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EXECUTIVE SUMMARY 

Catastrophic natural disaster events, including flooding and hurricanes, generally lead to massive 

obstruction of traffic, direct damage to highway/bridge structures/pavement, and indirect damages 

to economic activities and regional communities that may cause loss of many lives. The observed 

consequences from these events make evident their ability to cause largescale damages to society, 

raising the levels of exposure of all transportation infrastructure. After disasters strike, 

reconstruction and maintenance of an enormous number of damaged transportation infrastructure 

systems require each Department of Transportation (DOT) to take extremely expensive and long-

term processes. In addition, planning and organizing post-disaster reconstruction and maintenance 

projects of transportation infrastructures are extremely challenging for each DOT because they 

entail a massive number and the broad areas of the projects with various considerable factors and 

multi-objective issues including social, economic, political, and technical factors. Furthermore, 

decision-makers are supposed to deal with limited federal, state, and local resources in planning 

the sequential and organized reconstruction of affected transportation systems. In particular, since 

transportation networks play a pivotal role in disaster recovery of communities as primary routes 

for salvage, evacuation and restoration, their recovery processes should consider short- and long-

term logistics and plan with underlying heterogeneous factors. Yet, amazingly, a comprehensive, 

integrated, data-driven approach for organizing and prioritizing post-disaster transportation 

reconstruction projects remains elusive. In addition, DOTs in Region 6 still need to improve the 

current practice and relevant systems to accurately identify and predict the detailed factors and 

their corresponding impacts affecting post-disaster transportation recovery.   

The main objective of this proposed research is to develop a deep reinforcement learning (DRL)-

based project prioritization system for rapid post-disaster reconstruction and recovery of damaged 

transportation infrastructure systems. This project also aims to provide a means to the Region 6's 

States to facilitate the systematic optimization and prioritization of the post-disaster reconstruction 

and maintenance projects of transportation infrastructure systems by focusing on social, economic, 

and technical aspects. As the critical mass of Region 6's transportation infrastructure has been 

severely damaged from previous flood and hurricane disasters, this study that concurrently 

involves the transportation infrastructure systems has a significant impact on the holistic 

organization and prioritization of Regional 6's transportation systems affected by natural disasters.  

With the developed DRL framework for project prioritization, the study evaluated the scenarios of 

the transportation system recovery with a particular disaster event. The methodology includes the 

agent-based model (ABM), which consists of two main components: (1) the agent, which is the 

main decision-maker, and (2) the environment with which the agent interacts. The ABM addresses 

a simulation scenario with a transportation network affected by a disastrous event that executes 

necessary recovery projects of transportation systems considering underlying resource limitations 

(e.g., funds, work crews, materials, etc.). The agent in the simulation is responsible for making a 

decision and define the priority of the recovery projects. The simulation process is also executed 

until the end of the full restoration of the transportation network. To identify improved decisions 

with the accumulated data and experience, this project employed the DRL, which can add the 

advanced learning ability to the agent. For the learning process, we defined the reward system, 

which is the function of the following two objectives: (1) the magnitude of the capacity restoration 

in each time step (which is called state) and (2) the percentage of the in-use resources (this 

objective shows that the idle resources are minimum, and the agent is working at maximum 

possible capacity. In each state (time step) of the DRL process, the agent calculates the gained 
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reward according to the series of action and find the potential reward for future actions. In the 

training process, the agent does the combination of exploration (simulation with random decisions) 

and exploitation (simulation based on learnings) and collects the data for all simulations and, after 

a certain amount of collected data (batch size), uses a deep neural network to execute the learning 

process. After the learning process, the trained model is able to make the optimal decision based 

on the dynamics of network restoration in each time step.  

The developed DRL-based model contributes to the body of knowledge by providing a new 

optimization system considering transportation network recovery and minimizing the social 

impact of the current prolonged recovery process on affected transportation systems and regions. 

The results show that a new agent-based DRL model produces an optimal recovery plan of 

damaged transportation systems by considering social, economic, political, and technical factors 

and analyzing dynamic interaction flows of communities with transportation infrastructure 

systems before and after disasters occurrence and effects of disaster mitigation and recovery 

policies on this system. The proposed model explicitly reveals the prioritized logistics of needed 

recovery projects and the consequences of optimized action policies through agent-based DRL 

model simulations. This methodology is expected to support public agencies making a risk-based 

decision for distributing limited resources and systematically arranging disaster recovery projects 

of transportation systems with the simulations of real-world disaster scenarios. The outcomes of 

this study are also expected to provide a crucial step toward a comprehensive and informed 

decision-making process that allows the policy-makers to analyze dynamic but limited resources 

of transportation system recovery plan, assisting them in having a holistic perspective considering 

diverse factors of transportation recovery processes and recourses according to socioeconomic 

factors of affected communities. In addition, this study will lead to more resilient communities and 

more effective recovery plans, improving social and economic benefits in planning disaster 

recovery and response processes. Moreover, the expected outcomes from this project would assist 

not only engineers and decision-makers in the DOTs but also Region 6's State administrators in 

optimizing and sequencing transportation recovery processes at a regional network level and 

evaluating their long-term impacts after disasters.  Thus, the outcomes generated from this study 

will be crucial assets for transportation agencies to be a foundation for a comprehensive approach 

to plan their recovery project and meet the federal regulation of maintaining mobility and safety 

of the network at an acceptable level as well as fulfilling other objectives including socioeconomic, 

time, and cost. 
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1. INTRODUCTION 

Increasing disaster events in the last decades have led to billions of dollars of infrastructure losses 

(1) as shown in the recent disaster cases in the United States: Hurricane Katrina in 2005 ($125 

billion), Hurricane Sandy in 2012 ($68 billion), 2016 Louisiana flood, Hurricane Harvey in 2017 

($125 billion), Hurricane Irma in 2017 ($65 billion), and Hurricane Maria n 2017 ($92 billion) (2). 

Infrastructure systems — sometimes referred to as critical infrastructure or lifelines — provide 

essential services for communities such as energy, water, sanitation, transportation, and 

communications. Among various natural hazards that threaten transportation infrastructure, 

flooding and hurricanes represent a major hazard in Region 6's states to roadways as it challenges 

their design, operation, efficiency, and safety. These catastrophic natural disaster events, including 

flooding and hurricanes, generally lead to massive obstruction of traffic, direct damage to 

highway/bridge structures/pavement, and indirect damages to economic activities and regional 

communities, which may cause loss of many lives.  The recent large-scale floods such as the 

2017/2018 hurricanes and 2016 Baton Rouge devastating flooding reminded how destructive 

hurricanes and floods are. The observed consequences from these events make evident their ability 

to generate largescale damages to society, raising the levels of exposure of all transportation 

infrastructure. For instance, Hurricane Katrina made landfall on August 29, 2005, providing some 

of the most plentiful and illustrative empirical evidence of the impact of hurricanes and storm 

surge on the performance of bridges and the transportation network (3). There is approximately 

3,220 km (2,000 mi) of roadway in the Greater New Orleans area which was submerged in 

floodwaters for up to 5 weeks (4). The overall cost to repair or replace the bridges damaged during 

the hurricane was estimated at more than $1 billion (5).  

Particularly, transportation systems are highly vulnerable to natural hazards and disasters can cause 

widespread damage to transportation infrastructure, which requires a lengthy and costly recovery 

process. For example, Hurricane Katrina caused damage to nearly 45 bridges in three states of 

Alabama, Louisiana, and Mississippi, with repair and reconstruction costs of over $1 billion (5,6). 

In addition to the recovery cost, the disruption in transportation network services can result in 

devastating consequences (7). The collapse of a single major bridge also can disrupt traffic flows 

over a broad region and impede emergency response, evacuation, commuting, freight movement, 

and economic recovery. For instance, 286 bridges were damaged during the 1991 Northridge 

earthquake in Los Angeles, California (8), including seven major bridges that collapsed and 

severely disrupted the serviceability of critical highways (9), causing significant disruptions in the 

transportation of people and products. Zamichow and Ellis (10) also stated that financial losses of 

affected communities only following the partial closure of Interstate 10, including depressed 

economy and lost wages, were estimated at $1 million per day. Besides, since the transportation 

network recovery process typically takes from hours to weeks, months, or even years, the social 

and economic impact on communities is severely influenced by the multitude of decisions made 

following a disaster.  

After disasters strike, reconstruction and maintenance of an enormous number of damaged 

transportation infrastructure systems require each DOT to take extremely expensive and long-term 

processes. In addition, planning and organizing post-disaster reconstruction and maintenance 

projects of transportation infrastructures are extremely challenging for each DOT because they 

entail the massive number and the broad areas of the projects with various considerable factors 

and multi-objective issues including social, economic, political, and technical factors. 

Furthermore, decision-makers need to deal with limited federal, state, and local resources in 
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planning a sequential and organized reconstruction of affected transportation systems. In 

particular, since transportation networks play a pivotal role in disaster recovery of communities as 

primary routes for salvage, evacuation, and restoration, their recovery processes should consider 

short- and long-term logistics and plan with underlying heterogeneous factors. For instance, after 

the Louisiana 2016 flooding event, approximately 200 roads closure were reported by the 

Louisiana Department of Transportation and Development (11), which made the recovery process 

significantly demanding.  This challenging situation reveals the importance of developing a robust 

strategy for Region 6's transportation agencies to logically optimize and systemically prioritize the 

reconstruction and maintenance projects of damaged transportation infrastructure systems for 

short- and long-term periods, not only considering limited funds, time, and resources but also 

maintaining safety and mobility. The complexity of the problem, multiple stakeholders and actors, 

various objectives, and constraints also reveal an urgent need for a holistic decision-making 

framework in this area.  

