
Seminar on Continuity in Semilattices Seminar on Continuity in Semilattices 

Volume 1 Issue 1 Article 90 

5-1-1984 

SCS 89: Continuity Concepts for Partially Ordered Sets SCS 89: Continuity Concepts for Partially Ordered Sets 

Marcel Erné 
Leibniz University Hannover, 30167, Hannover, Germany, erne@math.uni-hannover.de 

Follow this and additional works at: https://repository.lsu.edu/scs 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Erné, Marcel (1984) "SCS 89: Continuity Concepts for Partially Ordered Sets," Seminar on Continuity in 
Semilattices: Vol. 1: Iss. 1, Article 90. 
Available at: https://repository.lsu.edu/scs/vol1/iss1/90 

https://repository.lsu.edu/scs
https://repository.lsu.edu/scs/vol1
https://repository.lsu.edu/scs/vol1/iss1
https://repository.lsu.edu/scs/vol1/iss1/90
https://repository.lsu.edu/scs?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/scs/vol1/iss1/90?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages


SEMINAR ON CONTINUITY IN SEMILATTICES 

NAME: Marcel Erne Date M D Y 

5 1 84 

TOPIC: Continuity concepts for partially ordered sets 

1. Cont-Lnu-Lty and uppcA continuity 

Recently, several successful attempts have been made to extend 
the theory of continuous lattices to partially ordered sets ("posets"); 
see, for example, [7 ],[15],[18],[20]. A similar generalization of 
meet - continuous lattices ( that is, upper continuous lattices in 
the sense of [ 5 ]) will be discussed in the subsequent paragraphs. 
Moreover, we shall see that both notions of continuity are covered by 
a common general concept presented in Section 2. 

The following notations will be convenient. Given a poset P and an 
element y 6 P, define 

4-y :={x6P : xj<y} {prinaipal ideal generated by y) , 
iy :={x6P : y<x} (prinoipal dual ideal generated by y), 

and for Yep, 

+Y := U { •'•y '• y 6 Y ) (lower set generated by Y) , 
+ Y := U { •^•y '• y € Y } (upper set generated by Y) . 

Both the lower sets and the upper sets form a topology on P, called 
the lower A(lexandroff) - topology 0{P) and the upper A-topology 0*(P), 
respectively. Notice that the 0(P) -closed sets are precisely the 
0*(P) -open sets. Hence 0(P) and 0*(P) are also topological closure 
systems. 

A subset D of P is directed if every finite subset of D has an up
per bound in P (whence D 0) . The system of all directed lower sets 
("ideals" in thesense of [12]) is denoted by ](P)• 

Henceforth, let P be an up -complete poset; that is, every directed 
subset D of P has a join (denoted by \/D). Using the so -called "way -
below" sets 

^x = D G i (P) : X < VD } (X G P) , 

we say P to be weakly continuous if x = for each x G P. If, in ad
dition, each way -below set ix is directed then P is called a continu
ous posqt (cf. R.-E. HOFFMANN [15],[16], J. D. LAWSON [18]). Apparently, 

!>' 
1
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these two properties may also be described as follows. An up -complete 

poset P is v/eakly continuous (resp. , continuous) iff for each x e P, 

there is a (directed) set E such that x = VE and E c D for all D E \(P) 
with X £ V D. Now we only change the position of the quantifiers in this 

definition and call an up - complete poset P weaklij upper aontinuouo 
(resp., upper aontinuous) provided that for each x G P and each D G i(P) 
with X £ V D, there exists a (directed) set E c D with x = VE. Hence in 

this definition the set E may depend not only on the choice of x but al

so on that of D. 

REMARK. Replacing directed sets with finite sets in the preceding defi

nitions one arrives at the notion of distributive v - semilattiaes in the 
sense of KATRINAK [17] (see also GRATZER [13,p.99] and ERNfe [ 9] for 

slightly modified definitions). 

An element x G P with x G is called aompaat, and P is said to be 
aompaotly generated if every element of P is a join of compact elements. 
If, moreover, for each x G P there exists a directed set D of compact 
elements such that x = VD then P is an algebraic poset. For more de
tails on compactly generated and algebraic posets, respectively, see 

[11] ( cf.also [14],[15]). At the moment, we only mention the important 

fact that the systems \ (P) are, up to isomorphism, precisely the alge
braic posets. 

The following implications between the various kinds of compact gen

eration and continuity are obvious; 

DIAGRAM 1, 

algebraic continuous upper continuous 

I 
compactly 
generated 

weakly 
continuous 

weakly 
upper continuous 

Jj in complete 
lattices 

In general, none of these implications can be inverted. 

