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EXECUTIVE SUMMARY 1 

In 2017, the Texas Department of Transportation (TxDOT) closed over 530 disrupted road sections 2 

in the Houston area during Hurricane Harvey. Ground transportation for evacuation, motor carriers 3 

transporting humanitarian aid, and first responders entering the flooded areas had to be rerouted 4 

or rescheduled due to the road closures. To repair the damaged road infrastructure, the Federal 5 

Highway Administration (FHWA) allocated $25 million of federal funds to TxDOT for emergency 6 

repair activities such as removing debris, inspecting bridges and replacing traffic lights.    7 

In general, network links that carry higher traffic volume and those that ensure connectivity to 8 

isolated subnetworks represent critical links because disruptions on the links would impact more 9 

vehicles with a greater magnitude of travel time increase from rerouting or rescheduling.  However, 10 

the individuals and communities that use the infrastructure determines the importance of the road 11 

links for community resiliency during the response and recovery phases of extreme weather events 12 

varies based on their economic stability and social networks. If a certain link serves at-risk 13 

communities (i.e., lower income or older population) for evacuation or humanitarian aid, the link 14 

should be considered as a critical link regardless of its total traffic volume. These links must be 15 

resilient to save lives within the neighborhood and strengthen the region’s overall resiliency.   16 

The proposed research identifies the criticality of network links by identifying the community 17 

impacts from network disruption. In particular, this study focuses on developing a network index 18 

to determine the critical network links of the communities in a Hurricane-prone area.   The outcome 19 

of this study will answer the following important questions for disaster planning, management, 20 

and recovery. 21 

• What are the impacts of network disruptions on communities?  22 

• Which road links should be given a higher priority for disaster restoration during the 23 

response and recovery phases of extreme weather events?  24 

Results show that the user-based and conventional link-based measures do not always result in 25 

capturing the same critical links and the study demonstrates the differences between these two sets 26 

of measures. In fact, the critical links used by vulnerable users do not necessarily result in a 27 

significant impact on the general evacuee’s throughput due to the geographical locations of the 28 

vulnerable populations. The study also highlights how the critical links for the vulnerable 29 

population may differ based on the vulnerability types defined in this study. 30 

This study provides a useful comparison framework among different vulnerability and criticality 31 

measures so that decision makers can determine the critical links to prioritize retrofitting and 32 

protection strategies for evacuation. This helps to not only find the criticality of links based on 33 

their impacts on travel time and the number of evacuees they serve but also consider the 34 

variations caused by differences in the demographic, economic and land use characteristics of 35 

risk zones. 36 

 37 
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1. INTRODUCTION 

Hurricanes and severe tropical storms are major disruptive events that have struck coastal cities 

with higher frequency and intensity during the past few decades and caused considerable local and 

global consequences. Research results on global warming and hurricanes by National Oceanic and 

Atmospheric Administration’s (NOAA) geophysical fluid dynamics laboratory indicate that 

tropical cyclone intensities and rainfall rates will increase in the future and the proportion of 

tropical cyclones that reach intense (Category 4 and 5) levels will likely increase due to 

anthropogenic warming over the 21st century (1). Tracking the adverse weather events in the past 

few years after hurricane Harvey year indicate an increased number of named storms and 

hurricanes from 17 named storms and 10 hurricanes in 2017 to 23 named storms and 10 hurricanes 

in 2020. Since 2015, the Atlantic hurricane season may be growing because a named storm formed 

before the official start of the hurricane season on June 1. Figure 1 shows the paths of hurricane 

and tropical storms from 1980 to 2017. 

The National Hurricane Center issues regular tropical weather outlooks during the hurricane 

Atlantic season, which generally lasts from June to November; tropical storms turn to major 

hurricanes (category 3 or greater) especially during a 2-month period after mid-August. Coastal 

cities that lack preventive strategies may fail to protect critical transportation infrastructure and 

face consecutive road disruptions. Preparation and regular evaluation of transportation network 

vulnerability and resilience can help reduce the impacts of the network disruptions. Furthermore, 

highway and bridge operations and resiliency represent one of the largest investments in Texas, 

the region, and the US. State and national agencies should ensure the sustainable operation of the 

transportation system during natural disasters for all residents, but the consequences for 

particularly at-risk communities including older adults, people with disabilities, and people with 

low income may require greater emphasis. 

During the last major hurricane event in the Houston area in 2017, the Texas Department of 

Transportation (TxDOT) closed over 530 disrupted road sections. Ground transportation for 

evacuation, motor carriers transporting humanitarian aid, and first responders entering the flooded 

areas had to be rerouted or rescheduled due to the road closures. For some of the roads, the closure 

was prolonged, and many remained flooded or closed due to storm damage. Even the links that 

were dry a few days after the hurricane had to be inspected for possible damage before they 

reopened. According to officials, while the interstate highways were open soon, more than 100 

other roadways remained closed and even in some cases, the roads remained closed for several 

weeks because of high floodwaters and ongoing releases of water from reservoirs into overflowing 

rivers and bayous. Furthermore, many of the infrastructures such as traffic signals were disrupted 

and not functional for weeks. To repair the damaged road infrastructure, the Federal Highway 

Administration (FHWA) allocated $25 million of federal funds to TxDOT for emergency repair 

activities such as removing debris, inspecting bridges and replacing traffic lights. Figure 2 shows 

samples of road closure and flooding after Hurricane Harvey. 
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Figure 1. Hurricane and Tropical Storm paths (1980-2017) (Source: weather.org). 

 

Figure 2. Roads closures after Hurricane Harvey in 2017. 
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Increased risk of severe weather events, especially in coastal cities, raises the frequency of 

government-issued evacuation orders or optional evacuation by a proportion of population. This 

highlights the importance of studies on optimization of evacuation, understanding evacuation 

behavior, and evacuation timing (2–4). The efficiency of different strategies to facilitate and 

improve the evacuation outcomes, such as contraflow, has also been investigated in evacuation 

research (5,6). The transportation network represents the most crucial infrastructure component of 

evacuation and in order to have an effective and timely evacuation, different transportation 

constituents must function properly. This motivates researchers to explore the vulnerability and 

resilience of various transportation infrastructures during different stages before and after natural 

disasters (7,8). Models developed based on real evacuation behavior obtained by surveys in areas 

affected by major hurricanes provide a foundation for evaluating the performance of strategies and 

infrastructure during evacuation and afterwards. 

In general, network links that carry higher traffic volumes and those that ensure connectivity to 

isolated subnetworks represent critical links for evacuation because disruptions on the links would 

impact more vehicles with a greater magnitude of travel time increase from rerouting or 

rescheduling. However, the individuals and communities that use the infrastructure may also 

determine the importance of the road links because community resiliency during the evacuation 

phases of extreme weather events vary based on their social and economic stability. If a certain 

link serves at-risk communities (i.e., lower income or older population) for evacuation, the link 

should be considered as a critical link regardless of its total traffic volume. These links must be 

resilient to save lives within the neighborhood and strengthen the region’s overall resiliency. This 

mainly occurs because a lack of transportation options for evacuation and food supply will 

significantly affect their survival during the extreme weather event. The geography of Texas 

presents particularly significant risks for these vulnerable populations along the Gulf coast. 

Although achieving community resiliency remains a priority of the region, scant research has been 

conducted to develop strategies that minimize societal impacts along with enhancing infrastructure 

reliability.   

