# Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 97

3-18-1985

# SCS 96: Generators and Weights of Completely Distributive Lattices

Marcel Erné Leibniz University Hannover, 30167, Hannover, Germany, erne@math.uni-hannover.de

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

## **Recommended Citation**

Erné, Marcel (1985) "SCS 96: Generators and Weights of Completely Distributive Lattices," *Seminar on Continuity in Semilattices*: Vol. 1: Iss. 1, Article 97. Available at: https://repository.lsu.edu/scs/vol1/iss1/97

### SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

| NAME: Marcel Erné | Date | М | D  | Y  |  |
|-------------------|------|---|----|----|--|
|                   |      | 3 | 18 | 85 |  |

TOPIC: Generators and weights of completely distributive lattices

REFERENCES: [C] Compendium

- [BB] B.Banaschewski: Über den Ultrafilterraum. Math. Nachr. 13 (1955) 273-281
- [R1] G.N.Raney: Completely distributive complete lattices. Proc. AMS 3 (1952) 667-680
- [R2] G.N.Raney: A subdirect-union representation for completely distributive complete lattices. Proc. AMS 4 (1953) 518-522
- [R3] G.N.Raney: Tight Galois connections and complete distributivity. Trans. AMS 97 (1960) 418-426

It was shown in [C, III-4.9] that a continuous lattice L has the same weight  $\omega(L)$  as its Scott topology  $\sigma(L)$ , and it is easy to see that  $\omega(L)$  also agrees with  $\omega(\sigma(L)^{op})$ , the weight of the lattice of Scott-closed sets. The observation that a complete lattice L is continuous iff  $\sigma(L)$  resp.  $\sigma(L)^{op}$  is completely distributive (cf. [C, II - 1.14]) leads to the question whether a completely distributive (complete) lattice has always the same weight as its dual. A suitable extension of the above mentioned result to continuous *posets* gives an affirmative answer if one takes into account the well-known fact that every completely distributive lattice is isomorphic to the Scott topology of a continuous poset.

In the present Memo we study a special symmetry of completely distributive lattices which directly gives the equality  $w(L) = w(L^{op})$ .

. 1

Recall that a complete lattice L is completely distributive iff

$$\{ \forall Y_i: i \in I \} = \forall \{ \land \xi[I]: \xi \in \Pi Y_i \}$$

for each family ( $Y_i$ :  $i \in I$ ) of subsets of L, and that complete distributivity is a self-dual property. Since Raney's pioneer work [R1,2,3] we have a broad spectrum of various characterizations of complete distributivity. In [R3] Raney used the following adjoint pair ( $\nabla, \Delta$ ) of maps for an arbitrary complete lattice L:

$$\nabla^{\nabla}: L \to L , x \mapsto x^{\nabla} = V(L \setminus \uparrow x) ,$$
$$\Delta^{\Delta}: L \to L , y \mapsto y^{\Delta} = \Lambda(L \setminus \downarrow y) .$$

By definition, we have the equivalence

 $x^{\nabla} \leq y \iff \forall x \cup \forall y = L \iff x \leq y^{\Delta},$ 

which shows that  $\Delta$  is in fact the upper adjoint of  $\nabla$ . In particular,  $\nabla$  preserves joins,  $\Delta$  preserves meets,  $x \mapsto x^{\nabla \Delta}$  is a closure operator, and  $y \mapsto y^{\Delta \nabla}$  is a kernel operator. Following an idea of V.Diercks, we shall prove that in a completely distributive lattice every V-generator is mapped onto a  $\Lambda$ -generator by virtue of  $\nabla$ .

In analogy to the way-below relation [C, I-1] for continuous lattices, Raney's "long way-below relation " $\rho$  (alias  $\ll$ ) defined by

 $x \rho y : \iff x \in \rho y := \bigcap \{ Y: y \leq \forall Y, Y = \forall Y \subseteq L \}$ 

plays a central rôle in the theory of completely distributive lattices. An element x with xpx is called  $\bigvee -prime$  (*completely join-prime*), and  $\bigwedge -primes$  are defined dually. From [R3] we recall the useful equivalence

(1) x ρ y ⇐ x<sup>∇</sup>

which holds in arbitrary complete lattices, while the identity

 $y = \forall \{ x: x \rho y \} = \forall \{ x: y \leq x^{\nabla} \}$ 

characterizes completely distributive lattices.

From (1) one derives the following representation of the closure operator  $x \mapsto x^{\nabla \Delta}$ :

(2)  $x^{\nabla \Delta} = \bigwedge x \rho = \bigwedge \{ y \in L: x \rho y \}$ .

Hence the corresponding closure system is given by

(3)  $L^{\Delta} = \{ y^{\Delta} : y \in L \} = \{ x \in L : x = x^{\nabla \Delta} \} = \{ x \in L : x = \wedge x \rho \}.$ 

By virtue of the Galois connection,  $L^{\Delta}$  is isomorphic to the kernel system

(4)  $L^{\nabla} = \{ x^{\nabla} : x \in L \} = \{ y \in L : y = y^{\Delta \nabla} \}$ .

