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TOPIC: Algebraic theories for proper filter monads 
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and a Fixed Point Theorem. Notes, December 1983 
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[4] O. Wyler, Compact ordered spaces and prime Wallman compacti-
fications. To appear in the Proceedings of the International 
Conference on Categorical Topology (Toledo, OH, 1983) . 

The present memo deals with the categories of algebras for 

the nine monads which appear in the following diagram 

i 

The monads and morphisms of monads appearing in the diagram will 
be described; most of them result from contravariant adjunctions. 

For five of the monads, the category of algebras is the category 

of continuous sup semilattices; the algebraic functors induced by 
the four morphisms with domain are isomorphisms of categories 

The order for continuous lattices will be that of [2] and 

of [3a], dual to the order of the Compendium [1] and of [3b] . 

In this way, we can order subsets by set inclusion, with set v 

unions as suprema, and., then deal with order preserving, maps only. 
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0_. Categorical background 

0_ii • If ^ and S = (S,e,m) are monads on cate­

gories G and B , then a morphism (R,7r) : S —> IT consists of 
a functor R : G —> B and a natural transformation ir ; 
SR —> RT such that ir • eR = Rrj , and TT • mR = Rji * irT • Sir . This 

t! S induces an algebraic functor (R,7r)* ; G —> B , which lifts R , 
with (Rjir)* (A,a) = (RA, Ra 'TT-) for an G-algebra (A,a) . 

S tS We have U (R,7r)* = RU for the forgetful functors, and it 
s n is easily seen that TT lifts to ir : F R —> (R,7r)*F for the 

free algebra functors.-

0.2. We shall deal repeatedly with a morphism of monads 

(RJTT) : S —> 3^ which satisfies the following conditions. 
(i) R is faithful, and all morphisms TT. are epimorphic. 

§ S (ii) There is a functor A : B —> G such that RA = U 
3: and A (R,Tr) * = U . 

(iii) Every morphism STT^ is epimorphic, and the structure 
of an §-algebra (B,B) always factors B = ̂  ^ with 

A = A (B,B) and u; : RTA —> B in B . 

THEOREM. If a morphism (R,7r) of monads satisfies (i) 
and (ii), then the functor (R,7r)* is full and faithful, and 
injective on objects. If (R,7r) also satisfies (iii) , then 

(R,7r)* is an isomorphism of categories. 

Proof. (R,7r)* is faithful if R is, and clearly injective 
on objects if (i) and (ii). are valid. 

If g : (R,7r)* (A,a) —> (C,Y) and f = Ag : A —C , 
then g = Rf , and Rf • Ra • ir^ = Ry * IT^ • SRf = Ry * RTf • by 
naturality of TT . Now f : (A,a) —> (C,y) , and g = (R,>v)*f , 

if (i) as well as (ii) is valid. 
For the last part, we must only show that (R,7r)* is surjec-

tive on objects. Thus consider an S-algebra (B,B), and put 
A = A (B,B) . If 8 = u TT , we must show that u = Ra for an 

G-algebra structure of A . 
For this, consider the following diagram: 

2
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Sir, Su 
SSRA SRTA 

TT, 

SRA 

TT, TA 
\/ - RTa 

RTTA —> RTA 

Y 
SRA 

TT, 

Rp.. 

V 
RTA 

u 
u 

B 

The outer sauare and the lefthand rectangle cominute by hypothesis. 
tl Since STT^ is epi, u : (R,7r)*F A —> (3,3); it follows that 

u = Ra for a = Au : TA —> A . Now the upper righthand square 

coinmutes by naturality of ir , and a = a • Ta follows by (i) . 
Finally, id^^ = ^ ^A ̂  follows Q 

0.3 A (non-commutative) diagram 
oOP ^op 

/tv. 

op 

.op op 

R 
1 G. 

G. 

of categories and functors, with contravariant adjunctions for the 
vertical arrows, results in a bijective correspondence between 
natural transformations K : RG —^ G^S^^ and 'K : SF —> F^R°^ , 
as follows. K and "k correspond to each other, and are called 

adjoint, if • Sf 

whenever f ; B —^ FA 

F —I G . 

and K • Rg are adjoint for op 
B 

and g GB are adjoint for 
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Let tl on G and S on G, be the monads induced by the 
OD «T 

contravariant adjunctions, and let K : B ̂  —> G and K, : 
OO S eT B- ^ —> G, be the comparison functors, with U K = G 
1 g i r, 

:&hd U. KT .= G, , and with KB =. (GB, G€ ) ̂ and K B 
J- J- B J. . 