The importance of this research draws attention to the mobility challenges of vulnerable 

populations. Another issue is the limited resources available for these vulnerable groups including 

lack of financial resources, knowledge, education and technology; all of these affect evacuation 

during hurricane disasters. Furthermore, highly vulnerable and isolated communities encounter 

higher threats during different phases of disasters, mostly because of their inability to evacuate, 

significant damages from disaster effects such as flooding, and a lack of access to disaster relief 

measures. 

The study identifies the criticality of zones (i.e., communities) and evacuation network links that 

serve the zones by identifying the vulnerability of communities and their impacts from network 

disruption. In particular, this study focuses on developing network criticality measures to 

determine the important evacuation network links in a Hurricane-prone area based on 

communities’ social, economic, and environmental vulnerabilities. The traditional four-step 

evacuation demand modeling will capture the regional evacuation behaviors and evacuation 

network loading. Overall, the outcome of this study will answer the following important questions 

for disaster planning and management. 

• What are the impacts of network disruptions on communities based on the evacuation 

behavioral and spatial distributions?  
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• Which road links should be given a higher priority for disaster preparation to support timely 

and safe evacuation for vulnerable communities?  

The strategic plans obtained from the study will maximize the efficiency of disaster evacuation 

while considering the equity and need of communities with varying degrees of resilience and 

vulnerability. Decision-making that considers the risks to different communities may lead to a 

more effective distribution of resources and lead to a timely and safe evacuation from disaster 

events by strengthening the preservation of critical infrastructure links. The findings will strongly 

support short- and long-term transportation and infrastructure planning for policy makers and 

planners especially when optimizing maintenance and operation resources for future strategies 

while considering budget and time constraints to achieve maximum efficiency in disaster 

preparation.  
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2. OBJECTIVES 

As one of the principal lifeline systems, transportation networks deliver essential resources and 

services during the response and recovery phases of extreme weather events and must remain intact 

to enhance regional resiliency. Since Hurricane Harvey in 2017, agencies and elected officials 

have placed an increasing emphasis on preserving regional infrastructure by prioritizing 

investments on transportation network infrastructure and operations to promote a fast and 

sustainable recovery and enhance community resiliency. The project directly addresses the 

regional focus of preserving and enhancing transportation infrastructure resiliency by 

understanding the current transportation network and identifying the most critical and impactful 

network links. The project evaluates network resiliency with an understanding of not only the 

transportation infrastructure system itself but also risks (consequences) associated with the system 

failure. Developing a strategy that prioritizes infrastructure resiliency investments based on the 

social and economic risks represents a critical strategy for maximizing the effectiveness of 

resiliency investments. 

Maintaining the transportation network system remains critical for disaster relief activities and 

emergency responders during the response and recovery periods. The proposed research will 

enhance the resiliency of the transportation infrastructure in the event of extreme weather events 

because it focuses on the acute resiliency and risks associated with extreme weather events like 

Gulf of Mexico-based tropical storms. Given the size and scope of disaster events, the resources 

for road repair and restoration need to be strategically allocated during the response and recovery 

phases. Historically, stakeholders prioritize transportation network links that carry higher demand 

(volume) to minimize total system costs. However, this study emphasizes the need and 

vulnerability of the actual users of the infrastructure and their recovery from the event because the 

transportation network must serve these users during and after the disaster event for their survival 

and recovery. 

This study seeks to develop a framework to evaluate road network infrastructure criticality during 

extreme weather events by considering the user characteristics of the transportation network. The 

team evaluates the risk and vulnerability of road network components and quantifies the impact 

on the primary road users’ mobility and access during the evacuation phase of an extreme weather 

event. The study uses three criteria for network infrastructure criticality: if transportation links 

provide (i) access to evacuation routes and safe locations for socially vulnerable population who 

are at higher risk of long impacts in post-disaster period (Social Vulnerability) (ii) access to the 

residents of zones which will inflict significant economic losses if not properly evacuated or do 

not receive disaster relief measures during and after disasters (Economic Vulnerability), and (iii) 

mobility for populations and communities who are at considerably higher risk of getting impacted 

by disaster consequences such as flooding (Environmental Vulnerability). 

This project meticulously reviews the literature on hurricane evacuation behavior to understand 

important factors that affect the evacuation decisions by households in different risk zones. It 

examines models and survey results based on real evacuation behavior data or stated preferences 

for population with various demographic and socioeconomic characteristics so that the study 

methodology and results reflect the most probable conditions as much as possible. The study 

incorporates valid models and parameters obtained from existing hurricane evacuation research, 

specifically those determined for hurricane experiences in Texas coastal areas. Such an approach 

estimates the traffic link data with more realistic and practical assumptions.  
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3. LITERATURE REVIEW 

Evacuation demands and predictions  

Establishing strategies and policies that maximize the efficiency of responses before, during and 

after hurricanes requires understanding evacuation behavior. An extensive body of research aims 

at identifying factors that potentially impact household evacuation decisions (9–11). The 

evacuation behavior for hurricanes differs from other types of emergency evacuation because 

numerous variables influence not only the decision to evacuate but also the modality and timing 

of evacuation. These variables range from risk perception (12), information sources and their 

reliability (13,14), social cohesion (15) and many demographic and social factors (16–19). The 

studies on this topic target the residents of hurricane-prone zones to investigate the role that 

different factors play in the household evacuation decision or to determine factors influencing the 

hurricane evacuation order compliance rate. Most of the research relies on survey results to model 

the evacuation behavior and decision. The models seek to predict the future behavior using 

observed behavior of respondents in after-event studies, and investigate hypothetical scenarios 

using respondents’ stated preferences (20). The model findings in previous studies do not agree 

over a strong association between socioeconomic and demographic characteristics because of the 

uncertainties and complexities involved in hurricane evacuation decisions. However, several 

variables like age and presence of children in a household (19,21); storm intensity and housing 

condition (18,22); gender, perceived storm characteristics, official warnings, hurricane experience, 

and house ownership status (9,23–25); race and education level (25,26) exhibit important 

relationships with actual evacuation behavior.  

The literature also investigates the issues related to hurricane evacuation and behavioral responses 

during different phases of pre- and post-disaster. Many of the studies examine how people respond 

to warning messages, and their various precautionary actions when dealing with potentially 

dangerous weather events. Understanding who evacuates and who does not evacuate has been a 

cornerstone of research in the area of disaster mitigation. The characteristics of warning messages 

represent an important part of this field. For example, research indicates that more specific 

warnings make people more likely to adopt adaptive responses, and if warnings are believed, then 

evacuation would be initiated (27). Other research aims at understanding how warning 

characteristics can trigger evacuation. Mileti and O’Brien (28) discuss that public responses to risk 

information depend on how they perceive the risk and how warning messages are constructed in 

terms of their clarity, accuracy, consistency, and frequency, and the personal characteristics of the 

person who receives the warning. 

To better understand how people respond to disasters, a protective action decision model (PADM) 

has been used to examine the impacts of several decision-making factors including environmental 

cues and social information about a hazard as well as previous experience on perceived risk (29). 