EXAMPLE 1. (cf. [11 ]). Let X be an uncountable set and S the system of 

all subsets of X which have either at most one element or a countable 
2
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complement. Then S is a compactly generated (hence weakly continuous) 
and upper continuous A - semilattice, but S is not continuous since for 
y e S, the way - below set ;^y = { {x} : x 6 y } U {0} is not directed un
less y is a compact element of S (i.e., a singleton or empty). 

Many examples of continuous complete lattices which are not algebra
ic can be found in the Compendium [12]. The standard example is the unit 
interval [0,1]. Every complete Boolean lattice is upper continuous, but 
only the atomic ones are (weakly) continuous (cf.[12,1-4.1 8]) . An example 
of a compactly generated poset which is not even upper continuous is ob
tained as follows: 

EXAMPLE 2. For n € ]N = {1,2,3,...} let 

n : = {1 ,. .., n}. 

Consider the following system of subsets of IN : 

P = ( (n): neiNlUin: n£3N} U {3N-^{n}: n6PJ}U{0,IN}, 

P is partially ordered by inclusion and closed under directed unions, 
hence up-complete. The compact members of P are exactly the finite 
ones. Thus P is compactly generated; however, it is not upper contin
uous because for m £ IN , we have 

3N^{m}< \/{n:n£IN} = ]N, 

but there is no directed subset D of P such that IN (m) = V D and 
IN ̂  (m) D. (In other words, the co - atoms IN {m} are inaccessible 
but not compact). By the way, we notice that the atoms of a weakly 
upper continuous poset are necessarily compact. 

In contrast to Example 2, a compactly generated A - semilattiae must 
always be upper continuous, as our first proposition shows. 

PROPOSITION 1. Fov an up - complete A -semilattice S, the following 
conditions are equivalent; 

(a) S is meet - continuous; that is, XAVD = VCxAdrdED) 
for all X £ S and each directed subset D of S. 

(b) V A V D2 = V{ d^ A d2 : d^ £ D.| , d2 6 D2 ) for any two directed 
subsets D^,D2 of S. 

(c) The join map V : MS) S, D H- \/D preserves finite meets (and di- 3
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reoted joino).-

(d) S IB upper aontinuoua. 

(e) S is weakly upper continous. 

PROOF, (a) <=> (b) <=> (c): Straightforward. 
(a) => (d): If X < V'D for some directed set D then the set 
E = {xAd: dGD}is directed, contained in iD, and has join x, 
(d) => (e): Trivial. 
(e) => (a): For y := x A VD _< VD, we find a set E 5 +0 with y = VE. 
Hence for each e £ E, we have e £ x A d for some d £ D. Since y is an 
upper bound for the set F={xAd : dGD } and E 5 IF, it follows that 
y = V F, as desired. 

REMARK. In the preceding statements, "directed" may be replaced with 
"non-empty totally ordered" or "non-empty well-ordered". This fol
lows from a well-known (but non-trivial) set - theoretical fact (see, 
for example, MAYER - KALKSCHMIDT and STEINER [19]): Suppose X ie a sye-
tem of Bets suah that for every non -empty Guhsystem U which is well -
ordered by inclusion, the union UU belongs to X. Then so does the 
union of every directed subsystem of X (i.e. X is "inductive"). 
Applying this principle to the system of all subsets of a fixed poset 
which have a join, one concludes that it suffices to postulate the ex
istence of joins for all non-empty well-ordered subsets in order to 
guarantee up - completeness. Similarly, if 

(») XA\/D = V{xAy :y£D} 

holds for all elements x and all non - empty well - ordered subsets D of 
an up - complete A - semilattice, then (») must also be true for every 
directed subset D of S. To see this, consider the system X of all D c s 
possessing a join and satisfying (*) for all x £ S. If TJ c X is non -
empty and well - ordered by inclusion then W := (VY : Y £ U } is a non -
empty well - ordered chain in S, whence XAVIJU = XAVW = 
VIXAVY : YGy}= V{V{xAy : yGY}: Y£y} = 
V{xA y : yG UllJf so (J y £ X. Now, if D is a directed set then 

+ 0= U{+y:y£D} belongs to X since ly e X for all y £ S, and it 
follows that XAVD = XA V + D= V{XA y : y£ +D} = 
V{xAy:yGD}.^ 

These considerations show that our definition of upper continuity in 
4
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fact generalizes the classical definition of upper continuous lattices 

(cf. CRAWLEY and DILWORTH [5 , p.15 ] ) . 

An immediate consequence of Proposition 1 is 

COROLLARY 1. Every upper continuous A - semilattice S is the image of an 
algebraic A - oemilattice (namely x kS)) under a map which preserves bi

nary meets and directed joins. 

