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The present memo deals with the categories of algebras for

the nine monads which appear in the following diagram

m ——————é m

\ \/
/. /\dh )

up___eu

The monads and morphisms of monads appearing in the diagram will

be described; most of them result from contravariant adjunctions.

For five of the monads, the category of algebras is the category

of continuous sup semilattices; the algebraic functors induced by

the four morphisms with domain EO are isomorphisms of categories.
The order for continuous lattices will be that of [2] and

of [3a], dual td the order of the Compendium [1] and of [3b].

In this way, we can order subsets by set inclusion, with set -

nions as suprema, and then deal with order preserv1ng maps -only.
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0. Categorical backgrouhd

. If 3= (T,n,n) and 8 = (S,e,m) are monads on cate-

o
=

gories @G and £, then a morphism (R,m) : 8 —> J consists of
a functor R : G —> 8 and a natural transformation T :

S8R —> RT such that m+-eR=Rn, and 7 -mR = Ry *7T - ST . This
induces an algebraic functor (R,m)* : G3 —_ ﬁs. which lifts R,
with (R,m)* (A,a) = (RA, RQ ’WA) for an G-algebra (A,a).

We have US(R,W)* = RUE for the forgetful functors, and it
is easily seen that 7 1lifts to T : FgR — (R,'ﬂ‘)*Fg for the

free algebra functors. -

Il

0.2. We shall deal repeatedly with a morphism of monads

: 8§ — 3 which satisfies the following conditions.
(i) R 1is faithful, and all morphisms Ta are epimorphic.

BS —> @ such that RA = Us

(R,m)

(ii) There is a functor A :
ana A (R,m)* =.U3.

(iii) Every morphism SWA is epimorphic, and the structure
of an 8-algebra (B,B) always factors B8 =um, with
A =A(B,B) and u.: RTA — B in 8,

THEOREM. If a morphism (R,m) of monads satisfies (i)»
and (ii), then the functor (R,m)* 1is full and faithful, and
injective on objects. If (R,m) also satisfies (iii), then

(R,m)* 1is an isomorphism of categories.

Proof. (R,m)* is faithful if R 1is, and clearly injective
on objects if (i) and (ii) are valid.

i1If g: (R,M)* (A,0) — (R,mM)* (C,y) and f=Ag:A —>C,
then g = Rf, and Rf *Ro "Mp RY ~vc + SRf = Ry * RTE N by
naturality of 7 . Now f : (A,a) —> (C,y), and g = (R,A\)*£f,
if (i) as well as (ii) is wvalid.

For the last part, we must only show that (R,7)* is surjec-
tive on objects. Thus consider an 8-algebra (B,B), and put

A=A(B,B). If B = um, we must show that u = Ra' for an

G-algebra structure of 2.
For this, consider the following diagram:

https://repository.lsu.edu/scs/vol1/iss1/95
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SW Su
SSRA -——-——9 SRTA ————> SRA

Toa e
V. RTa Y
Men RTTA ——=—> RTA
RuA u
V m™ \V u N

SRA — 2 S RTA —0 3 B

The outer sgquare and the lefthand rectangle commute by hypothesis.
Since SWA is epi, u : (R,W)*ﬁFgA.-—a (B,B); it follows that
u=Ra for a=Au : TA —> A . Now the upper righthand square
commutes by naturality of =, and ap, = &-Ta follows by (i).
Finally, ldRA =um, e —‘uRnA, and an, = idA follows [

Ilo

=;. A (non-commutative) diagram

A

op op
FTG Fll{\Gl

¢« ——= g
of categories and functors, with contravariant adjunctions for the
vertical arrows, results in a bijective correspondence between
- natural transformations K : RG —> GlSOp and A : SF —> FlROP,
as follows. K and A correspond to each other, and are called
adjoint, if XA - Sf and KB +Rg are adjoint for Flop — Gy
whenever £ : B —> FA and g : A —> GB are adjoint for

F —| G.
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Let § on G and & on G, be the monads_induced by the
contravariant adjunctions, and let K : ﬁoP _ Gg and Kl :
BIOP -g> Gl8 be the comparison functors, witb tﬁyK =G "
and U K, = Gy, andwith KB = (GB,Gey) “and K B o'

1°
= (GI.B;GH_eB) for objects. There are two situations in which
- adjoint natural transformations produce a morphism of monads.
i ; = K .
(i) If all Gl)\A factor G17\A FA Ta s

monomorphic, then the LN define a morphism (R,7) : § — J,

and K 1lifts to a natural transformation K : (R,T)*K —> K.'lSOp .
(ii) If G, =0 and R = IdG , and if all % factor

with every KFA

1 FA
KFA = Gl.XA TTa s w1th)every Gl_xA monomorphic, then the Ta
define a morphism (Id,7) :* 8 —> 8 . 1In this situation, we have

K : K —> (Id,w)*ﬁKlSOP at the level of J-algebras.

