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Abstract

This dissertation begins with an introduction to matroids and graphs. In the first chapter, we

develop matroid and graph theory definitions and preliminary results sufficient to discuss the

problems presented in the later chapters. These topics include duality, connectivity, matroid

minors, and Cunningham and Edmonds’s tree decomposition for connected matroids.

One of the most well-known excluded-minor results in matroid theory is Tutte’s charac-

terization of binary matroids. The class of binary matroids is one of the most widely studied

classes of matroids, and its members have many attractive qualities. This motivates the

study of matroid classes that are close to being binary. One very natural such minor-closed

class Z consists of those matroids M such that the deletion or the contraction of e is binary

for all elements e of M . Chapter 2 is devoted to determining the set of excluded minors for

Z.

Duality plays a central role in the study of matroids. It is therefore natural to ask the

following question: which matroids guarantee that, when present as minors, their duals are

present as minors? We answer this question in Chapter 3. We also consider this problem

with additional constraints regarding the connectivity and representability of the matroids

in question. The main results of Chapter 3 deal with 3-connected matroids.

vii



Chapter 1
Introduction

This dissertation is primarily concerned with matroids. Except where otherwise noted, the

matroid terminology will follow Oxley [13]. In Chapter 3, graph theory is used in the proofs

of several results. The graph theory terminology will follow Diestel [4] except that we use

the term simple graph to describe what Diestel calls a graph, and we use the term graph to

describe what Diestel calls a multigraph. We also define graphs such that the vertex set of a

graph cannot be empty, unlike Diestel. The remainder of this chapter is devoted to briefly

discussing some important matroid properties that will be used throughout this dissertation.

For a more complete introduction, or to see proofs of the facts stated in this introduction,

the reader is referred to [13].

A matroid is a combinatorial object that generalizes the notion of independence as under-

stood through linear algebra, graph theory, and affine geometry. The following definition of

a matroid is taken from Oxley [13, p. 17]. A matroid M is an ordered pair (E,B) consisting

of a finite set E and a collection B of subsets of E having the following two properties:

(B1) B is non-empty.

(B2) If B1 and B2 are in B and x ∈ B1 − B2, then there is an element y of B2 − B1 such

that (B1 − x) ∪ y ∈ B.

The set E is called the ground set of M and the members of B are called bases of M . It is

not uncommon to denote the set B more specifically by B(M). Let B∗(M) be {E(M)−B :

B ∈ B(M)}. Then the ordered pair (E,B∗(M)) is a matroid called the dual matroid of M .

We denote this matroid by M∗. Note that every matroid has a unique dual matroid whose

set of bases can be obtained in this way. All the bases of M have the same cardinality, which

is called the rank r(M) of M .
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A subset I of E is independent in M if I is a subset of some member of B. Clearly a

matroid is uniquely determined by its set of independent sets. For any independent set I, we

define the rank r(I), or rM(I), of I in M to be |I|. If a set is not independent, we say it is

dependent. We call a minimally dependent set a circuit. For any dependent set D, the rank

of D is equal to the size of a largest independent set contained in D. We define the corank

r∗(S) of any subset S of E to be the rank of S in the dual matroid M∗.

For a subset S of E, the closure cl(S) of S consists of all elements e of E such that

r(S) = r(S ∪ e). If cl(S)=S for some subset S, we say that S is a closed set or that S is a

flat of M . If r(M) = r, then we call a flat of rank r − 1 a hyperplane of M .

The class of uniform matroids will come up frequently in this document. Let E be an

n-element set and r be an integer with 0 ≤ r ≤ n. The uniform matroid Ur,n of rank r on E

has E as its ground set and the collection of r-element subsets of E as its set of bases.

1.1 Representable and Graphic Matroids

Let A be an n ×m matrix over a field F. Let E be the m-element set of column labels of

A and let I be the set of subsets X of E for which the multiset of columns labeled by X

is linearly independent in the vector space V (n,F). Then I is the set of independent sets

of a matroid M on E. We say that the matrix A is a representation or F-representation of

M , and the matroid M is F-representable. The matroid obtained in this way will often be

denoted by M [A]. It is called the vector matroid of A.

Of particular importance in this dissertation is the class of matroids that are GF (2)-

representable, that is, those matroids that have a matrix representation over the finite field

of two elements. We call such matroids binary.

Now consider a graph G and let E be the set of edge labels of G. Let B be the set of edge

sets of spanning forests of G. Then B is the set of bases of a matroid M(G) on E. We call

M(G) the cycle matroid of G. A matroid that is isomorphic to the cycle matroid of a graph

G is called graphic. Graphic matroids are F-representable for all fields F.

2



1.2 Minors

In this section, we discuss the dual operations of element deletion and element contraction.

Let M = (E,B) be a matroid and take T ⊆ E. The deletion of T from M , denoted by M\T ,

is the matroid whose ground set is E − T and B(M\T ) is the set of maximal members of

{B − T : B ∈ B(M)}. In the case where T={e}, the matroid M\T is written M\e. We

sometimes refer to M\T as the restriction of M to E − T and denote this by M |(E − T ).

We use duality to define contraction. The contraction of T from M , denoted by M/T , is the

matroid (M∗\T )∗.

A matroid N is a minor of a larger matroid M if and only if N can be obtained from M

by a possibly empty sequence of deletions and contractions. If the sequence is non-empty,

then we say N is a proper minor of M . If M has N as a minor, we say that M has an

N-minor. Some classes of matroids have the property that all their minors are also in the

class. We say that such classes are closed under minors or are minor-closed. Note the class

of F-representable matroids is minor-closed for all fields F.

Every minor-closed class can be described by a list of excluded minors, that is, matroids

M that are not in the class, but whose proper minors are all in the class. When the explicit

list of all excluded minors for a class M is known, we call the result an excluded-minor

characterization ofM. Some of the most celebrated results in matroid theory are excluded-

minor characterizations. One such result is Tutte’s characterization of binary matroids [19]

below.

Theorem 1.2.1. A matroid is binary if and only if it has no U2,4-minor.

The main result of Chapter 2 is an excluded-minor characterization of a class of matroids

whose members are close to being binary.

1.3 Connectivity

The property of connectedness is of basic structural importance for matroids. We begin this

section by noting that, for matroids, the terms connected and 2-connected are interchange-

3



able. A matroid M is connected, or 2-connected, if and only if, for every pair of distinct

elements of E(M), there is a circuit containing both.

We will also need the notion of 3-connectedness for matroids. Describing 3-connectedness

will require us to introduce some new terminology. The discussion below follows [13, p. 293].

Let M be a matroid with ground set E. If X ⊆ E, let λM(X) = r(X) + r(E−X)− r(M).

We call λM the connectivity function of M . Let k be a positive integer. For X ⊆ E, if

λM(X) < k, then both X and the pair (X,E − X) are called k-separating. A 1-separating

set is also called a separator. A k-separating pair (X,E−X) for which min{|X|, |E−X|} ≥ k

is called a k-separation of M with sides X and E −X. A matroid M is 3-connected if, for

all k ∈ {1, 2}, it has no k-separations.

Let

Define a relation ψ on E by e ψ f if either e = f , or M has a circuit containing {e, f}.

Then ψ is an equivalence relation on E and the ψ-equivalence classes are called components

of M .

1.4 Tree Decomposition of Connected Matroids

We now introduce Cunningham and Edmonds’s tree decomposition for connected matroids

[3]. Our treatment of this material follows [13, pp. 307–310]. A matroid-labeled tree is a tree

T with vertex set {M1, M2, . . ., Mk} for some positive integer k such that

(i) each Mi is a matroid;

(ii) if Mj1 and Mj2 are joined by an edge ei of T , then E(Mj1)∩E(Mj2)={ei}, and {ei} is

not a separator of Mj1 or Mj2 ; and

(iii) if Mj1 and Mj2 are non-adjacent, then E(Mj1) ∩ E(Mj2) is empty.

Let e be an edge of a matroid-labeled tree T and suppose e joins vertices labeled by M1 and

M2. Suppose that we contract e and relabel by M1 ⊕2 M2 the composite vertex that results

from identifying the endpoints of e. Then we retain a matroid-labeled tree and we denote this

4



tree by T/e. This process can be repeated and since the operation of 2-sum is associative,

for every subset {ei1 , ei2 , . . . , eim} of E(T ), the matroid-labeled tree T/ei1 , ei2 , . . . , eim is well-

defined.

A tree decomposition of a 2-connected matroid M is a matroid-labeled tree T such that if

V (T )={M1, M2, . . ., Mk} and E(T )={e1, e2, . . ., ek−1}, then

(i) E(M)=(E(M1) ∪ E(M2) ∪ · · · ∪ E(Mk))− {e1, e2, . . . , ek−1};

(ii) E(Mi) ≥ 3 for all i unless |E(M)| < 3, in which case k=1 and M1=M ; and

(iii) M labels the single vertex of T/e1, e2, . . . , ek−1.

In general, a tree decomposition of a matroid is not unique. However, Cunningham and

Edmonds were able to guarantee uniqueness of the canonical tree decomposition described

in the following theorem from [3].

Theorem 1.4.1. Each 2-connected matroid M has a tree decomposition T in which every

vertex is labeled by a 3-connected matroid, Um−1,m for some m ≥ 3, or U1,n for some n ≥ 3.

Moreover, there are no two adjacent vertices that are both labeled by uniform matroids of

rank one or are both labeled by uniform matroids of corank one, and T is unique to within a

relabeling of its edges.

The canonical tree decomposition provides a unique way to decompose a 2-connected

matroid M into 3-connected pieces, uniform matroids of rank one, and uniform matroids of

corank one. Moreover, we can reconstruct M from these pieces using the 2-sum operation

with the common elements between matroids as basepoints. A basic property of the 2-sum

operation is that M1 and M2 are minors of M1 ⊕2 M2. The following two results are well

known; the first is trivial while the proof of the second is omitted.

Lemma 1.4.2. Let M1 and M2 be matroids. Then r(M1 ⊕2 M2) = r(M1) + r(M2)− 1 and

r∗(M1 ⊕2 M2) = r∗(M1) + r∗(M2)− 1.

5



Lemma 1.4.3. Let M1 and M2 label vertices in a tree decomposition T of a connected

matroid M . Let P be the path in T joining M1 and M2, and let p1 and p2 be the edges of P

meeting M1 and M2 respectively. In other words, p1 and p2 are basepoints for 2-sums in the

reconstruction of M . Then M has a minor isomorphic to the 2-sum of M1 and M2, where

p1=p2 is the basepoint of the 2-sum.

The dual of a 2-sum of two matroids is the 2-sum of the dual matroids. The following

lemma [13, Lemma 8.3.8] is an immediate consequence of this fact.

Lemma 1.4.4. If T is a tree decomposition for a 2-connected matroid M and every vertex

label is replaced by its dual, then the resulting matroid-labeled tree T ∗ is a tree decomposition

for M∗.

In Chapter 3, we will make frequent use of the following well-known result, illustrated in

Figure 1.1. Its proof is omitted.

p

p

p e

p

p

p

e

TM

M/e T ′

Figure 1.1. Contracting an element in a tree decomposition.

Lemma 1.4.5. Let M be a matroid and let T be its canonical tree decomposition. Assume

there is a corank-one matroid C that labels a vertex of T . Let e be an element of M , where e

is an element contributed to M by C in T . Then the tree decomposition T ′ of M/e is obtained

in one of the following ways.

6



(i) If |C| = 3, then T ′ is obtained from T by deleting the vertex labelled by C and identifying

any elements of C that are basepoints of 2-sums in T .

(ii) If |C| ≥ 4, then T ′ is obtained from T by replacing the label C with C/e.

7



Chapter 2
Nearly Binary Matroids1

2.1 Introduction

The class of binary matroids is one of the most widely studied classes of matroids and its

members have numerous attractive properties. This motivates the study of classes of matroids

whose members are close to being binary. In this chapter, we consider one very natural such

minor-closed class Z, which consists of those matroids M such that M\e or M/e is binary

for all elements e of M . The main result of the chapter is an excluded-minor characterization

of Z. This theorem can be restated in terms of matroid fragility, which has enjoyed a recent

surge of research interest. Let N be a matroid. A matroid M is N-fragile if, for each element

e of E(M), at least one of M\e and M/e has no N -minor (see, for example, [8]). The class

of N -fragile matroids is clearly minor-closed. The main result of this chapter determines the

set of excluded minors for the class of U2,4-fragile matroids.

It is well known that if H is a circuit and a hyperplane of a matroid M , then there is

another matroid M ′ on E(M) whose bases are the bases of M together with H. We say that

M ′ is obtained from M by relaxing the circuit-hyperplane H and call M ′ a relaxation of M .

A class of matroids that arises naturally in determining the excluded minors for Z is R,

those matroids M such that M is binary or M is a relaxation of a binary matroid.

The rank-three whirl is denoted by W3, while P6 is the six-element rank-three matroid

that has a single triangle as its only non-spanning circuit. Let Q6 and R6 be the six-element

matroids of rank three for which geometric representations are given in Figure 2.1. Evidently

R6
∼= U2,4 ⊕2 U2,4. Let K be the seven-element rank-two matroid that is obtained by adding

elements in parallel to three of the elements of U2,4. The matroid K is depicted with its dual

1This chapter is substantially the same as the following paper: J. Oxley and J. Taylor, On two classes of nearly binary

matroids, European J. Combin. 36 (2014) 251-260. See Appendix B for publisher’s permission to reprint.
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in Figure 2.2. In Section 2.2, we note that both Z and R are minor-closed and dual-closed

classes of matroids and establish some excluded minors of each. We also introduce some

preliminaries.

Let D denote the collection of all matroids that are obtained from connected binary

matroids by relaxing two disjoint circuit-hyperplanes that partition the ground set. The

collection D is in both our sets of excluded minors. Section 2.3 is devoted to proving the

main result and another related result, both of which are stated next.

Q6 R6

Figure 2.1. Geometric representations of the six-element rank-three matroids Q6 and R6.

Figure 2.2. Representations of the matroid K and its (rank-5) dual K∗.

Theorem 2.1.1. The set of excluded minors for the class of matroids Z={M : M\e or M/e

is binary for all e in E(M)} is {Q6, P6, U3,6, R6, U2,4 ⊕ U1,1, U2,4 ⊕ U0,1} ∪ D.

Theorem 2.1.2. The set of excluded minors for the class R of matroids M such that M is

binary or can be obtained from a binary matroid by relaxing a circuit-hyperplane, is {U2,5,

U3,5, K, K∗, R6, U2,4 ⊕ U1,1, U2,4 ⊕ U0,1} ∪ D.

For an even integer r exceeding two, let Mr be the rank-r tipless binary spike, that is, the

vector matroid of the binary matrix [Ir|Jr − Ir] where Jr is the matrix of all ones. Labeling

the columns of this matrix e1, e2, . . . , e2r in order, we see that {e2, e3, . . . , er, er+1} and its
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complement are both circuit-hyperplanes of Mr. By relaxing these circuit-hyperplanes, we

obtain a member of D. Thus the sets of excluded minors in Theorems 2.1.1 and 2.1.2 are

both infinite. However, these doubly relaxed spikes are not the only members of D. In Section

2.4, we further discuss the complexity of D.

As D shows, the class of matroids that can be obtained from binary matroids by relaxing at

most two circuit-hyperplanes does contain an infinite antichain. Geelen, Gerards, and Whittle

announced in 2009 that the class of binary matroids itself contains no infinite antichains.

These observations raise the interesting question, which was asked by a referee of [14], as to

whether or not the class R contains an infinite antichain. It is not difficult to check using,

for example, [6, Lemma 2.6], that Z contains an infinite antichain if and only if R does.

2.2 Preliminaries

This section first notes that both Z and R are minor- and dual-closed, and then determines

some excluded minors for each class.

Lemma 2.2.1. The classes Z and R are both closed under duality and the taking of minors.

Proof. Take M in Z. Let x be in E(M). At least one of M/x and M\x is binary, so assume

M/x is. Then M/x is certainly in the class. As for M\x, let y be in E(M\x). We know that

at least one of M/y and M\y is binary. Thus at least one of M\x/y and M\x\y is binary.

Hence Z is minor-closed.

Now consider N ′ in R. Either N ′ is binary, or N ′ can be obtained from a binary matroid N

by relaxing a circuit-hyperplane. If N ′ is binary, then all minors of N ′ will be in R. Assume

N ′ can be obtained from a binary matroid N by relaxing a circuit-hyperplane X. For any f ∈

X, Lemma 2.2.2 tells us N ′\f=N\f and, unless N has f as a loop, N ′/f is obtained from

N/f by relaxing the circuit-hyperplane X − f of the latter. If f is a loop of N , then f = X

and r(N) = 1, so N ′ is binary. So both N ′\f and N ′/f are in R. Now take e ∈ E(N)−X.

Lemma 2.2.2 tells us N ′/e=N/e and, unless N has e as a coloop, N ′\e is obtained from N\e
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by relaxing the circuit-hyperplane X of the latter. And if e is a coloop of N , then N ′ is a

circuit, which is binary. Thus both N ′\e and N ′/e are in R, hence R is minor-closed.

This lemma is immediate for Z and is a straightforward consequence of the following result

of Kahn [7] for R (see also [13, p. 115]).

Lemma 2.2.2. Let X be a circuit-hyperplane of a matroid M and let M ′ be the matroid

obtained from M by relaxing X. Then (M ′)∗ is obtained from M∗ by relaxing the circuit-

hyperplane E(M) − X of the latter. Moreover, when e ∈ E(M) − X, M/e and M ′/e are

equal and, unless M has e as a coloop, M ′\e is obtained from M\e by relaxing the circuit-

hyperplane X of the latter, and the dual situation holds when e ∈ X.

It is not difficult to deduce from the above result that the class R is contained in the

class Z. We say a matroid N is a series extension of a matroid M if M = N/T and every

element of T is in series with some element of M . We call N a parallel extension of M if

N∗ is a series extension of M∗. Note that this differs from the terminology used in [13]. The

following result from [12] will be used extensively throughout the chapter.

Theorem 2.2.3. A matroid M is non-binary and in Z if and only if

(i) both r(M) and r∗(M) exceed two and M can be obtained from a connected binary

matroid by relaxing a circuit-hyperplane; or

(ii) M is isomorphic to a parallel extension of U2,n for some n ≥ 5; or

(iii) M is isomorphic to a series extension of Un−2,n for some n ≥ 5; or

(iv) M can be obtained from U2,4 by series extension of a subset S of E(U2,4) and parallel

extension of a disjoint subset T of E(U2,4) where S or T may be empty.

Let EX(M) denote the class of excluded minors for a class of matroidsM. Some excluded

minors for Z and R are easy to identify. We omit the routine argument that establishes the

following.
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Lemma 2.2.4. The matroids U2,4⊕U1,1, U2,4⊕U0,1, and R6 are in both EX(Z) and EX(R).

Proof. First consider the matroids U2,4 ⊕ U1,1 and U2,4 ⊕ U0,1. Clearly they are not in Z, as

deleting or contracting the coloop and loop, respectively, gives the matroid U2,4. Therefore

they are also not in R. Now consider their minors. Deleting or contracting the coloop or

loop element gives the matroid U2,4, which can be obtained from U2,3⊕2 U1,3 by relaxing the

parallel elements. Thus U2,4 is in R, hence also in Z. Now consider deleting or contracting

any other element. The result will be a binary matroid, which will be in both Z and R. Thus

U2,4 ⊕ U1,1 and U2,4 ⊕ U0,1 are in both EX(Z) and EX(R).

Now we consider R6. Deletion of any element gives the five-element rank-3 matroid whose

only non-spanning circuit is a triangle, and contraction of any element gives the matroid

U2,4 ⊕2 U1,3. Neither of these matroids is binary, thus R6 is not in Z, nor R. Let e be in

E(R6), and consider R6/e. The matroid R6/e can be realized as the relaxation of a triangle

in which parallel elements are added to two sides. Therefore R6/e is in R, hence also in

Z. As for R6\e, it can be realized as the relaxation of the five-element rank-three matroid

consisting of two triangles that share one common element. Hence R6\e is in R, hence also

in Z, and R6 is an excluded minor for both Z and R.

The following three results will also be useful, the first is from [7]; the second is elementary;

the third follows from the first two.

Lemma 2.2.5. Let M ′ be obtained from M by relaxing a circuit-hyperplane.

(i) If M is connected, then M ′ is non-binary; and

(ii) if M is n-connected, then so is M ′.

Lemma 2.2.6. The only disconnected matroids having a circuit-hyperplane are Un−1,n⊕U1,k,

for integers n, k ≥ 1.
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Proof. Assume M is a disconnected matroid having a circuit-hyperplane C. If C is a loop,

then the result holds, so assume not. Then M = M1 ⊕M2 for some matroids M1 and M2.

We know C is contained in one of M1 and M2, say M1. As C is a hyperplane, it follows that

M has no loops and that r(M2) = 1 and C=M1.