However, the image of an arbitrary algebraic A - semilattice under a 

map of this kind need not be upper continuous in general. 

2 
EXAMPLE 3. The following subsets of the unit square [0,1] are partial

ly ordered componentwise: 

A := { (0,0),(0,1) , (1 ,1) > , 

S •= { (-1,1 -1) : 1 < m < n; m,n € IN } U A, 

T := { (1 ,1 -^) : m 6 :iN } U A. 

(1,1) (1,1) 

(0,1) 1,0) (0,1) (1,0) 

(0,0) (0,0) 

The following facts are easily checked: 

(1) S and T are complete lattices. 

(2) S satisfies the ascending chain condition and is therefore algebra

ic . 

(3) T is not upper continuous. 

5
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,4, The „ap £ = S . T. f(x,y, = ^ ^ 

is onto and preserves finite meets (and of course directed joins). 

It is evident that the ascending chain condition implies compact 
generation and (upper) continuity. A less trivial result is 

PROPOSITION 2. A poaet satisfying the descending chain condition is up
per continuous iff it is algebraic, 

PROOF. Let P be upper continuous and satisfy the descending chain con
dition. Assuming that P be non - algebraic, we find a minimal x € P for 
which there is no directed set of compact elements whose join is x. In 
particular, x itself cannot be compact, and we find a directed lower 
set D with X _< V D but x D. By upper continuity, we may choose a di
rected set E c D with X = V E and x ̂  E. Hence, by minimality of x, each 
y e E is the join of the set of all compact elements dominated by y. 
As the assignment y is isotone, it follows that the union 
K;= U^K jy6E}isa directed set of compact elements with V K = 
VE = X, contradicting the assumption on x.^ 

Example 2 shows that there-exist weakly upper continuous (moreover, 
compactly generated) posets satisfying the descending chain condition 
which are not algebraic. 
the descending chain condition need not be upper continuous (in partic
ular, not compactly generated), as the lattice T in Example 3 demon
strates . 

In [11] there has been given an example of an algebraic poset con
taining a complete interval which is not even (weakly) upper continu
ous: 

EXAMPLE 4, 

algebraic not upper continuous 6
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This example shows that none of the six properties depicted in 
Diagram 1 is inherited by intervals (or principal dual ideals). 

This cannot happen if v/e are concerned with complete lattices. 

2. - cont^nuou6 points 

A common generalization of the previous continuity concepts is ob
tained by the following definition. Let m be any cardinal number greater 
than 1, and write Y c x if Y is a subset of X with less than m elements 
(i.e. |Y| < m). An up - complete poset P is called weakly (x^m) -contin
uous if for each system U «= I (P) and each x e P with x < V Y for all m — 
Y G y, there exists a set E ̂  0 U such that x = VE, Similarly, we say P 
to be (x,m) -continuous if in the preceding definition E can be chosen 
in 1 (P). Obviously, "(weakly) upper continuous" means "(weakly) (i,m) -
continuous", and "(weakly) continuous" means "(weakly) (i,m) -continu
ous for all m > 1". The following observation is almost evident for A-
seroilattices but non - trivial for arbitrary posets: 

PROPOSITION 3. Let 1 < m < o). Then a poset is weakly (x,m) - continuous 
iff it is weakly (x^w) - continuous. 

This follows from a more general result in [ 9 , Satz 3.2], Later on, 
we shall see that an analogous statement on (i,m) - continuity is valid 
only if m > 2. 

For any poset P, the out operator A : P(P) -> P(P) is defined by 

A(Y) ;= n { 4-x : Y c +x } (Y c P) . 

The fixed points of A are called cuts; they form a closure system 6(P), 
called the Dedekind - MacNeille completion of P (cf. [3], [6]-[9j, [21]). 

A straightforward computation (involving Proposition 3) yields 

PROPOSITION 4. Let m > 2. Then an up -complete poset P is weakly (x^m) -
continuous if and only if 

A[V] = A(ny) for all y C i (p) . 

Using the fact that in a complete lattice L 

7
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n A [ y ] = + A { V Y : Y e y } and 
n y = + { A -^[Y] : i|) e IT Y } (y c 0 (L) ) 

Yey 
we arrive at 

PROPOSITION 5. Let L he a complete lattice and m a cardinal greater 
than 2. Then the following statements are equivalent: 

(a) The distributive law 

A{VY ;Yey}= V{AiKy]:t|je n Y } 
YE y 

holds for every system y of directed (lower) sets of L with 
i y! < in . 

