[Seminar on Continuity in Semilattices](https://repository.lsu.edu/scs)

[Volume 1](https://repository.lsu.edu/scs/vol1) | [Issue 1](https://repository.lsu.edu/scs/vol1/iss1) Article 91

5-2-1984

SCS 90: About Polytopes of Valuations on Finite Distributive Lattices

Hans Dobbertin Leibniz University Hannover, 30167, Hannover, Germany

Follow this and additional works at: [https://repository.lsu.edu/scs](https://repository.lsu.edu/scs?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Dobbertin, Hans (1984) "SCS 90: About Polytopes of Valuations on Finite Distributive Lattices," Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 91. Available at: [https://repository.lsu.edu/scs/vol1/iss1/91](https://repository.lsu.edu/scs/vol1/iss1/91?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages)

REFERENCE:

[1] L. Geissinger, The face structure of a poset polytope, Proceedings of the Third Caribbean Conference on Combinatorics and Computings, University of the West Indies, Cave Hill, Barbados, 1981.

Let L be a finite distributive lattice. A mapping $v : L \longrightarrow \mathbb{R}$ is a valuation if $v(a+b) = v(a) + v(b) - v(ab)$ for all a, $b \in L$, and $v(0) = 0$. $V(L)$ denotes the real vector space of all valuations on L. The subset

 $M(L) = \{ v \in V(L) : 0 \le v \le 1 \}$

is a convex polytope. In the sequel we shall verify the following conjecture of Geissinger [1]:

THEOREM A. The extreme points of the convex polytope M(L) are precisely the 0-1 valuations.

Before proving it we shall formulate this statement in another way. Let P be a finite poset with n elements. By $L(P)$ we denote the distributive lattice of all lower sets of P, i.e., $A \in L(P)$ iff $A \subset P$ such that $y \le x \in A$ always implies $y \in A$. (Recall that each finite distributive lattice L is isomorphic to L(P) for the poset P of its prime elements.) A vector space isomorphism between $\mathop{\mathrm{I\!R}}\nolimits^{\mathrm{P}}$ and $\mathsf{V}(\mathsf{L}(\mathsf{P}))$ is given by the mapping

$$
\Phi : h \longrightarrow v_h : \left\{ L(P) \longrightarrow \mathbb{R} \atop A \longmapsto \sum_{p \in A} h(p) \right\}.
$$

The convex polytope Published by LSU Scholarly Repository, 2023

1

$$
M(P) = \{h \in \mathbb{R}^P : 0 \le v_h \le 1\}
$$

is the image of $M(L(P))$ under Φ^{-1} .

THEOREM B. An element h of the convex polytope $M(P)$ is an extreme point if and only if $h = h^c$ for some subchain C of P, where $C = \{p^o, p^1, \ldots, p^m\}$, $p^o < p^1 < \cdots < p^m$, and

$$
h_C(p) = \begin{cases} 0 & \text{for } p \in P - C, \\ (-1)^k & \text{for } p = p_k. \end{cases}
$$

Obviously, the h^c are exactly those elements of M(P) which are associated with a 0-1 valuation (cf. Geissinger [1; Proposition 2]). Therefore Theorem A and Theorem B are equivalent.

Proof of Theorem B. The if part has already been mentioned in [1]. In fact, obviously every 0-1 valuation is an extreme point even of $[0,1]^{L(P)}$. Conversely, let $e \in M(P)$ be an extreme point. We can assume that $e(p) \neq 0$ for all $p \in P$. Define for $i = 0, 1$

 $L_j = {A \in L(P) : v_p(A) = i}$, $P_j = \bigcup {A : A \in L_j}$, and set $A^* = \bigcap \{A : A \in L_1\}$.

Of course $\varnothing \in L_{o}$. As we shall see later, also L_{1} is non-empty so that the above definitions of P_1 and A^{\dagger} really make sense. ${\sf L}^{}_{\rm O}$ and L_1 are closed under non-empty unions and intersections; in particular $P^{\vphantom{\dagger}}_i$ is the greatest element of $L^{\vphantom{\dagger}}_i$, and A^* is the smallest element of L_1 .

-3- Dobbertin: SCS 90: About Polytopes of Valuations on Finite Distributive Lattices

Given a subset M of a vector space, let the rank rk(M) of M be the dimension of the subspace generated by M . For $A \subset P$, the symbol $\delta_{\rm A}$ refers to the characteristic function of A defined on P. Thus $v_h(A) = \delta_{A^*}h$ ($A \in L(P)$).

LEMMA 1.
$$
rk\{\delta_{\mathbf{A}} : \mathbf{A} \in \mathsf{L}_{\mathbf{A}} \cup \mathsf{L}_{1}\} = n
$$
.

