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SEMINAR ON CONTINUITY IN SBMILATTICES (SOS) 

DATE M D Y 
NAME(S) Jimmie D. Lawson 1 21 82 

TOPIC Convexities 

CCOMP3- A COMPENDIUM OF CONTINUOUS LATTICES 
REFERENCE—FINITE DIMENSIONAL CONVEX STRUCTURES I: GENERAL 

RESULTS by M. van de Vel TSee bibliography for 
further references) 

At the miniworkshop at Tulane in November, '81, I spoke 
on some open problems in continuous lattices. In this report I 
would like to develop one of the four areas I mentioned, that of 
convexity. This past fall M. van de Vel at Vrije Universiteit 
in Amsterdam sent me a packet of reprints of his work in convexity 
together with a letter pointing out some very close connections 
between certain aspects of the theory and the theory of compact 
semilattices. . I am enclosing a extrdct from the above mentioned 
reference .together with some references to some of the work in 
this area,. Anyone who is interested can write him for preprints 
and reprints. You can refer to the extract for definitions of 
terms c.oncerning convexity that I use in the following. 

Having been a rather close follower of the work that Hofmann 
and Lawson did on the spectral theory of continuous distributive 
lattices, I have sometimes wondered if perhaps there was some 
generalization to continuous lattices in general. The disserta­
tion of Tiller and the work of Jamison suggested that some notion 
of convexity might be useful in this regard. But only in the 
last few days have I hit on an idea of what that convexity structure 
might be. More about that later. 

The first question that one has to deal with is that of 
choosing those elements which will pilay the role o-f the "spectrum." ±x 
The irreducibles^, IRR X, seem to be a logical candidate for the 
general case. However on,e might choose those elements maximal 
in the complement of a filter(a smaller set) or even those elements 
maximal in the complement of an open filter (an even smaller set). 
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Note that all three of these sets order-generate. Which of the 

sets turns out to have the nicer properties remains to be seen. 

Secondly one needs a topology for this set (and also a name). 

In my first attempt here I shall choose the set IRR L to work with 

and equip it with the relative lower topology. I think R.-E. Hoffmann 

calls this topology the weak topology somewhere, a name I rather like. 

Note that this all reduces to the hull-kernel topology on PRIME L 

in the distributive case. 

Finally one needs a convexity (or alignment) on IRR L in the 

sense of van de Vel. And why does one need this.? Well, the hope 

is that one can represent L as the closed convex sets on IRR L, 

(Except the representation will be an anti-risomorphism since the 

closed convex sets are used; shades of 0. Wyler.) And now comes 

the candidate for the convexity. 

Proposition 1. Let A be a subset of L, a continuous lattice; 

then the trace of of the convexity of all filters (including 

the empty filter) on L restricted to A is a convexity. 

Proof. See [^V, Section 1.1]]. 

Note that in the case L is distributive, the convexity 

simply reduces to the upper or lowen/sets(depending on your viewpoint) 

of Spec L, which are recoverable simply from the topology. This 

is not the case in the more general setting. For a general continuous 

lattice L, we now let Spec L denote IRR L equipped with the rel­

ative lower topology and the filter trace convexity. 

Proposition 2. Let L be continuous lattice. 

(i) For all x e L, tx/l Spec L is a closed convex set. 

(ii) For all ACL, /^{tx/^Spec L: x e A} = tsup A/) Spec L 

(iii) For all x,yeL, t(xAy)nSpec L = convex hull (fx Spec L)U(ty fl 
= closed convex hull (txASpec L)l/(fyOSpec L) /iSpec L) 

Proof, (i) tx is a filter and closed in the lower topology; thus (i). 

(ii) follows as in the distributive case. 

(iii) Any filter containing x and y contains xA y; (iii) follows. 

Proposition 2 tells us that the mapping x-^-txO Spec L is a 

lattice homomorphism from L into the complete lattice of all 

closed convex subsets of Spec. L which preserves arbitrary sups. 

Let us denote this latter lattice by 0(Spec L). (Note that we 

use inverse inclusion for our order on this lattice.) 
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In many settings it seems more appropriate to use non-empty 
closed convex sets. In this case we consider up-complete continuous 

semilattices. The.-theory works Just , as satisfactorily in this setting, 

and for the most part we adopt this viewpoint in the remainder of 

our report '. . Note that, one^ pas.ses back and forth between the two by 

the deletion or addition" of a discrete 1. . " 

2. An Example and a.Question 

Unfortunately' not all continuous lattices can be represented 

in the previously given scheme. 