= (G^B,G^€g) for objects. There are two situations in which 
adjoint natural transformations produce a morphism of monads. 

(i) If all factor , with every 
monomorphic, then the define a morphism (R,7r) : S —> ̂  , 
and K lifts to a natural transformation K ; (R,7r)-^K —> 

(ii) If G^ = G and R = Id^ , and if all factor 
K„_ = G- "X, • TT, , with every G, "K- monomorphic, then the T-FA lAA --^lA IT f ^ 
define a morphism (Id,7r) ^ ^ . In this situation, we have 
K : K —> (Id,Tr) * at the level of IT-algebras. 

We omit the diagram-chasing proofs. 

1_. The proper filter monad on sets 

1.1. We denote by bhe category of meet semilattices 
with 0 (and 1) 1 Morphisms of MSL^ preserve finite meets, 

and 0 . The contravariant powerset functor on sets obviously 
lifts to P : ENS°^ —> MSL , with P A the powerset of A'"for o o ' o ^ 
a set A , ordered by set inclusion and regarded as meet semi-
lattice with 0 . 

If f : A —> PL and g : L —> PA are exponentially 

adjoint, i.e. always a G f (x) X€g(a) v if xeA and aeL, 
for a set A and an object L of MSL^ , then g is a morphism 
g : L —> ^^o every f(x) is a proper filter 
in L . Thus we have a functor G : MSL —> ENS , adjoint on o o 
the right to P^ , with L the set of all proper filters in L 
for a meet semilattice L with 0 , and (G^ = f (^) for 

f ; L —> M in MSL^ and a proper filter in M . 
We denote by ^ the monad on sets obtained from this o 

adjunction; this is the proper filter monad. The proper filter 
functor F = G P assigns to every set A the set of all o o o ^ 
proper filters on A . " - " 

4
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l_j_2. We denote by LAT the category of lattices, with 0 
op 

and 1 , and by : ENS —> LAT the functor which assigns to 
every set its powerset, ordered by inclusion and considered as a 

lattice. This functor has as adjoint on the right, with exponen­
tial adjunction, the' functor : LAT°^ —^ ENS which assigns 

to every lattice L the set of all prime filters in L . 
The resulting monad on sets is the ultrafilter monad, denoted 

by U in this paper, with functor part U = ^ ^ ultra-

filter functor on sets. As is well known, U-algebras are compact 
Hausdorff spaces; the U-algebra structure of a compact Hausdorff 
space X assigns to every ultrafilter on X its limit for X . 

If S ; LAT —> inclusion functor, then clearly 
S Pp = P^ . Adjoint to the resulting identity natural transforma­
tion is K : G —> G given by inclusions. By 0.3.(ii), 
this produces a morphism i = (Id, K p ^) : U —> ̂  . Thus every 
MM 1^ 
2?^-algebra (L,a) has an underlying compact space i*(L,a) , with 
the restriction of a to ultrafilters as convergence of ultra-
filters. Morphisms of Sf^-algebras are continuous maps for the 
underlying compact topologies. 

1_. 3. We define a sup semilattice as an ordered set L such 

that every non-empty subset of L has a supremum in L . Mor^-
phisms of sup semilattices preserve supreme of non-empty subsets. 

We denote by E^ the free sup semilattice functor on sets. 
It is well known that E A , for a set A , is the set of non-—o 
empty subsets of A , with set unions as suprema. E^ is left 
adjoint to the forgetful functor | | ; SSL —> ENS , with SSL 

the catego^ of sup semilattices. The unit s of this adjunc­
tion is given by s- (x) = [x] , for X€A . 

A 
Every-sup semilattice L has a one-point extension to a com-

plete lattice L , obtained by adding a zero O- to L , and a 
i rwi ro 

map f : L —> L' of SSL extends to f : L —> L' with f (o ) 
on 

= o^, . We obtain a functor D : SSL —> MSL by letting L' - o o L ^ 
D L = L, considered as object of MSL , with the same order, o o 
and putting x _< (D^f)(x') f (x) ̂  x' , for •(x,x') £ LXL* 

Then D E is naturally isomorphic to P^ . Adjoint to this 
^ ̂  OP isomorphism is K ; | | —> ^ with xeL 

5
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We denote by 6^ = (E^,s,u) the powerset monad on sets which 
results from the adjunction 1 | | . Algebras for are 

sup semilattices; the C-^-algebra structure of a sup semilattice 
is given by supreme. 

