[Seminar on Continuity in Semilattices](https://repository.lsu.edu/scs)

[Volume 1](https://repository.lsu.edu/scs/vol1) | [Issue 1](https://repository.lsu.edu/scs/vol1/iss1) Article 97

3-18-1985

SCS 96: Generators and Weights of Completely Distributive Lattices

Marcel Erné Leibniz University Hannover, 30167, Hannover, Germany, erne@math.uni-hannover.de

Follow this and additional works at: [https://repository.lsu.edu/scs](https://repository.lsu.edu/scs?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages)

P Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Erné, Marcel (1985) "SCS 96: Generators and Weights of Completely Distributive Lattices," Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 97. Available at: [https://repository.lsu.edu/scs/vol1/iss1/97](https://repository.lsu.edu/scs/vol1/iss1/97?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages)

SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

TOPIC: Generators and weights of completely distributive lattices

REFERENCES: [C] Compendium

- [BB] B.Banaschewski: Uber den Ultrafilterraum. Math. Machr. 13 (1955) 273-281
- [Rl] G.N.Raney: Completely distributive complete lattices. Proc. AMS 3 (1952) 667-680
- [R2] G.N.Raney: A subdirect-union representation for completely distributive complete lattices. Proc. AMS 4 (1953) 518-522
- [R3] G.N.Raney: Tight Galois connections and complete distributivity. Trans. AMS 97 (1960) 418-426

It was shown in $[C, III-4.9]$ that a continuous lattice L has the same weight $W(L)$ as its Scott topology $\sigma(L)$, and it is easy to see that $W(L)$ also agrees with $w(\sigma(L)^{op})$, the weight of the lattice of Scott-closed sets. The observation that a complete lattice L is continuous iff $\sigma(L)$ resp. $\sigma(L)^{OP}$ is completely distributive (cf. $[C, II-1.14]$) leads to the question whether a completely distributive (complete) lattice has always the same weight as its dual. A suitable extension of the above mentioned result to continuous *posets* gives an affirmative answer if one takes into account the well-known fact that every completely distributive lattice is isomorphic to the Scott topology of a continuous poset.

In the present Memo we study a special symmetry of completely distributive lattices which directly gives the equality $w(L) = w(L^{OP})$.

 \mathbf{r}_1 1

Recall that a complete lattice L Is *completely distributive* iff

$$
\Lambda\{VY_i: i \in I\} = V\{\Lambda \xi[I]: \xi \in \prod_{i \in I} Y_i\}
$$

for each family $(Y^{\cdot}_i : i \in I)$ of subsets of L^{\cdot} and that complete distributivity is a self-dual property. Since Raney's pioneer work [Rl,2,3] we have a broad spectrum of various characterizations of complete distributivity. In [R3] Raney used the following adjoint pair (∇, Δ) of maps for an arbitrary complete lattice L:

$$
\nabla: L \rightarrow L, x \mapsto x^{\nabla} = V(L \setminus \uparrow x),
$$

$$
\Delta: L \rightarrow L, y \mapsto y^{\Delta} = \Lambda(L \setminus \uparrow y).
$$

By definition, we have the equivalence

 x^{∇} < y \iff $\forall x \cup \forall y = L$ \iff $x \le y^{\Delta}$,

which shows that $^{\Delta}$ is in fact the upper adjoint of $_{\cdot}^{\nabla}$. In particular, $^{\nabla}$ preserves joins, $^\Delta$ preserves meets, $x \mapsto x^{\nabla \Delta}$ is a closure operator, and $y \mapsto y^{\Delta \nabla}$ is a kernel operator. Following an idea of V,Diercks, we shall prove that in a completely distributive lattice every V-generator is mapped onto a A-generator by virtue of $\sqrt{ }$ \cdot

In analogy to the way-below relation [C, I-l] for continuous lattices, Raney's "long way-below relation " ρ (alias $\ll\lt$) defined by

 $X \circ y$: $\iff X \in py := \bigcap \{ Y: y \leq \forall Y, Y = \forall Y \subseteq L \}$

plays a central rôle in the theory of completely distributive lattices. An element x with $x \rho x$ is called $\sqrt{\ }$ - prime (*completely join-prime*), and */\-primes* are defined dually. From [R3] we recall the useful equivalence

(1) $x \rho y \iff y \notin x^{\nabla}$

which holds in *arbitrary* complete lattices, while the identity

 $y = V{ x : x \rho y } = V{ x : y \nleq x^{\nabla}}$

characterizes *completely distributive lattices.*

From (1) one derives the following representation of the closure operator $x \mapsto x^{\nabla \Delta}$:

(2) $x^{\nabla \Delta} = \Lambda x \rho = \Lambda \{y \in L: x \rho y\}$.