We omit the diagram-chasing proofs.

1. The proper filter monad on sets

1.1. We denote by MSL the category of meet semilattices
with 0 (and 1) . Morphisms of MSLo preserve finite meets,

and O . The contravariant powerset functor on sets obviously
lifts to Po : ENS0p —_— MSLo , with PdA the powerset of A ~ for
a set A, ordered by set inclusion and regarded as meet semi-
lattice with ©O.

If £f: A — PL and g : L —> PA are exponentially
adjoint, i.e. always ac f(x) & xecg(a). if. xeA .and acl,
for a set A and an object I of MSLo , then g is a morphism
g: L — POA. of MSLo iff every £(x) 1s a proper filter
in L . Thus we have a functor GO : MSLO0p —> ENS , adjointvon
the right to PO ,  with 4GOIJ’the set of all proper fiiters in L
for a meet semilattice L with 0, and (G £)(¥) = £ (V) for
f: L — M in MSLO and a proper filter ¢ in M.

We denote by 30 the monad on sets obtained from this
adjunction; this is the proper filter monad. The proper filter
functor Fo = GOIPOOp assigns to every set A the set of all

proper filters on A . ‘ ST

https://repository.Isu.edu/scs/vol1/iss1/95



Wyler: SCS 94: Algebraic Theories for Proper Filter Monads

.2. We denote by IAT the category of lattices, with ©
and , and by Pp : ENS0p —> IAT the functor which assigns to
every set its powerset, ordered by inclusion and considered as a
lattice. This functor has as adjoint on the right, with exponen-
tial adjunction, the' functor Gp . 1aTP —> ENS which assigns
to every lattice 1L the set of all prime filters in L.

The resulting monad on sets is the ultrafilter monad, denoted
by u in this paper, with functor part U = GP)PpOp, the ultra-
filter functor on sets. As is well known, u-algebras are compact

Hausdorff spaces; the u-algebra structure of a compact Hausdorff

space X assigns to every ultrafilter on X its limit for X.

If S : IAT — MSLo is the inclusion functor, then clearly
S‘Pp = Po' Adjoint to the resulting identity natural transforma-
tion is K : Gp —_— GOSc>p given by inclusions. By 0.3.(ii),
this produces a morphism i = (Id, KPPOP) U —> 30 . Thus every
So—algebra (L,a) has an underlying compact space i*(L,a) , with.
the restriction of a to ultrafilters as convergence of ultra-
filters. Morphisms of Eo—algebras are continuous maps for the

underlying compact topologies.

1.3. We define a sup semilattice as an ordered set L such

that every non-empty subset of 1L has a supremum in L . Mor-
Phisms of sup semilattices preserve suprema of non-empty subsets.

We denote by Eo the free sup semilattice functor on sets.
It is well known that goA , for a set A, is the set of non-
empty subsets of A, with set unions as suprema. Eo is left
adjoint to the forgetful functor | | : SSL —> ENS, with SSL
the category of sup semilattices. The unit s of this adjunc-
tion is given by s, (%) = (x}, for =xea.

Every -sup semilattice L has a one-point extension to a com-
plete lattice Eﬁ obtained by adding a EFrON or, EP L, and a
map f : L — L' of SSL extends to f : L — L' with f(oL)
. We obtain a functor DO . ss1.°P —> MSL by letting

D L = f, considered as object of MSLO , with the same order,

and putting x < (DO:EMX’) = g(x) < xt, for (x,x') e LXL' .,
Then DC,EOOP is naturally isomorphic to P, - Adjoint to this
isomorphism is K : | [ —_ GO‘DOOP with K.L(X) = tx for =xelL.

Published by LSU Scholarly Repository, 2023
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We denote by 60 = (Eo,s',u) the powerset monad on sets which

results from the adjunction E_ —| | | . Algebras for e, are
sup semilattices; the 8o-algebra structure of a sup semilattice

is given by suprema.