Yet, amazingly, a comprehensive, integrated, data-driven approach for organizing and prioritizing 

post-disaster transportation reconstruction projects remains elusive. In addition, DOTs in Region 

6 need to improve the current practice and system to identify and predict the detailed factors and 

their impacts affecting post-disaster transportation recovery. In recent years, several studies have 

been conducted to address this issue, however, they were rarely able to tackle the complexity of 

the problem due to limitations such as computational constraints. Moreover, the previous studies 

mainly focused on specific planning of the post-disaster recovery process and rarely covered a 

comprehensive set of objectives. Utilizing cutting-edge and emerging approaches such as artificial 

intelligence and agent-based modeling can help decision-makers to overcome these shortcomings 

for efficiently allocating available reconstruction resources to reduce recovery time and cost while 

avoiding negative mobility and safety issues as well as post-disaster community impacts. In this 

regard, this study aims to solve this complex recovery prioritization problem by adopting emerging 

approaches, artificial intelligence, and agent-based modeling for evaluating recovery priorities of 

damaged transportation infrastructures and affected regions through a network mobility analysis 

and resource allocation technique. 
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2. OBJECTIVES 

The main objective of this proposed research is to develop a data-driven reinforcement learning 

and project prioritization system for rapid post-disaster reconstruction and recovery of damaged 

transportation infrastructure systems. In other words, this project provides a new prioritization 

approach for rapid and optimized post-disaster recovery that evaluates recovery priorities of 

damaged transportation systems through a multi-agent DRL system. This project also aims to 

provide a means to all Region 6's States to facilitate the systematic optimization and prioritization 

of the post-disaster reconstruction and maintenance plan of transportation infrastructure systems 

by focusing on social, economic, and technical aspects. To accomplish the proposed goal, this 

project examined the factors of transportation recovery projects with the previous flood disasters. 

In addition, the PIs obtained historical recovery and maintenance data of transportation 

infrastructure systems and flood-affected transportation systems to design a prioritization process 

with these critical factors.  

The data obtained were utilized for developing an agent-based model and further analyzed by the 

deep reinforcement learning technique, which is a new feature integrating deep learning and 

reinforcement learning. In addition, the PIs have developed a multi-agent model incorporating 

reinforcement learning of transportation recovery simulations to optimize the reconstruction plan. 

The outcomes of the study are expected to provide a significant impact on assisting not only 

engineers and decision-makers in Region 6's DOTs in optimizing and sequencing transportation 

recovery processes at a regional network level and evaluating their long-term impacts after 

disasters. 
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3. LITERATURE REVIEW 

3.1. The Direct and Indirect Impact of Disasters on Transportation 

Infrastructure 

Catastrophic natural disasters frequently cause widespread destruction to transportation 

infrastructure and communities. Quantifying the economic impact of disasters on the 

transportation network is critical in strengthening transportation systems and developing sound 

policies for network recovery and mitigation. To quantify the economic impacts, one study 

captured the consequences of a disruption, which is one of the challenging tasks (12). Various 

studies also explored this topic from different perspectives (e.g., series of reports NCHRP 525 

(13)). However, their methods and applications are somehow limited to providing comprehensive 

modeling approaches because of the lack of capabilities in quantifying a complex relationship and 

associated impact among people, goods movement, and economic activity. While a few models 

have quantified the direct impacts such as damage of infrastructure and loss of travel time (14), 

there is relatively little understanding of indirect impacts that can cause a multiplier negative 

impacts, including a reduction in jobs, property values, and others in the long term. The ability to 

estimate the short/long term economic impacts using quantitative methodologies and simulation 

tools requires the integration of engineering, economic, and policy frameworks. Since disruptions 

of transportation systems have short, medium, and long-run impacts on local, regional and national 

economies, there is a significant need that warrants their quantification using state-of-the-art tools. 

Several empirical studies have been conducted to estimate the economic impacts of disasters (15-

17). However, only a few of them focused on measuring the economic impacts of infrastructure 

disruptions caused by disasters. The Input-Output (I-O) modeling is the most common method to 

analyze the regional impacts of disruption.  The I–O model entailing a solid theoretical foundation 

in economics is used in the HAZUS loss estimation methodology (18, 19), which is one of the 

most comprehensive methodologies to estimate the losses of a natural hazard. Kim et al. (20) also 

estimated the direct and indirect economic impacts of disruptions in the regional transport 

networks caused by an earthquake considering the interindustry relationships through an integrated 

regional I–O model and network assignment model. Although considerable efforts of these 

previous studies have been made to assess the physical and economic impacts of a disaster, an 

explicit social impact analysis necessary for the disaster impact assessment or hazard loss 

estimation is typically overlooked. This issue is mainly due to the difficulty in quantifying the 

social impacts of disasters and corresponding infrastructure disruption. 

3.2. Social vulnerability and transportation infrastructure disruption 

In disaster events, infrastructure disruptions frequently cause or exacerbate diverse types of 

socioeconomic impacts, including health, social, economic, and environmental consequences. 

Vulnerability to infrastructure disruption differs from population groups. For disasters in general, 

several studies (21-24) have examined the heightened vulnerability of population groups such as 

the elderly, children, and low-income households. Various population groups with different 

socioeconomic statuses entail the different levels of vulnerability in terms of infrastructure 

disruption and disaster mitigation and response in several ways: population groups may face 

differential likelihood of experiencing infrastructure disruption in a disaster (i.e., different 

exposure); they may have differential capacity to withstand such disruption; they may have 

differential access to emergency assistance to alleviate infrastructure loss; and they may have 



5 

differential resources to find infrastructure service alternatives. For instance, analysis of the 

impacts of subway transportation disruption in New York City after Hurricane Sandy indicated 

that the neighborhoods that were most severely affected by transit disruption differed 

demographically from those affected by coastal flooding, with the greatest access loss occurring 

in poor, predominantly Asian and Latino areas (23). Another study about evacuation after flood 

events found that low-income populations have differential transportation accessibility to shelters 

and safe zones. In addition, it noted that persons with disabilities are especially dependent upon 

transportation that can meet their needs; lack of suitable transport is a key factor in their reluctance 

to evacuate before hurricanes and presents a barrier to post-disaster recovery (24).  

3.3. Transportation network and prioritization of recovery projects 

Prioritizing post-disaster recovery of transportation infrastructure systems can be mainly 

considered as the resource-constrained project planning problem. Several research studies 

examined prioritization techniques for post-disaster repair and reconstruction of damaged 

transportation infrastructure systems. These studies mainly differ in prioritization criteria, 

constraints, and methodology. The following section includes the previous research studies related 

to the transportation network and prioritization of recovery projects.  

• Basőz and Kiremidjian (25) prioritized urban road bridges without considering the 

performance of the entire system. The methodology was designed based on the assessment 

of importance and damage risk evaluation of highways to assist the decision-making for 

pre-earthquake mitigation strategies, emergency response planning, and management 

activities.  

• Cagnan and Davidson (26, 27) presented a model to retrieve lifelines after an earthquake 

disaster. This model includes three sub-models: (a) a destruction estimation model, (b) a 

reconstruction model, and (c) an estimation model for calculating the direct and indirect 

cost imposed. The output of each sub-model is the input of the next one. Then, it prioritizes 

the elements for reconstruction planning based on determined scores and the two 

parameters of destruction level as well as recovery accessibility.  

• Chen and Tzeng (28) also presented an optimal fuzzy multi-objective model to assist with 

restoration decisions for a post-quake road network as a reconstruction schedule by 

utilizing the concept of network restoration problem (NRP) and genetic algorithm (GA). 

They also addressed an asymmetric traffic assignment technique as a measurement tool for 

the effectiveness of this restoration schedule. In their work, they developed and applied a 

modified GA technique in order to overcome the sophistication of the model, which is a 

combinatorial NP-hard complexity optimization problem.  

• A group of authors conducted three studies to optimize the prioritization problem of 

transportation networks' reconstruction after a disaster. These studies developed an 

equilibrium algorithm to evaluate the functionality of transportation networks after a 

disaster (29), an optimization-based solution of reconstruction plans for damaged 

transportation networks in the post-disaster period (30), and a model to optimize plans of 

retrofitting damaged transportation networks after a disaster (31).  
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• Zamanifar and Seyedhosseini (32) also developed a Fuzzy VIKOR technique to rank 

roadway reconstructions after a disaster. They utilized ArcGIS and EMME2 for network 

and traffic analysis and provided a rating list as an optimized solution. 

• Orugbo et al. (33) presented a model integrating Analytical Hierarchy Process (AHP) and 

Reliability Centered Maintenance to generate a prioritization plan of roadways recovery. 

The researchers categorized failures of roads into four classes by using the reliability logic 

and its associated risk values. They also used AHP to deal with qualitative variables, 

analyze decision-making criteria, and break down the road network prioritization plan into 

easier levels. 

