of the TEGs low. Additionally, the maximum 

temperatures on the hot side of the TEGs are different for all simulations. For the model with 1 

TEG, the maximum temperature on the hot side is 3.03°C larger than the one with 2 TEGs and is 

approximately 5°C larger than the other models. This finding demonstrated that the increase in the 

number of TEGs reduced the amount of heat absorbed by each TEG, which would lower the 

temperature difference across the TEG. From the results, although the model with one TEG 

achieved a greater temperature difference than the others, other arrangements provided a higher 

capacity for the prototype. In other words, it might be expected that using a higher number of 

TEGs would increase the amount of power. However, the data in Table 3 indicate that the model 

with 4 TEGs on one side exhibited the lowest thermal gradient, which therefore is not the optimal 

design for the prototype. Nonetheless, the experimental results revealed the amount of actual 

power generated by each model, allowing a comparison between models in terms of power 

generation and economics. 

Table 3 Summary of temperature gradient for each model. 

Model Temp. at Hot Side 

(°C) 

Temp. at Cold Side 

(°C) 

Effective Temp. Gradient 

(°C) 

1 TEG 34.89 18.63 16.26 

2 TEG 31.86 18.75 13.11 

3 TEG 29.97 18.80 11.17 

4 TEG (1 side) 29.12 20.36 8.76 

4 TEG (2 side) 30.02 18.65 11.37 
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Figure 27. Different FE simulations: (a) 1 TEG model, (b) 2 TEG model, (c) 3 TEG model, (d) 4 TEG in one side model. 

(e) 4 TEG (two per side) model. 

5.5. Laboratory Test Results 

Figures 28a-c show the power generated from the energy harvesting prototypes over 5 hr at 

temperature of 45, 55, and 65°C respectively. Moreover, the temperature profile for the asphalt 

slab surface, the depth of 3 cm, the bottom of the copper plate, and the heat sink corresponding to 

each temperature (45, 55, 65°C) is presented in Figures 28d-f. Table 4 presents the summary of 

power output produced by different prototypes. As shown in Figure 28a, the 4 TEG (6.2-2 side) 

prototype produced 47.14 mWatt, which was the highest amount of power, and the lowest power 

output was obtained by 1 TEG (4-1 side) prototype with a magnitude of 18.9 mWatt. In addition, 

a reductive trend of power can be seen as the number of TEGs increases. For example, the addition 

of one TEG module to the 1 TEG (4-1 side) prototype increased power by 57.4% to 29.74 mWatt, 

while the increase rate of the 3 TEG (4-1 side) prototype relative to the 2 TEG (4-1 side) was 

23.5%.  

The possible reason for such results is that increasing the number of TEGs could negatively affect 

ΔT for each TEG, which is a key factor for power generation. Every single TEG would absorb a 

certain amount of heat from copper plate, and the addition of more TEGs could make each TEG 

absorb less heat relative to its previous state (fewer numbers of TEGs). Also, the addition of a TEG 

imposes more heat to the heat sink; therefore, the heat sink might not provide a temperature as 

cold as before. As a result, each TEG would experience less ΔT, thus impacting the power 

production of the system. The effect of the number of TEGs on the heat sink and consequent power 

can be observed when four TEGs are used. The 4 TEG (4-1 side) prototype, employing one heat 

sink for four TEGs, showed 8.8% larger power than the 2 TEG (4-1 side); however, the 4 TEG (4-

2 side) prototype, taking advantage of two heat sinks (one for each pair of TEGs), revealed 19.43% 

greater power relative to the 2 TEG (4-2 side). This indicates that the application of four 4 × 4 cm 

TEG modules may exceed the cooling capacity of the heat sink. The obtained results are in 
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agreement with what derived from FE simulations, which suggested that using four TEGs on one 

side would establish the lowest thermal gradient. 

In the case of using the 6.2 × 6.2 cm TEG, the 1 TEG (6.2-1 side) produced 23.5 mWatt power, 

which was 24.33% larger than the 1 TEG (4-1 side). An interesting point was observed during 

simulations—the similar power generated by the 3 TEG (4-1 side) and the 3 TEG (6.2-1 side), 

which was 36.74 and 35.03 mWatt, respectively. This result might be due to the same reasons 

previously discussed that using three 6.2 × 6.2 cm TEGs might surpass the capacity of heat sink, 

and although the number of TEGs was increased, it could not outperform the effect of reduced ΔT. 

