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SEMINAR ON CONTINUITY IN SEMILATTICES

NAME: Marcel Erné Date’| M D 2.
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TOPIC: &-continuity, &-hypercompactness and complete‘distributivity

One of the prominent results in the theory of continuous posets is the fact that an
up-complete poset (DCPQO) is continuous iff its lattice of Scott-closed (respectively,
Scott-open! sets is completely distributive (see [4, 12, 183). Moreover, Hoffmann [13]
and Lawson [16] have pointed out that the continuous posets "are precisely the spectra
of completelv distributive lattices. Hofmann and Mislove [15]1 have extended these
observations to an equivalence between the category of continuous posets and the
category of completely distributive lattices (both endowed with suitable morphisms).

Since the pioneer work of Wright, Wagner and Thatcher [18] on so-called subset sys-
tems & , several fruitful attempts have been made to generalize the theory of contin-
uous and of algebraic posets by replacing directed sets with "&-sets”. In this vein, a
theory of Z-continuous and of F-algebraic posets has been developed by Novak [17]
and, independently, by Bandelt and Erné (2, 3,5].

However, the translation of the aforementioned categorical equivalence to the general
~ &-setting remained fragmentary. Below, we shall establish such an equivalence between
categories of &-continuous posets and categories of certain completely distributive
lattices, the so-called &-supercompactly generated lattices, but we succeed only under
certain additional hypotheses on the subset selections in question. These conditions are
met if ZP is the collection of all m-directed lower sets, or that of all lower sets generated
by less than m elements ( m regular). Thus, our general equivalence theorems will include,
among other specializations, the equivalence between continuous posets and completely
distributive lattices, as well as the equivalence between posets, primely generated
semilattices and superalgebraic (i.e. algebraic and completely distributive) lattices.

Let us recall a few relevant definitions. & always denotes a subset selection (assigning

h poset P a certain collection ZP of subsets). P denotes the collection of all

S-ideals, i.e. lower sets generated by members of &P or by one point (i.e. principal

). Furthermore, we shall need the global completion &Y where &EYP consists of

all E-join ideals, i.e. lower sets Y such that Z€ZP, ZgY and x=\VZ imply x€Y
)

[
[0}
fu
0

(cf. [3, 6,8]). If YeBE P always implies Y €E"P then Z is said to be union
complete. Specifically, we shall consider the following subset systems in the sense of [181:
P, selects all subset of cardinality less than a given cardinal m, and I, all m-direc-
ted subsets (cf. [81). Notice that D, is always union complete, whereas P__ happens
to be union complete for regular cardinals m only. We write F for P, (finite subsets)
and D for D, (directed subsets). Furthermore, € selects all singletons, the minimal
extension b =& all principal ideals, and the Alexandroff completion of = 27 all lower sets.
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Given a class K of isotone (=order-preserving) maps between posets, we say a subset
selection & is K-invariant provided for each map ¢: P—=Q in K, we have that
Z € Z P implies chpEZ] € Z™Q (where lQY or 1Y denotes the lower set generated by Y
in Q). Specifically, we write O for the class of all order-preserving maps, £ for that
of all (order) embeddings, and / for that of all (order) isomorphisms. All subset systems
& as well as the associated ideal extensions &~ are O-invariant. The subset selection
of all antichains is E-invariant but not O-invariant, whereas none of the /-invariant
completions ?_~ or Dy except of =&Y is E-invariant.

In due course, we shall need a slightly stronger property than E-invariance, namely the
following: an /-invariant subset selection & is stable if for all subposets P of posets
Q, the condition P € 7P is equivalent to } P €Z™Q. It is easy to see that & is stable
iff for any order embedding ¢: P — Q,

ZeZP = | plZ]1€Z7Q.
In particular, any stable subset selection is E-invariant. The converse is not true, as can

be seen easily by looking at the union complete subset system of all upper bounded sets.
However, all subset selections specified before are stable.