• Nifuko (34) proposed a stochastic methodology to prioritize highway network recovery 

projects. The researchers incorporated four criteria of difficulty, importance, urgency, and 

cost as decision-making parameters into the AHP method to calculate numeric values of 

factors weights and plan the bridge restoration prioritization. 

Although invaluable efforts have been made to optimize the post-disaster recovery process based 

on the physical and economic impacts of a disaster, an explicit analysis of the underlying 

community vulnerability and socioeconomic factors is typically absent due to the difficulty in 

quantifying these factors. 

• Oh et al. (35) evaluated the criticality of infrastructure systems to prioritize the 

infrastructures that need attention in case of an emergency. The two main criteria, including 

vulnerability and intensity assessment, were incorporated into their proposed decision 

support system. The researchers also investigated the socioeconomic impact of the disaster 

by analyzing the impact of critical infrastructure on industries and communities in their 

decision-making process. They used the AHP method to find the relative importance of 

infrastructures.  

• Ghannad and Lee (36) presented a post-disaster recovery prioritization approach that 

evaluates the optimal recovery priorities of damaged transportation infrastructure and 

affected regions through a resource allocation analysis. The authors integrated the 

Analytical hierarchy process (AHP) method with the non-dominated sorting genetic 

algorithm (NSGA-II) approach to incorporate the multi-faceted factors for optimizing the 

various goals of the post-disaster recovery of the transportation network, including 

resource limitations and socioeconomic factors of affected communities.  

Table 1 presents an organized summary of reviewed previous works, including their prioritization 

criteria, method, and constraints. 

Table1.Summary of previous research studies in prioritization of post-disaster recovery projects  

Research study 

Methodology 

Criteria 

Considering 

socioeconomic 

factors 

Traffic 

analysis 

Decision-

making and 

optimization 

Basőz and 

Kiremidjian 

(25) 

- Risk Analysis 

- Vulnerability  

- Importance 

- Economic/social 

factors 

Yes 
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Chen and 

Tzeng (28) 

Asymmetric 

traffic 

assignment 

fuzzy multi-

objective GA-

based model 

- Total reconstruction 

time 

- Convenience for 

travelers in a road 

network during 

reconstruction 

- Idle time between any 

two work troops 

No 

Orabi et al. (29) 

User 

equilibrium 

assignment 

GA - Reconstruction Cost No 

El-Anwar et al. 

(30) 

User 

equilibrium 

assignment 

Mixed Integer 

Linear 

Programming 

- Reconstruction Cost 

- Contractor assignment 
No 

El-Anwar et al. 

(31) 

User 

equilibrium 

assignment 

Goal 

Programming 

Linear-integer 

programming 

- Reconstruction Cost 

- Contractor assignment 

- Computational cost 

No 

Nifuko (34) - AHP 

- Difficulty 

- Importance 

- urgency  

- cost 

No 

Orugbo et al. 

(33) 
- 

AHP-

Reliability 

Centered 

Maintenance 

- Reliability No 

Zamanifar and 

Seyedhosseini 

(32) 

EMME2 

software 
Fuzzy VIKOR 

- Route importance 

- Damage level 
No 

Oh et al. (35) - AHP 
- vulnerability  

- intensity 
Yes 

Ghannad and 

Lee (36) 
- AHP-GA 

- Time 

- Cost 

- Socioeconomic 

benefits 

Yes 

 

3.4. Agent-based deep reinforcement learning 

This study applied an agent-based deep reinforcement learning approach to prioritize damaged 

transportation infrastructure systems after a disaster. An agent is a computer program that reflects 

the actions of an entity (can be an individual or organization) in the system (37). The agents have 

several characteristics. First, they are assumed to follow the logical rules. Second, they are 

interdependent, which means they interact with other agents and influence them in various 

situations. Third, the agents are adaptive that can replicate or learn (38,39). Intelligent agents can 

capture the status of the environment and changes around them, take actions that help them to 

achieve their goals, and, more importantly, learn through their (or others) past experiences (40). 

As a result, the intelligent agents can represent interactive entities of a system, such as decision-

makers in the recovery process. Therefore, the post-disaster recovery process can be modeled as 

an agent-based system in which one or more intelligent agents behave and interact autonomously 
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on behalf of their users across open and distributed environments to achieve a common goal. 

Agent-based systems were rarely used within a disaster recovery context, and their capabilities 

have not been fully exploited in providing a comprehensive, proactive decision-making system 

that allows decision-makers to optimize the disaster recovery process (39). 

With the objective to address optimization-complexity, this study aims to develop a reliable model 

for disaster recovery of damaged transportation infrastructure that integrates ABM and deep 

reinforcement learning (DRL). Reinforcement Learning (RL) is a computation approach stemming 

from the literature on machine learning and artificial intelligence. This method has been used to 

improve model outcomes by providing numeric reinforcing rewards to those actions in a system 

that lead towards the achievement of a set of defined objectives (41). In this study, DRL provides 

a means to incorporate optimization procedures into an ABM that allows the agent to interact with 

its environment while learning how to improve its decision-making behaviors. The authors adopted 

the DRL algorithms to evaluate the post-disaster condition and relay information to the agents that 

describe what and when disaster recovery decisions should take place in order to achieve the 

optimal post-disaster recovery objectives. 
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4. METHODOLOGY 

4.1. Overview 

To develop a foundational framework for transportation project prioritization during disaster 

recovery, the PIs have integrated ABM and DRL techniques to improve data processing and 

computing capabilities. ABM has been widely used to model with a collection of decision-making 

entities as named agents, which support the assessment of current situations and provide diverse 

decision-making options on the basis of a given scenarios, executing various behaviors. The ABM 

addresses the simulation scenario with the transportation network affected by a disastrous event. 

The impact of the damage to the transportation network is reflected by decreasing in-service 

capacity of specific roads within the network. Thus, the restoration process consists of several 

projects and the order of their completions that can affect the fact that how the network capacity 

would be recovered to its pre-disaster condition. The ABM simulation executes the projects 

scheduling considering the resource limitation (e.g., funds, work crews, materials, etc.). The ABM 

consist of two main components: (1) the agent, which is the main decision-maker, and (2) the 

environment with which the agent interacts. The agent in the simulation is responsible for defining 

the priority of the projects to restore the network to its prior service. To this end, in each time step, 

the agent makes the decision of starting a new project and its execution mode (normal or 

accelerated mode) or doing nothing (keep progressing on the active projects). The simulation starts 

with a random selection of the project at the beginning (time=0), allocating the required resources, 

and updating the available resources (deducting the in-use resources from total resources). Then 

the possibility of starting a new project is defined, and if given scenarios have enough resources, 

another project can be started. These analyses would be repeated in each time step (e.g., day, week, 

or month).  

To reflect the real-world situation and conduct realistic analyses, the PIs have incorporated 

multiple forms of data obtained from various sources into the model. One of the data types the PIs 

used is the simulation data from FEMA's Hazus models and maintenance data from LA DOTDs 

(the Pavement Management System) and the City of Houston (the Pavement condition data), to 

estimate the extent of damage to the road segments following the flood, as well as traffic data from 

the transportation network. PMS in each state DOT and city provide a set of data and tools that 

helps consistent pavement condition assessment and road network administration. This pavement 

condition data can be evaluated to determine the maintenance and rehabilitation priorities and 

strategies according to the pavement damage induced from the flooding disaster and pavement 

deterioration rate.  The PIs have utilized the PMS and Pavement Condition data analyses conducted 

from the previous Tran-SET project (Holistic Network-level Assessment of Pavement Flood 

Damages, Project No. 19PLSU13). Other data used include network inventory and topological 

data, socioeconomic data, and financial information from recovery efforts that are directly tied to 

the extent of the damage. 

Road closures and damaged roads caused by the disaster event have an immediate impact on the 

performance of the transportation network. In addition, each recovery project has one or more 

completion milestones, and in each milestone, the capacity of the road is recovered by a certain 

amount. Partial restoration of a single road affects the average travel time of the network. In order 

to evaluate the immediate impact of the disaster on the transportation network performance as well 

as the effects of the projects' completion milestones on the restoration of the performance, the PIs 

adopted a network traffic analysis methodology based on user equilibrium assignment and Frank-
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Wolfe-Algorithm (42). The PIs also developed a cost model to incorporate the reconstruction cost 

in the model and find the optimal prioritization of the recovery projects. Three major costs were 

considered in the proposed cost model (1) direct construction-related cost representing the resource 

utilization and project execution costs, (2) indirect construction-related cost expressing the time-

dependent costs of projects, and (3) indirect non-construction costs reflecting the socioeconomic 

impact of disruption in transportation network after a disaster and during the recovery process.  

The PIs deployed deep reinforcement learning (DRL), a methodology that combines reinforcement 

learning and deep learning, to fully capture the dynamics of the transportation network recovery 

process. The deep Q-network (DQN) learning framework developed by Mnih et al. (43) was 

adopted and applied in the recovery process prioritization. DQN is an integration of a Q-learning 

algorithm and deep neural network, which shows efficient performance in several domains such 

as transportation (44) and autonomous vehicles (45). In the proposed method, initially, an agent 

makes a decision randomly and executes the simulation process until the end of the full restoration 

of the network. However, after a certain simulation runs and collecting the data from the previous 

experiences, the agent is able to use its experience and make better decisions.  This point is when 

the DRL plays a pivotal role in improving the decision-making process by adding the learning 

ability to the agent. DRL agent achieves optimal decision by using a defined reward system, which 

is the function of several objectives, including the magnitude of the capacity restoration in each 

time step, the percentage of the in-use resources (this objective shows that the idle resources are 

minimum, and the agent is working at maximum possible capacity.), the final cost and time of the 

recovery projects.  

