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NAME: Hans Dobbertin Date:

TOPIC: Refinement monoids

We want to give a brief survey about some results, applications,
and open questions appearing in the study of refinement monoids.
The reader who is interested in details and further information

is referred to the papers {2-6]. Independently Grillet [8] and
Myers [8] have introduced refinement monoids. A rzfinemert monoid
is a commutative monoid in which a sum of non-zero elements is
always non-zero and which has the refinement property, i.e., when-
ever J x; =7} Y3 then there are elements 255 with x; = Ej 25

and y. = Zi Z Examples of refinement monoids are

J 3
- distributive sup-semilattices with zero,
- extended" commutative groups, i.e., commtative groups

with a new zero element added,

- positivity domains of lattice-ordered cormutative jroups,
-  for each infinite cardinal number «, the monoid BA)< of
all isomorphism types of Boolean algebras with at most «
elements, where the addition is induced by the direct
product.

The adequate morphism§ between refinement monoids are not the usual
(monoid) homomorphisms, but the so-called V-homomorphisms: a homo-
morphism h : M —> N between commutative monoids is called a
V-homomorphism provided that

#L R A A e A e T e M)
- whenever h(x) = Y1+ ¥ (x e M,
X; € M with x = X1+ Xy and h(x

< N) then there are

:
i 2%

The V-homomorphic image of a refinement monoid is again a refine-

ment monoid. A submonoid N of a commutative monoid M is here-
ditary, in symbols N 4 M, if the inclusion map from N into M

is a V-homomorphism. By o(x) (x &€ M) we denote the cardinality
of the set {(y,z) € MZ ;X = y+2z}. The sum rank o(M) of M

is the supremum of all cardinalities c(x), x € M.
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A main reason why we are interested in refinement monoids 1S
that they have close connections with Boolean algebras, as we shall
see subsequently. Vaught's Isomorphism Theorem for countable
Boolean algebras can be formulated as follows:

Let R be a binary symmetric relation on BAw such that
(Ll a X RBDIarE. K =,
(72) whenever X1t X, Ry then there are Y, with
y = y1-+y2 and X; R Y; -

Then X Ry 7implies X =Y.
A refinement monoid satisfying the implication of this theorem is
called a V-monoid. The V-monoids form a natural axiomatic framework
wherein isomorphism types of countable Boolean algebras can be studied
For each infinite cardinality «k, there exists a V-monoid VK of
sum rank «, unique up to isomorphism, such that if M is any
refinement monoid of sum rank less that or equal to « then there
is a (unique) V-homomorphism iy from M into VK. Moreover, we
can choose the V. such that V . 4V for «' <k (whence riy
does in fact not depend on «). Since the kernel relation of a
V-homomorphism satisfies the assumption of Vaught's Theorem, My
is an embedding if M 1is a V-monoid. Therefore we can say that

VK ig the greatest V-monoid of sum rank K.

By M we denote the image of M under m,. Note that M is a
V-monoid and M <« v, forkz2 o(M). As o(BA)) = «, we have

BA 4V _. It is abasic question whether BA_ =V _ for all «.
Later we shall see that the answer is yes for k =w and « =uw, .
However, the case «k > w, is sti11‘open. Several facts are indi-
cating an affirmative answer. At least we know that EKK and VK
both have 2 elements.

It is not very hard to prove that every commutative semigroup
can be embedded into a refinement monoid. Ketonen has shown that
every countable commutative semigroup can even be extended to a
countable V-monoid. This is a deep result, and thus we cannot
expect that our next question is easy to answer:

Can every infinite commutative Semigroup be embedded

into a V-monoid of the same cardinality?
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Suppose that B is a Boolean algebra, « 2 |B| is infinite,
and let p : B —> BA’< be the mapping which associates to b € B
the isomorphism type of B[b, then

- u 18 finitely additive,

-  whenever u(b) = X1+ X, then there is a disjoint decompo-
sttion b = bl+b2 with u(b].) ey

= Sullyy= 0% =0,

A map u on a Boolean algebra with values in a refinement monoid
is said to be a V-measure provided that the preceding conditions
are fulfilled (see Myers [9]). We call a refinement monoid M
measurable if for each x € M there exists some Boolean algebra

B and a V-measure u : B——> M with p(1l) = x. Thus, of course,
BAl< and therefore EZK are measurable. In general, we do not
know whether every refinement monoid is measurable. So far we
only have positive answers for

(1) refinement monoids of sum rank = w,,
(2) distributive lattices with zero (under supremum),
(3) extended commutative groups,

(4) positivity domains of linearly ordered commutative groups.

One can show that EZK = l/'< if VK is measurable. Hence (1)
implies

BA =V and BA = U .
w w wl wl
Note that Vaught's Theorem just states that BAw = Ezw. Therefore

we conclude BAw = %D, or in other words:
BAw 18 the greatest ¥V-monoid of countable sum rank.

A very special case of (1), namely the measurability of countable
bounded distributive sup-semilattices, and (2) above can be used
to show respectively:

-  the compact second countable Stone spaces are precisely
the To-images of the Cantor set under continuous open
mappings,

- every Heyting algebra can be embedded into the ideal

lattice of some atomless Boolean algebra.
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Finally let us consider quite a different question, namely:
what are the finite refinement monoids? An answer is given by
the following theorem:

Suppose that 1 1is a finite partially ordered set, Gi (i€.1)
are finite commutative groups, and hg : Gi —_ Gj 1238 B

i< Jj) are homomorphisms such that

h! s the identity mapping on Gi’
) ETRL R - G
5 hi = hi EEREAS D

Then the commutative monoid generated by the disjoint union

of the Gi with respect to the relations
u+v=h‘%(u)+v (uEGi, veGJ., i<j)

is a finite refinement monoid. Conversely, every finite

refinement monoid can be obtained in this way.
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