In [3]. we have studied so-called &-ary closure operators and closure systems. A
closure system X and the associated closure operator [': PP — PP are called Z-ary
crovided [ agrees with its &-medification
[Z.PP—=PP, Y= | {TZ:Z€Z"P, ZglY)

Here lower sets and &-ideals refer to the specialization order given by x £y iff x belongs
to the closure of {y}. In particular, we shall be interested in the &-modification AS of
the cut operator Ay, assigning to each subset Y of P the cut generated by Y, i.e. the
intersection of all principal ideals containing Y.

A poset P is &-complete .if each member of ZP (equivalently, each &-ideal) has a join.
More generally, a closure space (P,X) with closure operator [ is called & -complete (in
[9]: a E-space) if for each Z€E™P there is a unique point y with TZ=T{y}. The
Z-join ideals of a &- complet~ poset P are precisely the fixed points of the operator
Az But, unfortunately, A“’ is not a closure operator in general, by lack of idempotency.
As shown in [97, Az is ndempotent iff the closure system ZAP is Z-ary.

In a E-complete poset P, the &-below ideal iz i y of y€P is the intersection
of all Z-ideals whose join dominates y, and the z-be/ow relation << is given Dby
X <<y = x€ {3 . If each Z-below ideal-izy is in fact a &-ideal with join y then P
is a B-continuous poset. If, in addition, the Z-below relation is idempotent then we

speak of a strongly &-continuous poset (cf. (2, 171).

A map ¢ between posets P and Q is called EY -continuous (alias B-continuous ) if inverse
images of &~ -ideals under ¢ are Z¥-ideals - in other words, if @ is continuous as a map
between the closure spaces (P, ZYP) and (QZVQ). In case of O-invariant subset selec-
tions &, the latter condition simply means that ¢ is isotone and preserves &-joins [B1.
Furthermore, it can be shown that (for arbitrary subset selections &) an isotone map o
between ‘strongly &-continuous posets is EY-continuous iff it is Z-below interpolating, i.e.

x<€2 @(z) implies x <<y @(y) for some y <<y z.

On the other hand, a straightforward verification shows that ¢ /s F-below preserving , i
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x <<y implies cp( x) < @ly),

iff @ is a quasiopen map between the spaces (P,ZYP) and (Q,&VQ), that is, P~Y e ZVP
entails Q~1glYleZEVQ.

The following “"topological representation” of strongly &-continuous posets as certain
core spaces, i.e. closure spaces with completely distributive closure systems (see [4,
101), has been establieshed in [3] - without any restrictions on the subset selection &:

THEOREM 1. Via specialization, one obtains an isomorphism between the category of
&-ary &-complete core spaces with continuous maps and the category of strongly
&= continuous posets with B-continuous (i.e. & -below interpolating ) maps. Under that
isomerphism, the gquasiopen continuous maps correspond to the Z-below preserving and
interpolating maps. The converse isomorphism maps a strong /y -continuous poset P onto
the closure space (P,3YP).

Usually, an element x with x <<gx is called &-compact. Now, we say an element x of
a complete lattice L is &-hypercompact if for all Y€ AL with x < /Y, there exists a
ZEZTL with ZgY and x £ VZ. Of course, the smaller EP, the stronger is the condition
of 3-hyperc-mpacmes:. In particular, the &-hypercompact elements are the \/-prime
(alias supercompact) ones, the 9’-hypercompact elements are the compact elements in
the usual sense, and the P, -hypercompact elements (where w; is the first uncountable
cardinal) might be called "Lindelor"”, with regard to the corresponding covering property.
Yet another generalization of supercompactness will be relevant for our purposes; namely,
an element x of a complete lattice L will be called &-supercompact if &*"’x €Z™L and
< \/iJ’
The set of all -compact elements of a complete lattice L, sometimes referred to as
the &-core or the F-spectrum of L, is denoted by €L, that of all E-hypercompact
elements by # L, and that of all E-supercompact elements by PL. The basic relation-
ships between the various types of compactness are collected together in ‘

LEMMA 2. Let & be any subset selection and L a complete lattice.