Hence the corresponding closure system is given by

(3) $L^{\Delta} = \{ y^{\Delta}: y \in L \} = \{ x \in L: x = x^{\nabla \Delta} \} = \{ x \in L: x = \Lambda x \rho \}.$

By virtue of the Galois connection, L^{Δ} is isomorphic to the kernel system

(4) $L^{\nabla} = \{ x^{\nabla}: x \in L \} = \{ y \in L: y = y^{\Delta \nabla} \}$.

(Caution: The dual of the long way-below relation of L is in general distinct from the long way-below relation of the dual lattice L^{OD}!)

Examples $1 - 4$.

These examples demonstrate that the statements " L is (completely) distributive " and " L^{∇} resp. L^{Δ} is (completely) distributive " are independent. We observe that L^{Δ} contains all \wedge -prime elements and the least element, while L^{Δ} contains all V-prime elements and the greatest element. In fact. \sqrt{a} and Δ induce mutually inverse isomorphisms between the poset of all V-primes and the poset of all \wedge -primes of L , where

x is V-prime \iff x $\rho x \iff x \leq x^{\nabla}$,

and clearly x ρ x implies x = $\Lambda x \rho = x^{\nabla \Delta} \epsilon L$. The greatest element 1 belongs to L^{Δ} since $1 = \Lambda \emptyset = 1^{\Delta}$. As our examples show, L^{∇} (resp. L^{Δ}) need not contain all \wedge -(resp. V-) irreducible elements. The greatest element 1 belongs to L^{∇} iff 1 is not V-irreducible (since then $1 = \vee (L \setminus \{1\})$).

In the preceding examples, $L^{\nabla}\setminus\{0,1\}$ is precisely the set of all \wedge -primes, but this is not always the case, even if L is finite and distributive:

Example 5.

Published by LSU Scholarly Repository, 2028

Notice that

 x^{∇} is A-prime iff xp is a principal filter, x^{∇} is (finitely meet-)prime iff xp is a filter, x^{∇} is co-compact iff xp is dually Scott-closed.

Indeed, for $Y \subseteq L$ we have

 $AY \leq x^{\nabla} \iff AY \in x \rho$, $y \nleq x^{\nabla}$ for all $y \in Y$ \iff Y \subseteq xp.

A useful consequence of (1) is the following

Lemma. *Let* B *be an arbitrary subset of a complete lattice* L. *Then* $\overline{B^V}$ = { b^V : $b \in B$ } is a Λ -generator of L *(i.e. each element is a meet of elements in* B^{∇} *) iff* $\rho y \cap B \subseteq \rho z \cap B$ *implies* $y \le z$ (y,z $\in L$).

Proof. B^{∇} is a Λ -generator of L \iff \forall y,z \in L ($y \nleq z$ \implies 3 b \in B: $y \nleq b^{\nabla}$ and $z \leq b^{\nabla}$) \iff V y,z ∈ L ('y \pm z \implies 3 b ∈ B: b p y but not b p z) \iff \forall y,z \in L ($y \nleq z$ \implies py n B \Leftrightarrow pz n B). \Box

Of course, the implication $y \le z \implies py \cap B \subseteq pz \cap B$ is always true.

After these preliminaries we are in position to supplement the long list of characterizations for complete distributivity by certain conditions on special V-, resp., A-generators.

Theorem. *For a complete lattice L, the following conditions are equivalent:*

- (a) L *is completely distributive,*
- (b) $y = \sqrt{\rho}y$ *for all* $y \in L$.
- (c) For all $y, z \in L$ with $y \nleq z$, there is an $x \in L$ with $x \in y$ and $x \nleq z$.
- (d) *If* B *is a* V-generator of L *then* $y = V(py \cap B)$ *for all* $y \in L$.
- (e) If B *is a* V-generator of L *then* B^{∇} *is a* \wedge -generator of L , and ρ *is idempotent,*
- (f) is a *A-generator of L, and,* p is *idempotent.*

Each of these conditions implies that there is a one-to-one correspondence between the V-generators of L *which are contained in* L'^ and *the f\-generators of* L *which are contained in* L^{∇} .

Proof. The equivalence of (a), (b) and (c) is due to Raney [R2] who also has shown that these statements imply idempotency of ρ .