Corollary 2.2.7. Let M be a binary matroid, H be a circuit-hyperplane of M , and M ′ be

obtained from M by relaxing H. Then M ′ is binary if and only if M is Un−1,n ⊕ U1,k, for

integers n, k ≥ 1.

Note that, in Lemma 2.2.6 and Corollary 2.2.7, the disconnected matroids are graphic and

carry the name enlarged 1-wheels in [15].

Recall, D is the collection of all matroids that are obtained from connected binary matroids

by relaxing two disjoint circuit-hyperplanes that partition the ground set.

Lemma 2.2.8. All matroids in D are in both EX(Z) and EX(R).

Proof. Take a matroid M2 in D. Let X and Y be the disjoint circuit-hyperplanes of the

connected binary matroid M that are relaxed to obtain M2. Let MX and MY denote the

matroids obtained from M by relaxing X and Y , respectively, and take e in E(M2). Note

that the case with e ∈ X is symmetric to the case with e ∈ Y ; both Z and R are dual-closed

classes, and since X and Y are complementary circuit-hyperplanes of M , they are so for M∗

as well.

Suppose e ∈ X. By Lemma 2.2.2, M2/e is obtained from MY /e by relaxing the circuit-

hyperplane X−e of the latter and MY /e=M/e. If M/e is connected, then M2/e is non-binary

by Lemma 2.2.5. Now assume M/e is disconnected. Then M/e=Un−1,n ⊕ U1,k for some n, k

≥ 1, by Lemma 2.2.6. But Y is a spanning circuit in M/e, which is a contradiction since M/e

has no spanning circuits. We conclude that M2/e is non-binary. By symmetry and duality

the same argument holds for M2\e, and for both M2/f and M2\f when f ∈ Y .
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Any deletion M2\z equals MY \z or MX\z. By symmetry we only need to consider the

case with z ∈ X. The matroid MY \z can be obtained by relaxing a circuit-hyperplane in a

binary matroid. By duality, the same holds for M2/z. Therefore any minor of M2 is in R

and so is in Z. Thus M2 is in EX(R) and in EX(Z).

The next two lemmas list matroids that are excluded minors for exactly one of R and Z.

Lemma 2.2.9. The matroids U2,5, U3,5, K, and K∗ are excluded minors for the class R.

Proof. First note that neither U2,5 nor U3,5 is binary. Choose any basis of the matroid U2,5

and tighten it. The result is the matroid U2,4⊕2U1,3, which is not binary. Thus U2,5 may only

be realized as a relaxation of a non-binary matroid, so it is not in R. Now let e be in E(U2,5)

and consider minors of U2,5. If we delete e we get the matroid U2,4, which we discussed above.

If we contract e we get the matroid U1,4, which is binary. Thus U2,5 is an excluded minor for

R. By duality, we also know that U3,5 is an excluded minor for R.

Now consider K, which is non-binary. Every basis of K contains an element in a non-trivial

parallel class. Therefore, by tightening any basis we cannot achieve a hyperplane since the

other element in the parallel class will be in the closure of the tightened basis. Thus there is

no way to tighten a basis of K to obtain a circuit-hyperplane. Hence, K cannot be realized as

a relaxation and it is not in R. Let e denote the element in the trivial parallel class, and let f

denote any other element of K. First note that K\e, K/e, and K/f are all binary matroids.

So consider K\f . This matroid can be realized as a relaxation of the binary matroid that is

a triangle where all sides are in parallel classes of size two. Thus K is an excluded minor for

R. By duality, we also know that K∗ is an excluded minor for R.

Lemma 2.2.10. The matroids Q6, P6, and U3,6 are excluded minors for the class Z.

Proof. Consider the matroids Q6, P6, and U3,6 as depicted in Figure 2.3. Note that all three

of these matroids are non-binary. Clearly, by deleting or contracting the element labeled 1
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in each of these matroids we obtain a non-binary matroid. Therefore none of Q6, P6, and

U3,6 are in Z.

First we show that Q6 is an excluded minor. Note that Q6\1 ∼= Q6\2 ∼= Q6\4 ∼= Q6\5,

and Q6/1 ∼= Q6/2 ∼= Q6/4 ∼= Q6/5. So we only consider minors obtained by deleting and

contracting element 1 in the set {1, 2, 4, 5}. By deleting 1 in Q6 we get the five-element rank-

three matroid whose only non-spanning circuit is a triangle. This matroid can be realized as

a relaxation of the five-element rank-three matroid consisting of two triangles that share one

common element, which implies Q6/1 is in Z. By contracting 1 in Q6, we get the matroid

U2,4 ⊕2 U1,3. Contraction of any element in U2,4 ⊕2 U1,3 gives the matroid U1,4, so Q6/1 is

also in Z. Next consider deleting element 3. This gives the matroid U3,5, and deleting any

element from U3,5 gives a binary matroid. Contracting element 3 gives a binary matroid, so

finally consider element 6. By deleting element 6 we get a binary matroid, and by contracting

element 6 we get U2,5. Contracting any element in U2,5 gives the binary matroid U1,4, hence

Q6 is an excluded minor of Z.

Next we look at P6. Note that P6\1 ∼= P6\2 ∼= P6\3, and P6\4 ∼= P6\5 ∼= P6\6, and we

have the analogous situation for contraction. Therefore we only need to consider deleting and

contracting the elements 1 and 4. Note that P6\1 ∼= Q6\1, so P6\1 is in Z. Contracting 1

gives the matroid U2,5, which we discussed above. Deleting element 4 gives the matroid U3,5,

which we also discussed above. And P6/4 ∼= Q6/1, so P6/4 is in Z. Thus P6 is an excluded

minor for Z.

Finally we look at U3,6. The deletion of any element yields the matroid U3,5, and the

contraction of any element yields the matroid U2,5, both of which are in Z. Therefore U3,6 is

also an excluded minor of Z.

A class N of matroids is 1-rounded [17] if every member of N is connected and, whenever

e is an element of a connected matroid M having an N -minor, M has an N -minor using
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Figure 2.3. Geometric representations of the matroids Q6, P6, and U3,6.

e. The following three results will be useful in our proofs, they come from [2], [17], and [9],

respectively.

Lemma 2.2.11. The set {U2,4} is 1-rounded.

Lemma 2.2.12. The set {M(K4), U2,4} is 1-rounded.

Lemma 2.2.13. The set {W3, P6, Q6, U3,6} is 1-rounded.

The following two results will also be needed. The first is basic and its proof is omitted.

The second result comes from [11].

Lemma 2.2.14. The class of binary matroids is closed under the operation of 2-sum.

Lemma 2.2.15. The following statements are equivalent for a 3-connected matroid M having

rank and corank at least three:

(i) M has a U2,5-minor;

(ii) M has a U3,5-minor;

(iii) M has a minor isomorphic to one of P6, Q6, or U3,6.

2.3 Main Result

In this section we prove the main results of the chapter, Theorems 2.1.1 and 2.1.2. We begin

by finding all the disconnected excluded minors of each class. Due to the similarity of the

proofs for each class, we combine the arguments where possible.
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Lemma 2.3.1. Suppose U ∈ {Z,R}. The only disconnected members of EX(U) are U2,4 ⊕

U1,1 and U2,4 ⊕ U0,1.

Proof. By Lemma 2.2.4, both matroids are in EX(U). Now let M be an arbitrary discon-

nected member of EX(U). As M is non-binary and disconnected, it has distinct components

M1 and M2 where M1 is non-binary. Since M1 has a U2,4-minor and M2 has a U0,1- or

U1,1-minor, the lemma follows.

The following result from [11] will be useful in our proofs.

Theorem 2.3.2. Let M be a 3-connected matroid having rank and corank exceeding two.

(i) If M is binary, then M has an M(K4)-minor.

(ii) If M is non-binary, then M has one of W3, Q6, P6, and U3,6 as a minor.

Before finding the complete list of 2-connected excluded minors, we need the following

lemmas. The first lemma comes from [13, Section 1.5, Exercise 14].

Lemma 2.3.3. The following statements are equivalent for a matroid M :

(a) M is a relaxation of some matroid,

(b) M has a basis B such that B∪e is a circuit of M for every e in E(M)−B and neither

B nor E(M)−B is empty.

Proof. Assume M is a relaxation of some matroid N . Then M has a basis B that is a circuit-

hyperplane in N . Assume B ∪ e is not a circuit for some e ∈ E(M) − B. Let C denote the

circuit contained in B ∪ e. Consider the circuit-hyperplane B in N . As all of C is contained

in B except e, the element e should be in the closure of B in the matroid N . But B is a

closed set and e /∈ B, a contradiction. Thus B ∪ e is a circuit of M for all e ∈ E(M) − B.

Clearly B is non-empty, and since B is a circuit-hyperplane in N there must be some element

x ∈ E(N)−B that is not spanned by B in N , thus E(M)−B is also non-empty.
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Conversely assume M has a basis B such that B ∪ e is a circuit of M for every e in

E(M) − B and neither B nor E(M) − B is empty. By tightening the basis B to make a

new matroid N , we make B a circuit of rank r(M) − 1 automatically. Assume that B is

not a hyperplane. Then there is some element e ∈ E(M) − B such that a proper subset of

B together with e forms a circuit C. But then CM(e, B)=C, a contradiction. Thus B is a

circuit-hyperplane of N , and M is a relaxation of the matroid N .

Lemma 2.3.4. Let M be a matroid that can be obtained from a binary matroid N by relaxing

a circuit-hyperplane X of the latter. If M contains a Wk-minor for some k ≥ 3, then, in

every Wk-minor of M , the rim elements are contained in X and no element of X is a spoke.

Proof. Let M1 be a Wk-minor of M . If e is in the rim of M1, then M1/e is non-binary. But,

for all f in E(M) − X, by Lemma 2.2.2, M/f is binary. Therefore e ∈ X. The assertion

about spokes follows by duality.

Lemma 2.3.5. Let M be a connected non-binary matroid. Either M has an R6-, U2,4⊕U0,1-,

or U2,4⊕U1,1-minor, or M is obtained from a 3-connected non-binary matroid M0 by parallel

and series extension of disjoint subsets T and S of E(M0), where both S and T are possibly

empty.

Proof. Consider the canonical tree decomposition T ofM . AsM is non-binary, by Lemma 2.2.14

there must be a non-binary matroid M0 in T . Assume there is another vertex labeled by a

non-binary matroid M1. Then, by Lemma 1.4.3, we see that M has an M0⊕2M1-minor. Let

p1 be the basepoint of this 2-sum. Each of M0 and M1 is connected and non-binary, so by

Lemma 2.2.11 each of M0 and M1 has a U2,4-minor that uses p1. Thus M has an R6-minor,

and the lemma holds when M1 exists.

We may now assume that M0 is the unique non-binary matroid labeling a vertex of T .

Suppose there is a vertex labeled by a 3-connected binary matroid M2 with at least four
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elements. Then M has an M0 ⊕2 M2-minor. Now M0 has a U2,4-minor and, as M2 is 3-

connected and binary, Theorem 2.3.2 tells us that M2 has an M(K4)-minor. Let p2 be the

basepoint of M0 ⊕2 M2. As above, M0 has a U2,4-minor using p2. By Lemma 2.2.12, M2

has an M(K4)-minor using p2. Thus M has a U2,4 ⊕2 M(K4)-minor and therefore has a

U2,4 ⊕ U1,1-minor. Hence the lemma holds when M2 exists.

We may now assume all matroids other than M0 labeling vertices in T are U1,n or Um−1,m

for varying n, m ≥ 3. If we have a path in T beginning at M0 that has the form M0—

Um−1,m—U1,n, then M has a U2,4 ⊕ U0,1-minor. By duality, we may not have a path of the

form M0—U1,n—Um−1,m. Therefore we may assume the only non-trivial paths beginning at

M0 in T are of the form M0—Um−1,m, or M0—U1,n. In other words, M is obtained from M0

by parallel and series extension of disjoint subsets of E(M0).

Recall that the matroid K is the matroid obtained from U2,4 by adding elements in parallel

to three of its elements.

Lemma 2.3.6. The matroid R6 is the only connected, but not 3-connected, member of

EX(Z). The connected, but not 3-connected, members of EX(R) are R6, K, and K∗.

Proof. Suppose U ∈ {Z,R}. By Lemmas 2.2.4 and 2.2.9, R6 is in EX(U) and K and K∗

are in EX(R). Let M be a 2-connected member of EX(U) that is not 3-connected and is

not R6, K, or K∗. By Lemma 2.3.5, M is obtained from a 3-connected non-binary matroid

M0 by parallel and series extension of disjoint subsets T and S of E(M0) where S ∪ T 6= ∅.

Let M0
∼= U2,4. If U=Z, then M is in U , as it satisfies (iv) in Theorem 2.2.3, which is a

contradiction, so let U=R. As M has neither K nor K∗ as a minor, both S and T have size

less than three. By duality, we may assume that 0 ≤ |T | ≤ |S| ≤ 2. In each case, M can be

realized as a relaxation of a binary matroid. For example, when |S| = |T | = 2, assume the

non-trivial series classes have sizes s1 and s2, and the non-trivial parallel classes have sizes

p1 and p2. We can obtain M by relaxing the circuit-hyperplane in M(G) where G is a graph
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on three vertices {a, b, c} with p1 parallel edges between a and c, p2 parallel edges between

b and c, and two internal vertex disjoint paths with sizes s1 and s2 between a and b. The

other cases can be checked similarly. We deduce contradictorily that M ∈ U .

We may now assume |E(M0)| ≥ 5 and consider U ∈ {Z,R}. By switching to the dual

if necessary, we may also assume that M has at least one non-trivial parallel class and let

{x, y} be in that class.

2.3.6.1. The matroid M\x can be obtained from a binary matroid by relaxing a circuit-

hyperplane.

Proof. We knowM\x is in U . Thus it satisfies one of (i)-(iv) in Theorem 2.2.3. IfM\x satisfies

(i), then the result follows. Assume M\x satisfies (ii). Then M\x is a parallel extension of

U2,n, for some n ≥ 5. Hence M is also a parallel extension of this matroid and M ∈ Z, and

M has a U2,5-minor, which contradicts Lemma 2.2.9 if U=R. Next assume that M\x satisfies

(iii). Then M\x is a series extension of Un−2,n for some n ≥ 5, and M is a parallel extension

of this series extension. Then M\x, and hence M , contains the excluded minor U2,4 ⊕ U0,1.

Lastly, assume M\x satisfies (iv). Let U = E(U2,4) − S − T , where S and T are as defined

in Theorem 2.2.3. Recall that {x, y} is a circuit of M . If y is in a non-trivial series class of

M\x, then M contains the excluded minor U2,4 ⊕ U0,1, so y ∈ T ∪ U . Therefore M satisfies

(iv), so M ∈ Z and we assume U=R. As M has neither K nor K∗ as a minor, |S| < 3 and

|T ∪ y| < 3. As noted above, in these cases M can be realized as a relaxation of a binary

matroid.

If r(M0) = 2, then M0 has a U2,5-minor, so assume U=Z. It is not hard to check that

we get a contradiction in this case by establishing that either M ∈ Z, or M contains a

U2,4⊕U1,1-minor. Thus we may assume U ∈ {Z,R}, r(M0) ≥ 3 and, by duality, r∗(M0) ≥ 3.

As M0 is non-binary and 3-connected, and all of P6, Q6, and U3,6 are either in EX(U) or

contain members of EX(U), Theorem 2.3.2 implies that M0 contains aW3-minor. By 2.3.6.1,
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M\x is a relaxation of a binary matroid N , so let B be the circuit-hyperplane relaxed in N

to produce M\x. Assume y /∈ B and let N1 be obtained from N by adding x back in parallel

to y. Then B is a circuit-hyperplane of N1 whose relaxation is M , a contradiction.

We may now assume y ∈ B. Since M0 has a W3-minor and no P6-, Q6-, or U3,6-minor,

by Lemma 2.2.13 M0 has a W3-minor My using y. By Lemma 2.3.4, we know that y is a

rim element of My. This implies that M has a W3-minor in which one of the rim elements

is replaced by the parallel class containing {x, y}. This is a contradiction since it implies M

has a U2,4 ⊕ U0,1-minor.

In finding the complete list of 3-connected excluded minors for each class, we use the

following lemma.

Lemma 2.3.7. If a matroid N ′ is obtained from a non-binary matroid N by relaxing a

circuit-hyperplane X, then

(i) N ′ has a U2,5- or U3,5-minor; or

(ii) N ′ has a matroid in the class D as a minor.

Proof. As N is non-binary and has a circuit-hyperplane, |E(N)| ≥ 5. If |E(N)| = 5, then

either N is U2,4 ⊕2 U1,3, in which case N ′ is U2,5, or N is U2,4 ⊕2 U2,3, in which case N ′ is

U3,5. Thus the result holds if |E(N)| = 5. Now assume that the result holds for |E(N)| < k,

and consider the case where |E(N)| = k ≥ 6. If r(N) = 2, then N ′ has a U2,5-minor and the

result holds. Dually, the result holds if r∗(N) = 2, so assume r(N), r∗(N) ≥ 3.

Take e ∈ X and consider N/e. By Lemma 2.2.2, N ′/e is obtained from N/e by relaxing

X − e. If N/e is non-binary, then we invoke the induction hypothesis to see that the result

holds. Hence N/e is binary for all e ∈ X. By duality, N\e is binary for all e 6∈ X. Thus, for

every e ∈ E(N), at least one of N\e and N/e is binary. By Theorem 2.2.3, we deduce that

one of (i)-(iv) holds for N .
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As r(N), r∗(N) ≥ 3, we know N cannot satisfy (ii) or (iii). Assume N satisfies (iv). If

|S| = 0 or |T | = 0, we contradict our rank or corank assumptions, so |S|, |T | ≥ 1. It is

straightforward to check that N cannot have a circuit-hyperplane, which is a contradiction.

Finally, assume N satisfies (i). Then N can be obtained from some connected binary

matroid M by relaxing a circuit-hyperplane Y in M . Assume X∩Y 6= ∅ and take e ∈ X∩Y .

ThenN/e is binary and is obtained from the binary matroidM/e via relaxation. By Corollary

2.2.7, M/e ∼= Un−1,n ⊕ U1,k for some n, k ≥ 1, and N/e ∼= Un,n+1 ⊕2 U1,k+1. However, this

implies N/e has no circuit-hyperplane unless n = 2 and k = 2, so we assume these values

for n and k. But this means N ′/e ∼= U2,4, which is a contradiction since r(N ′), r∗(N ′) ≥ 3.

Thus X ∩ Y = ∅ and, by duality, (E(M)−X) ∩ (E(N)− Y ) = ∅. As both (X,E(N)−X)

and (Y,E(N) − Y ) partition the ground set, X = E(N) − Y and E(N) − X = Y . Hence

N ′ is obtained from the connected binary matroid M by relaxing the two disjoint circuit-

hyperplanes X and Y , so N ′ is in D and the result holds.

Lemma 2.3.8. The complete list of 3-connected members of EX(Z) is Q6, P6, U3,6, and

the matroids in D. The complete list of 3-connected members of EX(R) is U2,5, U3,5, and

the matroids in D

Proof. Suppose U ∈ {Z,R}. Let M be a 3-connected excluded minor of U that is not Q6,

P6, U3,6, U2,5, U3,5, or any of the matroids in D. Clearly r(M) ≥ 3 and r∗(M) ≥ 3. Either

(a) M is a relaxation of a non-binary matroid; or (b) M is not a relaxation of any matroid

at all. Case (a) follows immediately by Lemmas 2.3.7 and 2.2.15.

Now consider case (b). By Theorem 2.3.2, M must contain one of W3, Q6, P6, and U3,6.

As all of these except W3 contain excluded minors of U , we know that M has a W3-minor.

Let Wk be the largest whirl-minor of M . We use Seymour’s Splitter Theorem [16] to grow

M from Wk. Let x be the element added with the last move. By duality, we may assume

that x is added via extension. Thus M\x is a non-binary 3-connected member of U . If U=R,
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then M\x is a relaxation of a binary matroid. If U=Z, then M\x satisfies one of (i)-(iv) in

Theorem 2.2.3. As M\x is 3-connected, it cannot satisfy (ii)-(iv). Hence, in both cases, M\x

is a relaxation of a binary matroid N1.

Let B be the special basis in M\x that is a circuit-hyperplane in N1. For all e ∈ E(M\x)−

B, the set B ∪ e is a circuit in M\x. Now B is also a basis of M and B ∪ e is a circuit of M

for all e ∈ E(M)− (B ∪x). If B ∪x is a circuit of M , then M can be realized as a relaxation

of some matroid by Lemma 2.3.3, which is a contradiction. Thus there is some y ∈ B such

that y is not in the circuit contained in B∪x. Now, by Lemma 2.2.2, M\x/y can be obtained

by relaxing the circuit-hyperplane B − y in N1/y.