In the DRL process, in each state (time step), the agent calculates the gained reward according to 

the series of action and find the potential reward for future actions. In the training process, the 

agent does the combination of exploration (simulation with random decisions) and exploitation 

(simulation based on learnings) and collects the data for all simulations and, after a certain amount 

of collected data (batch size), uses a deep neural network to execute the learning process. After the 

learning process, the trained model is able to make the optimal decision based on the dynamics of 

network restoration in each time step.  

Figure 1 shows the overview of the proposed methodology and its components. The following 

subsections explain the research processes and development of the methodology in detail.   
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Figure 1. Overview of the methodology 

To achieve the given objectives, the methodology was designed in the following five steps: (1) 

identify relevant factors for post-disaster transportation recovery; (2) adopt social vulnerability 

assessment tools to quantify and incorporate the vulnerability of communities into the 

prioritization model; (3) adopt a transportation network performance analysis tool to assess the 

transportation network performance loss after a disaster and its restoration during recovery 

process; (4) develop a reconstruction cost model to estimate the various costs of recovery efforts; 

(5) develop an agent-based deep reinforcement learning model for transportation network 

recovery.  

4.2. Identification of Relevant Factors for Post-disaster Transportation 

Recovery   

In the first steps, the PIs have identified all relevant factors that affect post-disaster transportation 

recovery processes, including traffic data, post-disaster situations, technical aspects, 

socioeconomic characteristics, and others according to short- and long-term periods of recovery 

plans. The criticality of a transportation facility after a disaster can be defined as the function of 

the hazard severity and imposed damage to the facility, the dependency of a community or an 

industry on a facility in terms of their daily routine activities, and the social vulnerability of 

affected people by the damaged facility. A significant amount of data is required to analyze the 

criticality of the damaged transportation facilities. In this study, the PIs divided the required data 

into five categories, including hazard-related data, traffic-related data, transportation system data, 

social information, and economic factors. Using the identified criteria, the PIs investigated the 

characteristics, decision processes, and priorities of decision-makers involved in transportation 

disaster recovery. 
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Figure 2. Five types of data collection and analysis for transportation network recovery prioritization 

This study utilized the following five main types of data required in the proposed model for 

performance loss assessment: 

1- Hazard-related data 

• Damage data to the transportation network components (e.g., roads, bridges, etc.) 

The damage level to the transportation network can be evaluated by comparing the maintenance 

data from DOTs, including the PMS and Pavement Condition data in the pre-disaster condition, 

with the data obtained from field inspections after the disaster. The PIs have utilized the PMS and 

Pavement Condition data analyses conducted from the previous Tran-SET project (Holistic 

Network-level Assessment of Pavement Flood Damages, Project No. 19PLSU13). Previous 

research studies have shown that the impact of flooding on the roads causes changes in the 

roughness of the pavement, which is quantified by the International Roughness Index (IRI) on 

PMS data. It was also revealed that these changes depends on the likelihood of flooding and the 

degree of loss in modulus of resilience (Mr). Therefore, before-and-after analysis of pavement 

condition alteration can indicate the level of damage and determine the extent of the required 

recovery efforts. However, to avoid the lengthy process of damage evaluation by field inspections 

and PMS data analysis, decision-makers can utilize the FEMA's Hazus models to simulate the 

disastrous event and estimate the damage level to the transportation network.  

2- Traffic data 

• A traffic demand that can be described by the origin-destination (OD) pair flows 

• A capacity of road segments 

• A free-flow speed for each road on a network 

The PMS and Pavement Condition data also include the traffic demand data and is used to obtain 

the Average Daily Traffic (ADT) for each road and calculate the OD demands. For simplicity, the 

present model assumes that the OD pair flows are static, which indicates that there are no changes 

in traffic demand on a network during the recovery process.  

3- Network topology data    

• Nodes that represent demand centers within a network such as intersections, cities, and 

exits 

• Links that represent road segments connecting different nodes 

• Incidence information that identifies relationships between nodes and links and a 

direction of traffic flow on each link 
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4- Social information 

• Social Vulnerability Index which reflects the socioeconomics of affected communities. 

The index combines 29 socioeconomic characteristics identified in the literature as contributing to 

the reduction in a community's ability to plan for, respond to, and recover from hazards (46). 

5- Recovery process economic data   

• Resource requirements for recovery projects. 

• Cost data for execution and resource utilization in the recovery process. 

• The duration of reconstruction projects according to selected execution mode 

• The schedule of recovery projects and planned recovery milestones 

This type of data is generated by the scheduling model and then integrated into the network 

performance loss model in order to reflect expected impacts of reconstruction projects' progression 

on recovery of a network performance level.  

4.3. Adopting a Social Vulnerability Assessment tool   

In this step, the PIs adopted a social vulnerability approach to reflect this factor as one of the 

critical decision variables in developing the ABM model. One of the well-established vulnerability 

evaluation models is the social vulnerability index (SoVI), which has been developed by Cutter et 

al. (46) based on specific community socioeconomic data, including household income, median 

age, median household value, education attained, and percentage of mobile homes. This project 

utilized the SoVI to qualitatively reflect the socioeconomic status of the communities into the 

proposed prioritization model.  

4.4. Adopting a Transportation Network Performance Model 

This model assesses the level of service disruption in a transportation network after a disastrous 

event and its gradual recovery after the progression in the reconstruction projects. There are several 

metrics proposed to evaluate the functional performance of the transportation network, such as 

travel time, direct cost, reliability, distance, and comfort (47). This research study utilized the 

methodology developed by Orabi et al. (29) to evaluate the network performance loss in the model. 

This methodology utilized the travel time metric because of its importance in affecting travelers 

on a disrupted transportation network, particularly when they are required to either travel with 

longer detours or significantly reduce speed on their original routes. Therefore, the additional 

travel time experienced by users on a damaged transportation network after a disastrous event and 

during the recovery process represents the magnitude of the network performance loss. Figure 3 

schematically represents that how disaster and recovery efforts affect additional total travel time 

within a damaged transportation network.  

The travelers experience maximum additional travel time immediately after a catastrophic event. 

After starting the recovery process, the additional travel time gradually decreases according to the 

progress of the planned reconstruction projects, and finally, it diminishes when all reconstruction 

projects are completed. The additional travel is a flow-dependent metric, so its calculation requires 

estimating the traffic flow on each link of the network. This calculation is somehow challenging 

because of inherent difficulties in identifying the travelers' route preferences and the dynamic 

nature of the recovery process. First, travelers select routes that have the least travel time (47). 



14 

Hence, faster routes attract more traffic volume that can exceed their capacities and consequently 

increase travel time by creating traffic congestions. This behavior and conditions can lead to 

change in travelers' preferences to consider other alternative routes. Due to these dynamic changes, 

it is challenging to precisely calculate the volume of traffic on each link of a transportation 

network, especially when the network is large and includes thousands of links. Second, the 

complexity of traffic flow estimation is exacerbated by considering the dynamic nature of recovery 

efforts. As reconstruction projects make progress, the status of damaged roadways can change 

from closed to partially closed and ultimately open that can dynamically affect traffic flow on the 

network. This study utilized the user equilibrium assignment and milestone-based network 

performance assessment to overcome the abovementioned challenges. The details of the 

transportation network performance loss model used by the travel agency agent is explained 

explicitly in the following sections. 

 
Figure 3. Network performance loss and restoration during the recovery process (source: Orabi et al. (29)) 

4.4.1. User Equilibrium Assignment 

In order to load a traffic demand on a network that reflects the perception of travelers of the fastest 

routes, the PIs employed the user equilibrium assignment. The user equilibrium assignment is 

based on Wardrop's first principle, which states that "no driver can unilaterally reduce his/her 

travel costs by shifting to another route" (48). The main goal of this step is to identify the volume 

of traffic on each link of a transportation network at each recovery milestone. Due to the 

assumption of a fixed traffic demand during the recovery process, this problem is a deterministic 

traffic assignment that can be solved by the Frank-Wolfe algorithm. Frank-Wolfe is the effective 

and widely used algorithm that estimates link flows at equilibrium (47). The PIs followed the steps 

to execute the Frank-Wolfe algorithm in this study (Figure 4). 

1- Define the status of roads at each recovery milestone (𝑖) 

2- Find the fastest route with the least travel time for each origin-destination (OD) pair 

utilizing Dijkstra's algorithm (49) according to free-flow speeds on all the open links in a 

network 
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3- Load a traffic demand for each OD pair on an associated route with the shortest travel time 

and calculate an initial set of link flows (𝑣0) 

4- Estimate a travel time on each link by adopting a travel time function (𝑡𝑡 =  𝑓(𝑣𝑎−1)) 

based on a current set of link flows (𝑣𝑎−1) and capacities 

5- Use Dijkstra's algorithm to define a new set of shortest paths for each OD pair according 

to new travel times (𝑡𝑡) 

6- Load a traffic demand for each OD pair on a new set of shortest paths (determined in step 

5) and calculate a set of auxiliary link flows (𝑣∗) 

7- Solve a single objective linear optimization problem (find a value of an averaging 

multiplier (λ) in Equation 1) to estimate a new current set of link flows (𝑣𝑎) by averaging  

(𝑣𝑎−1)and (𝑣∗). (𝑣𝑎) = 𝑀𝑖𝑛 𝑓(𝑣𝑎−1λ + 𝑣∗(1 − λ))  [1] 

where:  

𝑣0 = Initial set of link flows; 

𝑣𝑎−1 = Current set of link flows; 

𝑣𝑎 = New current set of link flows; 

𝑣∗ = Set of auxiliary link flows; and 

λ = Averaging multiplier. 