Lindell and Hwang (30) extend the model to consider the effects of environmental proximity and 

personal experience, in addition to confirming the crucial role of perceived risk. The perceived 

risk represents an important factor that can significantly alter the households’ decisions and how 

they react when facing a natural hazard. Lindell and Hwang (30) emphasize the effect of disaster 

experience, gender, income, and hazard proximity on the perceived risk. The perceived risk 

remains especially critical to impact evacuation behavior, facilitate and optimize evacuation, and 

develop disaster relief strategies. These study outcomes show that the interactions among warning, 
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risk perception, and evacuation are determinative in understanding the evacuation decision 

making. 

As more data about individual decisions on disaster responses have become available, researchers 

have tried to develop models to investigate the actual and expected behaviors. Besides, a number 

of surveys that have been conducted right after hurricanes provide generalized factors and 

variations in decisions among individuals during the threats of disasters. Baker (31) uses data and 

suggests five major variables that account for variation in decisions including: 

- Risk level in the impacted area 

- Actions adopted by authorities 

- Housing conditions of the residents 

- Previous personal risk perception 

- Threat factors associated with the storm 

As discussed earlier, inconsistencies appear in previous research around the significance of 

independent variables in predicting the evacuation decision. Using Hurricane Bonnie’s household 

data in North Carolina, Whitehead et al. (18) assesses the role of storm intensity on evacuation 

behavior, and more specifically, destination patterns. They determine that a household’s perceived 

risk of flooding rather than the perceived risk of wind primarily influences their evacuation 

decisions. The likelihood of evacuation for those who live in mobile homes appears higher than 

other groups. Their results also confirm that non-white households and those with higher levels of 

education seem more likely to evacuate to family or friends’ homes. 

The evacuation decisions directly impact the travel demand and network loading during the 

evacuation periods. Fu and Wilmot (32) discuss that the evacuation decision should be considered 

as a series of binary choices over time to estimate the probability of households’ evacuation in 

different time periods based on their socioeconomic characteristics, intensity of hurricane and 

authority decisions before the hurricane landfall. In order to understand the reliance on different 

information sources, Lindell et al. (33) examine five hypotheses supported by previous hurricane 

evacuation research using the evacuation data from Hurricane Lili. These hypotheses included: 

- Residents of risk zones rely on some information sources more than other sources; they 

trust local news media the most and the Internet the least. 

- Residents of risk zones are more concerned about some information types than others; 

environmental cues concern them the most and evacuation impediments concern them the 

least. 

- Coastal proximity, housing structure type, information sources, and evacuation difficulties 

predict evacuation decisions during hurricane events. 

- The same variables mentioned as predictors of evacuation decisions, as well as time of day 

predict the timing of the hurricane evacuation decisions. 

- The preparation time for evacuation is defined by the time it takes to prepare and travel 

from work to home, gather all family members, pack required items, to carry out property 

protection measures and reach the evacuation routes and this time ranges from 60 to 450 

minutes. 

Testing these hypotheses confirmed the previous findings about information courses, concerns and 

evacuation decision timings and showed that households’ characteristics and evacuation decision 

and preparation time are not correlated. 
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An evacuee’s destination played a major role in determining evacuation plans and the distribution 

of network loadings. Several studies investigate the significant variables influencing the 

determination of destination during an evacuation and developed models using observed behavior 

data. Mesa-Arango et al. (34) used a nested logit model considering houses of friends and relatives, 

hotels, public shelters, and churches as discrete destination choices and found the impact of factors 

such as hurricane position at evacuation time, household location, race, income, and evacuation 

notices on this decision. Sadri et al. (35) also employed a nested logit model to explain the 

destination choice behavior of Miami Beach residents in a hypothetical hurricane focusing on the 

needs of transit users. Jiang et al. (36) investigated the association between social factors (i.e., 

social distance) and evacuation destination choice using an integrated gravity model. Cheng et al. 

(37) investigated the socioeconomic and demographic characteristics of destinations on destination 

choice behavior using a multinomial logit model using two alternatives of relatives or friends’ 

houses and hotels. Other studies proposed various models including the intervening opportunity 

model (38,39), agent-based model (40), and spatially correlated logit model (41). Cheng et al. (42) 

used a static gravity model for an estimation of dynamic OD matrices using a combined impedance 

function followed by a calibration using a dynamic gravity model.  The destination choice model 

directly impacted the route choice models because the sparse rural networks often required 

significant travel time increases when drivers were forced to alternate routes.  

Route choice represents another important decision that directly influences the identification of 

critical links during evacuation. Evacuees often prefer to take familiar routes or follow the 

evacuation routes recommended by officials. Sadri et al. (43) use household survey results after 

Hurricane Ivan in Alabama and evaluate the combined effect of different variables on evacuation 

route choice behavior using a mixed logit model. Their study shows that the majority of evacuees 

use the routes they consider as the shortest path rather than the recommended routes. Robinson 

and Khattak (44) investigate the effectiveness of advanced traveler information systems in route 

choice decisions by evacuees during hurricane evacuations. A study on hurricane evacuation 

logistics during Hurricanes Katrina and Rita shows that the evacuees mostly rely on their previous 

routing experience (45). Lindell et al. (46) evaluate the responses of evacuees during Hurricane 

Lili and determine that familiarity with the roads and evacuee’s expectations about the evacuation 

time, safety and convenience appear the major contributors of route choices . Other studies show 

that the evacuation route choice significantly depends on previous experiences and the policies 

adopted by officials such as contraflow and information systems (47,48).  

Performance Metrics to evaluate Network Criticality   

The abovementioned evacuation decision making elements directly impact the susceptibility, 

vulnerability, and criticality of road segments. The literature extensively investigates road network 

vulnerability using indices such as change in travel cost (49), traffic volume (50), flow (51), 

accessibility (49,52), network efficiency measure (53), importance (54), and robustness index (55). 

Hurricane and natural disaster evacuation research only measures the vulnerability of the road 

network in terms of accessibility, clearance time, and connectivity (56–59). A few studies 

investigate the criticality of road links for evacuation purposes. Helderop and Grubesic (60) assess 

the road network criticality during flood evacuation using a modified grid-based centrality measure 

as a “high-fidelity” alternative for traditional centrality measures. Sullivan et al. (61) propose a 

methodology to rank the most critical links for short-term disruptive events using a link-based 

capacity disruption approach. Stamos et al. (62) develop a framework for criticality assessment in 

evacuation using a travel time minimization approach. All of these studies focus on physical 
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characteristics of the infrastructure and try to investigate topological measures such as connectivity 

and accessibility of the network. 

Vulnerability of transportation infrastructure has been quantitatively assessed, especially after 

natural and man-made disasters in the last few decades. However, the operational measures used 

to evaluate vulnerability or reliability depend on the context and the definition provided by the 

research. Some of these definitions include sensitivity to threats (63), susceptibility for big risks 

(64), “the non-operability of the network under certain circumstances” (65), and “society’s risk of 

transport system disruptions and degradations” (66). The criticality of a link or node in the road 

network is often associated with the probability of that component failing and the resulting 

consequence for the whole system (54). This means that if the occurrence of an indicant is high 

and a link or node is weak and results in considerable consequences if disrupted or lost, they are 

considered critical. The consequences are mostly measures using traditional metrics such as 

change in travel cost. 

Other recent studies assess the vulnerability of different communities during evacuation and the 

role their socioeconomic characteristics play in the impact of a disruptive event. Cutter et al. (67) 

assess the spatial vulnerability of people and places using biophysical and social vulnerability 

measures and show that these two measures do not lead to identifying the same vulnerable 

locations. Chakraborty et al. (68) use a geophysical risk index and social vulnerability index to 

understand the spatial patterns of evacuation assistance needs and find that each index can result 

in a different pattern. 