Furthermore, the 4 TEG (6.2-2 side), with the help of two heat sinks, produced the power of 47.14 

mWatt, which is 31 % higher than the 2 TEG (6.2-1 side) prototype.  

Figure 28b represents a similar trend that can be observed in power output when the prototypes 

were examined under 55˚C. With the temperature profile shown in Figure 28e, the temperature at 

the asphalt surface, a depth of 3 cm, the bottom of the plate, and the inside of the heat sink reached 

55.3, 46.8, 34.26 and 18.1˚C, respectively. For the output power, Figure 28b shows that the power 

produced from the energy harvesters increased and then trended to constant when the temperature 

of the asphalt slab attained constant value. The maximum power achieved by the 4 TEG (6.2-2 

side) prototype was 36.16 mWatt. In addition, no substantial difference was found between the 

performances of the 4 TEG (6.2-2 side) and 4 TEG (4-2 side) prototypes. As the temperature 

reduced from 65˚C to 55˚C, the power output differences became less. The 1 TEG (4-1 side) 

prototype revealed the lowest power (16.77 mWatt), which increased by 48.8% up to 24.95 mWatt 

when the 1 TEG module was added (2 TEG [4-1 side]). Additionally, the 1 TEG (6.2-1 side) 

prototype produced power of 19.14 mWatt, which rose by 47 % up to 28.7 mWatt by the addition 

of another TEG (2 TEG [6.2-1side]); however, it must be noted that the addition of another TEG 

(3 TEG [6.2-1 side]) did not make any difference in power output relative to the 2 TEG (6.2-1side), 

and these prototypes exhibited almost the same power. 
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Figure 28. (a) Electrical output from different TEG energy harvesters under (a) 65˚C, (b) 55˚C, 45˚C; temperature profile 

at different spots under (d) 65˚C, (e) 55˚C, (f) 45˚C 
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Table 4 The summary of power outputs generated by different prototypes 

Prototype Power (mWatt) 

at 45℃ 

Power (mWatt) 

at 55℃ 

Power (mWatt)  

at 65℃ 

1 TEG (4cm-1 side) 8.14 16.77 18.9 

2 TEG (4cm-1 side) 11.51 24.95 29.74 

3 TEG (4cm-1 side) 13.05 29.85 36.74 

4 TEG (4cm-1 side) 14.32 32.08 32.35 

4 TEG (4cm-2 side) 15.34 35.07 35.51 

1 TEG (6.2cm-1 side) 9.45 19.14 23.5 

2 TEG (6.2cm-1 side) 12.6 28.7 35.98 

3 TEG (6.2cm-1 side) 12.49 27.96 35.03 

4 TEG (6.2cm-2 side) 16.18 36.16 47.14 

 

Figure 28f shows that the temperature at the asphalt slab surface rose to 45˚C over 5 h and also 

shows that the temperature at the 3 cm depth, the bottom of the plate, and inside of the heat sink 

were 38.96, 28.09 and 18.01˚C, respectively. The power output of different prototypes 

corresponding to the temperature (e.g., 45˚C) is presented in Figure 28c. It can be seen in Figure 

28c that the power level of prototypes decreased as the temperature of the asphalt slab reduced to 

45˚C. Under this condition, the 4 TEG (6.2-2 side) prototype revealed a maximum power of 16.18 

mWatt, and as expected, the lowest power obtained was 8.14 mWatt by the 1 TEG (4-1 side). In 

addition, the 2 TEG (4-1 side) could generate power of 11.51 mWatt, which is 41.5 % greater than 

the 1 TEG (4-1 side). The 4 TEG (4-1 side) generated power of 14.32 mWatt, which is slightly 

higher than the 3 TEG (4-1 side) prototype (e.g. 6 %). The 4 TEG (4-2 side) prototype performed 

properly and produced 15.34 mWatt, which is the highest value among the prototypes employing 

the 4 × 4 cm type module. In the case of the 6.2 × 6.2 cm module, the 1 TEG (6.2-1 side) showed 

a power of 9.45 mWatt, which was increased by 33% up to 12.6 mWatt by 2 TEG (6.2-1 side), but 

the addition of another TEG did not increase the power (3 TEG [6.2-1 side]).  