8- Check a convergence by using Equation 2. If convergence occurs, (𝑣𝑎) is a set of link flows 

at equilibrium at recovery milestone 𝑖 (𝑣𝑖) and the algorithm stops; otherwise, counter (𝑎) 

is incremented by 1, and steps 4 through 7 are repeated until convergence. 

𝑀𝑎𝑥 [
(𝑣𝑎−𝑣𝑎−1)

𝑣𝑎−1
] < 𝑒𝑝𝑠          [2] 

where: 

𝑒𝑝𝑠 = denotes a maximum permissible error. 

4.4.2. Network Performance Assessment 

This phase aims to estimate the overall performance loss of a transportation network after a disaster 

and its restoration during the recovery process by means of implementing the reconstruction 

schedule generated by the scheduling model. The following steps are executed to calculate a 

network performance loss at each recovery milestone: 

1- Calculate link flows at equilibrium for recovery milestone 𝑖 (𝑣𝑖) using the Frank-Wolfe 

algorithm 

2- Estimate a travel speed on each link (𝑆𝑙) using Equation 3. A travel speed is a flow-

dependent variable that is the function of the link free-flow speed (𝐹𝑆𝑙), traffic flow on link 

𝑙  at milestone 𝑖 (𝑣𝑙
𝑖), and capacity of link (𝐶𝑙) (TRB 2000). 

𝑆𝑙 =
𝐹𝑆𝑙

1+𝛼(𝑣𝑙
𝑖/𝐶𝑙)𝛽

       [3] 

where: 

𝑆𝑙= Travel speed on link 𝑙 ; 
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𝐹𝑆𝑙 = Link free-flow speed; 

𝑣𝑙
𝑖 = Traffic flow on link 𝑙  at milestone 𝑖; and 

 𝛼 and 𝛽 = Scalar parameters that depend on the type of the link. 

3- Calculate a travel time on each link (𝑡𝑡𝑙) by dividing its length (𝑙𝑒𝑛𝑙) by the speed of 

traveling on this link (𝑆𝑙), as shown in Equation 4.  

𝑡𝑡𝑙 = 𝑙𝑒𝑛𝑙/𝑆𝑙        [4] 

where: 

𝑡𝑡𝑙= Travel time on each link; and 

𝑙𝑒𝑛𝑙 = Length of the link. 

4- Estimate the overall travel time for all travelers at equilibrium for recovery milestone 𝑖 (𝑇𝑖) 

using the travel time on each individual link (𝑡𝑡𝑙), as shown in Equation 5. 

𝑇𝑖 = ∑ ∫ 𝑡𝑡𝑙(𝑦). 𝑑𝑦
𝑦=𝑣𝑖

𝑦=0
𝐿
𝑙=1       [5] 

where: 

𝑇𝑖= Overall travel time for all travelers at equilibrium for recovery milestone 𝑖; and 

𝐿 = The number of transportation network links. 

5- Calculate an additional travel time for all travelers on a network at recovery milestone 𝑖 

(∆𝑇𝑖 ) using Equation 6. The gradual restoration of repaired links in a network over a 

recovery duration (𝐷) leads to a gradual reduction in an additional travel time (∆𝑇𝑖) until 

full restoration to pre-disaster conditions (𝑇𝑃𝑟𝑒−𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟) that will be achieved at the end of 

the recovery process (Figure 3). Steps 1–4 are repeated for all recovery milestones (𝑖 =

 0 𝑡𝑜 𝑛). 

∆𝑇𝑖 = 𝑇𝑖 − 𝑇𝑃𝑟𝑒−𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟      [6] 

where: 

∆𝑇𝑖= additional travel time for all travelers on a network at recovery milestone 𝑖; and 

𝑇𝑃𝑟𝑒−𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟 = Overall travel time for pre-disaster conditions. 

6- Calculate an achieved performance improvement (in terms of time travel) at milestone 𝑖 

(𝑃𝑖) using Equation 7. 𝑃𝑖 will further be used for calculating a reward associated with the 

agent's decisions at each state. 

𝑃𝑖 = 𝑇𝑖−1 − 𝑇𝑖       [7] 

where: 

𝑃𝑖= Achieved performance improvement (in terms of time travel) at milestone 𝑖. 

7- Calculate the overall network performance loss (𝛥𝑇 ) during the recovery process by 

integrating an additional travel time (∆𝑇𝑖−1) at different recovery milestones (𝑖 =  1 𝑡𝑜 𝑛) 

that is represented by the area under the curve of (∆𝑇𝑖−1), as shown in Figure 2. This area 

under the curve is estimated as shown in Equation 8. 
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𝛥𝑇 = ∑ ∆𝑇𝑖−1. ℎ𝑖
𝑛
𝑖=1        [8] 

where: 

ℎ𝑖= The length of time between recovery milestones 𝑖 and 𝑖 − 1 

 

 

Figure 4.  The Frank-Wolfe algorithm process 
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4.5. Developing a Reconstruction Cost Model  

In this step, the PIs developed a reconstruction cost model which aims to quantify the impacts of 

an agent's scheduling decision on the post-disaster reconstruction cost of damaged transportation 

networks. In this model, the following three different types of costs were considered: (1) the direct 

construction-related costs of the recovery efforts (𝐷𝐶𝐶), (2) indirect construction-related costs 

(𝐼𝐶𝐶), and (3) indirect non-construction related costs (𝐼𝑆𝐶).  

The 𝐷𝐶𝐶 focuses on the costs of reconstruction resources required for all activities in a selected 

execution mode (Equation 9). Execution of a project in accelerated mode (i.e., overtime policy) 

reduces the completion time but requires more resources and costs more than normal mode.   

𝐷𝐶𝐶 = ∑ ∑ 𝑅𝑛𝑚
𝑥 𝑑𝑐𝑟

𝑋
𝑥=1

𝑁
𝑛=1        [9] 

where: 

𝐷𝐶𝐶 = Direct construction-related costs of the recovery efforts 

𝑅𝑛𝑚
𝑥 = Resource requirements for activity 𝑥 of project 𝑛 in an execution mode of 𝑚;  

𝑑𝑐𝑟 = The unit cost for resource 𝑟;  

𝑋 = The number of activities; and 

𝑁 = The number of projects. 

The 𝐼𝐶𝐶  includes time-dependent costs such as site overhead and can be calculated using the 

duration of each project (𝑑𝑛) extracted from a recovery schedule and an indirect cost unit rate (𝑖𝑐𝑛) 

for a project (Equation 10).  

𝐼𝐶𝐶 = ∑ 𝑑𝑛𝑖𝑐𝑛
𝑁
𝑛=1         [10] 

where: 

𝐼𝐶𝐶 = Indirect construction-related costs 

𝑑𝑛 = Duration of project 𝑛; and  

𝑖𝑐𝑛 = Indirect cost unit rate. 

Similarly, the 𝐼𝑆𝐶 is a time-dependent cost reflecting socioeconomic impacts on road users and 

business disruption and can be calculated using the duration of each project (𝑑𝑛) extracted from a 

recovery schedule and a disruption cost unit rate (𝑑𝑐𝑛) for the project (Equation 11). In order to 

incorporate social vulnerability into the model,  𝐼𝑆𝐶  is multiplied by a coefficient (𝑠𝑣𝑛 ) that 

reflects a weighted average social vulnerability of travelers that are supposed to use a link (𝑆𝑜𝑉𝐼𝑛) 

before a disruption (Equation 12).  

𝐼𝑆𝐶 = ∑ 𝑑𝑛𝑑𝑐𝑛. 𝑠𝑣𝑛
𝑁
𝑛=1        [11] 

where: 

𝐼𝑆𝐶 = Indirect socioeconomic costs  

𝑑𝑐𝑛 = disruption cost unit rate of project 𝑛; and  

𝑠𝑣𝑛 = Coefficient of SoVI for users affected by project 𝑛.  

𝑠𝑣𝑛 = 1 − [
𝑆𝑜𝑉𝐼𝑛−𝑆𝑜𝑉𝐼𝑚𝑖𝑛

𝑆𝑜𝑉𝐼𝑚𝑎𝑥−𝑆𝑜𝑉𝐼𝑚𝑖𝑛
]       [12] 

where: 
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𝑆𝑜𝑉𝐼𝑛 =  Weighted average social vulnerability of travelers that are supposed to use a link 

reconstructed by project 𝑛; 

𝑆𝑜𝑉𝐼𝑚𝑖𝑛 = Minimum SoVI score of the travelers in the region of study; and  

𝑆𝑜𝑉𝐼𝑚𝑎𝑥 = Maximum SoVI score of the travelers in the region of study.  