Overall, summarizing the research in this field reveals that the performance measures used to 

assess the vulnerability of the road network during evacuation and post-disaster phases fall into 

four major categories related to link, node, flow, and threats. Figure 3 shows an example of some 

of the measures associated with each of these categories. Obviously, some of the metrics can be 

indirectly related to another category depending on how they are used to measure the vulnerability, 

resilience or criticality of a network or a series of links. 

 

Figure 3. Performance metrics measuring network vulnerability classified in four major categories 
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The results of these studies indicate the crucial importance of taking the population or road users 

into consideration during hurricane evacuation analysis. Yet, despite the observed importance, a 

gap in the assessment of road user vulnerabilities and related indicators for identification of critical 

links in the road network during evacuation remains. This study aims at filling the existing gap by 

incorporating the effects of considering the socially, economically, and environmentally 

vulnerable communities in measuring and identifying the most critical links during hurricane 

evacuation.  
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4. METHODOLOGY 

This study develops a multi-tiered framework to integrate various models and performance metrics 

to identify critical zones and evacuation links. The following sections present the details of each 

method and approach used in the framework. 

4.1. Critical Zone Identification Using Three Vulnerability Criteria 

The first step in the framework identifies the more vulnerable zones that appear critical for decision 

makers to facilitate evacuation during an emergency.  This study develops three different criteria 

to evaluate the criticality of zones based on their unique and distinct vulnerability to a hurricane 

event.  

The first criterion indicates users’ social vulnerability to determine critical zones. The Social 

Vulnerability Index (SVI) developed by the Centers for Disease Control (CDC) is a comprehensive 

indicator of a community’s resilience to assess community response during different phases of a 

disaster. This index ranks the census tracts (CTs) on 15 social factors based on socioeconomic 

status, household composition and disability, minority status and language, and housing type and 

transportation (69). The socially vulnerable areas based on the SVI index represent at-risk 

communities that a hurricane may disproportionately affect due to a lack of essential resources to 

withstand a disaster event. Their safe and fast evacuation means saving more lives; therefore, the 

transportation network that serves socially vulnerable communities must be prioritized.    

The second criterion provides a measure of environmental vulnerability. This criterion determines 

locations with a higher danger of flooding during a hurricane based on the Federal Emergency 

Management Agency (FEMA) 100-year floodplain map, which defines varying levels of flood risk 

and more vulnerable areas. Residents who live close to stream channels and floodplains bear higher 

vulnerability as their impact and damages could be more likely and intense. Therefore, residents 

living in these flooding-prone areas have a greater need to evacuate, and the transportation network 

must ensure their access to evacuation routes.  

The third criterion uses economic vulnerability from the decision-makers’ perspective to determine 

critical zones. During an emergency, locations with higher economic values may need more 

attention because their failed evacuation could lead to more considerable losses affecting the local 

economy and political leverage, from the perspectives of politicians and decision-makers. A 

property appraisal provides an estimation of the economic liability of a natural disaster on different 

districts and households. The critical zones selected by property value conversely represent the 

locations of greatest economic vulnerability from the decision maker’s standpoint. This index also 

appears important since it may identify different locations from the other two criteria due to the 

nature of the vulnerable assessment standpoint, which provides more inclusive and comprehensive 

research outcomes and critical links for decision-makers. 

If considered together, these criteria represent a sustainable approach to hurricane preparedness 

that emphasizes the most vulnerable community along the three sustainability areas of economic, 

social, and environmental well-being.  This paper represents an initial effort to distinguish the 

differences in priorities that may arise from over reliance on one of the sustainability thrusts and 

the benefits of trying to consider all of the sustainability components.   
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4.2. Four-Step Travel Demand Model 

In the framework, the four-step demand model provides an estimation of the number of evacuating 

vehicles in different risk zones, the destination choices of households, and routes selected to reach 

their destination. Evacuation behaviors inherently involve uncertainties especially during an 

emergency since the risk perception of individuals and households change based on the level and 

type of the disaster event. However, the evacuation prediction results must determine critical 

network links with stability because these important links should always be prioritized to support 

evacuation activities.  This study assumes a ‘worst-case’ scenario where all of the households in a 

flooding impact area evacuate with a very short lead time after an evacuation order. This 

assumption allows the vehicle loading on each network to reach at maximum, which warrants a 

less sensitive prioritization depending on the evacuation demand estimations. 

4.2.1. Trip generation 

The trip generation step estimates the number of vehicles evacuating from different zones impacted 

by the disaster using household characteristics such as household size and number of available 

vehicles. Previous studies use various models including a fixed evacuation rate (70), logistic 

regression (71) or advanced machine-learning neural network models (71) to estimate trips 

generated for evacuation. They typically use resident household trips as an evacuation unit since 

trips of non-residents or transient populations are negligible during an evacuation. This study 

adopts a well-known study by Lindell and Prater (72) with the following model to estimate the 

number of evacuating vehicles based on hurricane category: 

𝐸𝑉𝑧𝑠𝑐 = (
𝑃𝑧𝑠

𝑃𝐻𝐻
) 𝐷𝑧𝑐(1 − 𝑇𝐷)(𝐸𝑉𝐻𝐻 + 𝐸𝑇𝐻𝐻)(1 − 𝑆)𝑈𝑧𝑠     (1) 

Where 𝐸𝑉𝑧𝑠𝑐 = the number of evacuating vehicles from Sector s of Risk Zone z during Hurricane 

Category c; 

𝑃𝑧𝑠 = population of Sector s in Risk Zone z; 

𝑃𝐻𝐻 = number of persons per household; 

𝐷𝑧𝑐 = the proportion of households in Risk Zone z deciding to evacuate in Hurricane Category c; 

𝑇𝐷= proportion of transit dependent households; 

𝐸𝑉𝐻𝐻 = average number of evacuating vehicles for each household; 

𝐸𝑇𝐻𝐻 = average number of evacuating trailers for each household; 

𝑆 = the proportion of early evacuees; 

𝑈𝑧𝑠 = the proportion of households in Sector s of Risk Zone z who use the primary evacuation 

routes. 

 

The location of a residence (e.g., risk zones) and intensity of a hurricane represent the most 

important decision factors impacting the evacuation decision. Lindell and Prater (72) use these two 

determinants to regress the evacuation rate based on a storm category and smooth out the rates 

using linear and quadratic terms. The risk areas range from 1 to 5 (1 being the highest risk) and 

increases as the hurricane category rises. The study adopts this approach and defines the coastal 

zone as risk area 1 and the central and north areas of Harris County as risk area 5. The authors 

divide the central and northern parts of Harris County into the 5S and 5N zones and compute the 

rate for the northern part using interpolation. Thus, the evacuation rate for zones 1 to 6 represent 

98.2% 88.2%, 83.4%, 80.5%, 78.8%, and 75%, respectively. 



13 
 

Those who rely on transit for evacuation include the disabled and older adults as well as individuals 

with low socioeconomic status (SES) ((73), (74)). Many studies estimate the transit dependent 

population by applying a fixed ratio for all the study areas with an assumption of a fixed proportion 

of transit dependent population across the region; however, this method can result in significant 

bias in the areas with higher or lower SES. Therefore, this study uses the percentage of the 

population who are disabled and received Food Stamps/SNAP in the past 12 months as a proxy 

for transit dependence. This measure represents the population who commonly lack financial 

resources and highly correlate to vehicle ownership.  