Assume that M\x/y is binary. It follows from Corollary 2.2.7 that M\x/y can be obtained

from a circuit C by adding some, possibly empty, set of elements in parallel with some element

z of C where C − z = B − y. As M\x is 3-connected, it has no non-trivial series classes.

Hence |C − z| = 1, so r(M\x/y) = 1, which contradicts the fact that r(M) ≥ 3. Therefore

M\x/y must be non-binary, and so M/y is also non-binary.

2.3.8.1. The matroid M/y can be obtained from a binary matroid via relaxation.

Proof. This is certainly true if U=R, so assume U=Z. Then M/y satisfies one of (i)-(iv) in

Theorem 2.2.3. First note that M/y cannot satisfy (iii), because a connected single-element

coextension of a series extension of Un−2,n has corank two, and so has noW3-minor. Assume

M/y satisfies (ii). Then r(M) = 3. As M has a W3-minor, it is not hard to check that

we must coextend M/y by y in a way that creates a matroid having a U2,4 ⊕ U1,1-, Q6-,

or P6-minor. Now assume M/y satisfies (iv). As M is 3-connected, M/y cannot have any

non-trivial series classes. A routine check shows that either M contains an excluded minor

or M can be realized as a relaxation of a binary matroid, both of which are contradictions.

Thus (i) holds, and so does the result.
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We now revert to working in generality, where U ∈ {Z,R}. We know that M\x is obtained

by relaxing a circuit-hyperplane B in a binary matroid N1, and M/y is obtained by relaxing

a circuit-hyperplane B′ in a binary matroid N2. We show next that

2.3.8.2. B′=B − y.

Proof. By Lemma 2.2.2, M\x/y is obtained by relaxing the circuit-hyperplane B−y in N1/y.

Consider (M\x/y)\e for e /∈ B − y, and assume (M\x/y)\e is binary. Then, as (M\x/y)\e

is a relaxation of a binary matroid, we know (M\x/y)\e ∼= Ut−1,t ⊕2 U1,v for some t, v ≥ 1.

Now E(M\x/y\e) has a partition (S, P ) where S is the relaxed set B − y and P is its

complement. Then S ∪ y is the relaxed set of M\x and P ∪ e is the relaxed set of (M\x)∗.

As rM\x(P ∪ y) = 2, we know |P | ≤ 2, else the matroid N1 would be non-binary, and, by

duality, |S| ≤ 2. However, r(M\x) = |S ∪ y| and r∗(M\x) = |P ∪ e|. Thus, as M\x has a

Wk-minor for some k ≥ 3, we know |S ∪ y| = |P ∪ e| = 3. Therefore, M\x ∼=W3. The only

3-connected single-element extension of W3 that does not contain an excluded minor is F−7 ,

depicted in Figure 2.4. But F−7 is a relaxation of the Fano plane, which is binary, giving us

a contradiction. Therefore we may assume (M\x/y)\e is non-binary for all e /∈ B− y. Then,

for all such e, the matroid M/y\e is also non-binary. By Lemma 2.2.2, for every e ∈ B′ the

matroid M/y\e is binary. Thus if e is not in B−y, then it is not in B′. Therefore, B′ ⊆ B−y.

As B − y and B′ are both bases for M/y, the result holds.

We know B∪e is a circuit of M for all e ∈ E(M)−(B∪x), and that (B−y)∪e is a circuit

of M/y for all e ∈ E(M) − B. Thus, since B ∪ x is not a circuit of M , we see (B − y) ∪ x

is a circuit of M . As M\x has a W3-minor, but no Q6-, P6, or U3,6-minor, Lemma 2.2.13

implies that M\x has a W3-minor using y. By Lemma 2.3.4, as y is in B, it follows that

this W3-minor has y as a rim element. Hence by adding x back, M has a single-element

extension of W3 as a minor. Let {b1, b2, y} be the set of rim elements in W3. There are only

two single-element extensions of W3 that do not contain excluded minors, and they are F−7
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and a parallel extension of a spoke element of W3 (see Figure 2.4). But, in each of them,

the set {b1, b2, x} should be a circuit because (B − y) ∪ x is a circuit of M and the only

elements of M\x that can be contracted to produce the W3-minor must belong to B. This

contradiction completes the proof.

y

x

b1 b1

b2b2

x
y

Figure 2.4. Representations of F−7 , and a parallel extension of a spoke element of W3.

Proofs of Theorems 2.1.1 and 2.1.2. These follow immediately by combining

Lemmas 2.3.1, 2.3.6, and 2.3.8.

2.4 The Complexity of D

Jim Geelen asked (private communication) whether members of D could contain arbitrarily

large projective geometries. In this section, we observe that they can. Note that all sums in

this section are modulo two. Let A be a k × (2k − 1) matrix representing the rank-k binary

projective geometry PG(k − 1, 2), where k is odd. Let n = 2k + k + 1, let t = 2k + k − 1,

and consider the rank-n binary matrix Z in Figure 2.5. The entries αi and βj are defined

the next paragraph.

Let zsc denote the entry in row s and column c of Z. Let αi=Σn−2
s=1 zs(n+1+i), for 1 ≤ i ≤ t.

Let βj=Σ2n−1
c=n+2zjc, for 1 ≤ j ≤ t, and let γ = 1 + Σt

j=1βj. Let Z ′ be the submatrix of Z

whose columns are labeled by n+ 1, n+ 2, . . ., 2n. Then each column in Z ′ is contained in

the hyperplane of PG(n − 1, 2) consisting of those vectors whose coordinates sum to zero.

Moreover, no other column of Z is in this hyperplane. The definitions ensure that all the

rows of Z ′, except possibly row n− 1, sum to zero. To see that row n− 1 also sums to zero,
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0

1

1

1

1

0
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1 A Ik

I2k−1 AT

...
...

In−1

0 0 0 · · ·
α2+1 · · ·

0

1 2 3 · · · n n+1 2n· · ·

1 1 11

β1
β2

βt

...

· · ·
γ

Figure 2.5. The matrix Z.

note that Σt
j=1βj=Σt

i=1αi since both of these sums count the number of non-zero entries in

the same submatrix. We know that Σ2n−1
c=n+2z(n−1)c=1 + Σt

i=1(αi + 1)=1 + t + Σt
i=1αi. As t is

even, 1 + t + Σt
i=1αi=1 + Σt

i=1αi=1 + Σt
j=1βj = γ. Thus {n + 1, n + 2, . . . , 2n} is a circuit-

hyperplane of M [Z] and it is easy to see that its complement is as well. By relaxing both

these circuit-hyperplanes, we get a member of D that contains a PG(k − 1, 2)-minor.
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Chapter 3
Dual-closed Matroids

3.1 Introduction

The goal of this chapter is to determine which matroids, if any, guarantee that their duals are

present as minors whenever they themselves are present as minors. Clearly, for matroids M

and N , in order for M to have both N and N∗ as minors, we must have min{r(M), r∗(M)} ≥

max{r(N), r∗(N)}. Subject to these obligatory rank constraints, we want to find all matroids

N such that M has an N -minor if and only if M has an N∗-minor. The main results of the

chapter, stated below, deal with the case where N and M are 3-connected.

Theorem 3.1.1. Let N be a 3-connected matroid that is not self-dual, and let M be a

3-connected matroid for which

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N has fewer than four elements, or is U2,5 or U3,5.

Theorem 3.1.2. Let N be a 3-connected binary matroid that is not self-dual, and let M be

a 3-connected binary matroid for which

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N has fewer than four elements, or is F7 or F ∗7 .
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We let P and K5\e, respectively, denote the prism graph and the complete graph on five

vertices with a single edge deleted. These two dual graphs are depicted in Figure 3.1.

Theorem 3.1.3. Let N be a 3-connected graphic matroid that is not self-dual, and let M be

a 3-connected graphic matroid for which

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N has fewer than four elements, or is M(P ) or M(K5\e).

K5\eP

Figure 3.1. The dual graphs P and K5\e.

We also consider this question with other connectivity and representability constraints.

In Section 3.2, we solve the problem with no restrictions on connectivity or representability

and introduce some preliminaries. Section 3.3 is devoted to the case where N and M are 2-

connected while, in Section 3.4, we prove Theorem 3.1.1 and the analogous result for matroids

representable over infinite fields. In Section 3.5, we solve the problem for 3-connected, GF (q)-

representable matroids and, in Section 3.6, we prove Theorem 3.1.3.

3.2 Preliminaries

We begin with a few observations. First, consider a self-dual matroid N . Clearly, every

matroid M that contains N as a minor also contains N∗ as a minor. Therefore, we restrict
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our interest to matroids that are not self-dual. Now let N be an arbitrary matroid. We define

δ(N) = r(N)−r∗(N). If δ(N) = 0, then it is easy to see that either N is self-dual, or there is

a matroid M that satisfies the obligatory rank constraints and has N but not N∗ as a minor.

Thus, without loss of generality, we may assume that r(N) > r∗(N), and so δ(N) > 0.

We now describe a strategy that will be used in many proofs throughout this chapter.

Beginning with a matroid N , we construct a matroid M by adjoining δ(N) elements to N

in such a way that we do not increase the rank of N . Then we increase the corank of N by

δ(N). This matroid M satisfies the obligatory rank constraints. Note that, when we employ

this strategy, we must contract δ(N) elements from M if we hope to obtain an N∗-minor.

Furthermore, each contraction must lower the rank of the matroid. This implies that we

must contract an independent set of size δ(N). By carefully adjoining these δ(N) elements,

we show that, unless N has a specific structure, we can construct such a matroid M that

has N but not N∗ as a minor. We now solve the general problem.

Proposition 3.2.1. Let M be a class of matroids that is minor-closed and closed under

duality. Let N and M be matroids in M such that N is not self-dual and

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N is U0,n or Un,n, for some n ≥ 1.

Proof. Clearly (ii) implies (i). To see that (i) implies (ii), assume δ(N) > 0 and let cN

denote the number of coloops in N and let lN denote the number of loops in N . We begin

by showing that

3.2.1.1. δ(N) = cN − lN .
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Construct a matroid M from N by adding δ(N) = r(N) − r∗(N) loops to N . Then

cM = cN and lM = lN + δ(N). This matroid M satisfies the obligatory rank constraints

and thus must have an N∗-minor. We must contract δ(N) elements from M to obtain N∗,

and each contraction must drop the rank. Thus lN = cN∗ ≥ cM − δ(N) = cN − δ(N) and

cN = lN∗ ≥ lM = lN + δ(N). These inequalities can be rewritten as δ(N) ≥ cN − lN and

δ(N) ≤ cN − lN . Thus 3.2.1.1 holds.

Suppose that N has a 2-connected component K with at least two elements. Construct

a new matroid M by adding δ(N) elements to a parallel class in K. Then cN = cM and

lN = lM . By 3.2.1.1, we know that δ(N) = cN − lN = cN − cN∗ . Therefore N∗ has δ(N) fewer

coloops than N , so, since cN = cM , we must contract δ(N) coloops from M to obtain N∗.

However, contracting coloops does not create any loops, which contradicts the fact that M

has an N∗-minor. Thus, each component of N consists of a single element and N ∼= U0,s⊕Un,n

for some s, n ≥ 0.

Consider the graph G that consists of a path of length n with s loops adjoined to one

end. Clearly M(G) = N . Create a graph G′ as follows: add an edge e to G such that the

path of length n becomes a cycle of length n + 1. Add the other δ(N)− 1 edges in parallel

to e. Let M(G′) = M . This new matroid M satisfies the obligatory rank constraints and

has no coloops. Since contraction cannot create new cocircuits, this implies that s = 0 and

N ∼= Un,n for some n ≥ 0. The result holds by duality.

3.3 2-connected Case

In this section, we impose the additional constraints that N and M are 2-connected. Specif-

ically, we determine the set of 2-connected matroids N such that if a 2-connected matroid

M satisfies the obligatory rank constraints, then M has an N -minor if and only if M has an

N∗-minor. We also solve the problem in the 2-connected case with the additional assumption

that N and M are graphic. The next theorem deals with small matroids.
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Theorem 3.3.1. LetM be a class of matroids that is minor-closed and closed under duality.

Take n ∈ {2, 3} and let N and M be n-connected matroids inM such that N is not self-dual,

|E(N)| < 4, and

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N is U0,1, U1,1, U1,3, or U2,3.

Proof. First assume (i) holds. If |E(N)| = 1, then N is U0,1 or U1,1, so assume |E(N)| ≥ 2. If

|E(N)| = 2, then N is either disconnected or self-dual, a contradiction. If |E(N)| = 3, then,

as N is 2-connected, N is U1,3 or U2,3. Thus (ii) holds.

Now assume (ii) holds and δ(N) > 0. If N is U1,1, then any matroid M that has an

N -minor and satisfies the obligatory rank constraints has corank at least one and so has a

U0,1-minor. Thus we may assume N is U2,3. We now consider n = 2 and n = 3 separately.

Suppose n = 2 and consider extending U2,3 by a single element to construct a 2-connected

matroid M . Either M ∼= U2,4 or M ∼= U2,3 ⊕2 U1,3. In both cases, M contains a U1,3-minor,

so the result holds when n = 2.

Now assume n = 3 and consider extending U2,3 to obtain a 3-connected matroid M . Either

M contains a U2,4-minor or an M(K4)-minor [9, Theorem 2.5], both of which contain U1,3 as

a minor. Thus the result holds by duality.

In light of this result, for the remainder of the chapter, we restrict our attention to matroids

with at least four elements. To each tree decomposition T of a matroid M , we associate an

ordered triple ν(T ) = (n1, n2, n3), where n1 is the number of corank-one matroids in V (T )

and n2 is the number of rank-one matroids in V (T ). We let n3 = |V (T )|−n1−n2. Evidently,

n3 represents the number of 3-connected matroids in V (T ) that have rank and corank larger
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than one. We will call such 3-connected matroids large. Note that if ν(T ) = (c, d, k), then

ν(T ∗) = (d, c, k). If the matroid K labels a vertex in the tree decomposition T , we say K is

in V (T ). The next lemma restricts the structure of the canonical tree decomposition T for

any 2-connected matroid N with the property that its dual is present as a minor whenever

N is present as a minor.

Lemma 3.3.2. Let M be a class of matroids that is minor-closed and closed under duality.

Let N and M be 2-connected matroids in M such that N is not self-dual, |E(N)| ≥ 4, and

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

Let T be the canonical tree decomposition of N and assume M contains an N-minor if and

only if M contains an N∗-minor.

(i) If G is a large 3-connected matroid in V (T ), then G∗ is also in V (T ); and

(ii) T meets {U1,n : n ≥ 3} if and only if T avoids {Um−1,m : m ≥ 3}; and

(iii) if δ(N) ≥ 1, then V (T ) contains exactly one corank-one matroid C. Moreover, C is a

leaf of V (T ).

Proof. First we show that (i) holds. Assume δ(N) > 0 and add δ(N) elements in parallel

to any element of N to get a matroid M . Then M is 2-connected, contains N as a minor,

and satisfies the obligatory rank constraints. Clearly, the large 3-connected vertex labels of

the canonical tree decompositions, T and TM , of N and M are the same. As N guarantees

its dual as a minor, we know M contains an N∗-minor. Using Lemma 1.4.4, we obtain

the tree decomposition T ∗ of N∗ from T . By construction, the large 3-connected matroids

that label vertices of the tree decompositions for M , N , and N∗ have the same size and

number. Furthermore, the 3-connected matroids in V (T ∗) must be precisely the duals of

the 3-connected matroids in V (T ), and must all be present in V (TM). Hence, the large

3-connected matroids in V (T ) and V (T ∗) are the same, so (i) holds.
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To see that (ii) holds, let ν(T ) = (c, d, k) and assume c, d ≥ 1. Further assume that

c 6= d, and add δ(N) parallel elements to any rank-one matroid in V (T ) to obtain a tree

decomposition TM for a matroid M . Then M satisfies the obligatory rank constraints, so M

has an N∗-minor. By construction, ν(T ) = ν(TM), and ν(T ∗) = (d, c, k). Recall that we must

contract an independent set to obtain N∗ from M . Note that, since N∗ is 3-connected, we

cannot contract an element in a rank-one matroid in V (T ∗), and, by (i), we cannot contract

an element in a large 3-connected matroid. This is a contradiction since c 6= d and, by

Lemma 1.4.5, we do not change the number of rank-one matroids in the tree decomposition

when contracting elements from corank-one matroids to obtain N∗. Thus c = d.

Now add δ(N) elements to a trivial parallel class of N to get a new matroid M . We know

such a parallel class exists since r(N) > r∗(N). Then the resulting tree decomposition TM

of M has more rank-one matroids than corank-one matroids. But M has an N∗-minor and,

since N∗ is 2-connected, we cannot decrease the number of rank-one matroids via contracting

an independent set to obtain N∗. This contradiction completes the proof of (ii).

Construct a matroid M from N by adding δ(N) elements in a parallel class. Then V (T ∗)

must contain a rank-one matroid and, by duality, V (T ) contains a corank-one matroid. Then,

by (ii), V (T ) contains no rank-one matroids. Assume V (T ) contains at least two corank-one

matroids. Add δ(N) elements in parallel to some element of N to get M . Then, by (ii), in

the tree decomposition TM of M , there is a single rank-one matroid. However, M contains

an N∗-minor which has at least two rank-one matroids in its tree decomposition, which is

a contradiction by Lemma 1.4.5. Therefore, V (T ) has exactly one matroid C with corank

one. Furthermore, C must be a leaf in T , otherwise we can build a matroid M by adding a

parallel element to N such that we create a rank-one matroid as a leaf in TM . This gives a

matroid M with no N∗-minor, a contradiction. Thus (iii) holds.
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The next two lemmas will be useful in the proof of the theorem that follows; the proofs of

the lemmas are omitted. The first lemma is elementary and is surely well known. The second

lemma comes from [13, Prop. 7.3.9].

Lemma 3.3.3. Let M be a connected matroid of rank at least three. Then M has a U3,4-

minor.

Lemma 3.3.4. Let e be an element of a matroid N and suppose that e is not a loop. Then

e is free in N if and only if e is in every dependent flat of N∗.

Theorem 3.3.5. Let N be a 2-connected matroid that is not self-dual such that |E(N)| ≥ 4,

and let M be a 2-connected matroid for which

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N is U1,4 or U3,4.

Proof. Assume δ(N) ≥ 1. Using Lemma 3.3.3, it is not hard to check that (ii) implies (i). To

see that (i) implies (ii), we consider the canonical tree decomposition T of N . We know, by

Lemma 3.3.2 (ii), that there cannot be both corank-one and rank-one matroids in V (T ). By

Lemma 3.3.2 (iii), V (T ) has exactly one corank-one matroid C, and C labels a degree-one

vertex of T . Next we show that

3.3.5.1. N is the circuit C.

Assume that this is false. If δ(N) > 1, then we can add δ(N) elements to N to give a

matroid M having two non-trivial parallel classes. This creates two rank-one matroids in

V (TM), a contradiction by Lemma 1.4.5. Hence δ(N) = 1. Thus, as C labels a degree-one

vertex of T , we see that N ∼= C⊕2K for some matroid K. Note that K is made by 2-summing
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large 3-connected matroids. Thus, by Lemmas 1.4.2 and 3.3.2 (i), we have r(K) = r∗(K).

Moreover, since δ(N) = 1, we know C = U2,3.

Construct a new matroid M by adding a parallel element to one of the series elements of N

contributed by C. We must contract the other series element that is present in N to destroy

the corank-one matroid in V (TM), as V (T ∗) has no such matroids. Thus, N∗ ∼= U1,3 ⊕2 K.

Hence

3.3.5.2. K is self-dual.

Construct a new matroid M from N by adding an element f freely to N . As N∗ has

parallel elements and δ(N) = 1, we know we must contract an element in a triangle of M to

get N∗. Therefore, either f is free in N∗, or we must contract f to obtain N∗. However, in

the latter case, r(N) = 2 which contradicts the composition of T . Next we show that

3.3.5.3. N has two free elements in series.

As f is free in N∗, by Lemma 3.3.4, f is in every dependent flat of N . If f is one of the

series elements contributed to N by C, then N has two free elements in series, so we assume

not. Construct a new matroid M by adding an element in parallel to f . We must contract

one of the series elements contributed by C to obtain N∗, otherwise V (T ∗) has a corank-one

matroid, a contradiction. Thus, N∗ has a parallel pair {e, f} that is in every dependent flat.

Hence, by Lemma 3.3.4, the elements e and f are free in N and are in series. Thus 3.3.5.3

holds.

As there is only one non-trivial series class in N , this implies that {e, f} ⊆ C. Construct

a new matroid M by adding an element x in parallel to e. As V (T ∗) contains no corank-

one matroids, we must contract f to obtain N∗. Upon contraction, by Lemma 3.3.4, the

unique parallel pair {e, x} must be in every dependent flat. Consider our construction of

N∗. Essentially, we contracted a free element f , giving us a matroid N ′ having e as a free

element, and then added x in parallel to e. Since e and x must be in every dependent flat,
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this implies that, in N ′, the element e is free and is in every dependent flat. Thus K is a

uniform matroid in addition to being self-dual, which implies K ∼= Un,2n for some n ≥ 2.