(1) Ezch &=supercompdct éldrment of L is Z-hypercompact.

(2) Each &-hypercompact element of L is & -compact.

(3) Pl = )Czl_ if L is completely distributive.

(4) B L=6p L if the operator A\ is idempotent (i.e. ZYL is E-ary).

PRQOF. (1) If x is z-super‘r‘ompact and x £ VY then i'ﬂx = i*”x EE™L and x= \/it’x
(2) If. x is &-hypercompact and x < VY for some YE?SVL then we find a Z€Z™L
with x < \VZ and Zg Y=Y, whence \VZ€Y and x€Y.

(3) If x is a &-hypercompact element of the completely distributive lattice L then
x=\/£’°’l:-< and consequently x=\/Z for some Z€Z™L with Zg i{x But this can
happen only if i"" =lZe&E L.

(4) If x is &Y -compact in L and Az is idempotent then for each lower set Y e€dJ/L,
TRV \/L\zY implies xGAxY since this is a &Y -ideal. Thus, by definition of A%,
x<\VZ for some ZeZ™L wuth il RN
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EXAMPLES.

(1) €Y -compact = & -hypercompact = & -supercompact = supercompact = \/-prime.

(2) FY=compact = 3—#1;//.ve/'co/npact = cormpact,
F -supercompact = join of finitely many \/ -primes.

(3) Of course, every D¥-compact element, a fortiori every D-hypercompact element, is
v-prime, i.e. F-compact, since F P c DVP. The converse implication is not valid in
all distributive complete lattices (for example, in L=Fw U {w}, the greatest element w
is- v-prime but not DY-compact since w=JY where ¥ = P,w e DVL).
The fact that a v-prime element x of a completely distributive lattice L is always -
hypercompact is not trivial and requires the Boolean Ultrafilter Theorem ( cf. The Lemma
in C11,V=11): if x VY for some YCL then the set I={ZcY: xxVZ} is a proper
ideal in PY because x is wv-prime; hence there exists an ultrafilter U on Y with
INU=D, and it follows from complete distributivity that
xSAIVU: UeU=\ViIAU: UelUs}.

As {/AU: U€U}t.is a directed subset of |Y, this proves D-hypercompactness of x.
Hence, in completely distributive lattices, we have:

DY -compact = D-hypercompact = D-supercompact = F-compact = v-prime = cocrime.
(4) Let m be an irregular cardinal number. Then P= ?_m, partially ordered by inclusion,

is not ?,-complete (whence P, fails to be union complete). The power set L= Pm is
a completely distributive lattice, but it is not P, -continuous because

W= &Z”“’ m=P,m
is not in #,,L. The greatest element m of L is P, -compact: indeed, any P -ideal
Y of L with m ={JY contains all singletons and therefore all members of F. By
irregularity of m, there exists a Z€P P= P _LnPP with m =|JZ, whence meY.
However, m is not P.,-hypercompact since m =[JW but m + [UX for all X € Z,L
with XgW. This example shows that idempotency of the operator L\% is essential in

Lemma 2 (4).

COROLLARY 3. For a ¢éardinal number m, the following conditions are equivalent:
(a) m is regular.

(b) Py is union complete.

(c) For any poset P, the operator Agm is idempotent (hence a closure operator).

(d) Every Py'-compact element is P, -hypercompact (and conversely).

Q.

(e) Every D" -compact element of a completely distributive lattice is Pmp=supercompact.

®

A Z-complete poset P is said to be Z-compactly generated if each element of P is a
join of &-compact elements. Similarly, a complete lattice L is called ZF-hypercompactly
(Z-supercompactly ) generated if each element of L is a join of &-hypercompact (Z-super-
compact) elements. From Lemma 2 and the fact that a complete lattice L is completely
distributive iff y=\/i°{_’y for all y€L, we infer:

https://repository.lsu.edu/scs/vol1/iss1/99
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PROPOSITION 4. (1) A complete lattice L is &-supercompactly generated iff L is &-
hypercompactly generated and completely distributive.
(2) Every &-hypercompactly gencrated complete lattice L is &Y -compactly gererated.
The converse holds if the operator /_\25 is idempotent.