4.6. Agent-based Deep Reinforcement Learning Model Development for 

Transportation Network Recovery 

Attempting to solve the post-disaster transportation network recovery prioritization problem using 

DRL needs formulation of the problem in an agent-based modeling context, specifically, defining 

the agent, the state space, the action space, and the reward system.  

4.6.1. Agent and action space 

In the DRL model, the agent is the entity that learns by interacting with the environment. In this 

study, an agent was defined as the transportation agency agent (TA), which is responsible for 

restoring the transportation network accessibility to the pre-disaster level. The main objective of 

this agent is to generate optimal resource utilization plans and recovery schedules based on the 

limited availability of reconstruction resources. The agent needs to: (1) consider the constraints of 

resource limitation and for scheduling reconstruction projects of damaged roads; (2) assess 

network performance loss for damaged roads within transportation networks; and (3) choose an 

optimal strategy of resource utilization and scheduling to minimize reconstruction cost as well as 

network performance loss.  

A scheduling model has been designed to support the agent for scheduling the reconstruction 

efforts while maintaining resource constraints. The scheduling model defines the two main 

decision variables and evaluates their effects on the recovery schedule, availability of resources, 

and reconstruction costs. These two decision variables are the project start time and the project 

execution mode, including the normal or overtime (accelerated) policy adopted in each project. 

Therefore, the decision space is a 2-dimensional tuple where the first element is a subset of {A 

project to start, Do nothing} and the second element is a subset of execution mode options {0,1,2}. 

0 is associated with "Do nothing," 1 and 2 denote the normal and accelerated execution mode, 

respectively. The available recovery resources are allocated to the competing reconstruction 

projects according to the specified decision variables and resource limitations. The scheduling 

model follows a number of assumptions in the decision-making process as follows: 

• Projects cannot start with a smaller number of resources than their requirements.  

• Projects cannot be interrupted once started. 

• Project durations are fixed based on the execution mode adopted for the project.  

The main output of this model is a step-by-step scheduling plan for all recovery projects that fulfill 

the resource availability limitations. 

4.6.2. State space and reward system 

The state space aims to accurately describe the state of the environment at each simulation step. 

The state is the observation of the agent from the environment and is utilized to calculate the 

reward and choose an action. The space state utilized in this research is composed of three vectors, 

the first one represents the activation status of the recovery projects (0: inactive, 1: active), the 
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second one represents the progression status of the projects in percent, and the third one represents 

the percentages of resource utilization.  

The next element of DRL is the reward system which plays a pivotal role in the learning process. 

The agent aims to find a state-action policy that maximizes cumulative long-term reward. Defining 

an efficient reward system is a challenging task which is an active research topic. In this research, 

the PIs defined a reward system in which the reward value is proportional to the magnitude of the 

network performance restoration and the percentage of resource utilization. The final cost and time 

of the recovery projects. The reward value is also inversely proportional to the final recovery time 

and cost. 

4.6.3. Deep Reinforcement Learning (DRL)  

According to the general setting demonstrated in Figure 5, agents interact with a given 

environment. In other words, an agent perceives a state (𝑠𝑡) of a system at each time step (𝑡) and 

needs to choose an action (𝑎𝑡) according to the available options. Actions of all agents result in 

the transition of an environment to 𝑠𝑡+1  based on that, an agent receives a reward (𝑟𝑡). State 

changes and obtained rewards are assumed to be stochastic variables that have the Markov 

property. Thus, state transition probabilities and rewards depend only on a state 𝑠𝑡 and an action 

𝑎𝑡. It is important to note that agents can choose only their action corresponding to 𝑠𝑡 and have no 

control on or prior knowledge of a state 𝑠𝑡+1 or a possible reward 𝑟𝑡 . These quantities can be 

observed during the training process by interacting with the environment.  

The DRL algorithm used in this research is Deep Q-Learning (43), which is developed to find an 

optimal action-selection policy. This goal is achieved by utilizing the convolutional neural network 

to approximate the action-value function, which defines the value of each action from a given state. 

The values represent long-term rewards. Choosing an action with a high value means earning a 

future reward, although potentially not an immediate reward.  

The depth of a deep neural network shows that there is more than one hidden computational layer 

of neurons which allows developing features of features, transforming low-level features of the 

data to high-level ones, potentially increasing network performance.  

For the learning process, the DQN framework iteratively selects action at a given state (𝑠𝑡), then 

collects reward (𝑟𝑡) and observes the new state (𝑠𝑡+1) and updates the Q-function using the latest 

experience (Equation 1).  

Q𝑡+1(𝑠𝑡, 𝑎𝑡)= Q𝑡(𝑠𝑡, 𝑎𝑡)+α [𝑟𝑡+1+𝛾𝑚𝑎𝑥𝑎𝜖𝐴Q𝑡(𝑠𝑡+1, 𝑎𝑡)- Q𝑡(𝑠𝑡, 𝑎𝑡)]               [13] 

where: 

𝑠𝑡 = State at time step 𝑡; 

𝑎𝑡 = Action at time step 𝑡; 

𝑟𝑡 = Reward at time step 𝑡;  

𝐴 = The action space;  

γ = Discount factor; and 

α = Learning rate. 

One of the main challenges in DRL implementation is the trade-off between exploration and 

exploitation. Exploratory actions potentially help to learn more, while the exploitative actions try 

to gain the most reward according to what has been learned so far. To address this challenge, the 
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PIs implemented decreasing ε-greedy exploration policy. This method is a simple but efficient way 

that selects a random action (explore) with a probability ε and selects the action with the highest 

value (exploit) with a probability 1-ε. The value of ε decreases as training epochs (𝑛) progress to 

the total number of training epochs (𝑁) (Equation 14). 

𝜀𝑛 = 1 −
𝑛

𝑁
          [14] 

where: 

𝑛 = Training epochs; and 

𝑁 = The total number of training epochs. 

 

 
Figure 5. Reconstruction project prioritization agent-based model with deep reinforcement learning model 
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5. ANALYSIS AND FINDINGS   

5.1. Model Assessment  

To evaluate the proposed model and demonstrate its application and capabilities in the 

prioritization of the post-disaster transportation recovery process, the PIs designed and analyzed 

an illustrative example. The example aims to optimize the reconstruction work for a damaged 

transportation network after a flooding event in a near real-life setting. To this end, the example 

was designed based on the simplified real transportation network data of East Baton Rouge Parish, 

Louisiana, as shown in Figure 6. Figure 7 also shows the simplified topology of the network, 

including main traffic points (nodes) and the connecting road segments (links). The locations of 6 

damaged road segments also are depicted on the network topology in Figure 7. The traffic data, 

including OD travel demand, free-flow travel time, and link capacities, can be found in Appendix 

1. The damage data is hypothetically defined to mimic the potential post-flood damage to the 

roadways and consequent disruptions. The damage level was assumed in a way that fully closed 

the damaged road segment and needed recovery efforts to restore its capacity to pre-disaster 

condition. The presented prioritization problem is a combinatorial optimization problem that is 

considered NP-hard. This small illustrative example has a solution space with 46080 different 

solutions (6! *26), which is computationally demanding to search all the solution space. To this 

end, the PIs utilized the proposed methodology to solve and analyze this optimization problem. 

 
Figure 6. Topology of the damaged transportation network 
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In this example, the DRL-ABM model is utilized to support identifying two major reconstruction 

decisions: (1) the recovery projects' start times and (2) the execution modes of the projects. The 

following data types are also required as the model inputs: (1) the recovery projects data including 

closed roads and resource requirements, (Table 2), (2) available recovery resources and cost data 

(Table 3), (3) Socioeconomic information of affected travelers. For simplification, the region of 

study is divided into five zones with different social vulnerability indices (shown in Figure 6 and 

Table 4). The SoVI score of each zone is assigned to the travelers from all the origins (Nodes) 

within that zone. 

 

 
Figure 7. Simplified transportation network and damaged segments 
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Table 2. Recovery projects data 

Recovery projects 
Project 

1 

Project 

2 

Project 

3 

Project 

4 

Project 

5 

Project 

6 

ID of closed link 9 17 43 48 63 67 

Normal execution 

mode 

Duration 10 12 14 8 14 10 

Resource A 2580 4450 1820 3360 4200 3600 

Resource B 200 350 160 260 310 330 

Resource C 980 2040 1370 1540 1820 1650 

Accelerated execution 

mode 

Duration 6 8 8 6 8 6 

Resource A 4730 7000 3350 6720 6300 6600 

Resource B 370 580 290 520 465 605 

Resource C 2160 3400 2510 3080 2730 3025 

Table 3. Resource availability and cost data 

Resources Availability (unit) Cost ($/unit) 

Resource A 7000 260 

Resource B 600 760 

Resource C 3500 110 

Table 4. Socioeconomic information of the region of study 

Zone SoVI 

Central Low 

South-West Medium-Low 

South-East Medium 

North-West Medium-High 

North-East High 

The above input data was used to analyze a number of scenarios with the proposed DRL-ABM 

method for (1) evaluate the performance of the model in learning the optimal strategy for 

maximizing the achieved reward, (2) analyze the effects of various factors such as reward system 

components and objectives on the outputs of the model. The results of the model assessment and 

analyses are presented in the following section. 