By 0.3. (ii). the natural transformation IC : | I —> G D ' ' o o 
induces a morphism j (Id, K E ) ; £ —> 3 of monads, and ^ J \ ^ O O ' 
hence an algebraic functor j* , from i5^-algebras to SSL , which 

preserves underlying sets and mappings. Thus an 3^-algebra 
(L,a) has an underlying sup semilattice j*(L,a) , with supS 
= a(ts) for a non-empty subset S of L , and homomorphisms of 
*?^-algebras preserve these supreme. 

1.4. The functor. G : MSL ^ ENS lifts to a comparison === o o . 
functor K-•_ to 3? -algebras,, with K. L = (G L, G e^) for an 0 o^ ' o o oL' 
object L , and K f = G f : K M —> K L for f : L —^ M . o o o o 

One sees easily (see e.g. [3]) that supreme in j*K^L are 
set intersections; thus the order of filters in K L is the o 
natural order of filters, dual to set inclusion. The limit in 

i* K L of an ultrafilter on G L consists of all ae L o o 
with € (a) € ̂  ; it follows that i* K L is a Stone space, with 

L O 
the coarsest topology for which the sets €_(a) are clopen. 

on 
There is also a comparison functor K : LAT ̂  —> CH whjLch 

P 
assigns to a lattice L its Stone space of prime filters in L . 
By 0.3, .(ii), the inclusion ^ ^ ̂o ̂  lifts to a. closed , 
embedding L i* L , for every lattice L . 

1^5. PROPOSITION. I_f (L,a) is an <5 -algebra, with under­
lying compact space X= i*^!,^), then a(^) = sup adh^ for a 

filter # on L , with supremum in j*(L,a). Morphisms of 
t?^-algebras are all morphisms of the underlying sup semilattices 

which are continuous for the underlying compact topologies. 

Proof. All morphisms of 3^-algebras, including a , are 

continuous and preserve supreme as stated. In P^ L , a filter 

^ on L is the supremum of all finer ultrafilters ^ ; thus 

a(^) is the supremum of the limits a(^) of these ultrafilters. 
These limits form the adherence adh^ *; this proves our formula. 

Now the last part of 1.5 follows immediately from the fact that 
maps of compact Hausdorff spaces preserve filter adherences.Q 
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6 . PROPOSITION. algebras can be einbedded into compact 

join semilattices (without 0 ) as a full subcategory. If (L,a) 
is an g^-algebra, then a(^) = inf [ sup S : S e for a proper 
filter ^ on L . 

Proof. We have V • (axa) = a • V for joins in j*(L,a) an 
and in j* K P L . Since joins in K P L are set intersections, 

^ o AO A A ' 
we have V (s ) = S XS for S c L and S = (S) , with ^ PL ' 

S S e ̂  This shows that V is continuous for the com-F;S 
pact topology of K P L . As a and axa are continuous and o o 
surjective for the compact topology, hence topological quotient 
maps, it follows that V for L is continuous for i*(L,a). 
Thus 3^- algebras are compact join semilattices. 

Compact join semilattices are compact ordered spaces; thus 

filter bases have infima, and dual filter bases suprema, which 
are topological limits. It follows that maps of compact join 

semilattices preserve infima of.filter"bases, and suprema of dual 

filter bases. Since these maps preserve finite non-empty joins, 
they preserve all joins. With 1,5, it follows that -algebras 
and their induced compact join, semilattices have the same, maps. 

Now if (L,a) is an 3?^-algebra and ^ a proper filter 

on L , then ^ is the infimum of all filters tS with S f . 
These filters tS form a filter basis in K P L ; thus a(<^) o o 
is the infimum of all a(ts) = sup S with Se ̂  Q 

2_._ Continuous sup semilattices 

2.1. A sup semilattice L (1.3) is called complete if every 

filter base in L has an infimum in L . 
For elements a , b of a complete sup semilattice L , we say 

that b is way above a , and we write b > a , if b is in every 
filter CP in L with inf cp ^ a . The elements way above a in 

L form a filter which we denote by , with inf ̂ a a . 
We say that L is a continuous sup semilattice if inf ̂ a = a 

for all a e L . 

Morphisms of complete and continuous sup semilattices are 

mappings which preserve non-empty suprema and infima of filter 
bases, or eguivalently of filters. 