Finally, in order to simulate the worst-case scenario, the study sets the proportion of early evacuees 

at zero. By applying these ratios and assumptions in equation 1, the authors estimate the trips 

generated in each census tract. 

4.2.2. Trip distribution 

The destination choice by the evacuees appears to be difficult to formulate as it is highly dependent 

on personal preferences. However, previous studies reveal that most evacuees prefer the homes of 

friends/relatives and hotels in safe areas (34), which provides a logical foundation for an 

assumption that urban areas attract more population. Using a gravity model, which determines the 

patterns of trips from origins based on the relative attractiveness of destinations and the difficulties 

of making trips to destinations, this study distributes the evacuating vehicles from origins in the 

risk zones to destinations in safe zones particularly urban areas. A production-constrained gravity 

model estimates the number of trips from each origin zone to destination zones using the following 

equation: 

𝑇𝑖𝑗 = 𝑃𝑖
𝐴𝑗𝛾𝑖𝑗

∑ 𝐴𝑗𝛾𝑖𝑗
𝑁
𝑗=1

          (2) 

Where: 

𝑇𝑖𝑗 = the number of trips produced in zone i and attracted to zone j 

𝑃𝑖 = the total number of trips produced in zone i, 

𝐴𝑖 = the total number of trips attracted to zone j, 

𝛾𝑖𝑗 = impedance of travel between zones i and j, 

𝑁 = total number of destination zones. 

 

Impedance measures the trip difficulty. Evacuees tend to travel to places not threatened by 

hurricane impacts; however, the number of trips to a specific destination is inversely proportional 

to the length of trip since the evacuation is an involuntary trip. To accommodate these two terms, 

Cheng et al. (42) used two widely accepted functions including negative exponential and Rayleigh 

function as shown by equations 3 and 4, respectively. 

𝑓(𝑐𝑖𝑗) =  𝑒−𝛼𝑐𝑖𝑗          (3) 

𝑓(𝑑𝑗) =  
𝑑𝑗

𝛽2 𝑒
−0.5(

𝑑𝑗

𝛽
)2

          (4) 

Where, 𝑐𝑖𝑗 is the travel cost, 𝑑𝑗 is distance between risk zone and destination, and α and β are 

parameters. The parameters can be estimated based on real hurricane evacuation behavior data.  

Using OD data from evacuation during Hurricane Floyd, a category 4 Hurricane, Cheng et al (42) 
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estimated α and β through a chi-square minimization process. The study uses their estimated value 

of α=0.006 and β=1.9 for the static gravity model. 

4.2.3. Modal split 

Public transit serves households for local evacuation (e.g., those who evacuate to local shelter). 

This study does not include trips to local shelters; therefore, it assumes 100 percent auto-trips in 

the modal choice step as a worst-case loading. 

4.2.4. Traffic assignment 

Traffic assignment during evacuation is a complex process affected by various factors such as 

drivers’ acquaintance with routes, management of evacuation routes, and preference of drivers to 

use the shortest path or familiar roads. The majority of evacuees tend to be more familiar with and 

feel safe on major roads and interstate highways (75), which federal and state agencies also 

designate as evacuation routes. During an emergency, evacuees do not detour unless a shortest 

path is not available due to flooding or incidents. This study uses evacuation routes consisting of 

major arterials and interstate highways as a baseline network and applies the shortest path 

algorithm to estimate route choices.  

The study uses critical zones selected based on the vulnerability criteria as the origin of evacuation. 

The shortest path analysis for vehicles travelling from evacuation zones to destinations determine 

the links expected to be used during evacuation. In addition to the baseline network loading, this 

study needs to estimate the impact of link disruptions to identify the critical links over the network. 

To simulate a link disruption, the authors remove a link of the evacuation routes by creating a 

barrier. If the study area includes too many links, they can be reduced by identifying the links more 

likely to experience a disruption such as links disrupted or flooded during previous hurricanes. 

After identifying a limited number of links for each set of evacuation ODs, the final link criticality 

estimation uses a set of performance measures described in the following section.  

4.3. Identifying Critical Links 

A network link assesses its criticality based on a set of performance measures that capture the 

impacts of a link disruption. While conventional measures focus on the traffic volumes or travel 

times served by network links, this study develops new performance measures that take the 

characteristics of the actual users into consideration, since different locations pose social, 

environmental, and financial vulnerabilities for evacuation. Table 1 lists the conventional link-

based performance measures that estimate the impact of disruption by relying on V/C ratio or 

changes in travel time from a disruption. However, the new user-based performance measures 

identify the critical links by understanding the impact of disruption on the corresponding road 

users. For example, the Social Vulnerability (SOV) measure indicates the average value of SVI 

for the zones, therefore a link that has a high SOV value serves socially vulnerable communities. 

On the other hand, Economic Vulnerability (ECV) shows the average property values of the zones 

impacted by a link disruption. Therefore, a link that has a high ECV serves more affluent 

communities with higher property values. Links with higher Environmental Vulnerability (ENV) 

serve communities that have higher flooding impacts. Overall, these user-based measures integrate 

the characteristics of the link users to understand where the disruption consequences occur. 

Table 1. Performance measures used to determine the criticality of road links. 



15 
 

Type Performance measure Definition 

Conventional 

Link Based 

Measures 

Length The length of a link 

Volume The number of vehicles expected to use a link  

Change in travel time The increase in evacuation time due to a link disruption 

New User 

Based 

Measures 

Social Vulnerability (SOV) 
Average value of social vulnerability index of zones 

expected to use the link during evacuation 

Economic Vulnerability 

(ECV) 

Average value of appraisal values of zones expected to 

use the link during evacuation 

Environmental 

Vulnerability (ENV) 

Average value of flood risk expected to use the link 

during evacuation 
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5. DATA COLLECTION AND PROCESSING 

This study requires extensive data on population, network, land value, and disruption-related maps 

for critical zone and link development and travel demand modeling. The study area is limited to 

the counties in the greater Houston area likely impacted by a major category 4 hurricane in Texas 

and the residents would likely evacuate. The study area includes Harris, Galveston, Brazoria, 

Chambers, Fort Bend, and Matagorda counties as shown in Figure 4. 

The locations of safe zones or evacuation destinations were selected by evaluating the counties 

within a reasonable distance from the hurricane impact area or areas that can potentially be 

considered as an evacuation destination. The research team merged smaller and less populated 

counties. The study uses 26 destination areas with the boundaries for these locations shown in 

Figure 5.  This figure shows the names of the highly populated counties. As shown, the northern 

part of Harris County represents a destination zone since it is far from high-risk areas in coastal 

zones. Jefferson County is not within the risk zone map used in this study.  Since this county is 

one of the most susceptible areas during a major hurricane event, it would be unsafe, or evacuees 

and the study considers the number of trips to this county to be zero.  

The socioeconomic and demographic data are obtained from the 2018 U.S. Census estimate. The 

team obtains the Social Vulnerability Index data (SVI) from the Centers for Disease Control and 

Prevention/ Agency for Toxic Substances and Disease Registry (CDC/ATSDR) at the Census 

Tract level as shown in Figure 6 (76). The study uses the road network from Open Street Map 

(OSM). The network includes motorway, primary, and secondary roads with direction, speed, and 

number of lanes data and covers the area from Dallas in the North, Austin and San Antonio to the 

west, Corpus Christi to the south and the Texas boundary with Louisiana to the east. 