By 0.3.(ii), the natural transformation K : | | — G DOo
induces a morphism J = (Id, K__E_:o) : &o —_ 30 of monads, and
hence an algebraic functor Jj* , from ﬁo-algebras to ssSL, which

P

preserves underlying sets and mappings. Thus an 3O-algebra
(L,a) has an underlying sup semilattice j*(L,a) , with sup$S
=-a(1tS) for a non-empty subset S of L, and homomorphisms of

3o~algebras preserve these suprema.

1.4. The functor. G, : MSLOop —> ENS lifts to a comparison

functor Ko to go—algebras,, with *KOL = (GOL, GOeL) for an
object L, and Kof = Gof : KoM —_— KOL for £f: L — M.

One sees easily (see e.g. [3]) that suprema in j* KoL are
set intersectiqns; thus the order of filters 1in KoL is the
natural order of filters, dual to set inclusion. The limit in
ix KoL of an ultrafilter ¥ on G, L ‘consists of all aelL
with eL(a) e¥; it follows that ix KoL is a Stone space, with
the coarsest topology for which the sets eL(a) are clopen.

There is also a comparison functor Kp : 1aToP —> CH which
assigns to a lattice L its Stone space of prime filters in L .
By 0.3.(ii), the iI?clusion GPL — GOL lifts to a closed . .
embedding KPL —> ix KoL , for every lattice L.

1.5. PROPOSITION. If (L,a) is an 3o-algebra, with under-
lying compact space X = i*(L,a), then a(®) = sup adhx¢ for a
filter @ on L, with supremum in Jj*(L,a). Morphisms of
T:"O-algebras are all morphisms of the underlyving sup semilattices

which are continuous for the underlying compact topologies.

Proof. All morphisms of Eo—algebras, including a , are
continuous and preserve suprema as stated. 1In KO PoL , a filter
¢ on L is the supremum of all finer ultrafilters ¥ ; thus
a(® is the supremum of the limits a(¥) of these ultrafilters.
These limits form the adherence adhX‘I’; “this proves our formula.
Now the last part of 1.5 follows immediately from the fact that
maps of compact Hausdorff spaces preserve filter adherences.[|

https://repository.lsu.edu/scs/vol1/iss1/95
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1.6. PROPOSITION. So-algebras can be embedded into compact

Jjoin semilattices (without O0) as a full subcategory. If (L,a)
is an Eo-algebra, then a(®) = inf {supsS : Se¢®} for = proper
filter & on L. '

Proof. We have V - (axa) = a -V for joins in J*(L,a) an
and in j*K 41:01. #since joins in Ko PoL 1E“are set intersections,
we hzve v (S ) =S X8 for SCL and S' = ePL(S) , with
€cs’" <« sec¢® .. This shows that V is continuous for the com-:-.
pact topology of K0E2>L . As a and a X0 are continuous and
surjective for the compact topology, hence topological quotient
maps, it follows that V for L is continuous for i*(L,a).

Thus 30-algebras are compact join semilattices.

Compact join semilattices are compact ordered spaces; thus
filter bases have infima, and dual filter bases suprema, which
are topological limits. It follows that maps of compact join
semilattices preserve infima of filter bases, and suprema of dual
filter bases. Since these maps preserve finite non-empty joins,
they preserve all joins. With 1.5, it follows that & -algebras
and their induced compact join- semilattices have the same maps .

Now if (L,a) is an 3o-algebra and @ a proper filter
on L, then € is the infimum of all filters 1S with Se@.
These filters tS form a filter basis in K P, L thus o (®)

is the infimum of all a(tS) = supS with Se &

2. Continuous sup semilattices

2.1. A sup semilattice L (l1.3) is called complete if every

filter base in L has an infimum in L.

For elements a,b of a complete sup semilattice L, we say
that b 1is way above a, and we write b>»a, if b is in every
filter ® in L with inf® < a. The elements way above a in
L form a filter which we denote by %®a , with inf%a'd> a.

We say that I is a continuous sup semilattice if inf#%a = a
for all ael.

Morphisms of complete and continuous sup semilattices are

mappings which preserve non-empty suprema and infima of filter

bases, or egquivalently of filters.
Published by LSU Scholarly Repository, 2023
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2.2. We use again the notations of 1.3. For a sup semi-

lattice L, putting qL;(x) = Ix for xel provides a map q
L — P|L|. With g, (o)) = B, this is clearly a morphism q :
D,L —> P L] in MSL, , and it is easily verified that g as
just shown is natural in L.