(Caution: The dual of the long way-below relation of L is in general distinct from the long way-below relation of the dual lattice L<sup>OP</sup>!)

Examples 1 - 4.



These examples demonstrate that the statements "L is (completely) distributive " and "L<sup> $\nabla$ </sup> resp. L<sup> $\Delta$ </sup> is (completely) distributive " are independent. We observe that L<sup> $\Delta$ </sup> contains all  $\Lambda$ -prime elements and the least element, while L<sup> $\Delta$ </sup> contains all V-prime elements and the greatest element. In fact, <sup> $\nabla$ </sup> and <sup> $\Delta$ </sup> induce mutually inverse isomorphisms between the poset of all V-primes and the poset of all  $\Lambda$ -primes of L, where

x is V-prime  $\iff x \rho x \iff x \leq x^{\nabla}$ ,

and clearly x  $\rho$  x implies x =  $\Lambda x \rho = x^{\nabla \Delta} \in L$ . The greatest element 1 belongs to  $L^{\Delta}$  since 1 =  $\Lambda \emptyset = 1^{\Delta}$ . As our examples show,  $L^{\nabla}$  (resp.  $L^{\Delta}$ ) need not contain all  $\Lambda$ -(resp. V-) irreducible elements. The greatest element 1 belongs to  $L^{\nabla}$  iff 1 is not V-irreducible (since then 1 = V(L \{1})).

In the preceding examples,  $L^{\nabla} \setminus \{0,1\}$  is precisely the set of all  $\wedge$ -primes, but this is not always the case, even if L is finite and distributive:

Example 5.



Published by LSU Scholarly Repository, 2028

3

Notice that

 $x^{\nabla}$  is  $\Lambda$ -prime iff  $x\rho$  is a principal filter,  $x^{\nabla}$  is (finitely meet-)prime iff  $x\rho$  is a filter,  $x^{\nabla}$  is co-compact iff  $x\rho$  is dually Scott-closed.

Indeed, for  $Y \subseteq L$  we have

 $\begin{array}{l} \wedge Y \leqq x^{\nabla} \iff \wedge Y \in x\rho, \\ y \leqq x^{\nabla} \text{ for all } y \in Y \iff Y \subseteq x\rho. \end{array}$ 

A useful consequence of (1) is the following

Lemma. Let B be an arbitrary subset of a complete lattice L. Then  $B^{\nabla} = \{ b^{\nabla} : b \in B \}$  is a  $\Lambda$ -generator of L (i.e. each element is a meet of elements in  $B^{\nabla}$ ) iff  $\rho y \cap B \subseteq \rho z \cap B$  implies  $y \leq z$  (y,z  $\in$  L).

<u>Proof.</u> B<sup>∇</sup> is a A-generator of L  $\iff$   $\forall y, z \in L (y \leq z \implies \exists b \in B: y \leq b^{\nabla} \text{ and } z \leq b^{\nabla})$   $\iff \forall y, z \in L (y \leq z \implies \exists b \in B: b \rho y \text{ but not } b \rho z)$  $\iff \forall y, z \in L (y \leq z \implies \rho y \cap B \leq \rho z \cap B). \square$ 

Of course, the implication  $y \leq z \implies \rho y \cap B \subseteq \rho z \cap B$  is always true.

After these preliminaries we are in position to supplement the long list of characterizations for complete distributivity by certain conditions on special V-, resp.,  $\Lambda$ -generators.

Theorem. For a complete lattice L, the following conditions are equivalent:

- (a) L is completely distributive.
- (b)  $y = \vee \rho y$  for all  $y \in L$ .
- (c) For all  $y_z \in L$  with  $y \leq z$ , there is an  $x \in L$  with  $x \rho y$  and  $x \leq z$ .
- (d) If B is a V-generator of L then  $y = V(\rho y \cap B)$  for all  $y \in L$ .
- (e) If B is a V-generator of L then  $B^{\nabla}$  is a  $\wedge$ -generator of L, and  $\rho$  is idempotent.
- (f)  $L^{\nabla}$  is a  $\wedge$ -generator of L, and  $\rho$  is idempotent.

Each of these conditions implies that there is a one-to-one correspondence between the V-generators of L which are contained in  $L^{\Delta}$  and the  $\Lambda$ -generators of L which are contained in  $L^{\nabla}$ .

<u>Proof.</u> The equivalence of (a), (b) and (c) is due to Raney [R2] who also has shown that these statements imply idempotency of  $\rho$ .

(c)  $\implies$  (d): Clearly z := V( $\rho y \cap B$ )  $\leq y$ . Assume  $y \notin z$ . Then we may choose  $x \in L$  with  $x \rho y$  and  $x \notin z$ . As B is a V-generator, we find a  $b \in B$  with  $b \leq x$  and  $b \notin z$ . But  $b \leq x \rho y$  leads to  $b \in \rho y \cap B$ , which is excluded by the inequality  $b \notin z = V(\rho y \cap B)$ .

