Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 91

5-2-1984

SCS 90: About Polytopes of Valuations on Finite Distributive Lattices

Hans Dobbertin Leibniz University Hannover, 30167, Hannover, Germany

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Dobbertin, Hans (1984) "SCS 90: About Polytopes of Valuations on Finite Distributive Lattices," *Seminar on Continuity in Semilattices*: Vol. 1: Iss. 1, Article 91. Available at: https://repository.lsu.edu/scs/vol1/iss1/91 SEMINAR OboloGentialNSUST90: Also GEPAIL AND DEPAIL AND DEPA

REFERENCE:

 L. Geissinger, The face structure of a poset polytope, Proceedings of the Third Caribbean Conference on Combinatorics and Computings, University of the West Indies, Cave Hill, Barbados, 1981.

Let L be a finite distributive lattice. A mapping $v : L \longrightarrow \mathbb{R}$ is a valuation if v(a+b) = v(a) + v(b) - v(ab) for all $a, b \in L$, and v(0) = 0. V(L) denotes the real vector space of all valuations on L. The subset

 $M(L) = \{v \in V(L) : 0 \le v \le 1\}$

is a convex polytope. In the sequel we shall verify the following conjecture of Geissinger [1]:

THEOREM A. The extreme points of the convex polytope M(L) are precisely the O-1 valuations.

Before proving it we shall formulate this statement in another way. Let P be a finite poset with n elements. By L(P) we denote the distributive lattice of all lower sets of P, i.e., $A \in L(P)$ iff $A \subseteq P$ such that $y \leq x \in A$ always implies $y \in A$. (Recall that each finite distributive lattice L is isomorphic to L(P) for the poset P of its prime elements.) A vector space isomorphism between \mathbb{R}^{P} and V(L(P)) is given by the mapping

$$\Phi: h \longmapsto v_h : \left\{ \begin{array}{c} \mathsf{L}(\mathsf{P}) \longrightarrow \mathbb{R} \\ \\ \mathsf{A} \longmapsto \sum_{p \in \mathsf{A}} \mathsf{h}(p) \end{array} \right.$$

The convex polytope Published by LSU Scholarly Repository, 2023

1

$$M(P) = \{h \in \mathbb{R}^P : 0 \leq v_h \leq 1\}$$

is the image of M(L(P)) under Φ^{-1} .

THEOREM B. <u>An element</u> h <u>of the convex polytope</u> M(P) <u>is an</u> <u>extreme point if and only if</u> $h = h_C$ <u>for some subchain</u> C <u>of</u> P, <u>where</u> $C = \{p_0, p_1, \dots, p_m\}, p_0 < p_1 < \dots < p_m, <u>and</u>$

$$h_{C}(p) = \begin{cases} 0 & \underline{for} \quad p \in P - C, \\ (-1)^{k} & \underline{for} \quad p = p_{k}. \end{cases}$$

Obviously, the h_C are exactly those elements of M(P) which are associated with a O-1 valuation (cf. Geissinger [1; Proposition 2]). Therefore Theorem A and Theorem B are equivalent.

<u>Proof of Theorem B</u>. The if part has already been mentioned in [1]. In fact, obviously every 0-1 valuation is an extreme point even of $[0,1]^{L(P)}$. Conversely, let $e \in M(P)$ be an extreme point. We can assume that $e(p) \neq 0$ for all $p \in P$. Define for i = 0, 1

 $L_{i} = \{A \in L(P) : v_{e}(A) = i\}, P_{i} = \bigcup \{A : A \in L_{i}\}, \text{ and set}$ $A^{*} = \bigcap \{A : A \in L_{1}\}.$

Of course $\emptyset \in L_0$. As we shall see later, also L_1 is non-empty so that the above definitions of P_1 and A^* really make sense. L_0 and L_1 are closed under non-empty unions and intersections; in particular P_i is the greatest element of L_i , and A^* is the smallest element of L_1 .

-3-Dobbertin: SCS 90: About Polytopes of Valuations on Finite Distributive Lattices

Given a subset M of a vector space, let the rank rk(M) of M be the dimension of the subspace generated by M. For $A \subseteq P$, the symbol δ_A refers to the characteristic function of A defined on P. Thus $v_h(A) = \delta_A \cdot h$ ($A \in L(P)$).

LEMMA 1.
$$rk\{\delta_{\Delta} : A \in L_{O} \cup L_{1}\} = n$$
.