Proper filters in a meet semilattice M with 0, ordered
dually to set inclusion, form a sup semilattice, with intersec-
tions as suprema. Maps Gof, for morrhisms £ of MSLO,
clearly preserve these suprema; thus we can lift Gg to a func-
tor G : MSL_ —> SSL, with | [go =G, -

PROPOSITION. The-functors D, and G are adjoint on the
right, with g : D, —. POI ’op and id(Go) adjoint.

Proof. For objects L of SSL and M of 'MSLO , it is
well known that ac £(xX) & xc¢ gl(a), for xelL and aeM,
provides a bijection between morphisms g; : M —>.P_ L] of "MSL
and mappings f : |L| — G,M. In this situation, ac g:'(sup.xiv)
& sup X €. gl(a)c,'. ;a‘pd a.e€ 'sup_:f(xi) <=>X:L € gl(a) ~for all . i .
Thus_ f‘ preserves suprema iff each gi(a) “is -a principal_f dual
fi‘lte:_:}_,»%.g’(»a);*, i.e. iff'..;;g'i factors 9, =d;, 9 - Since qar,
is a natural embedding, this gives the desired bijection between
E ¢ L —->§_OM in SSL and g : M——>DOL in MSL_ , and this
bijection is natural in L as well as M . The proof also shows

that o and id(Go) are adjoint [

2.3. We denote by ’.10 the monad on SSL obtained from the
adjunction DOOP —] 2 of 2.2, with functor part @, = Q_ODOOP .
Since f : L — Q_OM and g : M — DOL are adjoint iff always
ae f(x) & x<g(a), both units of this adjunction are principal
filter maps. We note that QOL is the sup semilattice of all
filters in L ; these are the proper filters in DoL .

2 . .
THEOREM. SSL is the category of continuous sup semi-

lattices, with algebra structures inf : QoL —> L.

Proof. If (L,a) 1is a Do-algebra, then a(®) £ a(ta) = a
for a filter ® in L and aec® . On the other hand, if =x<{a
for all ae¢, then tx < ®, and x < a(y) follows. Thus L
is complete, and a(®) = inf® for all ¢ in o, L .

https://repository.lsu.edu/scs/vol1/iss1/95 . . e . 8
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Now a Qo-algebra is a 'complete sup semilattice L such that
inf : Q I — L preserves suprema and satisfies the formal laws.
The formal laws reguire that always inf tx = x, which is valid,
and inf inf® = inf Qg inf)(¥) for a filter & in QO¢ . This is
also valid since inf¢ 4is the set union of all ®e &, and the
filter Qg inf)(®) has the elements inf®, 9e®, as a basis.

The map inf : Q I. —> L ©preserves suprema iff there is a
mapping §°s . I —_ Q L such that always inf® < x &0 < t(x) .
+(x) must be the supremum of all ¢ with info < x, 1i.e.

=#%x, and this must satlsfy inf 1(x) < x . This is the case
iff L is a continuous sup semilattice.

| Morphisms of Do-algebras must preserve suprema of non-empty
subsets, and algebra structures infL ; thus they are the maps of

continuous sup semilattices |

2.4. By 2.2 and-0.3.(1i); we have,a morphism of monads

sup = (] I, GerP) : 30 _ 3 . For a proper filter &-:on a sup

semilattice “.the filter (G qLﬁ(@) consists of all xelL
with ixe @, and hence of all supS with Se &,

THEOREM. The algebraic. functor .sup¥*. from continuous sup

semilattices to @& —algebras is an isomorphism of categories,

preserving underlylng sets and mappings, and with j* sup* the
. forgetful functor from continuous sup semilattices to SSL .

Proof. sup*¥ clearly preserves underlying :sets and mappings.
For a continuous sup.-semilattice L ;mand:.ic,- = infL . éo dp s Wwe have
(GO qL)(ﬁs) = t supS for non-empty S < L, hence a(tS) = sups§.
Thus j* sup*L is the underlying sup semilattice of L.