Example 3» Given two up complete continuous semilattices L and M, 

one can identify the O's together and form a new semilattice (where 

mixed products are O). If one wants a continuous .lattice then a 

discrete 1 may be attached to this new structure. In particular, 

let L be a countable product of the two-point lattice 2 and M be 

2 and form the semilattice N by pasting at 0, Then the set A = 

= Prime L is a closed subset of N and is also convex since F IRR N = 

= A, where F is the filter N M,., Thus A is a closed convex set; 

however, A is not of the form txIRR N for any xeN. 

One might be tempted to think that perhaps one could find some 

other alignment which might work. However, the next proposition shows 

that this is not the case. 

Proposition 4-« Let S be an up-complete semilattice. Then T, the trace 

of the filter alignment on IRR S, is the alignment generated by 

the sets of the form tx^lRR S, xeS. 

Proof. If F is a filter, then FIRR S =U{txnlRR SixeS} , and this 

union is a directed union since F is a filter. Thus the union is 
by ail 

in the alignment generated^txIRR S, since alignments are closed 

under directed unions. We have already seen that T indeed is an 

alignment or convexity. 

Problem: Find reasonable necessary and sufficient or necessary or 

sufficient conditions on a continuous semilattice S so that the function 

of Proposition 2 is onto. This is precisely what, one needs to represent 

S as the closed convex (non-empty if S has no 1) subsets of Spec L. 

As a shot in the dark, modular might be sufficient. We establish 

some more sufficient conditions in what follows. Example 3 shows that 

the representation given in Proposition 2 is not always onto all 

the closed convex sets. 

3

Lawson: Convexities

Published by LSU Scholarly Repository, 2023



3. Properties of Convexities 

In this section we explore some of the properties of convexities 

arising from continuous lattices. Throughout this section S will 

denote an up-complete continuous semilattice. 

Proposition 5. Spec S is a topological convex structure, i.e. the 

polytopes(=convex hulls of finitely many points) are closed. 

Proof. Let F be a finite subset of Spec S. Then the convex hull 

of F, ch(F)= fx X . . . X n Spec S, where F ={x , . . . x }; thus 
1 2 n 1 n 

ch(F) is closed. 

The property of being a topological convex structure can be 

alternately characterized by saying the convexity admits a subbase 

of closed sets. (See[y, Section 1.^.) Another useful property 

is that of being closure stable, i.e. the closure of a convex set 

is convex. We turn nox^r to the consideration of this property. Recall 

from [COMP, V.2] that 

(#)Every up-complete continuous semilattice has a smallest closed 

generating set(which is also order generating), namely IRK S 

Proposition 6. TAE 

(1) Closures of filters in S are again filters.. (The closure is taken 

in the CL-topology.) 

(2) Spec S is closure stable, and ^on-empty 
SMMXMMIXIMMIippXMX every/closed convex set is of the 

form fx ̂ Spec S for some xeS. 

Proof. (1) implies (2): Let A be a convex set in Spec S. Then 

there exists a filter F in S whose intersection with Spec S is A. 

Since Spec S order generates S and F is an upper set, Fn Spec S = A 

order generates F, and thus generates the filter F", Applying (#) to 

F" , we conclude that A" contains Spec Sn F~,. which in turn contains 

A"n Spec S. Thus A"A Spec S = F"A Spec S = finf F"A Spec S since 

F~ is a closed filter. Thus the closure of A in Spec S is convex. 

Now let A be a closed convex set in Spec S (closed relative to 

Spec S). Then there exists a filter F such that FA Spec S = A. 

Then A~(taken in S) generates the filter F", and thus by (#) contains 

Spec S A F" . Thus A = A" A Spec S^. F"" A Spec S = finf F" A Spec S2 A, and 

so A = finf F"A Spec S, completing the implication. 

(2) implies (1): Let F be a filter in S whose intersection with 
Spec S is A. By hypothesis A~n Spec S is a closed convex subset 

cnje-v 
of Spec S, and hence of the form txA Spec S for some x. Now A^gen-

erates F and hence generates F"; since A is contained in the closed 

filter tx, F"£1X. Conversely since F" is a compact semilattice 4
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containing fxn Spec S, IXXMSMISMIKlXXSXXSpSZSlXMS a generating 
set for tx, it contains tx. Thus.the two are equal, and so F" is 
a filter. This completes the proof. 