To complete the proof of 3.3.5.1, construct a new matroid M by adding an element freely

to the span of K in N . As N∗ has no elements in series, we must contract one element in the

series pair {e, f} to obtain N∗ from M . However, this contraction yields no parallel elements,

which contradicts the fact that N∗ has a parallel pair. This contradiction completes the proof

of 3.3.5.1.

Assume |C| ≥ 5. Then construct a matroid M by adding one element in parallel to each of

|C| − 2 = δ(N) distinct elements of C. This gives a matroid M with no C∗-minor. Therefore

|C| ≤ 4 and, since |E(N)| ≥ 4, we have N ∼= U3,4. The result holds by duality.

We now consider the 2-connected problem with the additional assumption that N and M

are graphic. Note that if N∗ is a minor of the graphic matroid M , then N∗ is also graphic.

This implies that N∗ is both graphic and cographic, which means that N∗ is planar graphic.

Therefore, we need only consider matroids N that are planar graphic. Note that a graph is

maximally plane if it is a plane graph in which every face is a triangle. The following lemma

is well known; its routine proof is omitted.

Lemma 3.3.6. Let G be a maximally plane graph. Then |E(G)| = 3|V (G)|−6 and |F (G)| =

2|V (G)| − 4.

Let G and G∗ be the dual graphs depicted in Figure 3.2. We now prove the following.

Theorem 3.3.7. Let N be a 2-connected graphic matroid that is not self-dual such that

|E(N)| ≥ 4, and let M be a 2-connected graphic matroid for which

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.
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G G∗

Figure 3.2. The graphs G and G∗.

(ii) The matroid N is U1,4, U3,4, M(G), or M(G∗).

Proof. Assume δ(N) ≥ 1. First we show that (ii) implies (i). It is not hard to check, using

Lemma 3.3.3, that if N is U3,4 then (i) holds. Thus we may assume N is M(G). First note

that adding an element in parallel to any element of M(G) always produces a matroid with

an M(G∗)-minor. Thus we consider extending M(G) by an element e such that e is not a

parallel element. There are only two ways, up to isomorphism, to add e to M(G) and get a

2-connected planar graphic matroid M . The graphs G1 and G2 underlying these extensions

are depicted in Figure 3.3. By contracting the edge labeled f in each of G1 and G2, we obtain

G∗ as a minor. Thus we see that

3.3.7.1. every connected single-element extension of M(G) contains an M(G∗)-minor.

Now consider an arbitrary matroid M that satisfies the obligatory rank constraints and

contains an N -minor. We know that M/I\I∗ ∼= N for some independent set I and some

coindependent set I∗. Consider M/I. If I∗ is not a set of loops in M/I, then M has a

connected single-element extension of N as a minor and (i) holds by 3.3.7.1. Thus we may

assume that I∗ is a set of loops in M/I. Then for some set A ⊂ I, the matroid M/A has a

non-trivial parallel class and an M(K4)-minor. Let e be an element in a non-trivial parallel

class of M/A. By Lemma 2.2.12, M/A has an M(K4)-minor that uses e. Thus, M has a

parallel extension of M(K4) as a minor, that is, M has an N∗-minor. Thus (i) holds.
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G1

e
e

f

f

G2

Figure 3.3. The graphs G1 and G2.

To see that (i) implies (ii), first note that Lemma 3.3.2 (ii) and (iii) respectively imply that

N has a non-trivial series class and no parallel elements, and N has exactly one non-trivial

series class.

Suppose the tree decomposition T of N has exactly one vertex. Then N ∼= Un−1,n for some

n ≥ 4. Suppose n ≥ 5. By adding an element to each of n − 2 distinct parallel classes of

Un−1,n, we get a matroid M that satisfies the obligatory rank constraints, but contains no

U1,n-minor. This contradiction implies that n = 4, so N ∼= U3,4, and the result holds.

Now assume T has more than one vertex. By Lemma 3.3.2 (iii), we know that N ∼=

Un−1,n⊕2K for some matroid K that is a 2-sum of 3-connected matroids. By Lemmas 1.4.2

and 3.3.2 (i), r(K) = r∗(K). Note that this implies that δ(N) = n − 2. Suppose δ(N) ≥ 2.

Construct a new matroid M by adding a single element to each of δ(N) distinct parallel

classes of K. This M satisfies the obligatory rank constraints and has more than one non-

trivial parallel class. To obtain N∗, we cannot contract any parallel elements. However, N∗

does not have multiple non-trivial parallel classes, a contradiction. We deduce that δ(N) = 1.

This implies that the non-trivial series class in N has exactly two elements. Thus we know

that N ∼= U2,3 ⊕2 K for some matroid K that is a 2-sum of 3-connected planar graphic

matroids.

Consider a graph GK such that M(GK) = K. If GK is not a maximally plane graph,

then create a new planar graph H by adding an edge e to GK such that e is not parallel to

any edge of GK . Let the matroid M = U2,3 ⊕2 M(H). Then M satisfies the obligatory rank

38



constraints, so it must contain an N∗-minor. However, as N∗ contains no series elements, we

must contract an element from the non-trivial series class to obtain N∗. But this contraction

will not create any parallel elements, a contradiction. Thus GK is a maximally plane graph.

By Lemma 3.3.6, we know that |F (GK)| = 2|V (GK)| − 4. Since r(N) = r∗(N) + 1, we have

|V (GK)| = |F (GK)|. Thus we see that |V (GK)| = 2|V (GK)|−4, so |V (GK)| = 4. Thus, since

GK is maximal planar with four vertices, GK = K4, the complete graph on four vertices.

Therefore, N ∼= U2,3 ⊕2 M(K4) = G. The result holds by duality.

3.4 General 3-connected Case

In this section, we prove Theorem 3.1.1 and solve the problem in the 3-connected case

with the additional constraint that N and M are F-representable for an infinite field F. We

denote by N3 the set of 3-connected matroids N such that, for 3-connected matroids M that

satisfy the obligatory rank constraints, M contains an N -minor if and only if M contains

an N∗-minor. Similarly, we denote by N3,F the set of 3-connected F-representable matroids

N such that, for 3-connected F-representable matroids M that satisfy the obligatory rank

constraints, M contains an N -minor if and only if M contains an N∗-minor.

We also prove a result in this section that applies to the 3-connected case with the more

specific constraint that N and M are GF (q)-representable. For this reason, we now introduce

the notationN3,q to denote the set of 3-connected GF (q)-representable matroids N such that,

for 3-connected GF (q)-representable matroids M that satisfy the obligatory rank constraints,

M contains an N -minor if and only if M contains an N∗-minor, even though we do not discuss

this problem in detail until the next section.

Due to the similarity of the proofs, we combine many of the results in this section. For

N ∈ N3 ∪N3,F, by Theorem 3.3.1, we assume |E(N)| ≥ 5 and continue our assumption that

δ(N) > 0. The following well-known lemma will be useful in our proofs in this section. For

completeness, we give a proof.
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Lemma 3.4.1. Let F be an infinite field, let N be an F-representable matroid, and let F

be a flat of N . Then the free extension of N by a single element is also F-representable.

More generally, the matroid obtained from N by adding a single element freely to F is F-

representable.

Proof. First we argue by induction on r(N) that every F-representation of N can be extended

to an F-representation of the free extension of N . If r(N) = 0, then the result holds. Assume

the result holds for r(N) < r and let r(N) = r. Take an F-representation [Ir|A] for N , and

let br be the element that labels the rth column of Ir. Now N/br is F-representable and the

free extension N ′ of N/br by e is F-representable by induction. Now consider the matrix in

Figure 3.4, where removing the rth row and the rth column gives a representation of N ′,

while removing the last column gives an F-representation of N . The entry ζ is a member of

F whose value is yet to be determined.

Ir−1 A′

10

ẑ

ζ0 0 0

0
0
0

0

...

... α1 α2 α3 α4 · · · αn−1 αn

ebr

Figure 3.4. A possible free extension of N .

We want to choose ζ so that the matrix in Figure 3.4 is a representation of the free

extension of N . The extension is not free if there is a subset I of E(N) such that |I| ≤ r− 1

and I ∪ e is a circuit. This means that Σi∈I ai(v̂i, βi) = (ẑ, ζ) for some non-zero ai in F where

each (v̂i, βi) is a column of [Ir|A]. Now Σi∈I aiv̂i = ẑ means that |I| = r − 1.

To prevent I∪e from being a circuit, we must choose ζ so that Σi∈I aiβi 6= ζ. By considering

all (r − 1)-element subsets of the sets of columns of [Ir|A], we get a finite set of inequations
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that ζ must satisfy. Since F is infinite, we can choose ζ so that none of these inequations

hold. Thus we obtain an F-representation of the free extension of N .

Now we consider the more general case, where we add e freely to a flat F of N . Let

r(N) = r and r(F ) = k for k ≤ r. Take an F-representation of N such that the first k

columns are a basis for F . Then all other columns representing elements of F have zero

entries in rows k+ 1 through r, as depicted in Figure 3.5. Let b1, . . . , br label the columns of

Ir, and consider the matroid F ′ = N/{bk+1, . . . , br}.

Ik A1

Ir−k 00

bk+1 · · · brb1 · · · bk f1 · · · fj

F

A2

0

Figure 3.5. A representation of N .

Evidently, the matroid F ′ contains all the elements of F ; the elements of F span F ′;

and the structure of the elements of F is unchanged in F ′, that is, N |F = F ′|F . Now,

using the proof above, add e to F ′ to get the free extension P of F ′, and consider the

matrix in Figure 3.6 where removing the (k + 1)st through rth rows and columns gives an

F-representation of P while removing the last column gives an F-representation of N . This

matrix is an F-representation of the matroid obtained from N by adding an element freely

to the flat F .

The next lemma provides information regarding adding elements to 3-connected GF (q)-

representable matroids. The two lemmas that follow it determine structure for matroids in

N3 ∪N3,F. The following will be used extensively in Section 3.5.

Lemma 3.4.2. Let N be a rank-r matroid in N3,q and assume δ(N) ≥ 1 and r ≥ 2. Then
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Ik 0 A1

Ir−k A20

F

0

f1 · · · fjbk+1 · · · brb1 · · · bk

ĝ

e

0

0
...

Figure 3.6. Adding an element freely to a flat of N .

(i) N can be extended by δ(N) elements and remain 3-connected and GF (q)-representable;

and

(ii) δ(N)−1 elements can be added to any hyperplane of N to obtain a 3-connected GF (q)-

representable matroid.

Proof. Consider N as a restriction of PG(r − 1, q). We know PG(r − 1, q) has 1 + q +

q2 + · · · + qr−1 elements and N has 2r − δ(N) elements. Now 1 + q + q2 + · · · + qr−1 ≥

1 + 2 + 22 + · · ·+ 2r−1 = 2r− 1. Thus, the result holds when 2r− 1 ≥ 2r− δ(N) + δ(N) = 2r.

Note that 2r − 1 − 2r is an increasing function for r ≥ 2 and, since every matroid in N3,q

with δ(N) ≥ 1 has rank at least three, (i) holds.

As N is 3-connected, any hyperplane H of N has at most 2r− δ(N)− 3 elements and has

rank r − 1. Using the same formulas as above, (ii) holds when 2r−1 − 1 ≥ 2r − δ(N) − 3 +

(δ(N)− 1) = 2(r− 1). Since 2r−1− 1− 2(r− 1) is an increasing function for r ≥ 3, (ii) holds.

Lemma 3.4.3. Let N be a matroid in N3 ∪ N3,F. Then N∗ has a (δ(N) + 2)-element line

and no triads. Hence N has no triangles and has a (δ(N) + 2)-element set of which every

three-element subset forms a triad.

Proof. Add δ(N) elements freely on a line of N to construct a matroid M . Observe that

if N ∈ N3,F, then so is M . As N∗ is 3-connected, we cannot contract any elements on the

line to obtain N∗. Hence N∗ has a (δ(N) + 2)-element line. Construct a new matroid M by
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adding δ(N) elements freely to N . By Lemma 3.4.1, we know M is F-representable if N is.

This matroid M has no triads and, since contraction creates no new cocircuits, N∗ also has

no triads. The results for N follow by duality.

Lemma 3.4.4. Let N be a matroid in N3∪N3,F∪N3,q such that N has a triad. Then either

δ(N) = 1 or N∗ has a triad.

Proof. Assume δ(N) ≥ 2 and let r(N) = n. Then r∗(N) = n − δ(N). Let T ∗ be a triad

{a, b, c} in N and let H1 be the complementary hyperplane. Construct a matroid M ′ by

adding elements b′ and c′ to N such that {a, b, b′} and {a, c, c′} are triangles, but {a, b, c}

remains a triad, as in Figure 3.7. Note that it is possible that one or both of b′ and c′ is

already present in N , however, this will not pose a problem for our argument. To see that this

construction is possible, consider performing a Y -∆ exchange on {a, b, c}, and let {a′, b′, c′}

denote the new triangle in the resulting matroid N ′. Now consider performing a generalized

parallel connection of M(K4) and N ′ across the triangle {a′, b′, c′}, where M(K4) is labeled

as shown in Figure 3.8. Then deleting {a′, b′, c′} recovers N , but deleting only a′ gives the

desired extension of N .

a

b
c

b′

M ′

a

b
c

N

H1 H1

c′

Figure 3.7. Geometric representations of the matroids N and M ′ in Lemma 3.4.4.

Finish constructing the matroid M from M ′ by adding another δ(N) − 2, δ(N) − 1, or

δ(N) elements, depending on how many of {b′, c′} are originally present in N . We add these
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a

b

c

a′c′b′

Figure 3.8. A geometric representation of the matroid M(K4).

remaining elements in cl(H1) such that M is 3-connected and M is F-representable if N is.

Clearly this is possible when N ∈ N3 ∪ N3,F. If N ∈ N3,q, then Lemma 3.4.2 guarantees

the construction is also possible. Then T ∗ is a triad of M and we cannot contract any of its

elements to obtain N∗, which implies that N∗ has a triad.

Corollary 3.4.5. Let N be a matroid in N3 ∪N3,F. Then δ(N) = 1.

Proof. Combining Lemmas 3.4.3 and 3.4.4 gives the result immediately.

We now describe an argument that will be used several times throughout the rest of this

chapter. Beginning with a matroid N , we construct a matroid M1 by adjoining δ(N) elements

to N in such a way that we do not increase the rank of N . Under the right circumstances, we

can construct M1 such that we know which elements must be contracted from M1 to obtain

N∗. Assume that obtaining N∗ from this construction implies that N∗ has j triangles. We

then construct a matroid M2 from N such that M2 satisfies the obligatory rank constraints

and, as above, we know which elements must be contracted from M2 to obtain N∗. If obtain-

ing N∗ from this construction implies that N∗ has more or fewer than j triangles, then we

get a contradiction. This argument will be used in several proofs below to yield information

about the structure of N . The next proposition determines the members of N3 and N3,F.

Proposition 3.4.6. A matroid N with at least four elements is in N3 or N3,F if and only if

N is U2,5 or U3,5.
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Proof. First note that, by [11, Theorem 1.6], U2,5 and U3,5 are in both N3 and N3,F. In the

proof of the converse, we assume r(N) > r∗(N) and, by Corollary 3.4.5, we know δ(N) = 1.

Several times throughout this proof we add an element freely to N or add an element freely

to a flat of N . By Lemma 3.4.1, we know this will not contradict F-representability in the

case where N ∈ N3,F. Thus, we omit mention of the last lemma for the remainder of the

proof.

Let {a, b, c} be a triad of N and construct a matroid M by adding e freely to the hyperplane

H1 of N , where H1 = E(N)−{a, b, c}. As N∗ has no triads, we must contract one of {a, b, c}

to obtain N∗. As N∗ contains a triangle, but N does not, either there is a four-circuit of M

that uses two of {a, b, c} or r(H1) ≤ 2. Suppose the latter holds. If r(H1) ≤ 1, we immediately

have a contradiction. Thus r(H1) = 2; so r∗(N) = 2 and r(N) = 3. Hence N ∼= U3,5 and the

result holds. We may now assume that r(H1) ≥ 3 and M has a four-circuit C that uses two

of {a, b, c}.

Based on our construction of M , this implies that C is also a circuit of N . Without

loss of generality, let C = {a, b, f, g} for some {f, g} ⊆ E(N). By thinking in terms of

Y − ∆ exchanges we can construct a new matroid M1 from N by adding elements a′, b′,

and c′ so that {a, b, b′}, {a, c, c′}, and {a′, b, c} are triangles. Then in M1 we have one of

the structures depicted in Figure 3.9 and circuit exchange verifies that {b′, f, g} is a circuit.

Let M = M1\{a′, c′}. Then M satisfies the obligatory rank constraints and so must have an

N∗-minor. Now {a, b, b′} and {b′, f, g} are triangles of M , so N∗ must have, as a restriction,

either a five-point line or two triangles in rank three that share a common element.

We now show that

3.4.6.1. the result holds when N∗ has, as a restriction, a four-point line.

Suppose N∗ has a four-point line. Then N has a four-point set {w, x, y, z} such that any

three-element subset forms a triad. Let H1 = E(N)− {w, x, y} and H2 = E(N)− {x, y, z}.

Construct a new matroid M by adding an element e freely to the flat H1∩H2. If r(H1∩H2) ≥
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a

b
c

a

b
c

a′

c′
b′

f

g

f g

c′ a′
b′

Figure 3.9. Adding b′ to show that N∗ contains one of two configurations.

2, then we can add e in this way to get a simple matroid. But, since a single contraction

cannot destroy all triads in {w, x, y, z}, we get a contradiction. Thus r(H1∩H2) ≤ 1. But, if

the rank is zero, we immediately get a contradiction. Therefore r(H1 ∩H2) = 1, and hence

r(N) = 3 and r∗(N) = 2. So N ∼= U3,5 and 3.4.6.1 holds.

We may now assume N∗ contains a plane that is spanned by two triangles that meet in

a point and that N∗ has no four-point lines. This implies N has two triads T ∗1 and T ∗2 that

share a common element x. Let H1 and H2 denote the hyperplanes that are complementary

to T ∗1 and T ∗2 . Suppose that r(H1 ∩H2) > 2. Then construct a new matroid M by adding e

freely to H1 ∩H2. Note that e creates neither a four-circuit that uses x nor a triangle of any

kind in M . To destroy the triads in M , we must contract x to get N∗. Thus, every triangle

in N∗ arises from a four-circuit of N that uses x.

Now construct a new matroid M by adding e to H1 ∩H2 such that it creates a triangle.

Again we must contract x to obtain N∗. But now N∗ has an extra triangle, a contradiction.

We conclude that r(H1 ∩H2) ≤ 2.

If r(H1 ∩ H2) = 0, then |E(N)| = 5, so r(N∗) = 2. This contradicts the fact that N∗

has two triangles in rank three. If r(H1 ∩ H2) = 1, then |E(N)| = 6, a contradiction since

δ(N) = 1. Therefore, we assume r(H1∩H2) = 2, and so |E(N)| = 7, which implies r(N) = 4

and r∗(N) = 3. Recall our assumption that N∗ contains a plane that is spanned by two

triangles that meet in a point. We now show

46



3.4.6.2. N∗ has a free element.

Assume N∗ has no free elements. Construct a new matroid M from N by adding e freely

to N . If we do not contract e to obtain N∗, then N∗ has a free element, a contradiction.

Thus we may assume that N∗ is the truncation of N , which contradicts the fact that N has

no triangles. Hence 3.4.6.2 holds.

Now N∗ has a free element and is obtained by taking: (1) a single-element extension of

two triangles that meet in a point, together with (2) a freely placed element. As N∗ has no

four-point lines, it is not hard to check that there are three possible such matroids, depicted

in Figure 3.10. However, the matroids D1, D2, and D3 in Figure 3.11 contain S1, S2, and S3

as minors, but not S∗1 , S∗2 , and S∗3 , respectively. Thus these matroids are in neither N3 nor

N3,F. The result holds by duality.

S∗1 S∗2 S∗3

Figure 3.10. Geometric representations of possible matroids for N∗.

D3D1 D2

Figure 3.11. Geometric representations of matroids.
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Theorem 3.4.7. Let F be an infinite field. Let N be a 3-connected F-representable matroid

that is not self-dual such that |E(N)| ≥ 4. Let M be a 3-connected F-representable matroid

for which

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N is U2,5 or U3,5.

Proofs of Theorems 3.1.1 and 3.4.7. Using Proposition 3.4.6 we obtain the results immedi-

ately.