7
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2_. 2. We use again the notations of 1.3. For a sup semi-

lattice L , putting q,. (x) = for xe L provides a map q ; 
IJ IJ 

L —P|L|. With q_ (o ) = 0 , this is clearly a morphism q : 
XJ XJ XJ 

D L —> P |L! in MSL , and it is easily verified that q^ as o o ' ' o L 
just shown is natural in L . 

Proper filters in a meet semilattice M with 0 , ordered 

dually to set inclusion, form a sup semilattice, with intersec­
tions as suprema. Maps GQ ̂  ̂ morphisms f of MSL^ , 
clearly preserve these suprema? thus we can lift to a func­
tor G : MSL —> SSL , with I I G = G . —o o ' ' ~o o 

PROPOSITION. The-functors D and G are adjoint on the o —o 
right, with q : P^ | | and id(GQ) adjoint. 

Proof. For objects L of SSL and M of MSL^ , it is 
well known that a € f (x) X€g^(a), for xeL and aeM, 
provides a bijection between morphisms g^ : M —>.P |L| of MSL^ 

and mappings f : |L| —> ^ this situation, aefCsupx^) 
4=^ sup x^ ,e, g^(a) V jand a € sup:f (x^) 4=^: x^: € g^(a) for all . i 

Thus f preserves suprema iff each is a principal dual 
filter. igCaj , i.e. iff .jg::- factors g = q ;g . Since q 

' 1 i. L JLJ 
is a natural embedding, this gives the desired bijection between 

f : L —> G M in SSL and g : M —> D L in MSL_ , and this —o o o 
bijection is natural in L as well as M . The proof also shows 

that q and id(G^) are adjoint 0 

2.3. We denote by ^ the monad on SSL obtained from the 
—— o _ „ 

adjunction D —I G of 2.2, with functor part = G^ ^ . o ' —o o —o o 
Since f : L —> G M and g : M —^ D L are adjoint iff always —o o 
ae f(x) x<g(a) , both units of this adjunction are principal 
filter maps. We note that QQ ̂  is the sup semilattice of all 
filters in L ? these are the proper filters in L . 

THEOREM. SSL is the category of continuous sup semi-

lattices . with algebra structures inf : L -—> L . 

Proof. If (L,a) is a ^^-algebra, then a(cp) ̂  a(ta) = a 

for a filter cp in L and a e cp . On the other hand, if x_^a 

for all a G cp , then tx cp , and x _< a(cp) follows. Thus L 

is complete, and a(cp) = inf cp for all cp in QQ L . 

8
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Now a algebra is a complete sup semilattice L such that 

inf : Q^L —> L preserves supreme and satisfies the formal laws. 
The formal laws require that always inf tx = x , which is valid, 
and inf inf ̂  = inf (Q inf)(^) for a filter ^ in Q $ . This is o o 
also valid since inf ̂  is the set union of all cp e , and the 

filter (Q^ inf)(^) has the elements inf cp , cp e ̂  , as a basis. 

The map inf : Q^L —> L preserves supreme iff there is a 
mapping V : L' —> -Q L such that always inf cp < x v.cp .< t (x) . o, -A-
;^(x) must be the supremum of all cp with inf cp ^ x, i.e. 
t (x) = , and this must satisfy inf v(x) ̂  x . This is the case 
iff L is a continuous sup semilattice. 

Morphisms of U^-algebras must preserve suprema of non-empty 
subsets, and algebra structures ' thus they are the maps of 
continuous sup semilattices 0 

2^4. By 2 .2 ahd-G:.3.. (i) , we have, a morphism of monads 
sup = (| I, G ^ —> 2 . For a proper filter ^ : on Ja .sup 

^.00, 
semilattice L , the:filter • (G^ g"1l(^) consists of all xeL 

O Jj ' 

with ix € ® , and hence of all sup S with S e ̂  . 

THEOREM. The algebraic, functor :;sup->^--from continuous sup 
semilattices to g^-algebras is an isomorphism of categories. 
preserving underlying sets and mappings, and with j* sup* the 
forgetful functor from continuous sup semilattices to SSL . 

Proof. sup* clearly preserves underlying:sets and mappings. 
For a continuous sup- semilattice L ~-andr.„ a = inf_ • G g_ , we have 

L O LI 
(G^g^)(,ts) = t sups for non-empty S c L , hence a(ts) = sup S . 

Thus j* sup* L is the underlying sup semilattice of L . 