Now sup* has the factorization property of 0.2.{ii), with _
A= 3%, and 0.2.(i) 1is also satisfied since every filter ® in
a sup semilattice I satisfies ® = (G qL)(@) for the filter @
s fllter base. 0.2, (lll) is.

on L with the sets &x g xetp .
satisfied. by 1. 6 hus’” sup‘*‘ 45-an 1somorp‘h:x.sm by O i3 ﬁw

Published by LSU Scholarly Repository, 2023
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3. The proper Vietoris ﬁonad

éé%. For a compact Hausdorff space X, we denote by VOX
the set of non-empty closed subsets of X, ordered by set’' inclu-
sion and provided with the coarsest topology such that the sets
Is = fAezVoX : ACS) are closed for SCcX closed, and open for
SCX open. This is the Vietoris space of X.

VOX is a Hausdorff space, for if A ,B are closed in X

with AZB, then there are disjoint open sets R and S with
BCS and R and A not disjoint. Then ybxﬁxz(x\\g) and ‘S
are disjoint neighborhoods of A and B in V X

For f.: X-—> Y in CH, let V f be the restriction of
£7 to VX and VY . Since (V, £)" (&T) V£ (T) for TCY,
the map Vof : VOX —— VOY is contlnuous, and VO is a functor,

to CH since we shall see in 3.2 that VOX is compact.
|

3:2. We denote by CH the category of compact Hausdorff
spaces, and by | | : CH —> ENS the underlying set functor.
For a compact Hausdorff space 'X, adherences of proper filters
on X provide a mapping adhy : FO!X] —_— ‘VOXI. One sees
easily that adhX is natural in X, and we have shown in
[3],:5.2.2, ‘that adhX preserves suprema of sets of filters. =

PROPOSITION. adhy : i*Kopolx[ —> V_X is continuous.

COROLIARY. VOX is a compact Hausdorff space.

Proof. For SCX closed and a filter €® on X, we have
adhx:¢ c S iff all cgfsed nelghb;rhoods of 8§ in X are in & .
Thus adhX (is) = with R" = e (R) for L = P IX| (see
1.4), for all closed’ neighborhopds, R of 8§ in VOX . This set
is closed in i*KR_P_|[X]|.

For SCX open, we have adhx¢ Ccs iff S contains a
closed neighborhood R of aﬂ5{¢; with Re @ . Thus adhxh(ls)
= UR for closures R of open sets contained in § . This set
is open in i*K_P_|X] .

Since adthS = C;XS , the closure of S in X, the map
adhX is surjective. Thus VOX is compact |

10
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3.3. For a compact Hausdorff space X , we denote by Sy *

X — VOX the singleton map, with sx(x)'= {x} for =xeX . Since

s, (48) = s for ScX, the map s, 1is continuous.
It is well known (see e.g. [3b],5.4) that the set union UK
is closed in X for K closed in VOX . Thus set unions define

u, : V.V X —> VX . Clearly uX"(Ls) = ils for SscX; thus
u, is continuous.

It is easily seen that Sy and u, are natural in X .

PRdPOSITION. The functor Vo , and the natural transforma-

tions obtained above, define a monad Uo = (Vo,s,u) on .-CH, and

a morphism (| |, adh) : 30 —> U of monads.

We call Uo the proper Vietoris monad, and we use adh as

abbreviation for (| |, adh) when this is convenient.

Proof. The monadic identites for s and u are easily
verified; we omit details. »
We must show that agh - n| | = | |s, and

4 : - ) - . . !A”: ey
adh - p| | =~ |u-.adhv_+ F_adh . |

The first of these is obvious; the point filter nX(x) has {x}
as its adherence. For the second one, put 2 = i*I&)PO}(. Since
L”XW is the Eo-algebra structure of ”KOIPO|X| , we have a diagram

ath sup
P lz] —25 |v 2| —2 |z

FoadhX : lyoadhx adﬁx s
Folvoxl ?—di lvovoxl __‘ix_> v x|

with the factorization of ub(' by 1.5 on top. The lefthand
square commutes by naturality of adhx, and the righthand square
since adhX preserves suprema as remarked above. Thus the dia-

gram commutes[]

3.4. THEOREM. The algebraic functor ({:],adh)* ," from

Uo~a1gebras to 3o-algebras, is an isomorphism of categories,

preserving underlying sets and mappings, with i* (| | ,adh) * "the

forgetful functor from Uo—algebras to CH.