3.5 GF (q)-representable Case

In this section, we revisit the 3-connected problem with the additional requirement that the

matroids are GF (q)-representable. For N ∈ N3,q, as before, we assume |E(N)| ≥ 5 and

r(N) > r∗(N). The fact that a circuit and a cocircuit in a matroid cannot meet in exactly

one element will be referred to as orthogonality. Let N be a GF (q)-representable matroid

with r(N) = r. Throughout this section, for a subset H of E(N), we let clPG(H) denote the

closure of H in the projective geometry PG(r − 1, q).

We begin by noting some members of N3,2.

Lemma 3.5.1. The matroids F7 and F ∗7 are in N3,2.

Proof. To see that F ∗7 is in N3,2, note that Seymour [17] showed that F ∗7 has only two distinct

3-connected binary single-element extensions, namely, S8 and AG(3, 2), both of which are

self-dual and so contain F7 as a minor. By duality, the result holds.

The next lemma provides structure for the members of N3,q. Since r(N) = r, we see that

r∗(N) = r − δ(N).
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Lemma 3.5.2. Let N be a matroid in N3,q. Then N has a triad and no triangles, so N∗

has a triangle and no triads.

Proof. Either N has a triangle, or we can add e to N to create a triangle and then add a

further δ(N) − 1 elements such that the resulting matroid M is 3-connected and GF (q)-

representable if N is. This construction is guaranteed by Lemma 3.4.2. We cannot contract

any of the elements in the triangle to obtain N∗. Thus N∗ has a triangle and, by duality, N

has a triad.

Let T ∗1 , T
∗
2 , . . . , T

∗
k be all the triads of N , and let N = M [A], where A is a matrix over

GF (q). Choose e1, e2, . . . , en from T ∗1 ∪T ∗2 ∪· · ·∪T ∗k such that, for every j ∈ {1, . . . , k}, there

is an i ∈ {1, . . . , n} such that ei ∈ T ∗j , and n is as small as possible. We now prove that

3.5.2.1. the result holds for n ≥ 2.

Suppose n ≥ 2, and let vi be the column vector of A that represents the element ei for all

i in {1, . . . , n}. Either there is a minimal such set {e1, . . . , en} that is independent, or every

minimal such set contains a circuit.

Suppose the former holds. Then, letting v = Σn
i=1vi, add v as a new column to A, and let

M0 be the vector matroid obtained from the resulting matrix. We now show that

3.5.2.2. v is not parallel to any element of M [A].

We proceed by contradiction. Assume that there is a column ai of A such that v = ai

and let a be the corresponding element in M [A]. Certainly a 6∈ {e1, . . . , en}, otherwise

{e1, . . . , en} contains a circuit, a contradiction. Consider the circuit C0 = {e1, . . . , en, a}. By

orthogonality, each triad whose intersection with C0 is non-empty meets C0 in at least two

elements.

We now show that this contradicts the minimality of n. Since C0 intersects each triad in

exactly two elements, the set C0−{a} intersects every triad that does not contain a in exactly

two elements. Since, n ≥ 2, we know N has at least one triad that does not contain a. Let T ∗1
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be a triad such that T ∗1 ∩C0={ei, ej}. Then either {e1, . . . , en} − {ei} or {e1, . . . , en} − {ej}

a set set of size smaller than n that meets every triad or there are triads T ∗i and T ∗j such

that T ∗i ∩C0={a, ei} and T ∗j ∩C0={a, ej}. The former is a contradiction, so we may assume

the latter holds.

Assume there is another triad T ∗2 such that T ∗2 ∩C0 = {ek, em} where {ek, em}∩ {ei, ej} =

∅. Then, as above, we must have triads T ∗k and T ∗m such that T ∗k ∩ C0={a, ek} and T ∗m ∩

C0={a, em}. However, then ({e1, . . . , en}−{ej, em})∪{a} is a set of size smaller than n that

meets every triad, a contradiction. A similar argument shows that if there is a triad T ∗3 such

that T ∗3 ∩ C0 = {ei, el}, then the set ({e1, . . . , en} − {ej, el}) ∪ {a} provides a contradiction.

Thus T ∗1 is the only triad of N that meets C0 in exactly two elements and does not contain

a. Therefore a is in every triad of N except T ∗1 , which implies that n = 2. Hence, T ∗1 , T ∗i , and

T ∗j are the only triads of N and {ei, ej, a} is a triangle in N . Thus, in N∗, the only triangles

are T1, Ti, and Tj and {ei, ei, a} is a triad. Consider this situation as depicted in Figure 3.12.

If T1, Ti, and Tj are the only triangles, then clearly {ei, ej, a} cannot be a triad. Therefore

3.5.2.2 holds.

a

ei ej

Figure 3.12. Representing the triangles of N∗.

Our constructed matroid M0 has no triads. Let r(N) = r(M0) = r. Then, viewing M0 as

a restriction of PG(r− 1, q), we can construct a new simple matroid M by adding δ(N)− 1

other elements in any available spots in PG(r − 1, q). This construction is guaranteed by

Lemma 3.4.2. Thus M has no triads and, therefore, N∗ has no triads, so 3.5.2.1 holds in this

case.
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We conclude that every minimum-sized set {e1, . . . , en} that meets every triad contains

a circuit C. Again, by orthogonality, every triad whose intersection with C is non-empty

contains at least two elements of the set {e1, . . . , en}. Taking {e1, . . . , en}−C together with

one element from each triad that intersects C, we have a set that contradicts the minimality

of n. Therefore 3.5.2.1 holds and we may now assume n = 1.

Let e denote the element that is in every triad and assume N has k triads, where k ≥ 2.

Consider a set {f1, . . . , fk}, where fi ∈ T ∗i − {e}. Let ui be the column vector of A that

represents the element fi for all i in {1, . . . , k}. Letting u = Σk
i=1ui, add u as a new column

to A, and let M ′ be the vector matroid obtained from the resulting matrix. Clearly, since

each fi is in exactly one triad, u is not parallel to any element of N . The constructed M ′

has no triads. By Lemma 3.4.2, we can then add another δ(N)− 1 elements to construct a

matroid that satisfies the obligatory rank constraints and has no triads, so the result holds

in this case.

Thus we may assume that N has a single triad T ∗. Let f be an element of E−T ∗ such that

f is not in clN(T ∗). Construct a new matroid M1 by adding g to N such that {e, f, g} forms

a triangle. This matroid M1 has no triads and, viewing M1 as a restriction of PG(r − 1, q)

and using Lemma 3.4.2, we can construct a matroid M that satisfies the obligatory rank

constraints and has no triads. Hence N∗ has no triads. The result for N holds by duality.

Corollary 3.5.3. Let N be a matroid in N3,q. Then δ(N) = 1.

Proof. The result follows immediately by combining Lemmas 3.4.4 and 3.5.2.

This corollary implies that for any matroid N ∈ N3,q, there is a positive integer k such

that r(N) = k + 1 and r∗(N) = k. The next three lemmas provide information about the

number of and interaction between triads of N .

Lemma 3.5.4. Let N be a matroid in N3,q. Then N has more than one triad.
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Proof. Assume N has only one triad T ∗ = {a, b, c}, and let H be the complementary hyper-

plane. If N has a four-circuit C, then create a matroid M by adding an element e to the

plane spanned by C such that e belongs to at least two triangles. This implies that N∗ must

have two triangles, a contradiction. Therefore N has no four-circuits. As N∗ has a triangle,

anywhere we add e to clPG(H), this addition must create either a four-circuit that uses two

elements from {a, b, c} and the element e, or a triangle that uses the element e.

Since |H| = 2k − 2, the number of ways to create a triangle in N by adding e to clPG(H)

is at most (q− 1)
(
2k−2
2

)
+ 3 = (q− 1)(2k2− 5k+ 3) + 3, and the number of ways to create a

four-circuit using two elements of T ∗ is at most
(
3
2

)
(2k − 2)(q − 1) = (6k − 6)(q − 1). Thus,

there are at most (q − 1)(2k2 − 5k + 3) + (6k − 6)(q − 1) + 3 = (q − 1)(2k2 + k − 3) + 3

ways to do either of these. Viewing H as a restriction of PG(k− 1, q), we see that there are

qk−1
q−1 possible elements in H, only 2k − 2 of which are present. Therefore, if k ≥ 7, then for

all q we can create a matroid M by adding e to clPG(H) such that e is not in any triangles

and not in any four-circuits that use two of {a, b, c}. This is a contradiction since N∗ has a

triangle and no triads.

The same contradiction holds for k = 4 when q > 4 and for k ∈ {5, 6} when q > 2.

It remains only to consider the cases where k = 3 and q is arbitrary; where k = 4 and

q ∈ {2, 3, 4}; and where k ∈ {5, 6} and N is binary.

First we consider k = 3. Then |E(N)| = 7 and r(N) = 4, and we know that N has neither

triangles nor four-circuits. This implies that N ∼= U4,7, which contradicts the fact that N

has a triad.

In each of the remaining cases, we consider constructing a representation for N |H. We

let a basis for N |H be represented by a rank-k identity matrix and consider adding another

k − 2 columns to build the representation. Note that if we add columns with one, two, or

three non-zero entries, we have circuits of size two, three, or four respectively. Therefore, in

each case below, the added columns must have at least four non-zero entries.
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Suppose k = 4. If q = 2, then there is only one column we can add, namely, the all-

ones column, but we need two columns, a contradiction. It is not hard to check that, when

q ∈ {3, 4}, it is impossible to add two columns that will not create either a triangle or a

four-circuit.

For the remainder of the proof, we assume N is binary. Suppose k = 5. Then we need

to add three columns to build a representation of N |H. As there is only one column with

five non-zero entries, we must have at least two columns with exactly four non-zero entries.

However, taking these two columns with the appropriate two basis vectors forms a four-

circuit, a contradiction.

Finally, assume k = 6. Note that if we have three columns with exactly four non-zero

entries, we must have either a triangle or a four-circuit, so we have at most two such columns.

Hence, we must have at least one column with exactly five non-zero entries, which implies

we cannot have the all-ones column, otherwise we create a triangle. Thus, we must have two

columns with exactly five non-zero entries. But these two columns taken with the appropriate

two basis vectors form a four-circuit, a contradiction.

Recall that r(N) = k + 1.

Lemma 3.5.5. Let N be a matroid in N3,q such that |E(N)| > 5. Then N∗ has no four-point

lines.

Proof. Assume N has a four-point set {a, b, c, d} such that every three-element subset forms

a triad and let H1 = E(N) − {a, b, c} and H2 = E(N) − {b, c, d}. Then r(H1 ∩ H2) =

r(N)− 2 = k− 1 and |H1 ∩H2| = 2k− 3. Thinking of N as a restriction of PG(k, q), we can

view N |(H1∩H2) as a restriction of PG(k−2, q). Thus we see that there are qk−1−1
q−1 −(2k−3)

possible ways to add e to clPG(H1∩H2) to create a 3-connected GF (q)-representable matroid

M that satisfies the obligatory rank constraints. It is not hard to check that if r(H1∩H2) ≥ 3,
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then we can add e in this way for all q ≥ 2. However, in this construction, we cannot destroy

all triads of M with a single contraction, a contradiction. Thus r(H1 ∩H2) ≤ 2.

If r(H1 ∩H2) ≤ 1, then |E(N)| ≤ 5, a contradiction. By Lemma 3.5.2, if r(H1 ∩H2) = 2,

then |H1 ∩H2| = 2 so |E(N)| is even which contradicts the fact that |E(N)| = 2k + 1. The

result holds by duality.

Lemma 3.5.6. Let N be a matroid in N3,q. Then N does not have disjoint triads.

Proof. Assume N has two triads T ∗1 and T ∗2 that are disjoint, and let H1 and H2 be the

complementary hyperplanes. We know r(H1∩H2) = r(H1−T ∗2 ) ≥ r(H1)−|T ∗2 | = r(N)−1−3

= r(N)−4 = k−3, and |H1∩H2| = |E(N)|−6 = 2k−5. As in the previous lemma, we consider

r(H1 ∩H2). If r(H1 ∩H2) ≥ 4, then we can add an element e to clPG(H1 ∩H2) to create a

matroid M , but no single-element contraction of M destroys both triads, a contradiction. If

r(H1 ∩H2) = 3, the same contradiction holds immediately for q > 2. Moreover, it is easy to

see it also holds when q = 2, since N has no triangles. Thus r(H1 ∩H2) ≤ 2.

If r(H1 ∩ H2) ∈ {0, 2}, then |E(N)| is even, a contradiction. Therefore r(H1 ∩ H2) = 1

and |E(N)| = 7. This implies r∗(N) = 3 and N∗ has disjoint triangles. In other words,

N∗ is a 3-connected single-element extension of two disjoint triangles in rank three that, by

Lemma 3.5.5, has no four-point lines. There are a total of four such extensions and these are

depicted in Figure 3.14. Note that none of these matroids is binary, so the result holds for

N in N3,2. Furthermore, the only matroid in Figure 3.14 that is representable over GF (3) is

P7, which is one of the two ternary spikes. Consider the matrix in Figure 3.13 viewed over

GF (3).

The matroid M [A] is 3-connected and satisfies the obligatory rank constraints for P7. We

can obtain a P ∗7 -minor from M [A] by deleting 8, but M [A] contains no P7-minor. Therefore,

for N ∈ N3,3, the result holds.
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A =


1 2 3 4 5 6 7 8

1 0 0 0 1 1 1 2
0 1 0 0 1 2 0 2
0 0 1 0 1 0 1 2
0 0 0 1 0 1 2 0


Figure 3.13. A matroid over GF (3).

It is not hard to check that none of the matroids in Figure 3.14 is in N3,q, for q ≥ 4. This

is shown explicitly in Appendix A.

P7 H1

H2 H3

Figure 3.14. Geometric representations of all possibilities for N∗ in Lemma 3.5.6.

Combining Lemmas 3.5.4 and 3.5.6 yields the following result.

Corollary 3.5.7. Let N be a matroid in N3,q. Then N has two triads that intersect in a

single element.

The next two lemmas provide additional structure to members of N3,q, and determine

some members of N3,q, respectively. The first is elementary; the second follows from [11,

Theorem 1.6].
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Lemma 3.5.8. Let N be a matroid in N3,q, and let T ∗1 and T ∗2 be triads that meet in a single

element x. Adding an element e to clPG(H1∩H2), where Hi is the complementary hyperplane

of T ∗i , does not produce a triangle containing x.

Lemma 3.5.9. The matroids U2,5 and U3,5 are in N3,q if and only if q ≥ 4.

For the remainder of the chapter, for any N ∈ N3,q, we let T ∗1 = {a, b, x} and T ∗2 = {c, d, x}

be the triads guaranteed by Corollary 3.5.7, and we let H1 and H2 be their complementary

hyperplanes. Lemma 3.5.5 implies that {a, b, c, d} is a four-cocircuit, which means (H1 ∩

H2) ∪ {x} is a hyperplane. Thus we see that

r(H1 ∩H2) = k − 1 and |H1 ∩H2| = |E(N)| − 5 = 2k − 4. (3.5.1)

Throughout the next few proofs, we employ the strategy of adding an element e to

clPG(H1 ∩ H2) to obtain M . This construction forces the contraction of x to obtain an

N∗-minor, since we must destroy both triads. We use the term new triangles to refer to

triangles in N∗ that use the added element e. Note that these can arise from triangles of M

that use e and from four-circuits of M that use both e and x. The following two lemmas will

be useful.

Lemma 3.5.10. Let N be a matroid in N3,q such that r(N) = k + 1. If k = 4, then

N |(H1 ∩H2) is a four-circuit.

Proof. Assume k = 4. Then r(N) = 5 and |E(N)| = 9. It follows that H1∩H2 has rank three

and contains four elements. By Lemma 3.5.2, N has no triangles, so the result holds.

Lemma 3.5.11. Let N be a matroid in N3,q, let T ∗1 and T ∗2 be triads of N such that T ∗1 ∩T ∗2 =

{x}, and let H1 and H2 denote the hyperplanes that are complementary to T ∗1 and T ∗2 ,

respectively. There are at most two ways to add an element e to clPG(H1 ∩H2) such that e

forms a triangle that uses elements not in H1 ∩H2, and there are at most four ways to add

e to clPG(H1 ∩H2) such that e forms a four-circuit that uses x.
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Proof. Let T ∗1 = {a, b, x} and T ∗2 = {c, d, x}. Consider adding an element e to clPG(H1∩H2)

to create a matroid M . By Lemma 3.5.8, we know that M does not have a triangle using

both e and x. Therefore, the only possible way that e can create a triangle in M that uses

elements outside of H1 ∩ H2 is if e is on the line through {a, b} or the line through {c, d},

for a total of at most two ways to create a triangle that uses elements outside of H1 ∩H2.

Now consider creating a four-circuit that uses x. By orthogonality, every four-circuit of the

constructed matroid M that uses x must also use an element from each of {a, b} and {c, d}.

The planes spanned by {x, a, c}, {x, a, d}, {x, b, c}, and {x, b, d} each intersect clPG(H1∩H2)

in exactly one point. Thus there are at most four possible spots in clPG(H1 ∩H2) such that

adding e creates a four-circuit using x.

The theorem that follows restricts the rank of matroids in N3,2 and determines that, for

q ≥ 3, all members of N3,q have five or fewer elements.

Theorem 3.5.12. Let N be a matroid in N3,q.

(i) If q = 2, then r(N) ≤ 7.

(ii) If q ≥ 3, then |E(N)| ≤ 5.

Proof. Suppose r(N) ≥ 8, so k ≥ 7. Let T ∗1 = {a, b, x} and T ∗2 = {c, d, x}. Observe that, by

Lemma 3.5.8, the lines through x and any other element in (T ∗1 ∪ T ∗2 )−{x} do not intersect

H1 ∩H2. Thus, viewing N as a restriction of PG(k, q), we observe using orthogonality and

statement 3.5.1 that there are at most (q− 1)
(
2k−4
2

)
+ 2 = (q− 1)(2k2− 9k+ 10) + 2 possible

places to add e to clPG(H1 ∩H2) that create a triangle in our constructed matroid M . The

extra two spots in the last expression are the spots mentioned in Lemma 3.5.11.

By Lemma 3.5.11, there are at most 4 possible spots in clPG(H1 ∩H2) such that adding e

creates a four-circuit using x. Hence, the number of ways to create a new triangle in N∗ by

adding an element to clPG(H1 ∩H2) is at most (q − 1)(2k2 − 9k + 10) + 6. There are qk−1−1
q−1
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elements in clPG(H1∩H2), only 2k− 4 of which are present in N . Therefore, since k ≥ 7, we

can construct M by adding e to clPG(H1 ∩H2) such that e does not form any new triangles

in N∗. We can also construct a new matroid M0 by adding e to clPG(H1 ∩H2) such that it

creates a new triangle in N∗. Thus we have two constructions of N∗ that contain different

numbers of triangles. This contradiction completes the proof of (i).

We obtain a similar contradiction where k = 4 and q ≥ 9, where k = 5 and q ≥ 4, and

where k = 6 and q ≥ 3. Therefore, to finish the proof of (ii), we must check the cases where

k = 3 for q ≥ 3, where k = 4 for 3 ≤ q ≤ 8, and where k = 5 for q = 3. First we prove the

following.

3.5.12.1. If q = 3, then k 6∈ {4, 5}.

Assume N is ternary. We consider each k separately. First assume k = 5; so r(N) = 6

and |E(N)| = 11. Then r(H1 ∩ H2) = 4 and |H1 ∩ H2| = 6. There are 34−1
2

= 40 elements

in clPG(H1 ∩H2), only six of which are present in N . Thus, there are 34 possible places to

add e to clPG(H1∩H2). By Lemma 3.5.11, there are at most two spots that create a triangle

outside of clPG(H1 ∩H2) and at most four spots that create a four-circuit using x. Thus we

have a total of at most six places in clPG(H1 ∩H2) such that adding e creates new triangles

in N∗ that use elements outside of H1 ∩ H2. Hence, there are at least 28 places to add e

to clPG(H1 ∩ H2) such that this addition creates no new triangles in N∗ that use elements

outside of H1 ∩H2. If some of elements in H1 ∩H2 occupy any of the mentioned six spots,

we have more than 28 places to add e such that no new triangles are created.

Consider the number of ways to add e to clPG(H1 ∩ H2) such that we create a triangle

in clPG(H1 ∩ H2). Since |H1 ∩ H2| = 6, there are
(
6
2

)
= 15 lines spanned by two elements

in H1 ∩ H2, and there are two open spots on each line, for a total of at most 30 places in

clPG(H1 ∩H2) where the addition of e will create a triangle in clPG(H1 ∩H2). We now show

that
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3.5.12.2. H1 ∩H2 contains at least one four-circuit.