Now sup* has the factorization property of 0.2.(ii), with ; 
A = j* , and 0.2, (i) is also satisfied since every filter cp in 
a sup semilattice L satisfies cp = (G g )(^) for the filter ^ 

O LI 
on L with the sets ix , ,x e cp . as filter base. 0.2. (iii) is,, 

satisfied by'1.6? thus sup*"- "is ah Isomorphism by 

9
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io 

The propertyietoris_inonad 

3^1. For a compact Hausdorff space X , we denote by V^X 

the set of non-empty closed subsets of X, ordered by set inclu­
sion and provided with the coarsest topology such that the sets 
is = fAeV^X : Acsl are closed for S ex closed, and open for 

sex open. This is the Vietoris space of X . 
V^X is a Hausdorff space, for if A , B are closed in X 

with A^B , then there are disjoint open sets R and S with 
Bes and R and A not disjoint. Then y-^x\t (x\R) and ' iS 

are disjoint neighborhoods of A and B in V^X . 
For f -: X > Y in CH , let V f be the restriction of ^ ' _o ^ 

f to V X and VY . Since (V^f) (iT) = if (T) for T eY , o o ^ o 
the map V f : V X —> V Y is continuous, and V is a functor, o o o ' o 
to CH since we shall see in 3.2 that V X is compact. ( o 

3_. 2 . We denote by CH the category of compact Hausdorf f 

spaces, and by | | : CH —> ENS the underlying set functor. 

For a compact Hausdorff space ' X , adherences of proper filters 

on X provide a mapping ^ sees 
easily that natural in X , and we have shown in 
[3] , I 5.2 .2, that preserves suprema of sets of filters. " 

PROPOSITION. adh^ ; i*K^P^|x| —> V^X is continuous. 

COROLLARY. V^X is a compact Hausdorff space. 

Proof. For S cx closed and a filter ^ on X , we have 
adh^ ̂  c s iff all closed neighborhoods of S in X are in ^ . 
Thus adh^''(;s) = OR*, with R* = (see 

1,4), for all closed neighborhoods- R of S in V^X . This set 

is closed in i*K P 1x1. o o' ' 
For S cx open, we have ^ c s iff S contains a 

closed neighborhood R of adh^ i with R€ ̂  . Thus 
= U R^ for closures R of open sets contained in S . This set 

is open in i*K^P^|x 
Since ^ closure of S in X , the map 

adh^ is surjective. Thus V^X is compact Q 

10
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• 11 

3_. 3. For a compact Hausdorff space X , we denote by s„ : 
——— A 

X —> V X the singleton map, with s (x) = {x} for x€X . Since 
^ O ' X 

s (is) = S for sex , the map s is continuous. 
X X 

It is well known (see e.g. [3b],5.4) that the set union UK 
is closed in X for K closed in V X . Thus set unions define 

u^ : V^V^X —> V^X . Clearly u^ (is) = iiS for S cx ; thus 

u^ is continuous. 
It is easily seen that s^ and u^ are natural in X . 

PROPOSITION. The functor V , and the natural transforma-
Q 

tions obtained above, define a monad = (V^,s,u) ^ CH , and 

a morphism (| |, adh) : of monads. 
We call the proper Vietoris monad, and we use adh as 

abbreviation for (| | , adh) when this is convenient. 

Proof. The monadic identites for s and u are easily 

verified; we omit details. 
We must show that adh ' Tj \ \ = | | s , - and 

adh • y. I | = -J. |u • ladhV^' v adh . • 

The first of these is obvious; the point filter 77^(x) has [x] 
as its adherence. For the second one, put Z = i* K P_X . Since 

00 
Vi|^| is the U^-algebra structure of ^ we'have" a diagram 

sdh„ enn 
FQIZI ^ Iv^zi ^ |z| 

V_adh^ o a 

olv„x| —^ Iv^v^xl —^ Iv^xl 
with the factorization of iJi,j^| by 1.5 on top. The lefthand 
square commutes by naturality of adh^ , and the righthand square 
since preserves supreme as remarked above. Thus the dia­

gram commutes Q 

3.4. THEOREM. The algebraic functor (|^|,adh)* , , from 
V -algebras to ?^-algebras, is an isomorphism of categories, 

preserving underlying sets and mappings, with i* ( | | , ac3h) * "the 

forgetful functor from V -algebras to CH . 