Since the power output of the TEG module is dependent on the temperature differential, the 

performance of the coolant module can impact the efficiency of the energy harvester prototype. 

Although the room temperature was around 23-24°C (Figures 27d-f), the temperature of the heat 

sink was kept around 18°C with the help of the coolant system developed for this study. This result 

indicates that on one hand the aluminum heat sink filled with PCM could perform well and provide 

temperature as low as 18°C and, on the other hand, the three-layer insulation box is capable of 

preventing heat exchange between the heat sink and the surrounding environment. Thus, compared 

to efforts in previous studies, this proposed coolant system can be a more efficient method to 

supply low temperatures for TEG modules.  

From the results, it can be concluded that the 2 TEG (4-1 side), 2 TEG (6.2-1 side), 4 TEG (4-2 

side) and 4 TEG (6.2-2 side) prototypes could perform efficiently in terms of ratio of power to 

number of TEGs. Moreover, it can be inferred that the coolant module would be appropriate for 

employing up to three 4 × 4 cm TEGs and/or two 6.2 × 6.2 cm TEGs. If a higher number of TEGs 

are intended to be employed for greater power production without efficiency loss, using a bigger 

heat sink that will allow the use of a higher amount of PCM or using a heat sink exclusively for a 
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certain number of TEGs based on the type of module (e.g., 4 × 4 cm or 6.2 × 6.2 cm) is 

recommended.  

Thermal harvesting prototypes show great potential for the production of clean power that can be 

used to supply energy for low-power roadside applications, such as wireless sensors, structural 

health monitoring (SHM), communication systems, and LED traffic lights. For instance, 

Karsilayan et al have recently developed the SHM system, consisting of a DC-DC booster, a buck 

controller, a microcontroller and a wireless sensor for transmitting the data. The total power 

required to activate the system is 3.18 mWatt and the proposed system is capable of monitoring 

bridge and pavement condition by collecting data on critical response parameters. Accordingly, 

the 2 TEG (4-1 side) prototype can power approximately 10 of such SHM devices without the 

need for external grid power.  Regarding the demand for utilizing such systems in roads, the 

appropriate thermoelectric harvesting system can be employed based on the required power for 

roadside systems (53). 
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6. CONCLUSION 

This section aims to estimate the capacity of the proposed energy harvester installed in roadways. 

Experimental results suggested that the prototype with area of 0.5 m x 0.2 m (top plate) would 

generate an average power output (𝑃𝑎𝑣𝑒) of 29 mWatt or 835 J over 8 hours per day. Therefore, 

the power output of pavement per square meter (𝑃𝑆𝑚) can be expressed as follows: 

𝑃𝑆𝑚 = (𝑃𝑎𝑣𝑒)/𝐴𝑡  =  (29)/(0.2 ×  0.5)  =  290 𝑚𝑊𝑎𝑡𝑡/𝑚2              [1] 

where:  

𝐴𝑡  = the area of top plate.  

To elaborate about the scale of power production, in the instance of a pavement road with 10 m 

width and 1 km length accompanied by an embedded copper plate of 0.5 m × 0.2 m, an average 

power production of pavement section (𝑃𝑃𝑠) can be calculated using the following equation: 

𝑃𝑃𝑠 = 𝑃𝑆𝑚 × 𝐴𝑃𝑠 = 290 × (1000 × 10) = 2900 𝑊𝑎𝑡𝑡                       [2] 

where: 

𝐴𝑃𝑠 = pavement section area. 

Accordingly, the generated power by this pavement section over 8 hours (𝑃8ℎ) can be obtained as 

follows: 

𝑃8ℎ =  𝑃𝑃𝑠  × 𝐻𝑜𝑢𝑟𝑠 = 2900 × 8 = 23.2 𝑘𝑊ℎ                                      [3] 

Or, 

𝑃8ℎ =  𝑃𝑝𝑠  × 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 = 2900 × 8 × 3600 = 83.5 × 106𝐽                  [4] 

Based on the calculations, the output energy will be as high as 83.5×106J over 8 h, equivalent to 

23.2 kWh of electricity. It is reasonable to conclude that more power generation can be obtained 

in warmer regions where roadways are exposed to the direct sunlight for a longer period of time. 