Consider possible representations of N |(H1 ∩ H2). We may assume that N |(H1 ∩ H2) =

[I4|A], where A is a 4 × 2 matrix. Let {v1, . . . , v6} label the columns of [I4|A]. Note that

if either of v5 or v6 contains exactly four, three, or two zero entries, we get a contradiction

since N is simple with no triangles. If either of v5 or v6 has exactly one zero entry, then

H1 ∩H2 contains a four-circuit. Thus we may assume that every entry of A is non-zero. We

may further assume that the first row and column of A are ones, and we let v6 = (1, a, b, c)

for some a, b, c ∈ {1,−1}. If a = b = c, then either N is not simple or N has a triangle, both

of which are contradictions. Therefore we may assume that a = b 6= c. Then {v1, v4, v5, v6}

is a four-circuit, otherwise {v4, v5, v6} is a triangle. Thus 3.5.12.2 holds.

Let C be a four-circuit contained in H1 ∩H2. Then clPG(C) ∼= PG(2, 3). Consider parti-

tioning the elements of C into two sets of two. Since we are in a projective geometry, the lines

through the elements in each part of the partition must intersect. There are three ways to

choose such a partition. This implies, since C ⊆ H1∩H2, that we over-counted the number of

open spots in clPG(H1∩H2) on lines created by pairs of elements in H1∩H2 by at least three.

This leaves us with 27 places that create a triangle in clPG(H1 ∩H2). As we have at least 28

places available, we can add e such that it creates no new triangles in N∗. This allows us to

construct two copies of N∗ with different numbers of triangles to obtain a contradiction.

Now assume k = 4. Again we consider H1 ∩H2, which is a four-circuit by Lemma 3.5.10.

Considering N as a subset of PG(4, 3), since r(H1 ∩H2) = 3, we see that clPG(H1 ∩H2) ∼=

PG(2, 3), so |clPG(H1 ∩H2)| = 13. As |H1 ∩H2| = 4, there are nine possible ways to add e

to clPG(H1 ∩H2). By considering the structure of PG(2, 3), since H1 ∩H2 is a four-circuit,

we see that three of the nine spots correspond to forming two triangles in clPG(H1 ∩ H2),

while the other six correspond to forming a single triangle in clPG(H1 ∩H2). There are also,

by Lemma 3.5.11, at most six ways to add e to clPG(H1 ∩H2) that create new triangles in

N∗ that use elements outside of H1∩H2. Note there must be overlap between the spots that
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create triangles inside clPG(H1 ∩H2) and the spots that create new triangles in N∗ that use

elements outside of H1 ∩H2.

Assume at least one of the four elements that form a four-circuit with x is already present

in H1 ∩ H2. Then there are at most 5 available spots in clPG(H1 ∩ H2) such that adding e

creates a new triangle in N∗ that uses elements outside of H1 ∩H2. Since there are six spots

that correspond to forming a single triangle in clPG(H1 ∩ H2), there must be an element e

we can add to clPG(H1 ∩H2) such that e forms only a single new triangle in N∗. However,

this is a contradiction since we can construct N∗ by adding e to one of the three spots in

clPG(H1 ∩H2) that creates two new triangles in N∗.

Similarly, assume one of the available spots in clPG(H1 ∩H2) that corresponds to forming

two triangles in clPG(H1 ∩ H2) also corresponds to forming a new triangle in N∗ that uses

elements outside of H1 ∩ H2. Then by adding e we can create three new triangles in N∗.

However, we can instead add e to one of the six spots in clPG(H1 ∩H2) that corresponds to

forming a single triangle in clPG(H1 ∩H2). In this construction, we are guaranteed to create

fewer than three new triangles in N∗, a contradiction. Therefore, we may assume that there

are no four-circuits that use x in N , and each available spot in clPG(H1 ∩H2) corresponds

to forming exactly two new triangles in N∗.

More specifically, for every possible e we can add to clPG(H1 ∩ H2), exactly one of the

following holds:

1. e forms two triangles in clPG(H1 ∩ H2) and no other triangles, and e forms no four-

circuits using x; or

2. e forms a single triangle in clPG(H1 ∩ H2) and a single triangle that uses elements

outside of H1 ∩H2, and e forms no four-circuits using x; or

3. e forms a single triangle in clPG(H1 ∩ H2) and no other triangles, and e forms one

four-circuit using x.
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However, the reader can check that this arrangement is impossible since the matroid is

ternary. This completes the proof of 3.5.12.1.

Next we consider the case where k = 4 and q ≥ 4. Then N |(H1 ∩H2) is a four-circuit by

3.5.10. Note that since |H1 ∩ H2| = 4, there are
(
4
2

)
= 6 lines through pairs of elements in

H1∩H2. Thus there are exactly three ways to add e to clPG(H1∩H2) to create two triangles

in clPG(H1∩H2), one for each partition of the four elements of H1∩H2 into two sets of two.

Also, since clPG(H1 ∩H2) ∼= PG(3, q), there are 6(q − 2) ways to add e to clPG(H1 ∩H2) to

create a single triangle in clPG(H1 ∩H2). However, by Lemma 3.5.11, there are at most six

ways to add e to clPG(H1 ∩H2) to create a new triangle in N∗ that uses elements outside of

H1∩H2. Therefore, as above, for all q ≥ 4, we can add e to clPG(H1∩H2) to obtain multiple

constructions of N∗ with differing numbers of triangles, a contradiction.

We conclude that k = 3. This implies r(N) = 4 and r∗(N) = 3, so |E(N)| = 7. In the

ternary case, there are only two 3-connected matroids with the required rank and corank,

namely, (F−7 )∗ and (P7)
∗, the duals of the two rank-three ternary spikes. However, it is

routine to check that neither of these is in N3,3. It is straightforward, if a bit tedious, to

check that there are no seven-element matroids in N3,q when q ≥ 4, which finishes the proof

of (ii). This is shown explicitly in Appendix A.

Theorem 3.5.13. Let N be a 3-connected ternary matroid that is not self-dual. Let M be a

3-connected ternary matroid for which

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N is U0,1, U1,1, U1,3, or U2,3.
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Theorem 3.5.14. For q ≥ 4, let N be a 3-connected GF (q)-representable matroid that is

not self-dual such that |E(N)| ≥ 4. Let M be a 3-connected GF (q)-representable matroid for

which

min{r(M), r∗(M)} ≥ max{r(N), r∗(N)}.

The following are equivalent:

(i) M has an N-minor if and only if M has an N∗-minor.

(ii) The matroid N is U2,5 or U3,5.

Proofs of Theorems 3.5.13 and 3.5.14. Combining Lemma 3.5.9 and Theorem 3.5.12 gives

the results immediately.

The next proposition further restricts the rank of matroids in N3,2.

Proposition 3.5.15. Let N be a matroid in N3,2. Then r(N) ≤ 5.

Proof. By Theorem 3.5.12, we know r(N) ≤ 7. Assume r(N) ∈ {6, 7}. First we show that

3.5.15.1. up to symmetry, N |(H1∩H2) is represented by one of the matrices in Figure 3.15.

Consider possible representations of N |(H1 ∩H2). Suppose r(N) = 6. Then, by statement

3.5.1, r(H1∩H2) = 4 and |H1∩H2| = 6. Let [I4|A] be a matrix representation of N |(H1∩H2),

with column labels {v1, . . . , v6}. If v5 or v6 has two or more zero entries, then either we

contradict the simplicity of N , or N contains a triangle, which contradicts Lemma 3.5.2. Thus

both v5 and v6 have at most one zero entry. If both v5 and v6 have no zero entries, then, as N

is binary, this means N has a two-circuit; a contradiction. Thus we may assume v5 has exactly

one zero entry. If v6 has no zero entries, thenN contains a triangle, a contradiction. Therefore,

up to symmetry, the matrix V in Figure 3.15 is the only representation of N |(H1 ∩H2).
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V =


1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 1 1



A1 =


1 0 0 0 0 0 1 1
0 1 0 0 0 1 0 1
0 0 1 0 0 1 1 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1

 A2 =


1 0 0 0 0 1 0 1
0 1 0 0 0 1 0 1
0 0 1 0 0 1 1 1
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 0



A3 =


1 0 0 0 0 1 0 0
0 1 0 0 0 1 1 1
0 0 1 0 0 1 1 1
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1

 A4 =


1 0 0 0 0 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1
0 0 0 0 1 0 0 0


Figure 3.15. Possible representations for N |(H1 ∩H2).

Now suppose r(N) = 7. Then r(H1 ∩H2) = 5 and |H1 ∩H2| = 8. Let [I5|A] be a matrix

representation of N |(H1 ∩H2), where {v1, . . . , v8} are the columns labels. If v6, v7, or v8 has

more than two zero entries, then either N is not simple or N contains a triangle, both of

which are contradictions. Thus each of v6, v7, and v8 has two or fewer zero entries. Note that

there are many different possible combinations for the columns v6, v7, and v8. A routine,

if tedious, check shows that the possible different representations of N |(H1 ∩ H2), up to

symmetry, are the matrices A1, A2, A3, and A4 in Figure 3.15, where many of the possible

representations end up being symmetric. Thus 3.5.15.1 holds.

We deduce, from looking at the possible representations of N |(H1 ∩ H2), that H1 ∩ H2

contains a four-circuit C. We now show that

3.5.15.2. there is at least one element e that can be added to clPG(H1 ∩ H2) such that e

creates no triangles in clPG(H1 ∩H2).
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To do this, we look at the possible representations of N |(H1 ∩ H2) from Figure 3.15. If

r(N) = 6, then N |(H1 ∩ H2) can be represented by the matrix V . By adding the column

ve = (1, 1, 0, 1), we create no triangles in clPG(H1 ∩ H2). Now suppose that r(N) = 7. By

adding the columns v1 = (1, 1, 1, 0, 1), v2 = (1, 0, 1, 0, 1), v3 = v4 = (1, 1, 1, 1, 1) to each of A1,

A2, A3, and A4, respectively, we create no triangles in clPG(H1 ∩H2). Thus 3.5.15.2 holds.

Now, if we can add e to clPG(H1 ∩H2) without creating any new triangles in N∗, then we

can build two constructions of N∗ that contain different numbers of triangles, a contradiction.

Similarly, if we can add e such that it creates a single new triangle in N∗, the same type

of contradiction holds since we can add e to clPG(H1 ∩ H2) in such a way as to create two

new triangles using elements of C. Therefore, we assume that if we extend N by adding e to

clPG(H1 ∩H2) without creating any triangles in H1 ∩H2, then we create two new triangles

in N∗ that use elements outside of H1 ∩H2.

Assume adding e creates one triangle in M using elements in E(M)− (H1 ∩H2) and one

four-circuit containing x. We know, by Lemma 3.5.8, that e does not form a triangle using x.

Without loss of generality, assume {a, b, e} is the triangle and {a, c, e, x} is the four-circuit.

Then b ∈ clM({a, c, e, x}) and r(clM({a, c, e, x})) = 3. As M is binary, there are two triangles

in clM({a, c, e, x}), neither of which can use x, a contradiction.

There is only a single way to add e to clPG(H1∩H2) such that it creates two triangles in M

and no triangles in H1∩H2. Also, there are only two distinct ways to add e to clPG(H1∩H2)

such that it creates no triangles in M and two four-circuits that use x. Thus, as before, there

are at most three distinct ways that e can be added to clPG(H1 ∩ H2) such that e is in no

triangles in H1 ∩H2 and we do not get contradictory constructions of N∗, as before.

Assume r(N) = 6, so r(H1 ∩ H2) = 4 and |H1 ∩ H2| = 6. Since N is triangle-free, there

is only one matroid, up to isomorphism, for N |(H1 ∩H2), namely, a deletion of F ∗7 . We can

add e to clPG(H1∩H2) without creating triangles in clPG(H1∩H2), so we must assume that,

whenever we add e in such a way, it creates two new triangles in N∗. However, if instead we
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add e such that it creates three triangles in clPG(H1 ∩H2), then we still must contract x to

obtain N∗. But now we have three new triangles, a contradiction.

To complete the proof, assume r(N) = 7, so r(H1 ∩H2) = 5 and |H1 ∩H2| = 8. Looking

at possible choices of N |(H1 ∩ H2) tells us that either there are more than three distinct

ways to add e to clPG(H1 ∩ H2) without creating a triangle in clPG(H1 ∩ H2), or there are

exactly three such ways to add e to clPG(H1 ∩H2). The former gives a contradiction so the

latter holds. Then each of those three distinct extensions must correspond to adding two

new triangles in N∗. It is not hard to see that, instead, we can add e to clPG(H1 ∩ H2) in

such a way as to produce a single triangle in clPG(H1∩H2), and we are guaranteed to create

no other new triangles in N∗, which is a contradiction.

For each r ≥ 3, the rank-r binary spike with tip t is the matroid Zr that is represented

by the binary matrix in Figure 3.16. Evidently, Z3
∼= F7, the Fano matroid. The following

result [10] will be useful in our final argument in the 3-connected binary case, the result for

which is stated in Theorem 3.1.2.

.. . .. .

.. .

.. .

... ... ... ... ...

.. .1 1 1 0 1

.. .

.. .1
1

xr y1 y2 yrx1 x2 t

1
0
1

1
1
0

1
1
1

1
1
1

..Ir

0

.

y3

Figure 3.16. A binary representation for Zr.

Theorem 3.5.16. Let M be a binary matroid with r(M) ≥ 3. Then M is 3-connected and

has no M(W4)-minor if and only if M ∼= Zr, Z
∗
r , Zr\yr, or Zr\t for some r ≥ 3.

Proof of Theorem 3.1.2. Take N ∈ N3,2 and assume r(N) > r∗(N). Proposition 3.5.15 tells

us that r(N) ≤ 5, and clearly r(N) ≥ 4. If r(N) = 4, then |E(N)| = 7 and, by Theorem

3.5.16, we know N ∼= Z∗3
∼= F ∗7 . Now suppose r(N) = 5. By Theorem 3.5.16, either N has
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an M(W4)-minor, or N ∼= Z∗4 . Assume the former. Then N is a single-element coextension

of M(W4), so N∗ is a single-element extension of M(W4). Consider building a binary rep-

resentation for N∗ by adding a column vector to the binary matrix A in Figure 3.17 that

represents M(W4).

A =


1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1


Figure 3.17. A representation for M(W4).

If we add a column with any zero entries, then N∗ will contain a triad, a contradiction

to Lemma 3.5.2. Thus, we must add the all-ones column, that is, N∗ ∼= M∗(K3,3). Thus

N ∼= M(K3,3). To see that this matroid is not in N3,2, consider adding an edge between two

non-adjacent vertices of K3,3. Let M be the 3-connected graphic matroid that corresponds to

the resulting graph. Then M meets the obligatory rank constraints but, as N∗ is not graphic,

M has no N∗-minor. This contradiction implies that N has no M(W4)-minor. Therefore we

may assume N ∼= Z∗4 .

We now build a 3-connected binary matroid M that has a Z4-minor and no Z∗4 -minor, thus

showing N 6∼= Z∗4 . Consider the binary matrix B in Figure 3.18 that represents Z4 extended

by two elements.

B =


1 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 0 1 1 1 1 0
0 0 1 0 1 1 0 1 1 0 1
0 0 0 1 1 1 1 0 1 0 0


Figure 3.18. A representation for Z4 extended by two elements.
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To obtain our example, we coextend the matroid M [B]. Let M be the matroid represented

by the matrix in Figure 3.19.

C =



0 1 2 3 4 5 6 7 8 t 9 10

1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 1 0 1 1 1 1 0
0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 0 1 1 1 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 1


Figure 3.19. A coextension of the matrix in Figure 3.18.

Essentially, M is obtained from Z4 by adding a triad in a new rank. To obtain a Z∗4 -minor

from M , we must delete three elements. As Z∗4 has no triangles, but M [C] has {t, 8, 3},

{t, 7, 2}, {t, 6, 1}, and {t, 5, 0} as triangles, we know we must delete t. We also know that we

cannot delete any elements from the triad {4, 9, 10}, otherwise we create a cocircuit of size

less than three. To see that M does not contain a Z∗4 -minor, we consider spanning circuits. It

is easily checked that Z∗4 has no spanning circuits. We argue that it is impossible to destroy

all spanning circuits of M by deleting t and two elements from {0, 1, 2, 3, 5, 6, 7, 8}.

First note that the following sets are spanning circuits ofM : {0, 1, 5, 7, 9, 10}, {2, 3, 6, 8, 9, 10},

{0, 2, 5, 6, 9, 10}, {1, 3, 7, 8, 9, 10}, {0, 2, 3, 7, 9, 10}, {1, 5, 6, 8, 9, 10}, {2, 5, 7, 8, 9, 10}, {0, 1, 3, 6, 9, 10}.

Observe that these circuits are listed in pairs that contain {9, 10} and partition {0, 1, 2, 3, 5, 6, 7, 8}.

As we cannot delete 9 or 10, we must delete one of {0, 8}, {1, 2}, {6, 7}, or {3, 5} to obtain Z∗4 .

However, in each case, the resulting matroid contains the spanning circuit {1, 2, 3, 4, 6, 9},

{0, 3, 4, 6, 8, 9}, {1, 3, 4, 5, 8, 9}, or {1, 4, 6, 7, 8, 9}, respectively. Thus M has no Z∗4 -minor.

Hence r(N) 6= 5, and the result holds by duality.

3.6 Graphic Case

In this section, we revisit the 3-connected problem with the additional assumption that the

matroids are graphic. Specifically, we determine the set NG of 3-connected graphic matroids

N such that if a 3-connected graphic matroid M satisfies the obligatory rank constraints,
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then M has an N -minor if and only if M has an N∗-minor. Recall from Section 3.3 that

all N ∈ NG are planar graphic. We will continue our assumptions that |E(N)| ≥ 4 and

δ(N) > 0 for N ∈ NG. As in previous sections, we will construct matroids M from N by

adding elements that do not change the rank to obtain matroids that satisfy the obligatory

rank constraints. In this construction, each contraction from M to obtain an N∗-minor must

drop the rank of the matroid. In other words, we must contract an independent set of M to

obtain N∗.

For the remainder of this section, we will primarily use graphs, rather than matroids, in

our arguments, noting that we can always assume that a graph corresponding to a graphic

matroid is connected. Further note that graphs G that are 3-connected, simple, and planar

have unique planar embeddings. Thus the faces of G are well-defined. We let VH , EH , and

FH denote the numbers of vertices, edges, and faces, respectively, of a planar graph H.

Throughout the figures in this section, it will be useful to highlight vertices of degree three,

that is, vertices whose incident edges form triads in the underlying matroid. This property

will be indicated using a circled vertex. We will call the set of edges incident with a degree-

three vertex a vertex-triad.

Let G be a plane graph that contains a face F of size at least four. We can add an edge

e as a chord, or facial chord, of F by adding e such that it is incident to two non-adjacent

vertices on the boundary of F . Note that adding e in this way yields a graph that is planar.

This section will rely heavily on the notion of matroid and graph fans. In a simple, cosimple

matroid M , a subset Φ of E(M) having at least three elements is a fan of M if there is an

ordering (f1, f2, . . . , fn) of Φ such that, for all i in {1, 2, . . . , n − 2}, the set {fi, fi+1, fi+2}

is a triangle or a triad and, when {fi, fi+1, fi+2} is a triangle, {fi+1, fi+2, fi+3} is a triad

and vice versa. Note that, for a fan Φ = (f1, f2, . . . , fn), if n is even then there is exactly

one triangle and exactly one triad in {{f1, f2, f3}, {fn−2, fn−1, fn}}. If n is odd, then either

both {f1, f2, f3} and {fn−2, fn−1, fn} are triangles or they are both triads. Consider the fan
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Φ = (r1, s1, r2, s2, . . . , r5, s5) depicted in Figure 3.20. We call the edges labeled with si spoke

elements of Φ, and the edges labeled with ri rim elements of Φ. For any edge e in Φ, we call

a vertex incident to e a vertex of Φ. We call a fan that contains k elements a k-fan.

r1

r2 r4
r3

r5
s1

s2 s3

s5

s4

Figure 3.20. A ten-element fan.

Recall that P denotes the six-vertex triangular prism graph shown in Figure 3.1. We now

prove the following.

Lemma 3.6.1. The matroids M(P ) and M(K5\e) are both in NG.

Proof. Up to isomorphism, there is only one 3-connected planar graphic single-element ex-

tension of M(P ). The associated graph is depicted in Figure 3.21, where g represents the new

edge. However, note that contracting f gives K5\e. Further note that we cannot coextend

M(P ) by a single element and remain 3-connected and planar graphic because every vertex

of H has degree three. Thus the result holds.

f

g

Figure 3.21. The only 3-connected planar extension of P .

The next theorem is Euler’s well-known formula for planar graphs, which will be useful in

proving the lemma that follows it; the proof of Euler’s formula is omitted.