(b) The identity 

A{VY : Yey}- V{ A{V>f'(Y) : Y e y) ; V 6 n {Z : Z c Y}} 
Yey 

holds for every system y of subsets of L with 1 y 1 < m . 

(c) The goin map V : i (L) L, Y i->- N/Y preserves meets of systems with 
lees than m elements: y c i (L) implies v(ny) = Av[y]. 

m 
(d) L is (\,m) - continuous, 

(e) L is weakly fijm} - continuous. 

PROOF, (a) => (b) : Let Y: = +{VZ;ZcY} (Yey). Then ( Y : Y e y) 
iii 

is a family of directed lower sets whence A{\/Y :Y€y}-
A {V Y : Y 6 y } - V{ A.|^[y] : ^ e U Y } = 

YG y 
V { A { Vi|i(Y) : Y € y} : tl; G R { Z : Z c y }} . 

Yey 
(b) => (a): If Y is a directed lower set then we have VZ e Y for all 
Z c Y , so the identity in (b) reduces to that in (a). 
(a) <=> (c): Straightforward. 
(a) => (d): We may assume that m is infinite. If x £ VY for all Yey 
where y ̂  }(L) then 

IT\ 
X = V ix A A{ V Y : Y e y } = V {A ijj[y] : e n Y } 

Yey 
where y = y U {4-x} , and |y | = [ y | < m since m is infinite. 
Hence E = +{AiJi[y]:ij>e 11 Y }=4-xnnyei (L) , X - V E, and 

Y e y 
E c oy. 
(d) => (e): Clear. 
(e) => (a): Apply Proposition 4. • 

8
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Of course, the statements in Propositions 4 and 5 fail to be equiv
alent for m = 2. In this case , (a), (b) and (c) are trivially ful

filled for every complete lattice. 

For m > j L 1 condition (b) is the "equational characterization" of 

continuous lattices (cf. [12,1-2.3]). 

COROLLARY 2. The class of (i,m) -continuous complete lattices is closed 
under the formation of direct products and subcomplete lattvc.es. 
Furthermore, the image of an (\,m) - continuous complete lattice under 
a map which preserves meets of sets with less than m elements and arbi
trary joins is again an (\,m) - continuous complete lattice. 

However, Example 3 shows that the image of an upper (i.e. {i,a)) -) 
continuous complete lattice under a map which preserves finite meets and 
directed joins need not be upper continuous. 

As was pointed out in [2 ]/[10] and [20]>±t appears reasonable to 
take as morphisms between continuous posets those upper adjoint maps 
(see [12,Ch.0.3]) which preserve directed joins. The next proposition 
justifies this choice within the theory of (i,m) -continuous posets: 

PROPOSITION 6. The image of an (\,m) - continuous poset P under an up
per adjoint map f which preserves directed joins is again (\,m) - con
tinuous. 

PROOF. (The case m > IP! has been treated in the more general frame
work of so - called Z - continuous posets; see [ 2 ]) . 
Let Q = f[P], and let g : Q P denote the lower adjoint of f. Notice 
that the surjectivity of f ensures that f o g is the identity on Q. 
Given a directed subset D of Q, we know that g[D] is a directed subset 
of P (because g is Isotone); consequently, g[D ] has a join x, and 
f(x) = f(Vg[D]) = Vf[g[D]] = VD. Hence Q is up-complete. 
Now consider a system y c \(Q), and define 

Z := { lg[Y ] ; Y G V )c { (P) . 

Suppose X £ V Y for all Y 6 y. Then x £ V f [g [Y ] ] = f (Vg [Y ]) , g (x) £ 
Vg[Y] = \./4-g[Y], that is, g(x) £ VZ for all Z GZ. Hence we find a 
directed set E c Z such that g(x) = VE, whence x = f(g(x)) = V f[E]. 
Furthermore, f [E ] is a directed set with f[E ] c Y for all Y C y. indeed, 
EC 4g (Y 1 implies f (E ] c f [ig [Y 1 ] c 4f [g [Y ] ] = 4Y = Y.^ 

9
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COROLLARY 3. The image of an (\,m) - continuous aomptete lattice under 
a map which preserves arbitrary meets and directed joins is again 
(Xytn) - continuous. 

(But see Example 31) 

COROLLARY 4. For a poset Pj the following conditions are equivalent: 

(a) P is continuous. 

(b) The join map V : \ (P) ->• P is well - defined and has a lower adjoint 
(namely the way -below map : P -<• i (P) J. 

(c) P is the image of an algebraic poset under an upper adjoint map 
which preserves directed joins. 

In the light of this characterization, continuous posets appear as a 

very natural generalization of algebraic posets. 