Proof. Otherwise the intersection of all hyperplanes

$$
H(A) = \{h \in \mathbb{R}^P : \delta_{A} \cdot (h-e) = 0\} \quad (A \in L_0 \cup L_1, A \neq \emptyset)
$$

contains a line ${e + \lambda x_{0} : \lambda \in \mathbb{R}}$. For all $A \in L(P) - (L_{0} \cup L_{1})$ we have $0 < v_{\rm e}$ (A) < 1. Thus a continuity argument shows that for some $\varepsilon > 0$

 ${e + \lambda x_{0} : |\lambda| < \epsilon} \subset M(P)$,

a contradiction, since e is an extreme point. \square

Here we insert a lemma of general character. The easy proof is left to the reader.

LEMMA 2. Let X be a finite set and K a subset of the power set of X which is closed under non-empty unions and arbitrary intersections (in particular $X \in K$). Set $U_x = \bigcap \{U \in K : x \in U\}$, and define

 $x \le y$ iff $U_x \subseteq U_y$,

 $x \approx y$ iff $U_x = U_v$.

Then \approx is an equivalence relation on X , and a partial ordering is given on X/\approx by setting

 x/\approx \le y/ \approx iff $x \le y$.

The non-empty elements U of K are in a one-to-one correspondence with the non-empty lower sets of X/\approx via

 $U \longmapsto \{u/\approx : u \in U\}$.

Moreover we have $rk\{\delta_U \in \mathbb{R}^X : U \in K\} = |X/\approx|$.

Let \approx _i denote the equivalence relation on X = P_i induced by $K = L_i$ in the sense of Lemma 2.

LEMMA 3. Every \approx_{0} -class contains at least two elements.

Proof. Let p/\approx be a minimal element in P^o_0/\approx_o . Then by Lemma 2, $p/\approx_{0}^{\infty} \in L_{0}$, i. e. $v_{e}(p/\approx_{0}) = \sum_{q \approx p} e(q) = 0$. As $e(p) \neq 0$, we conclude that $|p/\approx| \ge 2$. So the assertion follows by induction over the height in P_0/\approx_0 . \Box

Actually L_1 must be non-empty, because otherwise we obtain a contradiction in view of Lemma 1 and Lemma 3:

$$
n = rk{\delta_A : A \in L_0 \cup L_1} = rk{\delta_A : A \in L_0} = |P_0/\approx_0| \le \frac{n}{2}
$$

LEMMA 4. Every \approx 1-class different from A^* contains at least two elements.

Proof. A^{*} is the least element of L₁, and $v_{\rho}(A^*) = \sum_{k=1}^{\infty} e(p) = 1$. $p\in A$ Therefore $\sum_{x} e(p) = 0$ for all $A \in L_1$, and we can use the same $p \in A - A^*$ argument as for Lemma 3 to prove the assertion. \Box

Because
$$
P_0
$$
 or P_1 is a proper subset of P, we have
\n(1) $|P_0| + |P_1| \le 2n - 1$.

From Lemma 3 and Lemma 4 we conclude

- (2) $2|P_0/\approx_0| \le |P_0|$,
- (3) 2($|P_1/\approx_1|-1$) + $|A^*| \le |P_1|$.

Further, by using these inequalities together with Lemma 1 and Lemma 2 we obtain

n =
$$
rk\{\delta_A : A \in L_0 \cup L_1\} \leq rk\{\delta_A : A \in L_0\} + rk\{\delta_A : A \in L_1\}
$$
 =
= $|P_0/\approx_0| + |P_1/\approx_1| \leq \frac{1}{2}(|P_0| + |P_1| - |A^*|) + 1 \leq n + \frac{1}{2}(1 - |A^*|)$.

Hence $|A^*| = 1$. On the other hand A^* contains all minimal elements of P (indeed, if $m \in P - A^*$ is minimal then $v_e(A^* \cup {\{m\}}) = 1 + e(m) > 1$). We infer that P has a least element p^ , A* = {p^} , and ^(PQ) = 1 • Now consider $P' = P - {p_0}$ and $e' = -e|_{P'}$. It follows that e' is an extreme point of $M(P^{\perp})$. Thus P' has a least element, say p_1 , and $e'(p_1) = -e(p_1) = 1$, etc. Finally we see that $P = {p_0, p_1, ..., p_{n-1}}$ is a chain and $e(p_k) = (-1)^k$. This completes the proof of Theorem B.

Remark. Since it has been convenient in our present context, we have required that a valuation v satisfies $v(0) = 0$, a condition which is usually omitted. However, it is evident that this point does not touch Theorem A.

5