Theorem 3.6.2. Let G be a connected planar graph. Then VG − EG + FG = 2.
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Lemma 3.6.3. Let N be a matroid in NG such that |E(N)| ≥ 4 and δ(N) > 0. It is possible

to construct a 3-connected, planar graphic matroid M from N by adding δ(N) elements to N

such that r(M) = r(N) and r∗(M) = r∗(N)+δ(N). Moreover, letting Φ be a maximum-sized

fan in N , we can construct such an M in which Φ remains a fan.

Proof. Recall δ(N) = r(N)− r∗(N). Since δ(N) > 0, we know that r(N) > r∗(N). Let H be

a graph such that M(H) = N . Then r(N) = VH − 1 and r∗(N) = EH − VH + 1. Therefore

δ(N) = VH − 1− EH + VH − 1 = 2VH − EH − 2. We begin by proving the following.

3.6.3.1. There is a 3-connected planar graphic matroid M that can be built from N by adding

δ(N) elements to N such that r(M) = r(N) and r∗(M) = r∗(N) + δ(N).

We show that we can construct a 3-connected, simple, planar graph H ′ from H by adding

δ(N) edges. By Lemma 3.3.6, if EH + δ(N) = EH + 2VH − EH − 2 ≤ 3VH − 6, then we are

guaranteed to be able to construct H ′. Thus, by the last inequality, when VH ≥ 4, the result

holds. If VH < 4, then |E(N)| ≤ 4, a contradiction. Thus 3.6.3.1 holds.

To show that we can construct a matroid M in which Φ remains a fan we must show

that we can add δ(N) edges to H such that none is incident to a degree-three vertex of Φ.

Consider the set V3 of degree-three vertices of Φ and assume Φ is a k-fan. If every face that

contains a vertex in V3 on its boundary is a triangle, then k = 5 and Φ has triangles on both

ends. In this case, since the only degree-three vertex of Φ is surrounded by triangular faces,

we can use 3.6.3.1 to see that the result holds. Thus we may assume, in H, every degree-three

vertex of Φ is on the boundary of a common non-triangular face A.

Consider Φ as pictured in Figure 3.22, where the dotted edges may, or may not, be present

in H. Construct a graph H0 by adding the dotted edges v1v2 and v1v3, if they are not

already present in H. Then we need to add an additional n edges to H0 to construct H ′,

where n ∈ {δ(N), δ(N) − 1, δ(N) − 2}, depending on how many of the dotted edges were

already present in H. Let FA denote the set of all faces of H0 except A. Finish constructing
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H ′ from H0 by adding n edges as chords to faces in FA such that as many faces as possible

become triangular faces, and no edges are added as chords in A. If we can add n edges in

this way, then the result holds.

Suppose we cannot add n edges in this way. Then construct H ′ by adding j < n edges to

make every face of H0 a triangle except A, and then adding n− j edges to A such that each

edge added to A creates a triangular face. Then, letting M(H ′) = M , we have a 3-connected

planar graphic matroid M that satisfies the obligatory ranks constraints and so must have an

N∗-minor. However, every element of M is in a triangle, so we cannot contract any element

and remain 3-connected, a contradiction. Thus we must be able to add n edges without

adding any as chords in A, and the result holds.

. . .

v1

v3v2

Figure 3.22. A maximal fan Φ in H.

The next two lemmas restrict the structure of N and size of δ(N) for N ∈ NG, and give

us information regarding maximal fans in N .

Lemma 3.6.4. Take a matroid N ∈ NG with δ(N) > 0. Then N has a vertex-triad and N∗

has a triangular face.

Proof. Let H be a graph such that M(H) = N . Create a graph H ′ from H by adding δ(N)

edges such that at least one triangular face is created and the graph H is 3-connected, simple,

and planar. We know such a construction exists by Lemma 3.6.3. Let M = M(H ′). Then M

meets the obligatory rank constraints and thus must have an N∗-minor. We cannot contract
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any elements in the triangle to obtain N∗, so N∗ has a triangular face which, by duality,

implies that N has a vertex-triad.

The last lemma guarantees that every N in NG has a fan.

Lemma 3.6.5. Let N be a matroid in NG and assume that a maximum-sized fan in N has

k elements. Then

(i) k is odd; and

(ii) δ(N) = 1; and

(iii) N has a fan (f1, f2, . . . , fk) such that both of the sets {f1, f2, f3} and {fk−2, fk−1, fk}

are triads.

Proof. First suppose that k is even and let Φ = (f1, f2, . . . , fk) be a fan in N . Then one

of {f1, f2, f3} and {fk−2, fk−1, fk} is a triangle and the other is a triad. Without loss of

generality, assume {f1, f2, f3} is a triad. Because {f2, f3} is contained in a triangle, the triad

{f1, f2, f3} must be a vertex-triad. Construct a planar graphic matroid M from N by adding

e such that {e, f1, f2} is a triangle and adding the remaining δ(N) − 1 elements such that

M is planar graphic and 3-connected, and Φ is still a fan in M . Then M has a (k + 1)-fan

with triangles on both ends, which means that N∗ has the same (k + 1)-fan, contradicting

the maximality of k. Thus (i) holds.

Suppose δ(N) ≥ 2. If N has a k-fan Φ that ends in triads, then construct a new matroid

M by using two elements to create a (k + 2)-fan from Φ, and add the remaining δ(N) − 2

elements such that M is planar graphic, 3-connected, and contains Φ. This construction is

guaranteed by Lemma 3.6.3. Then M , and hence N∗, contains a (k + 2)-fan, contradicting

the maximality of k. Therefore, all k-fans in N end in triangles. However, as long as the δ(N)

elements are added such that M is 3-connected, M , and hence N∗, will contain the same
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k-fan with triangle ends. This implies that N has a k-fan with triad ends, a contradiction.

Thus (ii) holds.

Now suppose that every fan of size k in N has triangles on both ends and let H be a graph

such that M(H) = N . Let A denote the face of H that has all the rim elements of Φ on its

boundary. Construct a new 3-connected, simple, planar graph H ′ by adding an edge e as a

chord in any face but A. If this construction is possible, then H∗ contains the k-fan Φ which

has triangles on both ends, so H contains a k-fan with triads on both ends. Thus we assume

that we cannot add e anywhere but in A. This implies that every face except A is a triangle.

If A is a triangular face, then either δ(N) ≤ 0 or |E(N)| < 4, both of which are contra-

dictions. Thus A is not a triangle. Construct a new H ′ by adding e as a chord in A such

that it creates a triangle using two consecutive edges on the boundary of A. This gives an

H ′ in which we cannot contract any edge and retain 3-connectivity, a contradiction. Thus

(iii) holds.

Lemma 3.6.6. Let H be a graph such that M(H) = N ∈ NG and δ(N) = 1. Then H has

at least two triangular faces and at least six vertices of degree three. Furthermore, H has at

least two vertices of degree three that are adjacent.

Proof. Since δ(N) = 1, we know r(N) = r∗(N) + 1. This implies VH = FH + 1 for a graph H

such that M(H) = N . Using Euler’s formula, and the fact that the sum of the vertex degrees

in H is equal to twice the number of edges, we see that 2 = VH−EH+FH = VH−EH+VH−1,

so 2EH = 4VH − 6. Since H is 3-connected, every vertex has degree at least three. The last

equation implies that H has at least six vertices of degree three.

Similarly, the sum of the number of boundary edges over every face is twice the number

of edges. Thus, using Euler’s formula, we see that 2 = VH −EH + FH = FH + 1−EH + FH ,

so 2EH = 4EH − 2. Thus H must have at least two triangular faces.
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If H has two triangular faces that share an edge, then H∗ also has two such faces, so

H has two vertex-triads with non-empty intersection. In other words, H has two adjacent

degree-three vertices. Assume not and let T be a triangular face of H. Construct a graph

H ′ from H by adding an edge e such that e creates a triangular face adjacent to T . Letting

M(H ′) = M , we see that the matroid M satisfies the obligatory rank constraints and must

contain N∗ as a minor. This implies that H ′ must contain H∗ as a minor. However, upon

contracting an edge f to obtain H∗ from H ′, we must still have two triangular faces that

share an edge in H∗. By duality, H has two vertex-triads whose intersection is non-empty

and so has two adjacent vertices of degree three.

The next lemma gives us more information regarding the fans present in a matroid N ∈

NG.

Lemma 3.6.7. Let N be a matroid in NG. Then N has a fan that contains at least five

elements and has triads on both ends.

Proof. Let H be a graph such that M(H) = N . By Lemma 3.6.6, we know that H contains

at least six vertex-triads. We show first that

3.6.7.1. H has a fan of size at least four.

Suppose that H has no fans of size larger than three. Let {a, b, c} be a vertex-triad.

Construct a new graph H ′ from H by adding e such that (a, b, c, e) is a 4-fan. Then, since N∗

cannot contain a 4-fan, we must contract a to obtain H∗. Note that adding e and contracting

a in this way amounts to performing a Y -∆ exchange on {a, b, c} in H. Similarly, performing

a Y -∆ exchange on any of our vertex-triads must result in H∗.

Now consider two vertex-triads whose intersection is non-empty. The existence of these

triads is guaranteed by Lemma 3.6.6. Performing a Y -∆ exchange on one of them results in

a degree-four vertex in H∗. This implies that there is a 4-face in H. Construct a new graph

H ′ from H by adding e as a chord of this 4-face, creating two triangular faces. Both of these
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faces must be present in H∗, so H∗ has at least two more triangular faces than H. More

specifically, when we perform a Y -∆ exchange on a vertex-triad, we must create two new

triangular faces. This implies that each degree-three vertex of H is on the boundary of a

4-face.

Now consider one of the triangular faces T in H guaranteed by Lemma 3.6.6. As H has no

fans of size greater than three, each vertex on the boundary of T must have degree greater

than or equal to four. Suppose that each vertex has degree greater than or equal to five. This

implies that H∗ also has a triangular face in which each boundary vertex has degree greater

than or equal to five. However, this means that H has a triad such that each of the three

faces for which it is on the boundary has size at least five, a contradiction. Thus we assume

that at least one of the vertices v on the boundary of T has degree exactly four.

Construct a new graph H ′ by adding e to H such that it forms a triangle with the two

edges incident to v that are not in T . Now each edge incident to v is in a triangle, so we

must have a degree-four vertex in H∗ such that each edge is in a triangular face. By duality,

this implies that H has a 4-face in which two non-adjacent vertices on the boundary are

degree-three vertices.

Construct a new H ′ by adding e to this 4-face such that it is adjacent to neither of the

degree-three vertices, as depicted in Figure 3.23. This gives us a structure such that it is

impossible to destroy all the fans in H ′ with a single contraction. This contradiction tells us

that H must contain a fan of size at least four, so 3.6.7.1 holds.

Let Φ = (a, b, c, d) be a fan of size four in H, where {a, b, c} is a triangle and {b, c, d} is a

triad. Construct a new H ′ by adding e such that {c, d, e} is a triangle. Then H ′ contains a

5-fan with triangles on both ends and so H∗ does as well. The result holds by duality.

The focus in the remaining arguments will center on graphs H such that M(H) = N ∈ NG.

Recall that δ(N) = 1. Now consider a largest fan Φ = (f1, f2, . . . , fk) with triads on both

ends. By Lemma 3.6.5, such a fan has at least five elements. Consider constructing a graph
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e

Figure 3.23. The substructure in H ′ representing the extension that guarantees a fan in H∗.

H ′ from H by adding e such that {e, f1, f2} is a triangle. Then Φ ∪ e is a (k + 1)-fan in H ′

and we must contract fk from H ′ to obtain H∗. Note that this sequence of moves, which is

depicted in Figure 3.24, has replaced the k-fan Φ that ends in triads in H with a k-fan that

ends in triangles, and has left the rest of H unchanged. We will call this sequence of moves a

fan-exchange. We refer to the vertices x, y, and z and the faces F1, F2, and F3 in Figure 3.24

as perimeter-vertices and perimeter-faces of the fan. Note that performing a fan-exchange on

a maximum-sized fan that ends in triads in H must always give us H∗. It is worth drawing

attention to the fact that a fan-exchange is a local set of moves which leads to global duality.

This idea will be used frequently throughout the rest of the chapter.

... ...

y

zx
F1

F2 F3
e

f

e

...

/f+e

Figure 3.24. Performing a fan-exchange.

We define tH to be the difference between the number of vertex-triads in H and the

number of triangular faces in H. Evidently tH∗ = −tH . The next two lemmas provides more

information regarding tH .

Lemma 3.6.8. Let H be a graph such that M(H) = N ∈ NG and δ(N) = 1. Then tH ≥ 1.
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Proof. Assume that tH ≤ 0, so H has at least as many triangular faces as vertex-triads and

tH∗ ≥ 0. Construct a graph H ′ by adding an edge e to H such that e is a chord of some face

of H, and e creates a new triangular face. This construction is guaranteed by Lemma 3.6.3.

Then tH′ < 0. However, we can neither destroy triangles nor create triads when contracting

to obtain H∗. Hence tH∗ < 0, which is a contradiction. Thus tH ≥ 1.

Lemma 3.6.9. Let H be a graph such that M(H) = N ∈ NG and δ(N) = 1. If tH = k,

then, in obtaining H∗ from H by adding δ(N) edges and contracting an independent set of

size δ(N), we must destroy exactly k vertex-triads and create exactly k triangular faces.

Proof. Since tH = k, let m and m− k, respectively, denote the number of vertex-triads and

triangular faces of H, for m > k. Then H∗ has m− k vertex triads and m triangular faces.

By Lemma 3.6.3, we know we can obtain H∗ from H by adding an edge e to H to obtain a

new graph H ′, and then contracting an edge f from H ′. Thus, by adding e and contracting

f , we must destroy m − (m − k) = k vertex-triads, and we must create m − (m − k) = k

triangular faces.

We will use the following explicit consequences of Lemma 3.6.9.

(a) If tH = 2, then, to obtain H∗ from H, we must destroy exactly two vertex-triads and

create exactly two triangular faces.

(b) If tH = 3, then, to obtain H∗ from H, we must destroy exactly three vertex-triads and

create exactly three triangular faces.

(c) If tH = 4, then, to obtain H∗ from H, we must destroy exactly four vertex-triads and

create exactly four triangular faces.

The next lemma states an important relationship between maximum-sized fans and tH .
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Lemma 3.6.10. Let H be a graph such that M(H) = N ∈ NG and δ(N) = 1. Let tH = k and

let Φ be a maximum-sized fan of H that ends in triads. Exactly k−1 of the perimeter-vertices

of Φ have degree-three and exactly k − 1 of the perimeter-faces of Φ are 4-faces.

Proof. Recall that, since δ(N) = 1, performing a fan-exchange on Φ in H gives us H∗.

By Lemma 3.6.9, we know that performing the fan-exchange must have created exactly k

triangular faces and destroyed exactly k vertex-triads. First consider the triangular faces.

Adding the edge e in Figure 3.24 creates a triangular face and decreases the size of the face

F2 by one. Contracting the edge f decreases the size of the faces F1 and F3 by one. Thus,

the only faces that are affected by the fan-exchange are the new triangular face obtained by

adding e and the perimeter-faces of Φ in H. Since the sizes of each of F1, F2, and F3 are

lowered by one, and since we must create k triangular faces, this implies that k − 1 of the

perimeter faces have size four. A similar argument holds for the vertex-triads.

The next three lemmas restrict the size of tH .

Lemma 3.6.11. For a graph H such that M(H) = N ∈ NG and δ(N) = 1,

(i) 2 ≤ tH ≤ 4; and

(ii) if tH = 4, then H ∈ {P,K5\e}.

Proof. We know from Lemma 3.6.8 that tH ≥ 1. By Lemma 3.6.5, we know that H has a

largest fan Φ of size k such that k is odd and Φ has triads on both ends. Construct a new

graph H ′ by adding an edge e to H such that e is incident to a degree-three vertex v on one

end of Φ, the edges of Φ still form a fan in H ′, and e creates a triangular face such that every

edge incident to v is on the boundary of a triangular face in H ′. Then H∗ has a degree-four

vertex, which implies H has a 4-face.

Construct a new graph H ′ by adding e as a chord in a 4-face of H. Then H ′, and hence

H∗, has at least two more triangular faces than H. Thus, by Lemma 3.6.9, we know tH ≥ 2.

78



This proves the first part of the inequality in (i). To see that the other part holds, note that

Φ has three perimeter-faces and three perimeter-vertices. Since performing a fan-exchange

on Φ in H yields H∗, by Lemmas 3.6.9 and 3.6.10, the second part of the inequality holds.

Hence (i) holds.

Now assume tH = 4. Consider performing a fan-exchange on Φ to obtain H∗. Since tH = 4,

by Lemma 3.6.10, we know that all of the perimeter-vertices of Φ are distinct and the edge

sets incident to them are vertex-triads in H. We also know that all of the perimeter-faces

of Φ are 4-faces in H. These facts imply that Φ is a 5-fan and that H = P . By duality, (ii)

holds.

Lemma 3.6.12. Let H be a graph such that M(H) = N ∈ NG. Then tH 6= 3.

Proof. Assume tH = 3. By adding an edge e and contracting an edge f to obtain H∗ from H,

Lemma 3.6.9 tells us we must create exactly three new triangular faces and destroy exactly

three vertex-triads. If H has a face of size six or more, then we can construct a graph H ′ by

adding e such that it creates no new triangular faces. However, we must be able to contract

a single edge to obtain H∗, which has three more triangular faces than H, a contradiction.

Thus all faces in H have size less than or equal to five and, by duality, all vertices in H∗

must have degree less than or equal to five. We now show that

3.6.12.1. the largest fan in H has size five.

By Lemma 3.6.5, we know that H has a maximum-sized fan Φ with triads on both ends.

Consider performing a fan-exchange on Φ to obtain H∗. By Lemma 3.6.10, exactly two of

the perimeter-vertices of Φ have degree three and exactly two of the perimeter-faces of Φ are

4-faces. Note that the perimeter-face Fα of Φ that is not a 4-face must be a 5-face. Moreover,

since H∗ cannot have any vertices of degree greater than five and the fan-exchange increases

the degree of each perimeter-vertex, we know that the perimeter-vertex v of Φ that does not

have degree three must have degree four.
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As the perimeter-vertices can have degree at most four and the perimeter-faces of Φ must

be distinct, we know that Φ has size at most seven. Suppose Φ is a 7-fan. Then v = y as

labelled in Figure 3.24. Since all the perimeter-faces must have size four or five, we know

that Fα = F1. Thus the two perimeter-vertices of degree three are adjacent. As the other

two perimeter-faces have size four, we know that each of the perimeter-vertices is adjacent

to a common vertex, as depicted in Figure 3.25. However, this implies that either H is not

3-connected, or all of H is pictured in Figure 3.25. The former is a contradiction, so we may

assume the latter holds. Then construct a graph H ′ by adding an edge e to H as shown in

Figure 3.26. Every edge of H ′ is in a triangle except f . This implies that we must contract f

to obtain H∗. However, this addition of e and contraction of f destroys four vertex-triads, a

contradiction. Thus, using Lemmas 3.6.5 and 3.6.7, we deduce the largest fan in H has size

5, so 3.6.12.1 holds. Next we show that

Figure 3.25. The structure surrounding a 7-fan if tH = 3.

3.6.12.2. H cannot have a triangular face T such that every vertex on the boundary of T

has degree three.

Suppose H does have such a formation and consider it as labeled in Figure 3.27. Note

that all of (a, b, c, d, j), (a, c, b, d, k), and (j, c, d, b, k) are 5-fans in H. As such, since each

maximum-sized fan has exactly two perimeter-vertices of degree three, exactly two vertices
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e

f

Figure 3.26. The extension that guarantees that H does not contain a 7-fan.

are triads from each of the sets {1, 2, 6}, {1, 3, 5}, and {2, 3, 4}, which is a contradiction.

Thus 3.6.12.2 holds. Note that 3.6.12.2 implies that

3.6.12.3. H∗ has no K4-subgraph.

By 3.6.12.2, we may assume that, in each 5-fan with triad ends in H, the perimeter-vertices

to which the end edges of the fan are incident have degree three. Let F0 be the face of H

that contains the rim elements of Φ. Assume the two perimeter-vertices of degree three of

Φ are adjacent to each other. Then F0 is a 4-face. Performing a fan-exchange on Φ gives us

a K4-subgraph in H∗, a contradiction. Therefore, the two perimeter-vertices of degree three

of Φ are not adjacent, and F0 is a 5-face. Thus

3.6.12.4. for each 5-fan that ends in triads in H, the surrounding structure is as in Fig-

ure 3.28.

We now show that

3.6.12.5. H has only one fan of size five.

Suppose H has a 5-fan that ends in triangles. It is not hard to see that we can construct

a new graph H ′ from H by adding an edge e such that it forms a K4-subgraph in H ′. But

this implies H∗ has a K4-subgraph, a contradiction. Thus every 5-fan in H ends in triads.