Published by LSU Scholarly Repository, 2023 11
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Proof. It is clear that (| |,adh)* preserves underlying
sets and mappings. If (X,§) is a Uo-algebra and ¥ an ultra-
filter on X, with limit x, then adhX\I' = {x}), and
E({x}) = x .. Thus x is the limit of ¥ in ix (| |,adh)*(X,€) ;
it follows that i* (| |)* (X,€) = X . sSince i* (| |,adh)* pre-
serves underlying mappings, it is the forgetful functor from
V -algebras to CH . As | | i* also preserves underlying sets
and mappings, 0.2.(ii) is satisfied with A = i*¥ , Since
adhXTS =8 for S closed in X, 0.2.(i) is satisfied. Finally,
0.2,.(iii) is satisfied by 1.5, so that 0.2 applies |

o

4, The closed proper filter monad

4.1. We denote by TOP the category of topological spaces
and continuous maps, and by R : TOP —> ENS the underlying set
functor. For purposes of this paper, objects of: TOP. could be
restrictedito be TE) spaces or sober spaces, or the super-sober
spaces of the Compendium [1]. -

For a topological space X, an object L of MSLg » and
adjoint r:aps f :RX — GoL and g : L — PbRo X , we have
g(a) = £ (a) for aelL and a = eL(a). If .Ib)( iS'theimeet
semilattice of closed sets of X, ordered by set inclusion, and
L L the set GOIJ with the coarsest topology such that a# is-
closed for all aeL, it follows that £ : X —4>‘ZOJJ is contin-
unous iff g maps L into Tb)(. Thus we have contravariant
functors Ib : Top°P —> MSL, and 20 : MSLAOp , adjoint on the
right.

Clearly R.Zo =G, and the natural transformation A :
Ib —_— P})ROP adjoint to id(Go) is given by inclusions.

We denote by wo the closed proper filter monad on TOP , with
functor part W, = ZOIBOP, obtained from the adjunction TEOP

-"——! Z .
o
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4.2. By 0.2.(i), we have a morphism r = (R,(%DXOP) :
30 — mo of monads, with (G0739(¢) the restriction.of ¢ to
closed sets for a proper filter € on a topological space X.
If L 1is a lattice, then prime filters in L form a sub-
space ZpIJ of ZOIJ; this defines a functor T 1ar°P
—> TOP, adjoint on the right to the functor T, Top°P
—> IAT with I%)( the lattice of closed sets of a space X.

If S : IAT — MSL is the inclusion functor, then ro =S I‘p,

and subspace inclusions define a natural transformation K :
z, —> zos°p, with Kk and id(T) clearly adjoint,

‘We denote by W the monad on. TOP.:resulting from the:~-
adjunction IbOP —] Zp, with functor part Wp = ZPIEOP. This
is the prime closed filter monad on TOP, and WpX is the prime
Wallman compactification of X for a topological space X.

| _mp-algebras were studied in [4]; they are compact ordered
spaces. If (Z2,£) 1is a compact ordered space, then Z = r* (¥%,a)
for a unigque W _-algebra (X,a), where =r¥ is the algebraic
functor induced by the restriction morphism' r : U — ub-”
In this situation, X is 2 with the upper topology, i.e. open
sets of X are increasing open sets of Z , the topology of Z
is the patch topology of X, and 2Z has the induced order of X,

i.e. x<y 1in the order of 2Z iff c]j{{x] < cl, (v} . T

4.3. By 4.2, a wo-algébra (X,a) has an induced compact
ordered space i¥ (X,a) and an induced continuous sup semilattice,
or 3O—a1gebra, r* (X,a). Since the diagram on p.l of this paper
commutes, both have the same compact topology, the patch topology

of X . They also have the same order:

PROPOSITION. If (X,a) is a 1w0—algebra, then the order of

the induced continuous sup semilattice r*(X,a) is the induced

order of X.

Proof. Wé note first that the induced order of a:space ZOL
is the natural order of filters in L, since (<% for that ¢ = -
order iff wetJai for every basic closed set with @elJai#.

Now let (X,a) be a: mo—algebra, with induced Eo-algebra
structure «a -clX , where 01X'¢ is the restriction of a filter @
to closed sets. If =x<y in the induced order of X, then
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xVy = a(‘rclx{x,y}) = a(Tch[y}) =y in r*(X,a). Conversely,
'rclx{x] < 1¢1X{x,y] in the induced order of W_X . The contin-
uous map a preserves the induced order; thus x < xVy in the
induced order of X, and x<y in this order if xVy =y [

4.4, For an Eo-algebra (A,a), let U (A,a) be A pro-

" vided with the upper topology for the induced compact ordered
space of (A,a). This clearly defines a functor U which pre-
serves underlying sets and mappings, from 3O—a1gebras to TOP,
with RU the forgetful functor from 'é".o-algebras to sets. Note:
that our upper topology is the lower topology of the Compendium.

