Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 106

5-10-2023

Errata: Continuous Lattices and Domains

Jimmie D. Lawson *Louisiana State University, Baton Rouge, LA 70803 USA*, lawson@math.lsu.edu

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Lawson, Jimmie D. (2023) "Errata: Continuous Lattices and Domains," *Seminar on Continuity in Semilattices*: Vol. 1: Iss. 1, Article 106. Available at: https://repository.lsu.edu/scs/vol1/iss1/106

Errata: Continuous Lattices and Domains

The following is a listing of errata in the monograph Continuous Lattices and Domains.

Page 2, line 6: Change L to D (twice). ... every pair of elements in D has an upper bound in D.

Page 22, New Notes, line -2: Change "second" to "second." ... extended second edition.

Page 118, Proposition I-4.10, line -2: Change "semilattices" to "semilattice" and "semilattice," to "semilattice," ...a sup semilattice, a semilattice, a lattice,...

Page 128, Exercise I-4.29, line 3: Change $(L \cup \{G\})$ to $(L \cup \{G\})^{op}$.

Page 171, Exercise II-2.27, first line of Hint: Change "sucient" to "sufficient." ...it is sufficient...

Page 183, line 6: Change "repect" to "respect."

Page 186, Exercise II-3.19, line 6: Change "analogs" to "analogous." ...derive an analogous result...

Page 211, Lemma III-1.3: The statement of this lemma is mathematically incorrect It should read as follows.

Lemma III-1.3. If posets S and T satisfy $S = \uparrow F$ and $T = \uparrow G$ for F and G finite, then $\omega(S \times T)$ is the product of the topologies $\omega(S)$ and $\omega(T)$. Then replace the second line of the proof by

 $(S \setminus \uparrow s) \times (T \setminus \uparrow t) = (S \times T) \setminus ((\uparrow F \times \uparrow t) \cup (\uparrow s \times \uparrow G)),$ and

Page 227, Corollary III-3.4: Change the next-to-last \mathcal{F} to G. ...then $F \subseteq \uparrow G$ for some $F \in \mathcal{F}$.

Page 228, Proof of Proposition III-3.5, line 5: Replace \in by \notinand $z \notin \uparrow G$.

Page 228, Proposition III-3.6, line 3: Move "F is finite" behind the set notation. The sets $\uparrow F = \{x : F \ll x\}$ for F finite are

Page 240, New Notes, line 1: Change "sets" to "set." ... an ordered set ...

Page 362, lines 1and 12: Change f to h. ...continuity of h (line 1) andthen g = h by Scott continuity... (line 12).

Page 364, line 7: Insert just before "Let $y_1, y_2 \in D_K$..." the following sentence:

Note that $D_K \neq \emptyset$ since $K \subseteq \bigcup_{i=1}^n \uparrow x_i$ implies $\wedge_{i=1}^n f(x_i) \in D_K$.

Page 377, line -10: Change $\hat{\mu}$ to ν . The fact that ν is independent....

Page 436, line 6: Change "compdeteness" to "completeness"

Page 436, line 8: Change "analogs" to "analogous"

Page 457, line 2: Change $\uparrow x$ to $\downarrow x$. Let $Q = V \cap \downarrow x$.

Page 479, Theorem VI-6.18, line 5: Change x^{\sharp} to π^{\sharp} with $\pi^{\sharp} = \tau$ and ...

Page 491, line -1: Change "spacesare" to "spaces are"

Page 492, line 8 of text: Change "Housdorff" to "Hausdorff"

Page 510, line 11: Remove the "end of proof" box.

Page 582, line 11, first column: Replace "preceding" by "following." ...remarks following I-3.18

1