Assume we have at least two such fans. Obtain H∗ from H by performing a fan-exchange
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Figure 3.27. A forbidden sub-structure in H when tH = 3.
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Figure 3.28. The structure surrounding every 5-fan with triads at both ends when tH = 3.

on one of the 5-fans. Then either there is a 5-fan that ends in triads that is still intact in

H∗, or H has a 5-fan Φ1 such that a vertex-triad at one end of Φ1 corresponds to one of

the perimeter-vertices of degree three of Φ. The former does not hold, otherwise H∗ has

a 5-fan that ends in triads and so H has a 5-fan that ends in triangles, a contradiction.

Thus, the latter holds and, by symmetry, we may assume that the vertex-triad at one end

of Φ1 corresponds to the edges incident to 2 from Figure 3.28. Then the vertices 1 and 3

must be adjacent, and one of 1 and 3 must have degree three. However, this implies that

either H is not 3-connected, or every vertex of H is pictured in Figure 3.28. The former is

a contradiction, so we assume the latter holds. Then, as H is 3-connected and one of 1 and

3 has degree three, exactly one of the edges 35 and 15 must be present in H. Construct a

graph H ′ by adding whichever of 35 and 15 is not already present, as pictured in Figure 3.29.
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Then every edge of H ′ is in a triangle except a and b. However, contracting either of a or

b will not give us a vertex with degree 5, which we know is present in N∗, a contradiction.

Therefore 3.6.12.5 holds, and structure surrounding the unique 5-fan is as in Figure 3.28.

1

7

8
g

hi

j

k

a b

f

2

3 4 5

6

Figure 3.29. A graph H ′.

To complete the proof of the lemma, we create a new graph H ′ by adding an edge e incident

to 1 and 8 in Figure 3.28 and show that this leads to a contradiction. Clearly adding e in

this way gives us a graph H ′ which must contain H∗ as a minor. First we show that

3.6.12.6. we must contract one of the edges shown in Figure 3.28 to obtain H∗ from H ′.

Assume that we do not contract any of the edges shown in Figure 3.28 to obtain H∗. Then,

by dualizing the structure we get from adding the edge 18 to the portion of the graph H

shown in Figure 3.28, we see that H contains the sub-structure depicted in Figure 3.30. Note

that in both Figures 3.28 and 3.30, there are no other edges of H that meet the vertices in

the figures except for the three degree-two vertices in each figure.

Create a new graph H1 by adding an edge x to H such that it is incident to both v and

w in Figure 3.30. This creates two new 5-fans in H1. Moreover, since every edge of the fans

is in a triangle, both must be present in H∗, a contradiction. Therefore 3.6.12.6 holds.

Note that the only possible edges we can contract from H ′ are a, f , g, i, j, and k, since

the rest are in triangles. If we contract any of f , i, j, or k, we obtain, in H, the substructure

in Figure 3.30 with the edge f ′, i′, j′, or k′ deleted, respectively. In each case, we can arrive
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Figure 3.30. A structure in H if we do not contract edges surrounding the 5-fan.

at the contradiction above with two 5-fans in H∗ by creating a graph via adding an edge e

between the vertices that correspond to those labeled by v and w in Figure 3.30. Therefore,

it remains to check the situations that arise from contracting each of a and g. We now show

that

3.6.12.7. contracting the edge g provides a contradiction.

If we contract g, then H has the substructure depicted in Figure 3.30 with the edge g′

deleted. Note that the degree-three vertices α and β cannot be contained in the 5-fan Φ of

H, since the faces for which α is on the boundary have sizes 3, 4, and 4, while all the faces

for which β is on the boundary have sizes of at least 4. Construct a graph Hg from H by

adding e incident to α and β. This extension destroys two vertex-triads. The fan Φ is present

in Hg, but must not be present in H∗. Therefore we must contract either the edge labeled

a or b from Figure 3.28. However, each contraction destroys an additional two vertex-triads,

contradicting the fact that tH = 3. Thus 3.6.12.7 holds.

To complete the proof of the lemma we show that

3.6.12.8. contracting the edge a provides a contradiction.

If we contract a, then H has the substructure depicted in Figure 3.30 with the edge a′

deleted. Construct a new graph Ha from H by adding an edge e incident to α and β. This
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extension does not create a 5-fan ending in triangles in Ha. Note that it is impossible for α

to be one of the vertices of degree-three contained in Φ. If the edge set incident to β is not a

vertex-triad of Φ, then we must destroy Φ when contracting to obtain H∗. This implies we

must contract either a or b from Figure 3.28. However, as above, this sequence of extension

and contraction destroys four vertex-triads, a contradiction.

Thus we assume that the edge set incident to β is one of the vertex-triads of Φ. Then,

combining the structures and labels from Figures 3.28 and 3.30, we see that H contains

the substructure depicted in Figure 3.31. Clearly, H is not 3-connected unless every vertex

of H is depicted in Figure 3.31. The only possible edge missing from Figure 3.31 is the

edge incident to (5, y) and (1, s). This edge must be present in H, otherwise δ(N) 6= 1, a

contradiction. Therefore, H must be the graph pictured in Figure 3.32.

62, v
7, β

4, w

t

3, α

8, z

5, y

1, s

Figure 3.31. The structure in H if we contract a.

To see that M(H) is not in NG, construct a graph H ′ from H by adding e as pictured in

Figure 3.33. Note that every unlabeled edge in Figure 3.33 is contained in a triangle of H ′,

and so we cannot contract any of the unlabeled edges to obtain an H∗-minor. Since adding

e destroyed two vertex-triads, the edge we contract in H ′ must be adjacent to exactly one
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Figure 3.32. A possible graph H and its dual, such that M(H) is in NG.

degree-three vertex. This implies we cannot contract x, z, or s. Thus it remains to check the

contraction of y, w, and t.

If we contract t, then the degree-five vertex in the resulting graph is adjacent to a single

degree-three vertex. This implies that H ′/t has no H∗-minor since, in H∗, the degree-five

vertex is adjacent to two vertices of degree three. If we contract either of y or w, then the

resulting graph does not have two adjacent degree-three vertices. This implies that we do

not have an H∗-minor in either case. Thus 3.6.12.8 holds, and the result holds.

x

y z

w

t

s

e

Figure 3.33. An extension that shows the graph in Figure 3.32 is not in NG.
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Lemma 3.6.13. Let H be a graph such that M(H) = N ∈ NG. Then tH 6= 2.

Proof. Assume tH = 2. By adding an edge e and contracting an edge f to obtain H∗ from

H, Lemma 3.6.9 tells us we must create exactly two new triangular faces and destroy exactly

two vertex-triads. We begin by showing that

3.6.13.1. there is a fan of size greater than five in H.

By Lemma 3.6.5, we know that H has a 5-fan with triads on both ends. Let Φ denote

such a fan, and assume that H has no larger fans. Performing a fan-exchange on Φ gives us

H∗, which implies, by Lemma 3.6.10, that exactly one perimeter-vertex of Φ is a triad and

exactly one perimeter-face of Φ is a 4-face. Assume in every 5-fan with triad ends that the

perimeter-vertex of degree three is the vertex that lies on the boundary of the triangle in

Φ. Then H contains the configuration in Figure 3.34 and, without loss of generality, F1 is a

4-face.

F1 F2

F3

Figure 3.34. A possible configuration surrounding a 5-fan.

Construct a graph H ′ by adding e to F1, as in Figure 3.35. Then H ′ has a 6-fan and we

must contract f to obtain H∗. This gives a 5-fan ΦT in H∗ that ends in triangles, where α

is the degree-three vertex of ΦT . Using duality, the fan ΦT gives rise to a 5-fan Φ′ in H such

that the perimeter-vertex of degree three of Φ′ is not on the boundary of the triangle in Φ′,

a contradiction. Therefore, there is a 5-fan such that the perimeter-vertex of degree three is
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not on the boundary of the triangular face in the fan. Assume Φ is such a fan. We now prove

the following.

α

e

f

Figure 3.35. Adding an edge to a 5-fan.

3.6.13.2. The perimeter-4-face of Φ is the face shared by the two vertices that correspond to

vertex-triads of Φ.

Suppose not. Add e to the perimeter-4-face such that it is incident to a degree-three

vertex of Φ. This extension destroys Φ and creates two new triangular faces. This implies,

by Lemma 3.6.9, that, when we contract to obtain H∗, we cannot create any new triangular

faces. Adding e in this way either creates a new 5-fan with triangles on both ends or it does

not. However, the latter is a contradiction since the number of 5-fans in H and H∗ is the

same, adding e destroys Φ, and we cannot create a 5-fan with triangle ends via contraction.

The last statement holds because we created two new triangular faces by adding e and, by

Lemma 3.6.10, since tH = 2, we cannot create further new triangular faces. Thus we may

assume that adding e creates a new 5-fan.

Then H contains the configuration depicted in Figure 3.36. Create a new graph H ′ by

adding e to H such that e is incident with x and y, as pictured in Figure 3.37. Then H ′

contains a 6-fan and, to obtain H∗, we must contract the edge labeled f in Figure 3.37. This

structure implies, by duality, that we have a 5-fan Φ1 in H such that the perimeter-4-face

is not the face shared by the two vertices that correspond to vertex-triads of Φ1, and three
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vertices on the boundary of the perimeter-4-face have degree three. Thus H contains the

substructure shown in Figure 3.38.

x

y

Figure 3.36. A configuration surrounding Φ in H.

e

f

v x

y

Figure 3.37. Adding e to create a 6-fan.

Create a new graph H ′ by adding the edge e = vw. Adding e in this way destroys two 5-

fans, destroys two vertex-triads, and creates two new triangular faces. By Lemma 3.6.10, we

cannot create any more triangular faces via contraction. Furthermore, adding e in this way

clearly does not create two new 5-fans. Thus H ′ has no H∗-minor, a contradiction. Therefore

3.6.13.2 holds.

Consider performing a fan-exchange on Φ. This gives a K4-subgraph in H∗ that is not

present in H, which implies that H has a triangular face T such that all vertices on the

boundary of T are vertices of degree three. Moreover, since there are multiple 5-fans within

the structure surrounding T , and each 5-fan has a single perimeter-4-face, we know that
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w

v

Figure 3.38. A configuration surrounding Φ1 in H.

exactly one face that shares an edge with T is a 4-face. Consider performing a fan-exchange

as depicted in Figure 3.39 to obtain H∗. Because each 5-fan has exactly one perimeter-vertex

of degree three, we know that none of the vertices labeled x, y, and z is a degree-three vertex.

Since each 5-fan also has exactly one perimeter-4-face, we know that y and z are not adjacent

and that x and z are not adjacent. However, H∗ has a K4-subgraph that is not present in H,

so we must have created a K4-subgraph upon performing the fan-exchange. This implies that

at least one of the faces labeled Fj and Fk in Figure 3.39 must be part of the K4-subgraph,

since they are the two new triangular faces. However, we clearly see that neither of these

faces is part of a K4-subgraph in H∗, a contradiction. Therefore, H has a k-fan such that

k > 5, so 3.6.13.1 holds.

x

y

z x

y

z

Fj

Fk

Figure 3.39. Performing a fan-exchange.
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By Lemma 3.6.5, we know that H has a k-fan that ends in triads such that k is odd

and maximal. Let Φ be such a fan. By 3.6.13.1, we know k ≥ 7. Since k ≥ 7, we know

that the perimeter-4-face of Φ cannot be the face for which every degree-three vertex of Φ

is on the boundary. Create a new graph H ′ by adding an edge e in the perimeter-4-face of

Φ such that it is incident to a vertex that corresponds to a vertex-triad of Φ. Adding e in

this way destroys the maximum-sized fan and creates both new triangular faces. This is a

contradiction unless e also creates a new k-fan. As in the case where k = 5, add e as pictured

in Figure 3.40. This creates a (k+ 1)-fan in H ′ so we must contract the edge labeled f . This

implies we have the structure depicted in Figure 3.41 in H∗. However, the k-fan that ends in

the two edges incident to w on the right-hand side of Figure 3.41 corresponds with a k-fan

Φm of H that ends in triads such that the perimeter-4-face of Φm has three vertices of degree

three on its boundary.

e

... ...

f

Figure 3.40. Adding e to create a (k + 1)-fan.

As in the case where k = 5, construct a new graph H ′ by adding e to the perimeter-4-face

of Φm such that e is incident to a degree-three vertex of Φm. Adding e in this way destroys

the maximum-sized fan, creates both new triangular faces, and destroys both vertex-triads.

Moreover, we know that adding e in this way does not create a new k-fan in H ′. Since we

cannot create new triangular faces when contracting to obtain H∗, we know that H∗ has

fewer k-fans that H, a contradiction.
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... ...

w

Figure 3.41. Two large fans that share a perimeter-vertex.

Proof of Theorem 3.1.3. The result follows immediately by combining Lemmas 3.6.11, 3.6.12,

and 3.6.13.
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Appendix A: Seven-element Matroids

In this appendix, we show explicitly that there are no seven-element matroids in N3,q when

q ≥ 4. Note that, for every matrix in this section, we suppress the leading identity matrix.

The elements of GF (4) are {0, 1, ω, ω + 1}.

Let N be a matroid in N3,q, for some q ≥ 4, such that r(N) > r∗(N). Consider N∗ and

note that, since |E(N)| = 7 and by Lemma 3.5.3, we know r(N∗) = 3. By Lemma 3.5.5,

N∗ cannot contain any 4-point lines. We begin by showing that, for q ≥ 4, none of the four

matroids from Figure A.1 is in N3,q. This will complete the proof of Lemma 3.5.6.

P7 H1

H2 H3

Figure A.1. All possible matroids in N3,q that contain two disjoint triangles.

Note that H2 has a P6-minor and is thus not in N3,4. Also, for q ≤ 5, the matroid H3 is

not GF (q)-representable [5, Lemma 3.1]. Therefore H3 is in neither N3,4 nor N3,5.

To see that none of these matroids in is N3,q for q ≥ 4, consider the matroids in Figure A.2.

For i in {1, 2, 3}, each Ji satisfies the obligatory rank constraints and has H∗i , but not Hi, as a

minor. Similarly, JP contains P ∗7 , but not P7, as a minor. To determine the representability of
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each matroid in Figure A.2, consider the matroids in Figure A.3 obtained from the matroids

in Figure A.2 via a Y -∆ exchange on the triad represented by the three elements that are

furthest right in each representation. Though not directly stated in their paper, Akkari and

Oxley [1, pp. 381-382] showed that performing a Y -∆ exchange on a matroid M produces a

matroid M ′ that is representable over precisely the same fields as M . Thus, if a matroid in

Figure A.3 is representable over a field F, then its corresponding matroid in Figure A.2 is

also F-representable.

JP

J3J2

J1

Figure A.2. Examples showing that none of the matroids in Figure A.1 are in N3,q.

It is not hard to check that for q ≥ 7, each of LP , L1, L2, and L3 is GF (q)-representable.

Therefore, to finish the proof of Lemma 3.5.6, we need to verify that P7 and H1 are not in

N3,4, and that none of P7, H1, and H2 is in N3,5. Consider the matrices in Figure A.4 viewed

over GF (4).

The matroids M [U ] and M [V ] are 3-connected, satisfy the obligatory rank constraints,

and contain P ∗7 and H∗1 but not P7 and H1, respectively. Thus there are no matroids with

two disjoint triangles in N3,4. Now consider the matrices in Figure A.5 viewed over GF (5).
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L1

L2 L3

LP

Figure A.3. Matroids obtained from each matroid in Figure A.2 via a Y −∆ exchange.

U =


5 6 7 8

1 1 1 1 ω + 1
2 1 ω 0 ω + 1
3 1 0 1 ω + 1
4 0 1 ω 1

 V =


5 6 7 8

1 1 1 1 ω
2 1 ω 0 1
3 1 0 ω 1
4 0 1 ω 1


Figure A.4. Matrices over GF (4).

The matroids M [Q], M [R], and M [S] are 3-connected matroids that satisfy the obligatory

rank constraints and contain P ∗7 , H∗1 , and H∗2 , but not P7, H1, and H2, respectively. Thus

Lemma 3.5.6 holds for all q.

We now know, by Lemma 3.5.6 and Corollary 3.5.7, that N∗ does not have two disjoint

triangles and does have a pair of intersecting triangles. SinceN∗ has no 4-point lines, there are

a total of eight such 3-connected seven-element matroids and these are depicted in Figure A.6.

Note that the matroids N3, N4, and N6 all contain U2,6 as a minor, and the matroid N2

has a P6-minor, so none are in N3,4.
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Q =


5 6 7 8

1 1 1 1 3
2 1 1 0 2
3 1 0 3 2
4 0 1 3 2

 R =


5 6 7 8

1 1 1 1 4
2 1 3 0 3
3 1 0 3 3
4 0 1 3 4



S =


5 6 7 8

1 1 1 1 1
2 1 3 0 1
3 1 2 3 1
4 0 1 3 1


Figure A.5. Matrices over GF (5).

To see that none of these seven-element matroids is in N3,q for q ≥ 4, consider the matroids

in Figure A.7. For i in {1, 2, . . . , 6}, each Mi in Figure A.7 satisfies the obligatory rank

constraints and has N∗i , but not Ni, as a minor. Similarly, MF and MF− have F ∗7 and (F−7 )∗,

but not F7 and F−7 , as minors, respectively. To determine the representability of each matroid

in Figure A.7, consider the matroids in Figure A.8 obtained from the matroids in Figure A.7

via a Y -∆ exchange on the triad represented by the three elements that are furthest right

in each representation.

It easy to see, by considering Y7 as an extension of the Fano plane, that Y7 is representable

over GF (q) if and only if the field has characteristic two and q 6= 2. Similarly, Y7− is GF (q)-

representable if and only GF (q) has characteristic not equal to two and q ≥ 5. Thus, neither

F7 nor F−7 is in N3,q for q ≥ 4. It is not hard to check that, for each q ≥ 7, each of Y2, Y3, Y4,

Y5, and Y6 is GF (q)-representable. It is also not hard to check that Y1 is GF (q)-representable

for all q ≥ 5. Thus, to complete our argument, we need to verify that N1 and N5 are not in

N3,4, and that N1, N2, N3, N4, N5, and N6 are not in N3,5. Consider the matrices A and B

in Figure A.9 viewed over GF (4).

The matroids M [A] and M [B] are 3-connected, satisfy the obligatory rank constraints,

and contain N∗1 and N∗5 but not N1 and N5, respectively. Thus there are no seven-element

98



F7 F−7

N2 N3

N5

N1

N4

N6

Figure A.6. All possible 3-connected, rank-3, seven-element matroids in N3,q for q ≥ 4.

matroids in N3,4. Now consider the matrices D, E, F , G, H, and J in Figure A.9 viewed

over GF (5).

The matroids M [D], M [E], M [F ], M [G], M [H], and M [J ] are 3-connected matroids that

satisfy the obligatory rank constraints and contain N∗1 , N∗2 , N∗3 , N∗4 , N∗5 , and N∗6 , but not

N1, N2, N3, N4, N5, and N6, respectively. Thus, there are no seven-element matroids in N3,5.

Hence, there are no seven-element matroids in N3,q for q ≥ 4.

Several of the explicit matroid representations in this appendix were found using the

matroids package for Sage [18] developed by Rudi Pendavingh, Stefan van Zwam, and others.
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MF M1

M4M3M2

M5 M6

MF−

Figure A.7. Matroids that are examples of why no matroid in Figure A.6 is in N3,q for q ≥ 6.

Y6

Y7 Y7−

Y2 Y3 Y4

Y1

Y5

Figure A.8. Matroids obtained from each matroid in Figure A.7 via a Y -∆ exchange.
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A =


5 6 7 8

1 1 1 0 ω + 1
2 0 1 ω ω + 1
3 1 0 1 1
4 1 1 1 ω + 1

 B =


5 6 7 8

1 1 1 1 ω
2 1 1 ω ω + 1
3 1 0 ω + 1 1
4 0 1 ω + 1 ω



D =


5 6 7 8

1 1 1 0 4
2 0 1 2 1
3 1 0 1 1
4 1 1 1 1

 E =


5 6 7 8

1 1 2 0 4
2 0 1 3 1
3 1 0 1 1
4 1 1 1 1

 F =


5 6 7 8

1 1 4 0 1
2 0 1 2 1
3 1 0 2 1
4 1 1 1 1



G =


5 6 7 8

1 1 2 0 0
2 0 1 2 4
3 1 0 3 3
4 1 1 1 1

 H =


5 6 7 8

1 1 0 1 3
2 1 1 0 3
3 1 4 4 3
4 1 2 2 2

 J =


5 6 7 8

1 1 1 0 1
2 0 1 1 1
3 1 2 3 1
4 1 4 2 1


Figure A.9. Matrices viewed over GF (4) and GF (5).
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Appendix B: Author Rights

The following contains a copy of retained author rights, stating my right to use content which

was published previously in The European Journal of Combinatorics [14]. This image was

copied from

http://www.elsevier.com/journal-authors/author-rights-and-responsibilities.

Figure AR. A copy of author rights.
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