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Let L be a finite distributive lattice. A mapping v : L —> R
is a valuation if v(a+b) = v(a)+v(b)-v(ab) for all a, b€ L, and
v(0) = 0. V(L) denotes the real vector space of all valuations on L.

The subset

I
<
A
ooy
v

M(L) = {v e V(L) : O

is a convex polytope. In the sequel we shall verify the following con-

Jjecture of Geissinger [1]:

THEOREM A.  The extreme points of the convex polytope M(L) are

precisely the 0-1 valuations.

Before proving it we shall formulate this statement in another way.
Let P be a finite poset with n elements. By L(P) we denote the dis-
tributive lattice of all lower sets of P, i.e., A€ L(P) iff A< P such
that y < x € A always implies y € A. (Recall that each finite distributive
lattice L s isomorphic to L(P) for the poset P of its prime elements.)

A vector space isomorphism between ‘RP and V(L(P)) 1ds given by the
mapping
L(P) —> R
: h r— Vi :{L
Av——0 szAh(p).

The convex polytope o
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M(P) = {h E]RP:Og < 1)
1

is the image of M(L(P)) under o -,

THEOREM B. An element h of the convex polytope M(P) is an

extreme point if and only if h = hC for some subchain C of P,

where C={poa pla-'-s pm}9 po<p1<"'<pm’ irld_

0 for pepP-C,
hc(p) = Y
(_1) f_O_Y‘_ p=pk.

Obviously, the hC are exactly those elements of M(P) which are
associated with a 0-1 valuation (cf. Geissinger [1; Proposition 2]).

Therefore Theorem A and Theorem B are equivalent.

Proof of Theorem B. The if part has already been mentioned in [1].

In fact, obviously every 0-1 valuation is an extreme point even of
[0,1]L<P). Conversely, let e € M(P) be an extreme point. We can

assume that e(p) # 0 for all pe€ P. Define for i =0, 1

—
0]

{A e L(P) : ve(A) =i}, P. = U{A: A€ Li} , and set

>
1]

M {A: A€ Ll}.

Of course @ ¢ LO. As we shall see later, also L1 is non-empty
so that the above definitions of P1 and A" really make sense. L0
and L1 are closed under non-empty unions and intersections; in parti-
cular Pi is the greatest element of Li , and A" is the smallest

element of Ll‘
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Given a subset M of a vector space, let the rank rk(M) of M
be the dimension of the subspace generated by M. For AC P, the
symbol &, refers to the characteristic function of A defined on P.

A
Thus vh(A) = SA-h (A € L(P)).

LEMMA 1. rk{éA : Ae LOLJLl} =n.
Proof. Otherwise the intersection of all hyperplanes

H(A) = (h €R” : §ye(h-e) =0} (A€l uly, A#D)

contains a line {e+Ax A €R}. For all A€ L(P)- (LOLJLl)

0<v_(A) <1. Thus a continuity argument shows that for some

we h
e have o

e >0
{e+ax, : Al < e} c M(P),

a contradiction, since e 1is an extreme point. O

Here we insert a lemma of general character. The easy proof is

left to the reader.

LEMMA 2. Let X be a finite set and K a subset of the power set

of X which is closed under non-empty unions and arbitrary intersections

(in particular X € K). Set U, = (M{UeK : xeU}, and define

Then ~ 1is an equivalence relation on X, and a partial ordering is

given on X/~ by setting
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X/~ £ Y/ L‘fif_ X<y,
The non-empty elements U of K are in a one-to-one correspondence
with the non-empty lower sets of X/~ via

U —— {u/~ uel}.
Moreover we have rk{éu EIRX UeKr = [X/].

Let =, denote the equivalence relation on X = Pi induced by
K = Li in the sense of Lemma 2.

Every mo-class contains at least two elements.

LEMMA 3.

Proof. Let p/RB
by Lemma 2, p/az € Lo s 1.
we conclude that [p/aai 2
cver the height in PO/QB.

Actually L1

be

e.

2,

O

a minimal element in Po/Rﬁ’ Then

Ve(Plrg) = o pe(a) = 0. As e(p) # 0,

So the assertion follows by induction

must be non-empty, because otherwise we obtain a

contradiction in view of Lemma 1 and Lemma 3:

n

rk{GA :Ae L,uLy) = rk{s, : A€ Ly} = }Pcﬂsol <

L
2

LEMMA 4. Everysul—class different from A* contains at least

two elements.

Proof. A*

Therefore ) e(p)

pEA-A*

is the least element of L1 , and v

0 for all

A) =] e(p)

(
= peA*

AelL and we can use the same

19

argument as for Lemma 3 to prove the assertion. O

https://repository.lsu.edu/scs/vol1/iss1/91



Dobbertin: SCS 90: About Polytopes 6fr’\7aluations on Finite Distributive Lattices

Because P0 or P1 is a proper subset of P, we have
(1) [PO|+-]P1| £2n-1.
From Lemma 3 and Lemma 4 we conclude

(2) 2l /m ] 5 1P

ol

(3) 2([Py/my] - 1)+ |A"| 5 [Py .

Further, by using these inequalities together with Lemma 1 and Lemma 2

we obtain

=
I

rk{éA : Ae LOLJLl} £ ”k{SA : A€ LO}+~rk{6A :Ae Ll} =

i

lPo/&BI + IPlﬁull = -%([PO§+-|P1]- A*])+1 < n4—%(1 - IAT]).

Hence [A*| = 1. On the other hand A" contains all minimal elements

of P (indeed, if me P-A" is minimal then V(AU {m}) = T+e(m) > 1).
We infer that P has a least element Py s AY = {po} , and e(po) =1.
Now consider P' =P-{p} and e' = -e|pi . It follows that e’ fis an
extreme point of M(P'). Thus P' has a least element, say Py and
e‘(pl) = —e(pl) =1, etc. Finally we see that P = {po, pi, cees pn-l}

k

is a chain and e(pk) = (-1) This completes the proof of Theorem B.

Remark. Since it has been convenient in our present context, we have

required that a valuation v satisfies v(0) = 0, a condition which is
usually omitted. However, it is evident that this point does not touch

Theorem A.

Published by LSU Scholarly Repository, 2023 5



	SCS 90: About Polytopes of Valuations on Finite Distributive Lattices
	Recommended Citation

	tmp.1678142734.pdf.eZ2xE