5
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1. PRELIMINARIES 

1.1. SET THEORETIC CONVEXITIES. 

A convexity (or: an alignment) on a set X is a collection C of subsets 

of X such that 

(1) 0,X e C; 

(2) C is closed under intersection; 

(3) C is closed under chain union. 

The members of C are called convex sets. Usually, the term "convexity" 

refers to a family of sets with the properties (1) and (2) only. As the 

axiom C3] is both essential and standard in our treatment of the theory 

we prefer to "assume that all convexities in consideration are alignments". 

The pair (X,C3, consisting of a set equipped with a convexity, will 

henceforth be called a convex structure. If no confusion can arise, we 

will write X instead of tX,C). 

A convex set with a convex complement will be called a half-space. The 

(conves^ hull of a set A is defined to be the set 

h[A) =n{C:AcC, C convex}. 

The hull of a finite set is also called a polytope, and the hull of a 

two-point set is called an interval or segment between these points. 

The axiom (3) is equivalent with the important domain finiteness condition 

[also Known as the finitary property), which states that a set is convex iff 

it includes the hull of each of its finite subsets. Equivalently, the union 

of an upward filtered family of convex sets is convex again. See CJ^,p.6]. 

A collection B c C is called a base for the convexity C if each member of C 

can be obtained as the union of an upward filtered subfamily of B. 

6
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Equivalently^ B contains all C-polytopes. A collection S c C is a sub-

base for C if the intersections of members of 5 constitute a base for C. 

We then say that C is generated by S. 

1.2. TOPOLOGICAL CONVEXITIES. 

If a set X is equipped with both a topology and a convexity such that 

all polytopes are closed, then X is called a topological convex structure. 

An equivalent condition is that the convexity on X admits a subbase of 

closed sets. The convexity on X will then be called a topological convexity, 

.It will be assumed throughout that singletons are convex (making the 

underlying space into a space), and that n tooological convexity is 

closure stable, that is: the closure of each convex set is convex again. 

See [Jj, [V 1. 
1 1 

For conveniency, we will sometimes denote the collection of all nonempty 

closed convex sets of a topological convexity C by C*. 

1.3. C.P. flAPS AND SEPARATION PROPERTIES. 

Let (X,C) and (X',C') be convex structures, and let f : X X' be 

a function. We say that f is convexity preserving relative to C and C 

(briefly, f is C.P.) if f "^(C) e C for each C e C . Equivalently, 

(h = h^; h' = h^,) 

fh(A) c h'f(A), A c X finite. 

See [vMV^], [V^]. 

A function f : X [0,1] is said to separate the subsets A,B of X if 

f(A) c {o}, f(B) c {l}. A continuous function will be called a map. 

In the sequel, [0,1] will always be equipped with the linear convexityj 

i.e. the (topological) convexity generated by the sets of type 

[0,t], [t,l3, t £ [D,i], 

7
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A topological convex structure (X,C) (or: its convexity C) is said to be: 
<! 

semi-regular, if each C € C can be separated from each x c X \ C 

by a C.P. map X [0,1 ]; 

regular, if each C e C can be separated from each polytope D c X \ C 

by a C.P. map X -)• [G,1]; 

normal, if every two disjoint sets C,D e C can be separated by a 

C.P. map X [Gil]. 

See [V^i 1.5] for an equivalent description in terms of screening (the 

latter notion will be explained in section 2 below]. A nice motivation 

for the above definitions can be found in [vMW] or [V^l-

it was shown in [V^, 2.4] that a regular convexity on a compact space 

is normal. On non-compact spacesj normality of a convexity seems to be 

a rather unrealistic assumption. E.g. a locally convex linear space 

equipped with its linear (topological] convexity is not normal unless 

its algebraic dimension is at most 1. They are, however, all regular, 

and it appears that the latter is the best possible separation property 

in general. Most of our results below can already be obtained using 

semi-regularity. 

1.4. TRACE OF A CONVEXITY. 

If (X,C] is a convex structure, and If Y c X, then 

C'lY={CnY| CeC} 

is again a convexity (cf. [J, p. 22]] which will be called tbe trace 

of C on Y, We will usually consider the case where Y Is a convex 

subset. Then C^Y is a topological convexity (including: closure 

stability] if C. is. In this case, Y inherits both seml-regularlty 

and regularity from (XiC]. 