3. Iht Scott opsAatoH. and Scott - clo6cd ictA 

Given an arbitrary poset P, we define the Scott operator 
l : Jt(P) -> ?I(P) by 

E(Y') := { X e P : x 6 A(D) for some directed D c 4Y } (Y c p) . 

ViJhenever D has a join then x G A(D) means x _< V D . A set Y with 

E(Y) = Y is called Scott closed. Special Scott - closed sets are the 
finitely generated lower sets, i.e. the sets IZ with Z c P. But clear
ly not all Scott -closed sets must be of this kind. For example, if P 

satisfies the ascending chain condition then every lower set is Scott -
closed. The Scott - closed subsets of a power set Jl(X) (considered as a 

complete lattice) are precisely the systems of finite character con

tained in (X) . 

Let us return to the general case of an arbitrary poset P. As E is 

always extensive and preserves finite unions, it is clear that the 

Scott - closed sets form a topological closure system a(P)'". The cor

responding system of open sets, denoted by o(P), is the so-called 

Scott topology of P (cf. [8 ] , [12 ] ,[22]). 

We denote by E the corresponding closure operator, i.e. 

E(Y) = n { A G 0(P)^ : Y c A } (Y c p) . 10
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Obviously, E is idempotent if and only if I = I. But unfortunately Z 
may fail to be idempotent even if P is an upper continuous complete 

lattice. 

EXAMPLE 5. Let L denote the complete Boolean lattice of all regular 

open subsets of IR (with respect to the Euclidean topology). Consider 

the following elements of L; 

^n,k ^ "^n'^F" ~ n'- = ^ = 0/ • • • ^ U ]1 /k-[ 

(n,k CM, n > 2k (k+1 ) ) , 

Xj^ := ]0,k[ (k e 3N) , 

X := (where ]a,b[ = {xeK;a<k<b}). 

o 
^ ' X 

6,1 6 

'5,1 6 

26,3 

25,3 
14,2 

13,2 

Obviously, 

^n,k S n < m, 

while for k < I, x^ j, and x^ ̂  are incomparable. Indeed, x^ includes 

an open Interval > J " jriTSTT ° k?T ̂  

this interval contains a number j with r £ {0,...,£-1), while - x 
i £ m, t 

On the other hand, -f-4-ex „"^x 
2 m,f n,k 

Now in L we compute 

V { Xn : n > 2k (k+1) } = Xj^ (k e IN) , 

V { Xj^ : k 6 IN } = X, 

and for Y = { ; n,k 6 3N , n > 2k(k+1) } it follows that 

X £ Z {Z (,Y) ) but X E (Y) . Hence L is an upper continuous complete lat
tice with E o £ ^ J:. 11
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In contrast to this situation in the "finitary" case, one can 
prove: 

PROPOSITION 7. The Saott operator Z of a aontinuous poaet P ie idem-
potent, 

PROOF. This follows from results in [8] and [20], but for the sake of 
convenience, we give a direct proof. 
Let X 6 E(E{Y)). Then there exists a directed set D c Z(Y) with 
X £ V D. Each way - below set 4^y is a directed lower set, and the sys
tem { ̂y : y 6 D } is directed by inclusion since the map y ^y is iso-
tone ; hence E = [J{^y;y6D}isa directed lower set. For y e D c 
E (Y) we find a directed set with D c -f-y and y £ VD^, whence ^y <~ 
iDy c 1-Y. Thus we obtain E c ID, and finally x £ V D = 
VtVity : y G D}=VE, which proves x 6 E (Y) 

In terms of the operators E resp. E, upper continuity can be char
acterized as follows: 

PROPOSITION 8. Let P be an up -complete poset. Then 

(1) P is upper continuous iff 

+x n E(Y) = E{+x n lY) for all X £ P, Y c P. 
c (2) The lattice a(P) of Scott -closed seta is upper continuous iff 

Ix n E(Y) = E(+x n lY) for all x 6 P, Y c P. 

(3) If P is upper continuous then so is a(P)^. The converse holds if 
I (P) is closed under binary intersections (e.g., if V is a /\ - semi-
lattice) or if E is idempotent. 

More general results have been proved in [ 9 ,Satz 3.6], where the 
system of directed sets is replaced with an arbitrary system of sub
sets. For complete lattices. Proposition 8(3) has been established 
in [12 ,n - 4.15] . 

The following example shows that (in contrast to the complete case) 
an up - complete poset P with upper continuous need not be upper 
continuous in its own right. 

EXAMPLE 6. The set 2Z U {+w,a)+1} is linearly ordered as usual: 

12
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Let 

•a)<n<(ij<w + 1 (neZZ). 