5.2. Results and Discussion  

In the first step the PIs, conducted a traffic analysis before and after the disastrous event to calculate 

the transportation network performance loss. The result of the analysis showed that the travel time 

per day was increased by 1.3962 (veh.hr/veh) after road closures due to the damaged roadways 

within the transportation network. In the next step, the PIs trained the agent-based DRL model for 

prioritization of the recovery projects. The proposed model was implemented in Python 

programming language and was trained for 1000 epochs. The performance of the agent in 

achieving reward during the learning process is shown in Figure 8. The agent performance with 

respect to the traffic metric of average additional travel time per day is depicted in Figure 9. Figure 

10 shows the performance of the agent during the training process with respect to the other major 

metric in the reward system, which is resource utilization percentage. In all three figures, it can be 

observed that in the initial part of the training process has relatively high variance. This is true 
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because initially, the agent is predominantly taking random actions (exploration). In this part of 

the training the agent is trying to learn the action-value function. Because of the agent's actions, 

the recovery process cannot restore the network performance to a satisfactory level, also the 

resource utilization has a low rate which shows that the agent is not able to use the available 

resources efficiently to restore the network. As the learning progress, the agent gradually learns 

the action-value function and starts taking exploitative actions instead of exploratory ones. 

Decreasing the exploration rate can be observed in all 3 Figures that shows higher reward, better 

resource utilization and fasted recovery of the network performance. 

 
Figure 8. The agent performance with respect to average gained rewards 
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Figure 9. The agent performance with respect to average additional travel time per day 

 
Figure 10. The agent performance with respect to resource utilization percentage 

Comparison of Figure 9 and Figure 10 as the two major metrics used in the reward system indicates 

that the performance of the agent regarding the average additional travel time has a clearer 

convergence than the resource utilization metric. Although the average resource utilization 

increases while training, the agent performance has a high variance on this metric even in the 
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exploitative phase. One of the reasons for this issue can be the dynamic characteristic of the 

resource utilization and existence of multiple resources, which make it challenging to fully utilize 

the available capacity of resources. 

Table 5 shows 7 optimal solutions that were frequently developed by the agent in the exploitative 

phase. Solution 1 represents the solutions that the agent achieved the highest award according to 

the defined reward system. This solution is the main output of the agent that considers the reward 

system as a pre-defined combination of the recovery process objectives. Solution numbers 2, 3, 4, 

and 5 are the optimal solutions achieved by the agent with respect to the major components of the 

reward system, including total recovery duration, total recovery cost, resource utilization 

percentage, and additional travel time, respectively. Although solutions number 2, 3, 4, and 5 

outperform solution number 1 in at least one of the objectives, however, solution number 1 

provides a more balanced solution for the recovery process. Achieving an optimal solution in the 

proposed agent-based DRL model highly depends on the design of the reward systems, which 

should be accurately calibrated according to the preferences of decision-makers. Choosing an 

appropriate reward for a given task is an ongoing research topic in DRL literature. In DRL, the 

agent learns in an unsupervised manner, and it would be ideal if the agent would be capable of 

choosing its own reward system rather than depending on experts to define it, which therefore is 

the goal of many active researchers. Solutions number 6, 7, and 8 are the solutions with the least 

sub-components of the cost model, including construction-related direct cost, construction-related 

indirect cost, and non-construction indirect cost of the recovery process, respectively.  

Solution number 5 optimizes the recovery process in terms of accelerating the restoration of the 

network performance, however, it obviously requires more expenditures. There is a trade-off 

between minimizing the recovery costs and minimizing the network performance loss and total 

recovery duration. The acceleration of the recovery process can be accomplished by allocating 

more resources and overtime working hours, which are associated with lower productivity and 

higher costs. On the other hand, solution number 6 is an optimal solution with minimum 

reconstruction direct cost. However, it compromises the recovery duration (40 weeks in 

comparison with 32 weeks). Solution number 7 is associated with the scenario that intends to 

minimize the construction-related costs. In this scenario, the agent, regardless of the network 

recovery process, tried to minimize the completion time of each project by executing them in 

accelerated mode. So, this scenario has a higher total recovery time as well as a higher total 

recovery cost. 

Table 5. Optimal solutions generated by the agent 

Solution Priorities 
Execution 

Mode 
Start time 

Completion 

Time 

Total 

Recovery Time 

(Week) 

Total Recovery 

Cost 

($) 

Average Resource 

Utilization (%) 

Solution 1 
{P6, P4, P3, 

P5, P1, P2} 

{N, N, A, 

N, N, A} 

{0, 0, 10, 

18, 12, 26} 

{10, 12, 18, 

26, 26, 32} 

32 

 
9312,450 

88.31 

 

Solution 2 
{P4, P6, P3, 

P5, P1, P2} 

{N, N, A, 

N, N, A} 

{0, 0, 10, 

18, 12, 26} 

{10, 12, 18, 

26, 26, 32} 
32 9,476,280 

88.69 

 

Solution 3 
{P4, P2, P3, 

P6, P1, P5} 

{N, N, A, 

N, N, A} 

{0, 17, 1, 

9, 10, 29} 

{10, 29, 9, 

17, 24, 35} 
35 9,073,080 80.35 

Solution 4 
{P2, P6, P3, 

P4, P1, P5} 

{A, N, A, 

N, N, N} 

{0, 6, 6, 

14, 18, 22} 

{6, 18, 14, 

22, 32, 32} 
32 9,457,700 89.27 

Solution 5 
{P4, P3, P1, 

P2, P5, P6} 

{N, A, N, 

N, A, N} 

{0, 0, 8, 

10, 28, 18} 

{10, 8, 22, 

18, 36, 28} 
36 9,709,580 78.74 
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Solution 6 
{P2, P4, P1, 

P6, P3, P5} 

{A, N, N, 

N, N, A} 

{0, 6, 6, 

18, 20, 34} 

{6, 18, 20, 

26, 34, 40} 
40 9,518,330 68.45 

Solution 7 
{P2, P1, P3, 

P4, P5, P6} 

{A, A, A, 

A, A, A} 

{0, 6, 14, 

22, 28, 36} 

{6, 14, 22, 

28, 36, 42} 
42 10,412,090 74.08 

Solution 8 
{P4, P2, P3, 

P6, P1, P5} 

{N, N, A, 

N, N, A} 

{0, 17, 1, 

9, 10, 29} 

{10, 29, 9, 

17, 24, 35} 
35 9,073,080 80.35 

One of the main contributions of this study is incorporating a transportation network analysis 

algorithm into the model to reflect the dynamic effects of recovery process on transportation 

network. Figure 11 shows how different solutions in Table 5 differ from each other in restoring 

the network performance. The gray line represents the solution number 5 with the shortest 

additional travel time. This acceleration can be achieved with efficient resource allocation and 

project prioritization.  

 
Figure 11. Network performance restoration  

In order to evaluate the efficiency of the proposed agent-based DRL model, the Authors analyzed 

the outputs against the entire space solution. To this end, all possible prioritization scenarios were 

analyzed to find the global optimal solutions. The results of this analysis are depicted in Figure 12. 

The abovementioned four objective functions were calculated for all the prioritization scenarios 

and plotted on six different 2-dimensional diagrams. The seven optimal solutions in Table 5 are 

also shown in Figure 12 for visual comparison. It can be observed that the optimal solutions 

generated by the agent, specifically solution 1, reflect one of the near-global optimal solutions of 

the prioritization problem, which confirms the efficiency of the proposed model in solving the 

illustrative example and finding optimal recovery strategies.  
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Figure 12. Comparison of generated optimal solutions against the entire solution space 

7. CONCLUSIONS 

The research focus area of the proposed study is developing and implementing a deep 

reinforcement learning technique for prioritizing post-disaster transportation systems for 

enhancing the durability and service life of transportation infrastructure in metropolitan and rural 

areas. Timely rehabilitation and quick post-disaster recovery of transportation infrastructures play 

a critical role in the social well-being and economic development of affected regions. This study 

tackles a crucial topic for optimizing the reconstruction project plans by using emerging 

prioritization methodologies and data-driven reinforcement learning. This research addresses an 

impending national interest in transportation infrastructure reconstruction and maintenance after 

catastrophic disasters. In particular, the proposed research area closely aligns with the mission of 
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the Center that pursues the two following objectives: (1) Objective 2: Promote sustainability and 

resiliency of the transportation infrastructure renewal and upgrade; and (2) Objective 5: Enhance 

the resiliency of the transportation infrastructure in the event of extreme weather events. In 

addition, this problem statement is accurately aligned with Tran-SET's Vision and Mission, which 

aims to improve the transportation infrastructure through the development, evaluation, and 

implementation of cutting-edge technologies and innovative construction management processes. 

If successful, this study will greatly facilitate the planning for rehabilitation projects with minimum 

effects on mobility, which corresponds with the Tran-SET's research objective of developing cost-

effective solutions for the construction and maintenance of the transportation infrastructure in 

metropolitan and rural areas. 

This study proposed a new agent-based reinforcement learning model to examine dynamic 

interaction flows of communities with transportation infrastructure systems in case of disaster 

events. The goal of the research is to investigate the effects of disaster mitigation and recovery 

policies on this system. To achieve these objectives, the authors developed the research 

methodology in five steps adopting SoVI, ABM, and RL approaches and validating the model with 

the four different scenarios. The RL-ABM simulation model was tested on a semi-hypothetical 

example focusing on the five different regions of East Baton Rouge Parish located in Louisiana. 