Proof. Otherwise the intersection of all hyperplanes

$$H(A) = \{h \in \mathbb{R}^{P} : \delta_{A} \cdot (h-e) = 0\} \quad (A \in L_{o} \cup L_{1}, A \neq \emptyset)$$

contains a line $\{e + \lambda x_0 : \lambda \in \mathbb{R}\}$. For all $A \in L(P) - (L_0 \cup L_1)$ we have $0 < v_e(A) < 1$. Thus a continuity argument shows that for some $\varepsilon > 0$

 $\{e + \lambda x_{0} : |\lambda| < \epsilon\} \subseteq M(P),$

a contradiction, since e is an extreme point. \Box

Here we insert a lemma of general character. The easy proof is left to the reader.

LEMMA 2. Let X be a finite set and K a subset of the power set of X which is closed under non-empty unions and arbitrary intersections (in particular $X \in K$). Set $U_x = \bigcap \{U \in K : x \in U\}$, and define

 $x \leq y \quad \underline{iff} \quad U_{\chi} \subseteq U_{\gamma}$,

 $x \approx y \quad \underline{iff} \quad U_x = U_v.$

<u>Then</u> \approx is an equivalence relation on X, and a partial ordering is given on X/ \approx by setting $x \approx y \approx iff x \leq y$.

The non-empty elements U of K are in a one-to-one correspondence with the non-empty lower sets of $X \approx via$

 $U \longrightarrow \{u/\approx : u \in U\}$.

<u>Moreover</u> we have $r_k \{ \delta_U \in \mathbb{R}^X : U \in K \} = |X/\approx|$.

Let \approx_i denote the equivalence relation on $X = P_i$ induced by $K = L_i$ in the sense of Lemma 2.

LEMMA 3. Every \approx_0 -class contains at least two elements.

<u>Proof.</u> Let p/\approx_0 be a minimal element in P_0/\approx_0 . Then by Lemma 2, $p/\approx_0 \in L_0$, i. e. $v_e(p/\approx_0) = \sum_{q \approx p} e(q) = 0$. As $e(p) \neq 0$, we conclude that $|p/\approx_0| \ge 2$. So the assertion follows by induction over the height in P_0/\approx_0 .

Actually L_1 must be non-empty, because otherwise we obtain a contradiction in view of Lemma 1 and Lemma 3:

$$n = rk\{\delta_A : A \in L_0 \cup L_1\} = rk\{\delta_A : A \in L_0\} = |P_0 \approx_0| \le \frac{n}{2}$$

LEMMA 4. Every \approx_1 -class different from A^{*} contains at least two elements.

<u>Proof.</u> A^* is the least element of L_1 , and $v_e(A^*) = \sum_{p \in A^*} e(p) = 1$. Therefore $\sum_{p \in A - A^*} e(p) = 0$ for all $A \in L_1$, and we can use the same argument as for Lemma 3 to prove the assertion. \Box

Because
$$P_0$$
 or P_1 is a proper subset of P, we have
(1) $|P_0| + |P_1| \le 2n - 1$.

From Lemma 3 and Lemma 4 we conclude

- (2) $2|P_0 \approx_0| \leq |P_0|$,
- (3) 2($|P_1 \approx_1 | 1$) + $|A^*| \leq |P_1|$.

Further, by using these inequalities together with Lemma 1 and Lemma 2 we obtain

$$n = rk\{\delta_{A} : A \in L_{o} \cup L_{1}\} \leq rk\{\delta_{A} : A \in L_{o}\} + rk\{\delta_{A} : A \in L_{1}\} =$$

$$= |P_{o}/\approx_{o}| + |P_{1}/\approx_{1}| \leq \frac{1}{2}(|P_{o}| + |P_{1}| - |A^{*}|) + 1 \leq n + \frac{1}{2}(1 - |A^{*}|).$$

Hence $|A^*| = 1$. On the other hand A^* contains all minimal elements of P (indeed, if $m \in P - A^*$ is minimal then $v_e(A^* \cup \{m\}) = 1 + e(m) > 1$). We infer that P has a least element p_0 , $A^* = \{p_0\}$, and $e(p_0) = 1$. Now consider P' = P - $\{p_0\}$ and $e' = -e|_{P'}$. It follows that e' is an extreme point of M(P'). Thus P' has a least element, say p_1 , and $e'(p_1) = -e(p_1) = 1$, etc. Finally we see that $P = \{p_0, p_1, \dots, p_{n-1}\}$ is a chain and $e(p_k) = (-1)^k$. This completes the proof of Theorem B.

<u>Remark</u>. Since it has been convenient in our present context, we have required that a valuation v satisfies v(0) = 0, a condition which is usually omitted. However, it is evident that this point does not touch Theorem A.

5