As shown in Figure 7, the study obtains the parcel dataset from the Texas Natural Resources 

Information System, which provides property information such as property owner, land use, value, 

and location attributes (77). The data highlights the higher market value (including land value and 

improvement value) of properties in the central areas of Houston and some parts of coastal areas 

in Galveston County. The research team uses this dataset to estimate economic vulnerability 

metrics.   
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Figure 4. Hurricane evacuation study area. 

 

Figure 5. Boundaries for the location of hurricane evacuation destinations. 
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Figure 6. Distribution of Social Vulnerability Index in the study area. 

 

 

Figure 7. Distribution of property value in the study area. 
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The (FEMA) database published in 2018 provides the 100-year flood plain maps. According to 

FEMA, this map can help to identify any place with at least a 1% chance of experiencing flood 

during a year, and those areas have at least a one-in-four chance of flooding during a 30-year 

mortgage. The flood zones designated in the map (Figure 8) are geographical areas that FEMA 

defines based on varying levels of flood risk. These zones are depicted on a community’s flood 

insurance rate map or flood hazard boundary map. Each zone in the map reflects the severity of 

the type of flooding in the area. This study selects high risk areas to determine the flood risk in the 

study area. These zones are labeled as A, AE, AH, AR, and VE zones and FEMA describes them 

as follows: 

Zone A: Areas with a 1% annual chance of flooding and a 26% chance of flooding over the life 

of a 30‐year mortgage. 

Zone AE: The base floodplain where base flood elevations are provided. 

Zone AH: Areas with a 1% annual chance of shallow flooding, usually in the form of a pond, 

with an average depth ranging from 1 to 3 feet. These areas have a 26% chance of flooding over 

the life of a 30‐year mortgage. 

Zone AR: Areas with a temporarily increased flood risk due to the building or restoration of a 

flood control system (such as a levee or a dam). 

Zone VE: Coastal areas with a 1% or greater chance of flooding and an additional hazard 

associated with storm waves. 

 

The flood risk map is used to develop the environmental vulnerability measure by calculating the 

proportion of each census tract with high flood risk and the results are shown in Figure 9. 
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Figure 8. FEMA 100-year flood zones in the study area. 
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Figure 9. Distribution of percent of the census tract with high flood risk in the study area. 

 

In addition, the National Hurricane Center (NHC) and Central Pacific Hurricane Center database 

provides the storm surge hazard map for different coastal zones including Texas to Maine (78). 

Storm surge is defined as the abnormal rise of water generated by a storm, over and above the 

predicted astronomical tides. Flooding from storm surge depends on many factors, such as the 

track, intensity, size, and forward speed of the hurricane and the characteristics of the coastline 

where it comes ashore or passes nearby. Storm surges from tropical cyclones are simulated by 

utilizing the hydrodynamic sea, lake, and overland surges from the Hurricanes (SLOSH) model. 

The NHC provides two products based on hypothetical hurricanes including Maximum Envelopes 

of Water (MEOWs) and Maximum of MEOWs (MOMs). MEOWs are created by computing the 

maximum storm surge resulting from up to 100,000 hypothetical storms simulated through each 

SLOSH grid of varying forward speed, radius of maximum wind, intensity (Categories 1-5), 

landfall location, tide level, and storm direction. MOMs are created for each storm category by 

retaining the maximum storm surge value in each grid cell for all the MEOWs, regardless of the 

forward speed, storm trajectory, or landfall location. The storm surge hazard map for category 4 

hurricanes is used to calculate the distance between destinations and the hurricane-induced storm 

surge. The storm surge map is shown in Figure 10. 
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Figure 10. Storm surge hazard map for a category 4 hurricane for Texas to Maine region. 

The study uses the Hurricane Disruption Spatial Data (HDS) from the Hurricane Harvey Flood 

Data Collections database to develop high risk network links. The HDS includes information on 

flood depths, flood extents, high water marks, streamflow and damages recorded from national 

agencies such as NOAA, USGS, FEMA, and Civil Air Patrol (79). This dataset can help to find 

the locations which are more susceptible to flooding due to hurricanes. The probability of link 

disruption of these locations could be higher due to their high water in a hurricane event. Figure 

11 presents the location of previously impacted areas in hurricane Harvey. 
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Figure 11. High water marks and flooded locations during and after Hurricane Harvey. 

Finally, the road network dataset is extracted from OpenStreetMap which includes the direction of 

travel, speed and number lanes. The team interpolates the missing data of speed and number of 

lanes considering the type of road and the existing data for neighboring links. Figure 12 shows the 

road network covering the area between evacuation origins and expected evacuation destinations 

in Texas. 
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Figure 12. Road network from in the area between evacuation origins and destinations.  
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6. RESULTS 

6.1. Critical Zone Identification  

Figure 13 shows the most critical zones selected by the three vulnerability criteria for the risk areas 

1 to 5S/N. Even though any number of Census Tracts (CTs) could represent the critical zones, this 

study uses 17 CTs since they comprise the top quartile (25%) of the entire CTs for risk area 1. 

Therefore, 102 zones (=17CTs * 6 Risk areas) are selected as the most critical zones for each 

vulnerability criteria from each of the six risk areas. Expectedly, a proportion of these 102 zones 

share two or three criteria, since socially vulnerable zones could also be environmentally 

vulnerable as an example. Six zones are selected as the critical zones using all three vulnerability 

criteria. This seems counterintuitive since social vulnerability and high property value (which 

determines the economic vulnerability from the decision-maker’s standpoint) might not be 

compatible, however SVI (that determines the social vulnerability) relies on a combination of 

various social, demographic, and economic features. Therefore, a specific zone might be 

characterized as socially vulnerable (based on non-economic variables such as age) but 

economically high valued. 

 

 

Figure 13. Critical zones in six risk areas. 
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6.2. Trip Generation and Distribution 

Table 2 shows the trips generated from all 1,004 CTs located in the six risk areas. The trip 

generation model uses the given proportion of transit dependent population based on the 

percentage of the population who are disabled and received Food Stamps/SNAP in the past 12 

months. Risk zones 1 and 2 show a higher rate of transit dependent population and consequent risk 

of isolation if evacuation transportation is not provided. The total number of evacuees, specifically 

for Zones 5S and 5N are high due to their high population density near the city of Houston. The 

gravity model calculates the destination choice for the evacuees and shows the highest proportion 

of evacuees travelling to the Dallas region, which is the largest and most populated area with the 

safest distance from the hurricane impact area. 

Table 2. Trip Generation and Distribution Results. 