THEOREM. The algébraic functor r* from wo—algebras to

30-algebras is an isomorphism of categories, preserving underlying

sets and mappings, and with Ur* the forgetful functor from
lbo-algebras to TOP .

Proof. r* clearly preserves underlying sets and mappings.
If (X,a) is a wo-algebra, then X has the upper topology of
the induced compact ordered space which by 4.3 is also the induced
compact ordered space of r* (X,a). Thus Ur¥(X,a) = X . Since
U r*¥ preserves underlying mappings, it follows that Ur* ~is the
forgetful functor for W -algebras. Thus 0.2.(ii) is satisfied _
with A =U.

0.2.(1i) is valid; every filter of closed sets of a space X
is the restriction of a filter on RX to closed-set.

It remains to verify the factorization of 0.2.(iii), i.e. if
(L,a) is an 30 algebra with X = i* (L,a) , then a(®)
= sup adhx@ depends only on the decreasing closed sets in @,
i.e. the sets closed for U (L,a) . Restricting % to these sets
can only increase a(®). On the other hand, if x £ o(®), then
tx .and . adhx#? - are disjoint; thus x has an increasing neigh- -
borhood V in X:.with  X\V a neighborhood of adhX¢ and thus -
in ® . This shows that restricting & to increasing closed sets

does not change sup adhxé i
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5. _The open proper filter monad

Due to the duality between open and closed sets, the develop-
ments of this section are closely parallel to those of Section 4.

5.1. We denote bf w@éX"and @pX the set of dpen sets of a
topological space X, ordered by set inclusion and regarded as an
object of MSL and IAT respectively. 1In the other direction,
we denote by HOIJ the set "Gol’ of proper filters in a meet
semilattice I with O, provided with the topology for which the
sets a# = eL(a), for aelL, form a basis of open sets. If L
is a lattice, then HpI, is the subspace of HOIJ consisting of
all prime filters in L.

~ As in Section 4, this defines functors @p : Top®P —> IAT
and @o : Top°P —_ MSLO, with S @p = @o» for the forgetful func-
tor S : IAT — MSLO, and with adjoints on_the*right ﬁp': 1aT°P
—> TOP and N : MSL_°° —> TOP . ‘
We denote by Hp the prime open filter monad on TOP and by

ﬂo the open proper filter monad on TOP which result from the %

adjunctions discussed above, with functor parts HP = HF>®p°p and

H = T @oop . B
5.2. We have RHp = Gp and RHO = G, for the underlying

set functor R : TOP —> ENS , and natural inclusions A :

@p —_ RpRpp and QA : @O i POR0p adjoint to identity trans-

formations. By 0.3.(i), we get morphisms r = (R,m) of monads,

with 7, = G XX or i, = Go%x reducing ultrafilters or. proper

X P X

filters to their open sets. These maps Ty

Subspace inclusions provide K : Hp - Ilosop for the for-
getful functor S, adjoint to id(@o). Thus we have an inclusion
morphism 1 = (Id, KGPOP) : ﬁp s ﬂo.

We denote by D : IAT —> IAT the dual lattice functor which

are surjective.

reverses order in every lattice, preserving underlying sets and
mappings. Complements of closed sets define a natural isomorphism
P :Ibré -—>;®p. For a lattice I, .the.complement L \®: of'a
prime filter ® in L 1is a prime filter in DL: it is easily

seen that complements of prime filters define a natural isomorphism
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O O .
0: T — np°F. By 0.3, oT°P = Tp P .5 for a natural iso-

morphism of monads (Id,7) : wp —_ up.

5:3. If- by Id —> E is the unit of ﬂp or ﬁo, then
hX(x) is the filter of open neighborhoods of x, for a space X
and xeX . We define the dual induced order of X, dual to the
" induced order of X , by putting x<y iff hX(x) ghx(y) "
For _-®. in a space HpIJ or HOI,, the sets a with aeo
form a base of neighborhoods of & ; it follows that the dual
induced order of II_L or HOI. is the natural order for filters,

dual to set inclusion.
By 5.2, we.have algebraic functors r¥ , from ¥ _-algebras
to compact Hausdorff spaces and from uo—algebras to Eo-algebras.