(3) Every & -compactly generated complete lattice is & -continuous.

EXAMPLES.
(1) &-hypercompactlv generated = &€-supercompactly generated =
F - supercompactly generated = superalgebraic = algebraic and completely distributive.

h
o

) F-hypercompactly gererated = D-compactly generated =
dlgebraic and complete = compactly generated and complete.

W

P-nypercompactly generated = complete,

?-sqcer‘comoact/y generated = completely distributive = supercentinuous.

(4) The lattice L= Pm is P,,-supercompactly generated, the P.,-supercompact elements
being the members of P=2_ m. However, L is not ?_-continuous for m >1, and P is

not P_-continuous if m is irregular.

PROPOSITION S. /f & is an E-invariant subset selection then for any &-ary closure
system X, all point closures are &-hypercompact, and consequently X is a Iz-hfy,r:er-
compactly generated lattice. Conversely, if B is a closure system in which every point
closure is E-hypercompact then X is E-ary, provided E=P_ or & is O-invariant and

the underiving set P=|JX is a complete lattice with respect to specialization.

PROOF. Let [': PP — PP denote the Z-ary closure operator of L and suppose that
by Ve =TtUJY) for some Y L. Then we find a Z€Z™P with Zg JY and yeTZ.
For the principal ideal embedding n: P — X, y = ly=T{y}, we obtain V =l n[Z]1€ & X,
Vgled and lygTZ=V V. Hence ly is E-hypercompact.

Now assume that every point closure of £ is Z-hypercompact. If y€TY then lygTlY =
VienlY1, so there exists a UWEeE™X with W lp,nlY] and by g VoW If =2, then

we find a Z€Z™P with Zg 1Y and W g l,,n[Z], whence y e TIUW) ¢ T(UnlZ1) =TZ.
If & is O-invariant and P is complete then we may take Z={\/W: WeU)}.

We know that for any straengly &-continucus poset P, the & -ideal completion L=ZP
is completely distributive [3,17]. In order to show that L is even z-supercompactly
generated, it will suffice to verify the equation P L=:lkP (since every £ -ideal is a union
of principal ideals). For this, it will be convenient to have an explicit description of the
ol -below relation in arbitrary completely distributive closure systems X. Recall from [4]
that the restricted closure operator T': P — AP of such a closure system has a lower
adjoint-L : P — AP, where LY=(x€P:3yeYVZgP(yelZ =xe€lZ)} (YZP).

LEMMA 6. Let (P,X) be a core space with closure operator [. Then for all YCP,
JTY = (XeX:Xglx for some x €LY},

PROOF. By known facts about core spaces, the closure operator ' of X induces an
isomorphism between the kernel system L'={LX:X€X} and the closure system X.

Published by LSU Scholarly Repository, 2023 5
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Furthermore, LY = [J{L{x}: x€Y} and therefore I[Y =TLY = \/x(lx . x€LY},
whence i"’,FY Clplix: x €LY}, For the converse inclusion, consider any Y edX with
TY 2 Vped . Then LYS V. LI¥1=ULIYIgUY, and it follows that dop{ix: xeLYigd .4

COROLLARY 7. If & is a stable subset selection then for each subset Y of a core
space (P,X) with closure operator T,
LYEZ P = TYe Sl =R L.

PROOF. Since X is completely distributive, we have Foedli=peX and 'Y =\/{4ry.
Using the principal ideal embedding n: P — X, y = I'{y}, we infer from Lermma &:
LYEZ P = {LTY= 1 nllYIeZ L = [YeSX.