 
Trip Generation Trip Distribution (vehicles) 

Risk 

Area 

% Transit 

Dependent 

Population 

Total 

Evacuating 

Vehicles 

Austin 

Region 

Dallas 

Region 

San 

Antonio 

Region 

Bell 

Region 

Smith 

Region 

Other 

Region 

Area 

1 
7.95 44,701 4,454 30,162 5,107 1,925 1,616 3,666 

Area 

2 
8.22 98,113 9,178 62,259 10,523 3,959 3,318 7,234 

Area 

3 
4.33 157,797 16,089 109,030 18,445 6,944 5,820 12,899 

Area 

4 
5.95 326,669 31,361 212,636 35,946 13,531 11,343 25,007 

Area 

5S 
4.32 713,911 67,728 458,716 77,652 29,218 24,440 53,833 

Area 

5N 
5.56 727,132 69,169 468,849 79,184 29,843 24,987 55,129 

 

6.3. Trip Assignment 

The shortest path algorithm in GIS for each set of ODs results in 442 routes from 17 origins to 26 

destinations for six risk areas. Overall, this study obtains 1,155,883 links used by 102 socially 

vulnerable zones, 1,203,139 links by economically vulnerable zones, and 1,170,907 links by 

environmentally vulnerable zones as shown in Figure 14(a). In link disruption scenarios, a barrier 

is created on each link, and the shortest path identifies new routes. Figure 14(b) compares the 

outputs of the shortest path analysis with a link disruption. The network shows the routes taken by 

evacuees. If the grey link is disrupted, whole orange links remain unused due to the changed 

shortest paths of the disrupted link users.  
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Figure 14. (a) Traversed edges by all OD trips (b) An example of a link disruption output. 

Overall, this study assesses over 3.4 million links in the Gulf coast and Houston area, which creates 

a significant computational burden to simulate a link disruption and estimate changes in link 

volumes. The authors identify the most vulnerable links that are prone to flood using a geographic 

proximity to the past disruption. This study selects links that are within 400 feet of disruptions 

during Hurricane Harvey and assume they have a high likelihood of flooding or high-water damage 

in a future event. As a result, Table 3 shows the total number of links used for the further analysis 

categorized by risk areas and critical zones.  

 

Table 3. Total number of evacuation links by zone and criterion. 

Risk Area 

Critical Zones 

Socially Vulnerable 

Zones (High SVI Index) 

Economically 

Vulnerable Zones  

(High Property Value) 

Environmentally 

Vulnerable Zones 

(High Flood Risk) 

Area 1 (Highest) 69 43 82 

Area 2 57 44 65 

Area 3 73 72 98 

Area 4 42 46 77 

Area 5S 45 53 50 

Area 5N (Lowest) 40 54 82 

 

6.4. Critical Links 

Altogether, the study identifies 173 links used by socially vulnerable critical zones, 163 links by 

economically vulnerable critical zones, and 222 links by environmentally vulnerable critical zones. 

These numbers differ from the subtotal of each criterion shown in Table 3 because many of the 

links are selected by multiple critical zones.  

In order to understand how the links differently serve critical zones, the study identifies the most 

critical links based on conventional and user-based performance measures. Links selected by each 
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performance measure are classified into 3 groups referring to as the most critical, moderately 

critical, and less critical links, and the most critical links are only used for the comparisons. In this 

comparative analysis, the links selected by a particular performance measure (e.g., link length) by 

each critical zone (e.g., socially vulnerable zones) are compared to the links selected by other 

measures (e.g., traffic volume, travel time, user-based) in the same zones. 

Table 4 compares the link shares selected by different performance measures. For each critical 

zone, the most critical links selected by conventional performance measures (e.g., traffic volume) 

are compared with other conventional measures (e.g., length and travel time) and the user-based 

measure. For example, among the links serving socially vulnerable zones, the most critical links 

selected based on the traffic volume measure share 51% of their links with a link set selected by 

the travel time measure. However, the same set of links selected by the traffic volume share only 

18% of links with the user-based measure. This indicates that the critical links carrying high 

evacuation traffic may not connect socially vulnerable communities; therefore, prioritizing 

resources to such high-volume links may disproportionately affect socially vulnerable 

communities. Similarly, among the links selected based on economic vulnerability, the only 37.5% 

common links occur between the travel time-based and user-based set of links. Finally, among the 

links selected based on environmental vulnerability, the percentage of shared links remains less 

than 30% between those selected by link-based measures and environmentally vulnerable users. 

Table 4. Percentage of links selected by different performance measures. 

Critical Zones Performance Measure 

Link-based User-based 

Volume Travel Time 
Social 

Vulnerability 

Economic 

Vulnerability 

Environmental 

Vulnerability 

Socially 

Vulnerable Zones 

Link-

based 

 

Link Length 31.6% 47.4% 18% - - 

Traffic Volume - 51% 24.6% - - 

Travel Time - - 3.6% - - 

Economically 

Vulnerable Zones 

Link-

based 

 

Link Length 33.3% 48.1% - 25.9% - 

Traffic Volume - 41.7% - 37.5% - 

Travel Time - - - 29.4% - 

Environmentally 

Vulnerable Zones 

Link-

based 

 

Link Length 29.3% 46.7% - - 29.3% 

Traffic Volume - 47.9% - - 27.4% 

Travel Time - - - - 27.8% 

 

The study also compares the most critical links identified the user-based measures with one another 

since the performance measures within the thrust of vulnerabilities could select different links as 

the most critical ones to serve different vulnerable communities. This study identifies that that 

21% of links serving socially vulnerable zones also serve economically vulnerable or 

environmentally vulnerable zones; however, economically and environmentally vulnerable zones 

only share 9% of their links. 
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Figure 15 compares the most critical links identified by user-based measures (Figure 15(a)) and a 

link-based measure, i.e., change in travel time, (Figure 15(b)) identified for all socially, 

economically, and environmentally vulnerable zones. The link-based measures select the links 

more sparsely and mostly on major highways while the user-based measures identify links in 

denser areas where more vulnerable populations will use them. 

 

Figure 15. Most critical links identified by: (a) user-based measures; (b) link-based measures. 

 

Figure 16 presents the spatial distribution of critical links from all risk zones selected by the three 

vulnerability criteria. Many links in risk zones 1 and 2 share the same links regardless of the 

vulnerability criteria because their evacuees use a limited number of links to reach major 

evacuation routes due to the sparse network. For other zones, however, the three vulnerability 

criteria select different links. For Zone 1, road segments of the major highways I-45, Beltway 8, 

SH 288, SH 35, and SH 36 are identified critical by all criteria, while long segments of FM 2004 

are critical to serve socially vulnerable zones. For Zone 2, critical links are mostly found east of 

Houston such as I-10 eastbound and I-610 northbound, even though each vulnerability criterion 

selects different links in this region. Zone 3 shows the links selected by most diverse criteria 

combinations, which select many links on I-10 and I-610. However, links in the inner city of 

Houston are selected by all criteria since the Houston network mainly connects local origins to 

outer destination areas. On the other hand, Zone 4 shows the most links selected by a single 

criterion including long segments on SH 36 and FM 1301 used by environmentally vulnerable 

zones. A noticeable link is the segment of SH 36 which mainly serves environmental vulnerable 

zones in risk area 4 while it serves all three critical zones for risk areas 1 and 3. For Zones 5S and 

5N, most of critical links are located in the inner city except a few link segments on I-10 which 

appear to serve all critical zones that connect to the Beaumont region.  