= (0,-U),0), X := ((jD,0,a)), 1;= (a),0,a)+1) , 

= { (k,-m,n) : k,m,n E to, k < m } U {©}, 

= { Xj^ : k € (0 } , Xj^ = (k,0,(o) , 

= ; n 6 to } , y^ = (to+l ,0,n) , 

= A U B U C U {x,l}. 

(0,0,2) 

A (0,0,1) 

(0,0,0) 

© 'o 

P is an up - complete poset (partially ordered componentwise). 
In this poset we always have 

+y n i; (Y) = z (4y n iv) 

unless y = X, while 

4x n Z(C) = 4x f 4x {x} = Z(A) = E(4x 0 4C) . 

But since HY) = Z^Y) = |x if z (Y) = 4B and Z (Y) = z (Y) otherwise, it 
is easy to see that 

^ A 

4y n Z(Y) = Z(+y n 4Y) for all y E P and all Yep. 

Hence, by Proposition 8, a(P)^ is upper continuous while P is not. 
But see Proposition 10! 

13
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In analogy to Propositions 4 and 8, we have the following character
ization of (i,m) -continuity; 

PROPOSITION 9. Let m > 2 and P an up -complete poset. Then 

(1) P is {\,m) - continuous iff 

KflU) = for all 0(P) (I'esp. y c UP)). 
c • (2) a(P) te (\,m) -continuous rff 

E(ny) = n£[U] for all U ^ e{p). 

PROOF. (1) Suppose P is (i,m) -continuous, and y ̂  0(P). Of course, 
we have 1(0^) c ni[y]. Conversely, consider an element x £ nJ^[V]. 
Then, by definition of I, we find directed sets c Y with x £ V 
(Y 6 y). As I { Dy ; Y 6 y } I < m, there exists a directed set D such 
that X = V D and D 5 H { +0^ : Y £ U 1 5 01?/ whence x £ i ( Oy) . 
Now assume f(ny) = nf[y] for all systems y consisting of less than 
m directed lower sets. Let y be one such system and suppose x £ VY 
for all Y £ y. Then x £ Olfy] ~ 1(0 y). Accordingly there is a di
rected set E e Oy with x £ VE, and it follows that x £ Ix fl 1(E) 
= E(lx n IE). (Use the fact that m > 2). Thus we find a directed 
D c ix n IE c Q y v;ith x £ V'D, and D ̂  Ix yields x = VD. 
(2) Suppose E(ny) = Olfy] for all y c e{P), and let be given a 

family (y^ : j £ J) of subsets of o(P)'^ with |J| < m. Then each union 
IJ y^ is a lower set, and we compute in the complete lattice d{P)'^: 

A{Vyj : j £J}= 0(1 (Uy ) : j eJ}=i(n{Uyj : 3 e^}) = 
1 ( U { 0 Ij'[ J ] : £ n y^ } ) = V { A |J^[ J ] : I)/ £ n y^ } . By Proposi-

j£j_ j£j 
tion 5, this implies (i,m) -continuity of the complete lattice o(P) . 
(Notice that we did not need the hypothesis that the systems yj be di
rected, so we have shown in fact more, namely " {0,m) -continuity " 
of o{p)'^ ) . 
Conversely, assume o(P)^ is (i,m) -continuous, and let y be a system 
of lower sets with |y| < m. Then for each Y £ y the system = 
{ IZ : Z c Y } is a directed subsystem of a{P)^, and we compute 
0 { 1(Y) ! Y € y } = A { V : Y £ y } = V { A \i;[y] : •4' £ n Z } = 

i( U (Oij'iy] : £ n z }) = i( O (U z^ : Y £ y }) = 1 (Oy) 
Y£y ^ ^ 

Combining the last two propositions we arrive at 
14
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COROLLARY 5. Let P be an up - aomp>lete poaet with idempotent Scott 
operator, and let m be any cardinal greater than 1. Then P is 
(\,m) - continuous iff a(P)'^ is ('\,m) - continuous. 

For large m, this result can be strengthened as follows: 

PROPOSITION 10. For an up -complete poset P, the following conditions 
are equivalent: 

(a) P is continuous. 
c (b) 0(P) is continuous, 
Q 

(c) o(P) (resp. a{P).1 is completely distributive. 

(d) The Scott operator Z of P preserves arbitrary intersections of 
lower sets. 

Each of these conditions implies that Z is idempotent. 

PROOF. By Propositions 7 and 9, it only remains to show that complete 

distributivity of a{P)*^ implies continuity of P. For the proof of this 

fact, see [ 8 ],[16] or [18]. 