The next resuit provides us with various characterizations of Z-ary core spaces:

THEOREM 8. Let & be a stable subset selection. Then the following statements con 2

(P,X) are eguivalent :

Each point closure is &-hypercompact in L.
(d) Each member of X is a union of Z-hypercompact elerments of X.

g S ( - ! o - | 2 £ / Fra s
If & is union complete then these conditions are also equivalent to the following two:

(e) L:e%AP r?.r all Ze ZI™P
(f) For all Z€EZ P, the closure of Z is Z-hypercompact.
Each of the above six conditions implies that X s z-hvpefcompacm generated. More-

over, the prefix "hyper' may be replaced with "super" by complete distributivity of X.

PROOF. (a)=>(b): See [91].

(b) = (c): Apply C-:r‘ollary &

(c)=(d): Clear.

Of course, (e) implies *(b}. while (f) implies (c), and (d) implies that X is Z-hyper-
compactly generated.

Now assume that & is union complete.

(b) = (&) : Using the embedding ¢ : P = &P , y — Lly, we see that Z€ Z"P implies
bagnpt[Z1 € B EP, whence LZ=JilZ]1= ULEAPLE 1eB"P

(e) = (f): See Corollary 7 again. g

For &=, the equivalence of the statements (a),(c) and (d) remains valid in arbi-

trary closure spaces (cf. Proposition 5).
b P

Now to the first part of the announced eguivalence theorem for Z-continuous posets

PROPOSITION 9. Let & be 2 union cormplete stable subset selection. Then for each
Z-continuous poset P, the XY -ideal completion EYP is a &-supercompactly generated
lattice X with P x:llP = #pt = P k6

https://repository.lsu.edu/scs/vol1/iss1/99 6
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PROOF. We know from Theorem 1 that (P,&ZYP) is a &-ary core space. Hence, by
Theorem 8, X = ZYP is a &-supercompactly generated lattice with ollP g Yo L.
Conversely, if (P,X) is any &-ary core space then for each &-supercompact member
Y of i, we have LYEZ™P (by Corollary 7) and VLY =V{(VLly: yeY}i=\VY. If
L=FYP then LYZY €L and LY €E™P imply that Y =1\/LY=IVY is a principal ideal. 5

In (2], we have called a T, closure space E-sober if the E-compact closed sets are
just the point closures. Mow, we say a T, closure space (P,2&) or its closure system
X is Z-hvpersober (F-supersober) if the point closures are precisely the X-hyper-
compact (&-supercompact) elements of L, i.e. #MP= #xX (FPxL). Then we may

summarize our results as follows

THEOREM 10. Lot & be a union complete stable subset selection. Then the following
statements on & T, closure space (P,XX) and the underlying poset P are equivalent:
(a) P is a (strongly) &E-continucus poset and X =FP.

(b) (P.XC) is a E-hypersober core space.

(c) (P.X) is a &-superscber space, i.e. Foudb =:lLP.

PROOF. (a)= (c): See Proposition 9.

(c) = (b): Since :IP is jcin-dénse in the closure system X, this is a Z-supercompactly
generated lattice: in particular, X is completely distributive, i.e. (P,2) is a core spacse.
By Lemma 2, the E-supercompact elements of £ are the Z-hypercompact ones.

(b) = (a): By Theorem 8, the inclusion :(LPQ‘J@z% means that XL is &-ary, and for
ZeXP, we have TZ€#p X =FxX, whence TZ=ly for some y€P. This shows that
(P,X) is a E-complete core space, and Theorem 1 applies. o

It is well known and easy to see that in case of a union complete E-invariant subset
selection &, the &-below relation of any Z-continuous poset is automatically idempotent.
Invoking Theorem 1 once more, we arrive at

THEOREM 11. For any union complete stable subset selection & , the assignment
P— (P.&YP) yields an isomorphism between the category of &-contifuous posets with
Z-below interpolating (i.e. EY-continucus) maps and the category of Z-supersober

clostre spaces (i.e. Z\é—h);oer'sober core spaces) with continuous maps. Moreover, a

morphism between &-continuous posets preserves the &-below relation iff it is quasi-
open as a map between the corresponding core spaces.

Notice that for a closure system X, F-hypersoberness means &Y -soberness if the
operator A% is idempotent , and that the latter automatically holds if & =2, for some
regular cardinal m, or if =D _ and X is completely distributive (cf. [9]).