11
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Proof. It is clear that (| |,adh)* preserves underlying 
sets and mappings. If (X,|) is a V -algebra and ^ an ultra-o 
filter on X , with limit x , then adh \T' = [x] , and 

X 
^([x}) = X Thus X is the limit of in i* (| |,adh)*(X,|) 
it follows that i* ( | 1)* (X,|) = X . Since i* (| |,adh)* pre­

serves underlying mappings, it is the forgetful functor from 
V^-algebras to CH . As | | i* also preserves underlying sets 
and mappings, 0.2.(ii) is satisfied with A = i* . Since 

adh^ ts = S for S closed in X, 0.2. (i) is satisfied. Finally, 
0.2.(iii) is satisfied by 1.5, so that 0,2 applies 0 

4_. The closed proper filter monad 

4^1. We denote by TOP the category of topological spaces 
and continuous maps, and by R : TOP —> ENS the underlying set 
functor. For purposes of this paper, objects of^ TOP. could be 
restrictedCto be T^ spaces or sober spaces, or the super-sober 

spaces of the Compendium [1]. 
For a topological space X , an object L of MSL^ , and 

adjoint maps f :• RX —> L and g ; L —> P^ X , we have 
g(a) = f (a^) for aeL and a^ = . If ^ is the meet 

semilattice of closed sets of X , ordered by set inclusion, and 
# 2 L the set G L with the coarsest topology such that a is * o 

closed for all aeL, it follows that f : X —is contin­
uous iff g maps L into X . Thus we have contravariant 
functors : TOP°^ —> MSL^ and 2^ : , adjoint on the 

right. 
Clearly R S = G , and the natural transformation 7^ : o o 

adjoint to is given by inclusions. 

We denote by the closed proper filter monad on TOP , with 
functor part W = 2 T , obtained from the adjunction T 

2 o 
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4^2. By 0.2. (i), we have a morphism r = (R, G ; 
_ o 
O monads, with the restriction ,of to 

closed sets for a proper filter # on a topological space X . 

If L is a lattice, then prime filters in L form a sub-

space S L of EL; this defines a functor S !: lAT^^ P o p 
—> TOP , adjoint on the right to the functor T : TOP^^ 

, _ , P 
—> lAT with r X the lattice of closed sets of a space X . 

b' 
If S : LAT —> MSL^ is the inclusion functor, then T = S F , o 'op' 
and subspace inclusions define a natural transformation K ; 

, with K and idfF^) clearly adjoint. 
We denote by the monad on,.- TOP. ̂ resulting from the:" 

adjunction F —| E , with functor part W = E F . This 
p p P P P 

is the prime closed filter monad on TOP , and W^X is the prime 
Wallman compactification of X for a topological space X . 

.p5 -algebras were studied in [4] ; they are compact ordered 
P 

spaces. If (Z,^) is a compact ordered space, then Z = r* (X,.a)! 

for a unique lb -algebra (X,a), where r* is the algebraic 
P 

functor induced by the restriction morphism;^ r : U —^ lb -i i 
P 

In this situation, X is Z with the upper topology, i.e. open 
sets of X are increasing open sets of Z , the topology of Z 
is the patch topology of X , and Z has the induced order of X , 

i.e. x^y in the order of Z iff cl^ fx] c cl^ fy] . 

4.3. By 4.2, a Ib^-algebra (X,a) has an induced compact 
ordered space i* (X,a) and an induced continuous sup semilattice, 
or S^-algebra, r* (X,a). Since the diagram on p.l of this paper 

commutes, both have the same compact topology, the patch topology 

of X . They also have the same order: 

PROPOSITION. (X,a) is a Ib^-algebra, then the order of 
the induced continuous sup semilattice r*(X.,a) is the induced 

order of X . 

Proof. We note first that the induced order of a.space F 
is the natural order of filters in L , since ^ < cp for that ^ 

order iff ^ € U a^ for every basic closed set with cp e U . 
Now let (X,a) be a;. Ib^-algebra, with induced I?^-algebra 

structure a • cl^ , where cl^ ̂  is the restriction of a filter ^ 

to closed sets. If x^y in the induced order of X., then 
13
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xVy = a(tcl^{x,y}) = a(tcl^[y)) = y in r*(X,a) . Conversely, 

tcl^fx] < t<:l^{x,yl in the induced order of X . The contin­
uous map a preserves the induced order; thus x xVy in the 
induced order of X , and x^y in this order if x V y = y (] 

4^4. For an 2?^-algebra (A,a), let U (A,a) be A pro­

vided with the upper topology for the induced compact ordered 

space of (A,a) . This clearly defines a functor U which pre­
serves underlying sets and mappings, from algebras to TOP , 
with R U the forgetful functor from ^ -algebras to sets. Note o 
that our upper topology is the lower topology of the Compendium. 