In the sequel a convex set in ^ topological convexity will always 

be equipped with the trace convexity . 

8
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2. 

The closure of a set A will henceforth be denoted either by A or by 

CI (A). If 0 is an open set, then its boundary 0\0 will also be 

denoted by 0. 

A hyperplane of a topological convexity (X,C] is a set of type 0, 

where 0 c X is an open half-space. Note that a hyperplane is a convsx 

closed set (by closure stability), and that sets of type 

f ''[0,t) or f '^(t,l], t £ [0,1], 

are open half-spaces of X if f ; X [0,1] is a C.P, map. 

2.2. SCREENING AND SEPARATORS. 

Let A,A',B,B' be subsets of X, We say that (A',B') saveens (A,B) if 

A c A' \ B', B c B' \ A', A' u B' = X. 

A pair (A',B') is called a soreen'tng pair if it screens some pair of 

nonempty sets. 

A closed subset C of a space X is called a separator of X if X \ C 

is disconnected. If nonempty disjoint open sets of X with 

X \ C = 0^ U 

and if moreover A^ .c 0^, ^ said to separate from 

A^ (or; to separate between As is well-Known, the sets 

C, = C u •., C = C u 0^, are closed, and (C ,C ) is a screening pair. 
112 2 ' 
Conversely, if is a screening pair of closed sets, then C^ n C^ 

is a separator of X. 

9
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In the course of proving a result in [\/^,5.4], we used an argument concerning 

con^^'ex separators, but the partial result obtained from it was not mentioned 

explicitly. This result - essential for our present work - is the following one 

2.3.THEOREM. 

Let X be a semi-Tegulav ooriuex etruotuTe with conneated convex 

setSj and let be a screening pair of convex closed sets. Then 

(1) there is a minimal screening pair convex closed sets such that 

c and c C^. 

(2) If C = n is a convex closed separator corresponding to a minimal 

screening pair (0^,0^), then for each dense convex set B c X the set 

B r\ Z is dense in C. 

The reader should be warned that a separator which corresponds to a minimal 

screening pair need not be minimal as a separator. The picture-below presents 

such a separator C, together with a strictly smaller separator D: 

f c f 2 
D 

,1 
For this reason the terminology of [V^] - referring to C above as a "minimal 

separator" - is somewhat unfortunate, but we have no better terminology 

available except for a full description of the property. We will therefore 

maintain the terminology of [V^], but within quotes " ". 

10
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If [X,Cj ir- f: t.onolopical L:Dnv£:xitv, thuri C w: ] ] c.'lvj: r •?. drnote tht. 

collection of nonempty convex closed sets of (X.Cl. Note that C c H(XJ. 

The convex closuve h(A} of Ac X" is defined to be the set CI h(A). 

This gives rise to an operator 

h : H(X] ̂  HfXl. 

(X,C) is called continuous if h is continuous (cf, [j, p. 45]), ii 

which case (X,C) is closure stable [cf. "^hm 2.6]), For compact X. 

contiriuity of (X,C) is equivalent to the following statement: C is 

closed in H[X), and if C c C is contained in an open set 0 c X, then 

there exists a convex closed D c X with 

C c int D c D c D [cf. [J, p. 46]}. 

Continuity of h is a "reasonable" requirement on compact spaces only 

See [V^ , thm 2.6] for weaker conditions on general spaces, and see 

[vMV^] for other equivalent conditions on compact spaces. 

f. COnPATIBLE UNIFDRn STRUCTURES. 

If li is a cover of X, and if A c X, then the LHstar of A is defined 

to be the set 

St [A,U] = U {U I U e U, A n U / 0}. 

1. DEFINITIONS. 

Let (X,C) be a topological convexity structure, and let y be a [covering) 

uniformity structure for X. We say that p is compatible with C if for 

each If e y there is a 1/ e y with the following property: if C e C, then 

h[st [C, [/)) c 5t [C,U). 

If there is a uniformity structure for X compatible with C, then [X,C) 

will be called a uniformizdble convexity. If the compatible uniformity 

is understood in the symbol X [as is the case with the topological 

structure), then [X,C) will be called a uniform convexity structure 

[compare with: topological convexity structure). 

11
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