Now let us turn to the second part of the isomorphism theorem for &-continuous po-
sets, .generalizing the ncntrivial fact that the spectrum of a completely distributive
lattice L is always a continuous poset whose Scott topology is isomorphic to L (see

Hoffmann C[12,131, Lawson C16]1 or C11, V-1.91). In view of Example (4) above, it is
evident that some restrictions have to be imposed on the subset selections in question.

Published by LSU Scholarly Repository, 2023
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First, letus recall a few general remarks on functions between arbitrary (closure)

—~

spaces from [7]. We have a functor G from the category of closure spaces with con-
tinuous maps to the category of complete lattices with join-preserving maps; on the
morphism level, it sends a continuous map @: (P,8) — (Q,¥) to the "lifted” map
Go: L =Y, X cllelX)={Y e :plXIC Y.
But we have also a contravariant functor, mapping ¢ to the upper adjoint of G, which
is given by the inverse image map
G Y =X, Y = 7Y,
The equivalence of the following conditions on such a morphism ¢ is straightforward:
(a) ¢ is guasiopen
(bl GTo is a complete homomorphism
(c) G is doubly residuated, i.e. lower adjoint to a complete homomorphism.
Moreover, if @ is a continuous map between core spaces then the previous conditions
are also eguivalent to the following two:
(d) Go preserves joins and the o -below relations

{e) Go preserves and interpolates the J -below relations.

The key result is now the following special instance of a representation theorem in L71:

THEOREM 12. For any | -invariant subset selection &, the functor G induces an equi-

egory of &-(hyper=-, super-)sober spaces and the category of
&-(hyper-, super-)compactly generated complete lattices with maps preserving joins
and &-(hyper-, super-)compactness. Under this equivalence, the continuous gquasioper
maps correspond to the doubly residuated maps. Hence, the category of Z-(hyper-,
super-)sober spaces with continuous quasiopen maps is dually equivalent to the category
of & -(hyper=, super-)compactly generated lattices and complete homomorphisms.

salence between the cate

Putting all pieces together, we obtain the desired equivalence theorem for &-con-
tinuous posets and the completion functor @ gl

THEOREM 13. For any unisn “complete stible subset selection &, the join-ideal com=
pletion & induces an equivalence between the category of &-continuous posets with
EY-continuous (i.e. Z-below interpolating isotone) maps and the category of &-super=-
compactly generated lattices with maps preserving joins and & —supercompactness.
Furthermore, the category of &-continuous posets with Z-below preserving and inter-
polating maps is equivalent to the category of &-supercompactly generated lattices with
o -below preserving and interpolating maps, and dual to the category of &-supercompactly
generated lattices with complete homomorphisms. The inverse equivalence resp. duality
is obtained by restricting the morphisms to the subposets of &-supercompact elements.

COROLLARY 14. Let & be a union complete stable subset selection. Then the &-super-
compact elements of & F-supercompactly generated lattice L form a (strongly) &-
continuous poset P = P, and L is isomorphic to the & -ideal completion & P,

nsequently, a complete lattice is &-supercompactly generated iff it is isomorphic to

)
O

the closure system of a Zz—af‘y core space.

https://repository.lsu.edu/scs/vol1/iss1/99
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If a continuous map @ :P — Q is lower adjoint to a continuous map ¢ :Q — P (with respect
to specialization) then Ge is lower adjoint to G¢ (cf. [15]).

COROLLARY 15. Let & be an O-invariant, union complete and stable subset selection.
Then 4an isotone map between F-continuous posets is & -interpolating iff it preserves
Z-joins. Hence. the category of &-continuous posets with &-join preserving residual
(i.e. upper adjoint) maps is equivalent to the category of &-supercompactly generated

lattices with complete homomorphisms preserving & -supercompactness.

On the other hand, these categories are dually equivalent to the category of Z-contin-
uous posets with residuated (i.e. lower adjoint) maps preserving the Z-below relation.
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