THEOREM. The algebraic functor r* from \13 -algebras to 
g^-alqebras is an isomorphism of categories, preserving underlying 

sets and mappings, and with U r* the forgetful functor from 
\a^-algebras to TOP . 

Proof. r* clearly preserves underlying sets and mappings. 
If (X,a) is a \l3^-algebra, then X has the upper topology of 

the induced compact ordered space which by 4.3 is also the induced 
compact ordered space of r* (X,a) . Thus Ur*(X,a) = X . Since 
U r* preserves underlying mappings, it follows that U r* :is the 

forgetful functor for \£r-algebras. Thus 0.2. (ii) is satisfied 
with A = U . 

0.2.(i) is valid; every-filter of closed sets of a space X 
is the restriction -of a filter on RX to closed set. 

It remains to verify the factorization of 0.2.(iii), i.e. if 
(L,a) is an 2^^ algebra with X = i* (L,a) , then a(^) 
= sup adhj^ ̂  depends only on the decreasing closed sets in 
i.e. the sets closed for U (L,a) , Restricting 0 to these sets 

can only increase a(<&) . On the other hand, if CX(<^), then 

tx and adh^ ̂  are disjoint; thus' x has an increasing neigh.-
borhood V in X: ..with' x\v a neighborhood of adh^ and thus 
in ^ . This shows that restricting ^ to increasing closed sets 

does not change sup ^ D 

14
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5_. The open proper 

Due to the duality between open and closed sets, the develop­
ments of this section are closely parallel to those of Section 4. 

5.1. We denote by & X and ^ X the set of open sets of a ===== o p 
topological space X , ordered by set inclusion and regarded as an 

object of MSL^ and lAT respectively. In the other direction, 
we denote by n L the set - G X of proper filters in a meet - • o o 
semi lattice L with 0 , provided with the topology for which the 

# sets a = €- (a) , for a € L , form a basis of open sets. If L 
XJ 

is a lattice, then ^ subspace of ^ consisting of 

all prime filters in L . 
As in Section 4, this defines functors ^ : TOP^^ —^ LAT 

P 
and ^ : TOP^^ —> MSL , with S ^ ^ for the forgetful func-

® ® P O QP 
tor S : LAT —> with adjoints on the right 11^ : LAT 

—> TOP and 11 : MSL —> TOP . o o 
We denote by the prime open filter monad on TOP and by 
the open proper filter monad on TOP which result from the 

adjunctions discussed above, with functor parts and 
OD P P P 

H =11 . 
o o o 

5.2. We have Rll = G and R TI = G for the underlying ===== P P o o Jr ^ 
set functor R : TOP —> ENS , and natural inclusions X : 
& —> P R^^ and X : & —^ P R°^ adjoint to identity trans-p p o o 
formations. By 0.3. (i), we get morphisms r = (R,7r) of monads, 
with 7r„ = G X or -r = G X reducing ultrafilters or. proper X p X X ox 
filters to their open sets. These maps *ir„ are surjective. 

X 
Subspace inclusions provide K ; —> 11^ S ̂  for the for­

getful functor S , adjoint to id(O^). Thus we have an inclusion 

morphism i = (Id, K (& ; ii —> K . 
P P o 

We denote by D : LAT —> LAT the dual lattice functor which 

reverses order in every lattice, preserving underlying sets and 

mappings. Complements of closed sets define a natural isomorphism 
p : DF —>; 0 . For a lattice L ,\ the. complement LVCP" of-a P P 
prime filter cp in L is a prime filter in D L ? it is easily 

seen that complements of prime filters define:a'natural isomorphism 
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a 2 —> T1 . By 0.3, a = 11 • TT for a natural iso­

morphism of monads (Id,7r) : Ic —^ W . 
hr P 

5.3. If h : Id —> H is the unit of H or Si , then ===== p o 
h^(x) is the filter of open neighborhoods of x , for a space X 
and X € X . We define the dual induced order of X , dual to the 
induced order of X , by putting x<y iff ^^(Y) • 

For --CP-, in a space 11 L or II L , the sets a'^ with a € cp p o 
form a base of neighborhoods of cp ; it follows that the dual 
induced order of Tl L or 11 L is the natural order for filters, 

P o 
dual to set inclusion. 