The model assessment provided reliable simulation outcomes, which led the authors to confirm 

the proposed model's reliability and feasibility. Thus, the authors believe that the proposed model 

helps achieve a shorter recovery time for all sectors and generates an optimal policy to restore the 

more vulnerable communities by allocating the recovery resources based on socioeconomic 

characteristics. The outcome of this study is also expected to be an initial step toward a 

comprehensive decision-making framework that allows the policy-makers to analyze the dynamic 

behavior of their actions and optimize their decisions which leads to more resilient communities 

and more effective recovery plans in terms of social and economic benefits. Since several state 

emergency department possesses high-level disaster mitigation and recovery plan that do not cover 

dynamic interactions and complicated impacts during a natural disaster, this DRL-ABM model 

would be a baseline for them to establish a concrete disaster recovery plan reflecting multi-

objectives and multi-agent behavior with socioeconomic aspects. Moreover, this approach will 

enable further comprehensive understanding and multidisciplinary research on the factors 

affecting the communities' recovery activities. 

In terms of the identified limitation of the proposed approach, this model conducted the 

simplification of all variables varying between 0 and 1 to facilitate using first-order algebraic 

equations to formulate the model. Formulating the model with metric units would provide more 

realistic results; however, it is a time-consuming and demanding task because of the scope of the 

model. However, the numerical labeling and embedding of necessary variables can be flexibly 

updated with realistic metrics according to given disaster scenarios, agent characteristics, and 

others. The proposed DRL-ABM also focused on modeling transportation infrastructure; thus, a 

decision-maker would need to do recovery planning by considering the infrastructure 

interdependencies and their impact on communities. As a next step, the authors will integrate other 

available vulnerability dimensions into this proposed model to provide an accurate picture of the 

host community's sustainable recovery processes. 

This study addresses urgent Region 6 states' and national challenges by providing immediately 

applicable solutions for optimizing and prioritizing post-disaster transportation reconstruction and 

recovery processes. This project will provide LaDOTD and TxDOT with a guidebook that clearly 
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describes systematic procedures for (1) identifying critical factors of post-disaster recovery of 

transportation networks, (2) establishing reinforcement learning-based systems accurately 

analyzing a huge amount of Region 6's States' transportation and disaster data including hourly 

traffic data, inspection data, pavement management data, and others, (3) revealing new knowledge 

using the AI-based systems such as traffic flow prediction, disaster-vulnerable transportation 

segment identification, and infrastructure criticality evaluation, and (4) facilitating project 

prioritization from the new perspective using socioeconomic, mobility, and safety factors. The 

research outcomes are therefore expected to bring new scientific knowledge on the implications 

of systematic resource optimization and AI-based project prioritization of damaged transportation 

infrastructure. In addition, the intellectual merit of this research study includes a holistic 

investigation into a network-level post-disaster recovery approach of broadly spread transportation 

systems for unveiling latent factors and their impacts and quantifying their accurate benefits and 

weaknesses of various prioritization scenarios. Thus, this system will be new formalized scientific 

knowledge that will be helpful for practitioners and following researchers by providing a decision-

making framework to develop an optimal transportation reconstruction strategy for post-disaster 

recovery. If not performed, when catastrophic events occur in the future, no methods and tools will 

exist that can organize limited resources and prioritize short- and long-term reconstruction and 

maintenance processes for rehabilitating affected transportation infrastructure. 

This research team will help practitioners and decision-makers in Region 6's States implement 

simulation and pilot studies regarding optimizing and prioritizing the post-disaster transportation 

infrastructure reconstruction and maintenance projects according to historical disaster scenarios. 

The detailed analysis, evaluation, and implementation guidebook with the middleware software 

will be provided at the end of the project phase. Since the Hazus flood model is updated by FEMA 

pertaining to a future disaster event or by a user according to a user-defined potential disaster 

scenario, this framework will allow State practitioners to quickly and iteratively analyze historical 

disaster scenarios and execute affected transportation recovery processes for short- and long-term 

periods. If successful, this project would establish the first view and systematic post-disaster 

recovery projects of a massive number of damaged transportation systems that practitioners in 

DOTs can use to prioritize and predict rehabilitation practices. Moreover, this project helps make 

a well-guided decision on the integrated transportation damage recovery and facilitates a 

synergetic effort to leverage the uses of the current disaster management practices of Louisiana 

and Texas. 
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APPENDIX 1 

Table 6. OD daily travel demand 

NODE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 200 300 500 800 500 1300 500 200 500 300 500 500 400 100 300 300 100 400 300 100 

2 100 400 200 400 200 600 200 100 300 100 100 400 200 0 100 100 0 100 0 0 

3 100 300 100 200 100 300 300 200 100 100 100 200 100 0 0 0 0 100 100 0 

4 500 400 400 700 700 1200 1400 600 600 500 500 800 500 100 200 300 200 400 500 200 

5 0 200 200 500 800 1000 500 200 200 100 200 500 200 0 100 100 100 200 100 0 

6 200 0 400 800 400 800 400 200 200 100 200 900 500 100 200 300 100 200 100 100 

7 200 400 0 1000 600 1900 500 700 400 200 500 1400 1000 200 400 500 200 500 200 100 

8 500 800 1000 0 800 1600 800 600 600 400 600 2200 1400 300 700 900 400 500 300 200 

9 800 400 600 800 0 2800 1400 600 600 600 900 1400 900 200 400 600 300 700 500 200 

10 1000 800 1900 1600 2800 0 4000 2000 1900 2100 4000 4400 3900 700 1800 2500 1200 2600 1800 800 

11 500 400 500 800 1400 3900 0 1400 1000 1600 1400 1400 1000 100 400 600 400 1100 1300 600 

12 200 200 700 600 600 2000 1400 0 1300 700 700 700 600 200 300 400 300 700 700 500 

13 200 200 400 600 600 1900 1000 1300 0 600 700 600 500 100 300 600 600 1300 800 800 

14 100 100 200 400 600 2100 1600 700 600 0 1300 700 700 100 300 500 400 1200 1100 400 

15 200 200 500 600 1000 4000 1400 700 700 1300 0 1200 1500 200 800 1100 800 2600 1000 400 

16 500 900 1400 2200 1400 4400 1400 700 600 700 1200 0 2800 500 1300 1600 600 1200 500 300 

17 200 500 1000 1400 900 3900 1000 600 500 700 1500 2800 0 600 1700 1700 600 1700 600 300 

18 0 100 200 300 200 700 200 200 100 100 200 500 600 0 300 400 100 300 100 0 

19 100 200 400 700 400 1800 400 300 300 300 800 1300 1700 300 0 1200 400 1200 300 100 

20 100 300 500 900 600 2500 600 500 600 500 1100 1600 1700 400 1200 0 1200 2400 700 400 

21 100 100 200 400 300 1200 400 300 600 400 800 600 600 100 400 1200 0 1800 700 500 

22 200 200 500 500 700 2600 1100 700 1300 1200 2600 1200 1700 300 1200 2400 1800 0 2100 1100 

23 100 100 200 300 500 1800 1300 700 800 1100 1000 500 600 100 300 700 700 2100 0 700 

24 0 100 100 200 200 800 600 500 700 400 400 300 300 0 100 400 500 1100 700 0 
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Table 7. Transportation network traffic data 

 

 

Link 

ID 

Free flow 

travel 

time 

Capacity 
Link 

ID 

Free flow 

travel 

time 

Capacity 
Link 

ID 

Free flow 

travel 

time 

Capacity 
Link 

ID 

Free flow 

travel 

time 

Capacity 

1 6 25900.2 22 5 5045.823 43 6 13512 64 6 5059.912 

2 4 23403.47 23 5 10000 44 5 5127.526 65 2 5229.91 

3 6 25900.2 24 10 5050.193 45 3 14564.75 66 3 4885.358 

4 5 4958.181 25 3 13915.79 46 3 9599.181 67 3 9599.181 

5 4 23403.47 26 3 13915.79 47 5 5045.823 68 5 5075.697 

6 4 17110.52 27 5 10000 48 4 4854.918 69 2 5229.91 

7 4 23403.47 28 6 13512 49 2 5229.91 70 4 5000 

8 4 17110.52 29 4 4854.918 50 3 19679.9 71 4 4924.791 

9 2 17782.79 30 8 4993.511 51 8 4993.511 72 4 5000 

10 6 4908.827 31 6 4908.827 52 2 5229.91 73 2 5078.508 

11 2 17782.79 32 5 10000 53 2 4823.951 74 4 5091.256 

12 4 4947.995 33 6 4908.827 54 2 23403.47 75 3 4885.358 

13 5 10000 34 4 4876.508 55 3 19679.9 76 2 5078.508 

14 5 4958.181 35 4 23403.47 56 4 23403.47 77 2 5229.91 

15 4 4947.995 36 6 4908.827 57 3 14564.75 78 3 4885.358 

16 2 4898.588 37 3 25900.2 58 2 4823.951 79 3 5000 

17 3 7841.811 38 3 25900.2 59 4 5002.608 80 5 5075.697 

18 2 23403.47 39 4 5091.256 60 4 23403.47 81 2 5229.91 

19 2 4898.588 40 4 4876.508 61 4 5002.608 82 4 5000 

20 3 7841.811 41 5 5127.526 62 6 5059.912 83 4 5000 

21 10 5050.193 42 4 4924.791 63 5 5075.697 84 4 5000 