Notice that a continuous topological closure system must already be 

completely distributive 

Obviously Proposition 9 cannot be e.xtended to m = 2. Unfortunately, 

an (i,2) - continuous poset need not be (i,3) - (i.e. (i,a)) -) contin

uous, although being weakly (l,w) -continuous (see Proposition 3). 

EXAMPLE 7. Define inductively up - complete posets Pj^ as follows. 

Choose pairwise distinct elements x,Xj^,y^^ (n e IN) . Then 

P^ := {x} u{x^:n6lN} U{ y^^: n € IN } is partially ordered by 

setting 

X < X < X, y < y < X (n < m) n m -* n •* m 

and no further relations. 

We call the sequences (x^) and (y^) generating chains of level 1. 

Now suppose up - complete posets P-] <= . . . <= Pj^_^ have been defined 

together with certain generating chains of level 1,...,k-1. Then, 

for every generating chain (z^^) of level < k and all w 6 P)j_-] with 

w £ z = V { Zn ; n t IN }, choose a sequence (w^^) of new elements 
(not in Pj,_-]), call it a generating chain of level k, and set 

15
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w„ < w < w, n in 

n n 
(n < m) . 

By adjoining the elements of all generating chains of level k, the po-
set Pj^_^ is enlarged to an up - complete poset Pj^. 
It is then easy to see that the directed union P = ' k63N} 
is an(i,2) r continuous poset, but P is not (i/3) - continuous because 
there is no directed set D c 4-{ ; n E ]N } n •l-{ y^ : n £ IN } v/ith 

XA 

x^ c/^ 

X A> 
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4. ln.K2.dac.-iblz 

In this section, we derive a common generalization of the following 

two important theorems of lattice theory; 

(I) Every element of an algebraic complete lattice is a meet of com

pletely irreducible elements (cf. [ 4 ],[ 5 , 6.1], or [ 12 , i-
4.23] ) . 

(II) Every element of a continuous complete lattice Is a meet of ir

reducible elements (cf. [12, 1-3.10]). 

Let m be any cardinal number >1. An element q of a poset P is called 

m - irreduaible (or, to be more precise, m-meet - irreducible) if q 
cannot be the greatest lower bound of a set Y unless |Y| ̂  m or q 6 Y. 

Hence "completely irreducible" means "m - irreducible for one (resp. 

all) m > |P|". If P is a A - semilattice then "irreducible" means "m-

irreducible for one (resp. all) m with 2 < m £ co". However, in arbi

trary posets there can exist (m-1) -irreducible elements which are not 

m - irreducible (m 6 IN , m 2) . 

EXAMPLE 8. Consider a 2m - element set P = {x.,...,x } U {yi,...,y }» 1 m ^ J •] ' '•'m 
partially ordered by Xj^ < y^ <=> k=|=nor)c=1 (1j<k, n£m). 

m = 4 

Here x^ is (m-1) - irreducible but not m - irreducible. 

Recall that a subset U of an up - complete poset P is Scott open 

(i.e. U e o(P)) iff for each directed set D c P, V D e -HJ implies 

D n U 0 (in particular, U must be an upper set) . Now we say U is 

m - A - closed if for all Y c u, x = A Y implies x G U. Finally, we 
call P m - generated, if for all x,y E P with x ̂  y there exists an 
m- A-closed open subset U with x G U and y ({; U. This is certainly 

fulfilled if o(P) has a base of m - A - closed sets. 

The following fact is well - known in the case of complete lattices 

(cf. [12, I-3.7 and I - 4.22] ) . 

17
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PROPOSITION 11. (1) Every aompaotly generated pooet ia m - generated 
for all m > 1. 

(2) Every weakly aontinuoue poset ia u) - generated. 

PROOF. (1) If X y in a compactly generated poset then there exist a 
compact element z with z £ x and z j: y, whence U = +z is an open set 
with X e U and y ^ U, and clearly U is closed under arbitrary meets. 
(2) Given x y, we may choose inductively elements z such that 
Z„ = X, z n+1 G l-z^ and z t Y- Then U=f{z :n6a)}isanw-A-n n n 
closed open set with x G U and y U.^ 

It is clear that a complete lattice is compactly generated (i.e. 
algebraic) if and only if it is m-generated for all m > 1. However, 
there are up ~complete posets which are m - generated for all m > 1 
but not compactly generated, as the poset P^ in Example 7 shows. 
An 0) - generated complete lattice which is not even (weakly) upper con
tinuous will be presented in Example 8. 

Now Theorems (I) and (II) admit the following common generalization: 

PROPOSITION 12. Every element of an m - generated up - complete poset P 
is a meet of m - irreducible elements. 