By 5^2, we,have algebraic functors r* , from H^-algebras 
to compact Hausdorff spaces and from li^-algebras to «5^-algebras. 

These,functors preserve underlying sets and mappings. 

THEOREM. If (X,a) is an -algebra, then r*(X,a), pro-
P 

vided with the dual induced order of X , is a compact ordered ' 
space, and X has the lower topology of this compact ordered 
space. Every K -algebra is obtained in this way, and morphisms 

P 
of U -algebras are morphisms of the corresponding compact ordered 
spaces. 

Proof. If Z = r*(X,a) for an -algebra (X,a), cthen it 
Jr ' 

is seen as in [4], 1.7, that the topology of Z is finer than the 
topology of X . If cp is an ultrafilter on X and cp the prime 
filter of open sets in cp , then a(cp) is the limit of cp for Z ; 
thus cp converges to all x^a(^) for the dual induced order 

of X . Conversely, if cp converges to x for X , then 

1L,(X) ̂  V in H X ; thus x ̂  a(cp) for the dual induced order X p 
of X since the continuous map a preserves this order. 

If x^y in X , so that y cl^ (x} , then ^(Y) not 
in the closed set a (cl„ [x]) in H X ; thus there is a basic 

open set V in X, with V an open neighborhood of x 
in X , disjoint from a (cl^ [x]) . It follows that x\v is in 

every ultrafilter with limit x for Z ? thus x\v is a neigh­
borhood of X in Z . Now x\v X V is a neighborhood of (x,y) 

in zxz , disjoint from the graph of ^ since V is decreasing, 
and (Z,_^) is a compact ordered space. Ultrafilters have the 
same limits for X as for the lower topology of ' (Z,^) r thus-

X has this lower topology. 
16
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The remainder of the proof follows the proof of the corre­

sponding results of [4], with only minor changes.Q ~ 

REMARK. Since the monads U) and W are isomorphic, 
P P 

the same spaces have algebra structures for the two monads. 

These spaces are the super-sober spaces of the Compendium [1] . 
The compact ordered spaces obtained in this way from a super-

sober space X are dual. They have the same topology, the patch 

topology of X [1; 4], but dual orders. 

5_j_4 . The mo^phisms of monads of' 5 .2 provide.-algebraic func--
tors i* and r* , from W -algebras to H -algebras and to 

o P 
3?^-algebras. If (X,a) is an Ji^-algebra, then the ??^-algebra 

r*(X,a) and the compact ordered space obtained from i*(X,a) 
provide us with the same compact Hausdorff topology? we now show 

that they also provide us with the same order. 

PROPOSITION. If (X,a) is an algebra, then the order of 
the g^-alqebra •.r*(X,a) is the dual induced order of X . 

Proof. Let r = (R.TT) , with restricting a filter on X 

to its open sets. If (X,a) is an H -algebra, then xVy 
= a(7r^(t {x,y})) in r*(X,a). If x_^y in the dual induced order 

of X, then ir^CUxjy}) = thus xVy = y . ConverseLy, . 

we have ^ the dual induced order of ^ ? 

and a preserves this order. Thus x^y in the dual induced 
order of X if xVy = y in r*(X,a) 0 

5. The lower topology of a continuous sup semilattice .L 

is the Scott topology, with U c L open iff U is decreasing and 

meets every filter cp in L with inf cp .in U . Scott topo­
logies provide a functor S , from 5^-algebras to TOP , which 

preserves underlying sets and mappings. It follows that RS is 
the forgetful functor from 3^-algebras to sets. 

THEOREM. The algebraic functor r* from K^-algebras to 
g^-algebras is an isomorphism of categories, preserving underlying 

sets and mappings, and with S r* the forgetful functor from 

algebras to TOP . 

17
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Proof. 0.2.(i) and 0.2. (ii), with A = U , are verified as 

in the proof of 4,4. To obtain 0,2, (iii) for an 15^-algebra 
(L,a), we must show that a(®) = sup adh^ ̂  , for a filter $ 

on L and X = i*(L,a), depends only on the decreasing open 

sets in 0 , Restricting ^ to these sets can only increase 
a,(^) . On the other hand, if x ̂  cx(^) , then ia(^), and hence 
also adh^ ̂ , has a decreasing neighborhood V with x\v a 
neighborhood of x . Then V e ̂  ; thus restricting to its 

decreasing open sets cannot increase sup adh^ ̂  D 

18
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