(c) \Rightarrow (d): Clearly z := V(\circ y \circ B) \le y . Assume $y \nleq z$. Then we may choose $x \in L$ with $x \in y$ and $x \nleq z$. As B is a V-generator, we find a b $\in B$ with $b \le x$ and $b \le z$. But $b \le x \rho y$ leads to $b \in \rho y \cap B$, which is excluded by the inequality $b \nleq z = V(py \cap B)$.

(d) \Rightarrow (e): $y = V(y \cap B)$, $z = V(y \cap B)$ and $py \cap B \subseteq pz \cap B$ implies $y \le z$. Hence, by the Lemma, B^V is a Λ -generator of L. Idempotency of ρ follows from (b) which is a trivial consequence of (d).

(e) \Rightarrow (f): L is a V-generator of L.

(f) \Rightarrow (b): By the Lemma, we have $y \le z \iff py \subseteq pz$. (B = L). In other words, the map $\varphi : L \rightarrow \mathcal{P}L$, $y \mapsto \rho y$ is an order embedding. Now idempotency of ρ yields U $\varphi[\rho y] = \{x \in L : x \rho z \text{ for some } z \in \rho y\} = \rho y = \varphi(y)$, and as φ induces an isomorphism between L and $\varphi[L]$, it follows that $\vee \rho y = y$. Finally, observe that the adjoint pair $(\nabla,^{\triangle})$ induces mutually inverse isomorphisms between L^{Δ} and L^{∇} , and that complete distributivity is a selfdual property . Hence the last statement of the Theorem follows from the implication (a) \Rightarrow (e).

Remark. If B is a V-generator of the completely distributive lattice L with $B \subseteq L^{\Delta}$ then B^{∇} is a A-generator of L contained in L^{∇} , and in particular, B^{∇} is a \wedge -generator of L^{∇} . Moreover, the isomorphism $\Delta: L^{\nabla} \rightarrow L^{\Delta}$ maps B^{∇} onto the initial set B, and consequently, B is not only a V-generator but also a A-generator of L^{Δ} . However, a V-generator of L^{Δ} need not be a V-generator of L, although L^{Δ} is a V-generator of L (provided L is completely distributive). The reason is that joins in L^{Δ} may differ from those in L (while meets agree in both lattices).

Example 6.

(completely) distributive

 \odot (minimal) V-generator of L^{Δ} , but not of L.

A complete lattice L is said to be a *normal completion* of a poset P iff there exists a join- and meet-dense embedding φ of P in L (i.e. $\varphi[P]$ is both, a Vand a A-generator of L). It is well known that L is a normal completion of P iff L is isomorphic to the *completion by cuts* of P which consists of all intersections formed by principal ideals of P.

The above remark may now be summarized as follows:

Corollary 1. *if B is a y-generator of the completely distributive lattice* ^L with $B \subseteq L^{\overline{\Delta}}$ then L^{Δ} and L^{∇} are normal completions of B .

From the Lemma and the Theorem, we infer:

Corollary 2. *The following two conditions are equivalent for a complete lattice* **L**: (a) L^{Δ} *is a* \wedge -generator of L . (b) $\rho y \subseteq \rho z$ *implies* $y \le z$. Each of these conditions is necessary, but not sufficient for complete dis*tributivity,*

Example 7. The following finite lattice L fails to be (completely) distributive, although L^{Δ} is a Λ -generator of L:

Here we have $x \rho z$, but there is no $y \in L$ with $x \in y \cap z$. In other words, ρ is not idempotent.

It was already observed by Raney [R2] that idempotency of P alone is not sufficient for complete distributivity, as a five-element nonmodular lattice
shows. shows.

In the Compendium $[C]$, the weight $\mathfrak{U}(L)$ of a complete lattice L has been defined to be the smallest cardinality of a "base", i.e. a V-generator which is closed under finite joins. Now from the Theorem we infer (using the fact that complete distributivity is a self-dual property):

Corollary 3. *Every completely distributive lattice has the same weight as its dual.*

6

-7- Erné: SCS 96: Generators and Weights of Completely Distributive Lattices

This equality cannot be extended to, say, algebraic distributive lattices. For example, if X is an infinite set then the lattice F(X) of all set-theoretical filters on X has weight 2^{1X1} (the principal filters form the smallest "base"), while F(X)^{OP} has weight 2^{1X1} since there are 2^{1X1} ultrafilters on X (see, for example, Banaschewski [88]), and these form the smallest A-generator of $F(X)$.

Problem. Is it always true that $w(L) = w(L^{OP})$ if L and L^{OP} are continuous (algebraic) lattices?

By Corollary 3, the answer is in the affirmative if L is also assumed to be distributive.

 $7¹$