These. functors preserve underlying sets and mappings.

THEOREM. If (X,a) is an ﬁp-algebra, then r*(X,a), pro-
vided with the dual induced order of X, is a compact ordered ’

space, and X has the lower topology of this compact ordered

space. Every ﬁp—algebra is obtained ‘in this way, and morphisms

of - ¥ -algebras are morphisms of the corresponding compact ordered
sgaceg.

Proof. If Z = r*(X,a) for an Hp-algebra (X,a), vthen it
is seen as in [4], 1.7, that the topology of 2Z is finer than the
topology of X . If ® is an ultrafilter on X and & the prime
filter of open sets in %, then a(®) is the limit of ® for Z;
thus ® converges to all x;:a(@) for the dual induced order

of X . Conversely, if ® converges to x for X, then
he(x) > & in B X thus x > a(®) for the dual induced order
of X since the continuous map o preserves this order.

If x£y in X._, so that vy £ clx(x}, then hy(y) is not
in the closzd set a (ch{>d) in Hp}(; thus there is a basic
open set V in H_X, with V an open neighborhood of x
in X, disjoint from ah(clx{>d) . It follows that X\V is in
every ultrafilter with limit x for 2Z; thus X \V is a neigh-
borhood of x in Z . Now X \V X V is a neighborhood of (x,y)
in ZXx2, disjoint from the graph of < since V is decreasing,
and (2,) 1is a compact ordered space. Ultrafilters have the
same limits for X as for the lower topology of " (Z,L);: thus-

X has this lower topology. ‘
https://repository.Isu.edu/scs/vol1/iss1/95 S , 16
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The remainder of the proof follows the proof of the corre-

sponding results of [4], with only minor changes.[ "~ ..’

"REMARK. Since the monads mp and ﬂp are isomorphic,
the same spaces have algebra structures for the two monads.
These spaces are the super-sober spaces of the Compendium [1].
The compact ordered spaces obtained in this way from a super-
sober space X are dual. They have the same topology, the patch
topology of X [1l; 4], but dual orders.

5.4. The morphisms of monads of 5.2 pfovidekalgebrgic func-:
tors i* "and ¥, from.‘ﬂo—algebras to ﬁp—algebras and to
Eo—algebras. If (X,a) is an ﬁo-algebra, then the Eo-algebra
r¥(X,a) and the compact ordered space obtained from i*(X,a)
provide us with the same compact Hausdorff topology; we now show

that they also provide us with the same order.

PROPOSITICN. If (X,a) -is an ﬁo—algebra, then the order of
the Eo-algebra r¥(X,a) is the dual induced order of X.

Proof. Let r = (R,T), with Ty restricting a filter on X
to its open sets. If (X,a) 1is an ﬁo—algebra, then xVy
=va(vx(1{x,y}» in r*(X,a). If x<y in the dual induced order
of X, then WX(T{x,y}) = h (y); thus xVy =y . Conversely, .
‘we have hX(x) < WX(?{x,y})_ in the dual induced order of Ho}(,
and a preserves this order. Thus x<y in the dual induced

order of X if xVy =y in r*(X,a)]

5.5. The lower topology of a continuous sup semilattice 'L
is the Scott topology, with U c L. open iff U is decreasing and
meets every filter ¢ in L with inf® :in U . Scott topo- -
logies provide a functor S, from 3O-algebras to TOP, which
preserves underlying sets and mappings. It follows that RS is
the forgetful functor from 3o—algebras to sets.

THEOREM. The algebraic functor r* from ﬁo-algebras to
3O-algebras is an isomorphism of categories, preserving underlying
sets -and mappings, and with 8 r* the forgetful functor from
ﬁo—algebras to TOP .
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Proof. 0.2.(i) and O.2.-(ii), with A = U, are verified as

in the proof of 4.4. To obtain 0.2,(iii) for an 3o—algebra
(L,a), we must show that a(®) = sup adhx¢, for a filter @
on L and X = i¥(L,a), depends only on the decreasing open
sets in ® . Restricting @ to these sets can only increase

. a(®). on the other hand, if x £ a(®, then {a(®, and hence
also adlB{Q, has a decreasing neighborhood V with X\V a
neighborhood of x . Then Ve @®; thus restricting @ to its

decreasing open sets cannot increase sup adhX@ 0
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