In order to evaluate the efficacy of the proposed system, the list of the current road energy harvester 

technologies is presented in Table 5 (50). 

Table 5. Energy generation of current road energy harvester technologies. 

Technology 
Company/researcher Maximum power 

density 

Photovoltaic Solar Roadways Not analyzed 

Piezoelectric 
Yesner et al. 1.03 mW/cm3 

Zhao et al. 0.75 mW/ cm3 

TEG 

Datta et al. 1.457 mW/cm3 

Wu and Yu 2.6 mW/cm3 

Jiang et al. 2.83 mW/cm3 
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Dividing the maximum power (34 mWatt) over the dimensions of two TEGs (2 x 4 cm x 4 cm x 

0.35 cm) would provide the maximum power density about 3.02 mW/cm3 which is higher 

compared with the previous thermoelectric energy harvesters. Such an environmentally friendly 

electricity can be potentially stored and used as a self-powered source of low-watt electrical 

facilities such as wireless monitoring systems and pavement health monitoring in remote areas in 

where electric grid power is not available. 

6.1. Economic Analysis 

The Levelized Cost of Energy (LCOE) is a method to assess the cost of energy production of a 

given system. The LCOE is a decisive parameter in power industry and can be used to compare 

the unit cost of the output power generated from nonrenewable energy sources (i.e., fossil fuels) 

and well-developed renewable sources, like photovoltaics. This parameter is defined as the ratio 

of the annualized capital expenditure for construction/operation/maintenance (O&M) divided by 

the annual energy output ($/kWh) (1) 

𝐿𝐶𝑂𝐸 =  
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒+𝑂&𝑀 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝑂𝑢𝑡𝑝𝑢𝑡
                            [5] 

The capital expenditure for the prototype system was found approximately $150 considering both 

construction and installation. Note that the cost of operation and maintenance were assumed to be 

negligible. With assumption of service life of 20 years and a discount rate of 3%, the annualized 

cost of $7.5 per unit was yielded. The LCOE of the proposed thermoelectric energy harvester for 

road pavement with 10 m width was achieved as 0.9 $/kWh per meter based on the average output 

power for 8 h.  

The unit cost of the electricity produced from fossil fuels is determined by the sum of the unit sale 

price charged from the electrical plant plus the social cost of carbon dioxide emissions (SC-CO2).  

In 2015, the unit sale price for network power was in the range of $0.065kWh to $0.123kWh. 

Based on the Environmental Protection Agency (EPA) estimates, SC-CO2 is the main contributor 

of climate change damages causing changes in human health; net agricultural productivity; 

property damages from increased flood risk; and changes in energy system costs such as reduction 

of costs for heating and increase of costs for air conditioning (48).  

The average value of SC-CO2 was estimated at $56 per metric ton of CO2 emissions in 2007. 

Adjusted for inflation in 2016, it would be $64 per metric ton of CO2 emissions (35). Depending 

on the type of fuel used to produce the power, the amount of CO2 in terms of kWh of electricity 

varies. This value for gas and coal was ranged from $0.035kWh to $0.062kWh, respectively. The 

summation of these two costs, power plant and SC-CO2, yields a cost estimation of $0.20kWh.  

According to the current laboratory development and the power generation capacity of the 

thermoelectric generator, this technology might not be economically competitive with electric grid, 

but environmentally it can generate no emissions of greenhouse gases and particulate matters 

during operation leading to a low-carbon future and reduction of urban heat island. Nevertheless, 

the application of the developed system is to build a self-contained continuous electricity generator 

for installation anywhere in the roadway network far away from power supply facilities. The 

generated electricity can be stored and supply power for electric vehicles, sensors network, traffic 

data acquisition systems, and enhance safety through illumination of LED traffic lights and 

warning signs and deicing/defrosting roadway surface.   
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