PROOF. We have to show that for x,y G P with x t. y, there exist an m -
irreducible q with y 5^ q but x q. Choose an m - A - closed open set U 
with X G U and y ̂  U. Then P ̂  U is closed under directed joins and 
has therefore a maximal element q ̂  y. Clearly q ̂  x, and q must be in -
irreducible. (For the case m = w , see [12, 1-3.7] )•• 

COROLLARY 6. (1) Every element of a compactly generated poset is a 
meet of completely irreducible elements. 

(2) Every element of a weakly continuous poset is a meet of w - irre
ducible elements. 

We conclude this note with several applications arising in order 
theory, algebra and geometry. (For several interesting applications 
of continuous and algebraic posets to topology, see [1 ],[12 ] and [18]). 

EXAMPLE 8. The convex closed subsets of IR'^ form a closure system K^. 

18
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Since each singleton is a convex closed set, is a complete lattice 

in which every element is a join of atoms. But none of these atoms is 

compact, so IP cannot even be upper continuous (all the less algebra

ic) . Moreover, contains no completely irreducible elements at all. 

However, a special version of the Hahn - Banach Theorem states that ev

ery closed convex set is an intersection of "closed halfspaces" 

^ = { X G m" ; <x,a> < c } (a G IR" s. {0}, c G IR) , 

and it is easy to see that these halfspaces are precisely the irreduc

ible elements of K . n 

The above mentioned intersection theorem can be reduced to Corolla

ry 5(2) as follows. 

EXAMPLE 9. Consider the system of all nonempty convex open subsets 

of IR" . It is not hard to see that the closure map Y Y is an isomor

phism between K° and the system K° of all convex closed subsets of IR" 

with nonempty interior. The inverse isomorphism is induced by the in

terior map Y H- Y. In particular, each Y G K° is a regular open set. 
Obviously, K° is closed under finite intersections and directed unions, 

so it is an up - complete A - semilattice. (Moreover, K° U {0} is a com

plete lattice) . For X,Y G K°, X G ^^Y means that X is compact in the 

topological sense and contained in Y, Hence K° has no compact ele

ments at all, but it is a continuous poset (use the fact that IR" is 

a locally compact space). Hence every convex open set is an intersec

tion of irreducible ones, and as before it is easy to see that the 

irreducible members of K° are precisely the open halfspaces ^ 
(they are not completely irreducible, although they cannot be repre
sented as intersections of larger convex open sets!). 

By passage from K° to K°, we see that every closed convex set with 

nonempty interior is an intersection of closed halfspaces. But a non

empty convex closed set K with empty interior can be represented in 

the form 

K = (x + V) n (K + V"^) 

where x G K, V is a subspace of IR" and its orthogonal space. Now 

K + V is a convex open set with nonempty interior, and as x + V is 

trivially an intersection of closed halfspaces, the same is true for 

K. 

EXAMPLE 10. Let U be a fixed nonempty bounded convex open subset of 
19
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IR and the system of all "similar" open sets contained in U, i.e. 

Py = { X + cU : X e 1R" , c > O, X + cU c u } . 

It is a non - trivial exercise to show that Py is closed under directed 

unions. (Notice that, for example, the system { x + cU : c € IR, c > O } 

is not inductive). However, in general, Py is neither a v - nor a A -
semilattice. For V,W e Py, one finds that V e means V c w (observe 

that V is compact). From this characterization one can deduce by some 

further computations that Py is a continuous poset without completely 

U irreducible elements. However, by Corollary 6(2), each element of p 

is a meet (not: intersection!) of irreducible ones. The feature of 

these irreducible elements heavily depends on the form of U. For ex-
2 ample, if U is an open disk in IR then every element of p is irreduc-

2 ible. On the other hand, if U is an open square in IR then only those 

open squares V «= U which have a boundary in common with U are 

irreducible. 

V G <tU 
V not irreducible 

. L 

1 

L J 

V ^ 
V irreducible 

In the following constellation, the two open squares have neither a 

join nor a meet: 

r • 
r" 

I 

EXAMPLE 11 . The system of all open rectangles 

a,b,c,d =• { (x,y) GIR ;a<x<b, c<y<d} 

(0<a<b< 1, 0£cj<d< 1) 

2 , contained in the unit square [0,1] is a complete continuous lattice 

without atoms. On the other hand, the system of all closed rectangles 

20
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2 contained in [0,1] is also a complete lattice but not (weakly) upper 
continuous, by similar reasons as in Example 8. Dropping the atoms 
of this lattice, we obtain a complete continuous lattice isomorphic 
to the lattice of open rectangles. 
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