30 
 

 

 

 

Figure 16. Critical Links Selected by Vulnerability Criteria (a-e) and Network System (f). 
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6.5. Interactive GIS Map 

The final outputs of this study are presented in an online GIS map where the users can find the 

critical links and the associated attributes of each link such as the criticality value measured by 

different metrics. This interactive visualization also includes other layers and data used throughout 

this study, e.g., evacuation zones, evacuation destinations, and trip distribution results. Any future 

updates and changes will be applied to this map. The developed online GIS map and a brief 

summary of the research can be accessed by using this link: https://uta-

arcgis.maps.arcgis.com/apps/webappviewer/index.html?id=ff6b75f6238843af956e238cf3724aa3 

  

https://uta-arcgis.maps.arcgis.com/apps/webappviewer/index.html?id=ff6b75f6238843af956e238cf3724aa3
https://uta-arcgis.maps.arcgis.com/apps/webappviewer/index.html?id=ff6b75f6238843af956e238cf3724aa3
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7. CONCLUSION 

Historically, critical links for disaster responses rely on measures that capture the overall 

performance of a link disruption on the network. The links that their disruption causes higher travel 

cost and increases travel time or reduces throughput appear to have a higher priority for protection 

or restoration during an emergency. The performance measures that represent the clearance time 

and travel length for evacuees remain important to achieve system efficiencies in evacuation. 

However, the most important performance measure for evacuation from natural disasters such as 

major hurricanes is lives saved; therefore, the impacts of link disruptions that could result in more 

devastating consequences for some communities, especially for socially or economically 

vulnerable ones require special attention. These vulnerable populations lack the resources to 

withstand a hurricane if isolated; therefore, a failed evacuation could result in significant (life-

threatening) consequences.  

This study proposes a methodology to identify the critical evacuation links by integrating the 

vulnerability measures of communities. Three vulnerability measures including social, economic, 

and environmental vulnerability create critical zones to provide more attention and priorities to 

vulnerable communities for evacuation. A travel demand model integrates the findings from 

important evacuation behavior analysis studies based on real-data and calculates the trips 

generated from selected critical zones and distributed to safe destinations. A pool of evacuation 

links more susceptible to flooding based on recent tropical storm experiences identify the critical 

zones. 

The results show that the critical links selected by the user-based measures do not always remain 

critical when applying conventional link-based measures. The critical links used by vulnerable 

users do not necessarily result in a significant impact on the general evacuee’s throughput due to 

the geographical locations of the vulnerable populations. Even the critical links selected by the 

vulnerable users differ as only 49% of the links are shared by all three vulnerable communities, 

which raises an important question for decision-makers to determine critical links to prioritize 

restoration and protection for evacuation. Differences between demographic, economic, and land 

use characteristics of different risk zones creates variations in the criticality of the links. 

The framework developed in this study can be used to identify the routes serving the highly 

vulnerable population during evacuation and disaster relief phase. This study finds those 

communities at higher risk to suffer from longer-term consequences, which would potentially 

result in higher mortality rate if not evacuated or impose higher economic impacts. Therefore, the 

location of disaster relief points can be assessed, or new locations added, if required, by 

considering the criticality of roads serving the vulnerable population who might require various 

emergency and relief help during different disaster stages. 

The findings of this research provide a fundamental insight into the role of network infrastructure 

for evacuation. The network links achieve the overall system efficiencies like higher throughput 

and shortest travel time to equally serve all communities may exist. However, when applying a 

lens of equity, those links may not save the lives of vulnerable populations.  The selection of 

critical links can vary depending on what criteria decision-makers prioritize. For evacuation 

planning and hurricane preparedness, the vulnerability of road users must be incorporated into the 

formula that selects the critical links. 
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Using the suggested framework, a more comprehensive study can compare the critical links 

identified by user-based measures and link-based measures such as change in travel cost of 

evacuees at a larger-scale network. This can help to better understand the difference between these 

two measures and develop a framework that can identify the critical links by using an index that 

captures both measures and ranks the most critical links. Future study will also expand the work 

and develop operational strategies that enhance network resilience and community survivability 

based on the critical links that serve vulnerable road users.  The framework may also be expanded 

to prioritize links during the recovery process.  
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APPENDIX A. CRITICAL LINKS IDENTIFIED BY DIFFERENT USER-

BASED CRITICALITY MEASURES 

 

Figure A.1. Critical links identified for socially vulnerable CTs in Zone 1. 

 

Figure A.2. Critical links identified for economically vulnerable CTs in Zone 1. 
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Figure A.3. Critical links identified for environmentally vulnerable CTs in Zone 1. 

 

Figure A.4. Critical links identified for socially vulnerable CTs in Zone 2. 
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Figure A.5. Critical links identified for economically vulnerable CTs in Zone 2. 

 

Figure A.6. Critical links identified for environmentally vulnerable CTs in Zone 2. 
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Figure A.7. Critical links identified for socially vulnerable CTs in Zone 3. 

 

Figure A.8. Critical links identified for economically vulnerable CTs in Zone 3. 
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Figure A.9. Critical links identified for environmentally vulnerable CTs in Zone 3. 

 

Figure A.10. Critical links identified for socially vulnerable CTs in Zone 4. 
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Figure A.11. Critical links identified for economically vulnerable CTs in Zone 4. 

 

Figure A.12. Critical links identified for environmentally vulnerable CTs in Zone 4. 
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Figure A.13. Critical links identified for socially vulnerable CTs in Zone 5S. 

 

Figure A.14. Critical links identified for economically vulnerable CTs in Zone 5S. 



47 
 

 

Figure A.15. Critical links identified for environmentally vulnerable CTs in Zone 5S. 

 

Figure A.16. Critical links identified for socially vulnerable CTs in Zone 5N. 
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Figure A.17. Critical links identified for economically vulnerable CTs in Zone 5N. 

 

Figure A.18. Critical links identified for environmentally vulnerable CTs in Zone 5N. 
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APPENDIX B. MOST CRITICAL LINKS IDENTIFIED BY DIFFERENT 

USER-BASED AND LINK-BASED CRITICALITY MEASURES 

 

Figure B.1. Most critical links identified for socially vulnerable CTs ranked by average SVI. 

 

Figure B.2. Most critical links identified for socially vulnerable CTs ranked by average economic vulnerability. 
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Figure B.3. Most critical links identified for socially vulnerable CTs ranked by average environmental vulnerability. 

 

Figure B.4. Most critical links identified for socially vulnerable CTs ranked by change in travel time. 
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Figure B.5. Most critical links identified for socially vulnerable CTs ranked by link length. 

 

Figure B.6. Most critical links identified for socially vulnerable CTs ranked by link volume. 
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Figure B.7. Most critical links identified for economically vulnerable CTs ranked by average SVI. 

 

Figure B.8. Most critical links identified for economically vulnerable CTs ranked by average economic vulnerability. 
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Figure B.9. Most critical links identified for economically vulnerable CTs ranked by average environmental vulnerability. 

 

Figure B.10. Most critical links identified for economically vulnerable CTs ranked by change in travel time. 
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Figure B.11. Most critical links identified for economically vulnerable CTs ranked by link length. 

 

Figure B.12. Most critical links identified for economically vulnerable CTs ranked by link volume. 
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Figure B.13. Most critical links identified for environmentally vulnerable CTs ranked by average SVI. 

 

Figure B.14. Most critical links identified for environmentally vulnerable CTs ranked by average economic vulnerability. 
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Figure B.15. Most critical links identified for environmentally vulnerable CTs ranked by average environmental 

vulnerability. 

 

Figure B.16. Most critical links identified for environmentally vulnerable CTs ranked by change in travel time. 
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Figure B.17. Most critical links identified for environmentally vulnerable CTs ranked by link length. 

 

Figure B.18. Most critical links identified for environmentally vulnerable CTs ranked by link volume. 