(d)  $\implies$  (e):  $y = V(\rho y \cap B)$ ,  $z = V(\rho z \cap B)$  and  $\rho y \cap B \subseteq \rho z \cap B$  implies  $y \leq z$ . Hence, by the Lemma,  $B^{\nabla}$  is a  $\Lambda$ -generator of L. Idempotency of  $\rho$  follows from (b) which is a trivial consequence of (d).

(e)  $\implies$  (f): L is a V-generator of L.

(f)  $\Longrightarrow$  (b): By the Lemma, we have  $y \le z \iff \rho y \subseteq \rho z$ . (B = L). In other words, the map  $\varphi: L \to \mathcal{P}L$ ,  $y \mapsto \rho y$  is an order embedding. Now idempotency of  $\rho$  yields  $\cup \varphi[\rho y] = \{x \in L: x \rho z \text{ for some } z \in \rho y\} = \rho y = \varphi(y)$ , and as  $\varphi$  induces an isomorphism between L and  $\varphi[L]$ , it follows that  $\lor \rho y = y$ . Finally, observe that the adjoint pair ( $\nabla, \Delta$ ) induces mutually inverse isomorphisms between L<sup> $\Delta$ </sup> and L<sup> $\nabla$ </sup>, and that complete distributivity is a selfdual property. Hence the last statement of the Theorem follows from the implication (a)  $\Longrightarrow$  (e).  $\Box$ 

<u>Remark</u>. If B is a V-generator of the completely distributive lattice L with  $B \subseteq L^{\Delta}$  then  $B^{\nabla}$  is a  $\Lambda$ -generator of L contained in  $L^{\nabla}$ , and in particular,  $B^{\nabla}$  is a  $\Lambda$ -generator of  $L^{\nabla}$ . Moreover, the isomorphism  $\Delta : L^{\nabla} \to L^{\Delta}$  maps  $B^{\nabla}$  onto the initial set B, and consequently, B is not only a V-generator but also a  $\Lambda$ -generator of  $L^{\Delta}$ . However, a V-generator of  $L^{\Delta}$  need <u>not</u> be a V-generator of L, although  $L^{\Delta}$  is a V-generator of L (provided L is completely distributive). The reason is that joins in  $L^{\Delta}$  may differ from those in L (while meets agree in both lattices).

Example 6.



L (completely) distributive



(minimal) V-generator of  $L^{\Delta}$ , but not of L.

A complete lattice L is said to be a *normal completion* of a poset P iff there exists a join- and meet-dense embedding  $\varphi$  of P in L (i.e.  $\varphi[P]$  is both, a V- and a  $\Lambda$ -generator of L). It is well known that L is a normal completion of P iff L is isomorphic to the *completion by cuts* of P which consists of all intersections formed by principal ideals of P.

The above remark may now be summarized as follows:

<u>Corollary 1</u>. If B is a V-generator of the completely distributive lattice L with  $B \subseteq L^{\Delta}$  then  $L^{\Delta}$  and  $L^{\nabla}$  are normal completions of B.

From the Lemma and the Theorem, we infer:

<u>Corollary 2</u>. The following two conditions are equivalent for a complete lattice L: (a)  $L^{\Delta}$  is a  $\Lambda$ -generator of L. (b)  $\rho y \subseteq \rho z$  implies  $y \leq z$ . Each of these conditions is necessary, but not sufficient for complete distributivity.

<u>Example 7</u>. The following finite lattice L fails to be (completely) distributive, although  $L^{\Delta}$  is a  $\Lambda$ -generator of L:



Here we have  $x \rho z$ , but there is no  $y \in L$  with  $x \rho y \rho z$ . In other words,  $\rho$  is not idempotent.

It was already observed by Raney [R2] that idempotency of  $\rho$  alone is not sufficient for complete distributivity, as a five-element nonmodular lattice shows.



<u>Corollary 3</u>. Every completely distributive lattice has the same weight as its dual.

#### **-7**-Erné: SCS 96: Generators and Weights of Completely Distributive Lattices

This equality cannot be extended to, say, algebraic distributive lattices. For example, if X is an infinite set then the lattice F(X) of all set-theoretical filters on X has weight  $2^{|X|}$  (the principal filters form the smallest "base"), while  $F(X)^{op}$  has weight  $2^{2^{|X|}}$  since there are  $2^{2^{|X|}}$  ultrafilters on X (see, for example, Banaschewski [BB]), and these form the smallest  $\Lambda$ -generator of F(X).

<u>Problem</u>. Is it always true that  $w(L) = w(L^{OP})$  if L and L<sup>OP</sup> are continuous (algebraic) lattices?

By Corollary 3, the answer is in the affirmative if L is also assumed to be distributive.