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SEMINAR ON CONTINUITY IN SEMILATTICES 

NAME: Marcel Erne Date M D Y 

5 1 84 

TOPIC: Continuity concepts for partially ordered sets 

1. Cont-Lnu-Lty and uppcA continuity 

Recently, several successful attempts have been made to extend 
the theory of continuous lattices to partially ordered sets ("posets"); 
see, for example, [7 ],[15],[18],[20]. A similar generalization of 
meet - continuous lattices ( that is, upper continuous lattices in 
the sense of [ 5 ]) will be discussed in the subsequent paragraphs. 
Moreover, we shall see that both notions of continuity are covered by 
a common general concept presented in Section 2. 

The following notations will be convenient. Given a poset P and an 
element y 6 P, define 

4-y :={x6P : xj<y} {prinaipal ideal generated by y) , 
iy :={x6P : y<x} (prinoipal dual ideal generated by y), 

and for Yep, 

+Y := U { •'•y '• y 6 Y ) (lower set generated by Y) , 
+ Y := U { •^•y '• y € Y } (upper set generated by Y) . 

Both the lower sets and the upper sets form a topology on P, called 
the lower A(lexandroff) - topology 0{P) and the upper A-topology 0*(P), 
respectively. Notice that the 0(P) -closed sets are precisely the 
0*(P) -open sets. Hence 0(P) and 0*(P) are also topological closure 
systems. 

A subset D of P is directed if every finite subset of D has an up­
per bound in P (whence D 0) . The system of all directed lower sets 
("ideals" in thesense of [12]) is denoted by ](P)• 

Henceforth, let P be an up -complete poset; that is, every directed 
subset D of P has a join (denoted by \/D). Using the so -called "way -
below" sets 

^x = D G i (P) : X < VD } (X G P) , 

we say P to be weakly continuous if x = for each x G P. If, in ad­
dition, each way -below set ix is directed then P is called a continu­
ous posqt (cf. R.-E. HOFFMANN [15],[16], J. D. LAWSON [18]). Apparently, 

!>' 
1
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these two properties may also be described as follows. An up -complete 

poset P is v/eakly continuous (resp. , continuous) iff for each x e P, 

there is a (directed) set E such that x = VE and E c D for all D E \(P) 
with X £ V D. Now we only change the position of the quantifiers in this 

definition and call an up - complete poset P weaklij upper aontinuouo 
(resp., upper aontinuous) provided that for each x G P and each D G i(P) 
with X £ V D, there exists a (directed) set E c D with x = VE. Hence in 

this definition the set E may depend not only on the choice of x but al­

so on that of D. 

REMARK. Replacing directed sets with finite sets in the preceding defi­

nitions one arrives at the notion of distributive v - semilattiaes in the 
sense of KATRINAK [17] (see also GRATZER [13,p.99] and ERNfe [ 9] for 

slightly modified definitions). 

An element x G P with x G is called aompaat, and P is said to be 
aompaotly generated if every element of P is a join of compact elements. 
If, moreover, for each x G P there exists a directed set D of compact 
elements such that x = VD then P is an algebraic poset. For more de­
tails on compactly generated and algebraic posets, respectively, see 

[11] ( cf.also [14],[15]). At the moment, we only mention the important 

fact that the systems \ (P) are, up to isomorphism, precisely the alge­
braic posets. 

The following implications between the various kinds of compact gen­

eration and continuity are obvious; 

DIAGRAM 1, 

algebraic continuous upper continuous 

I 
compactly 
generated 

weakly 
continuous 

weakly 
upper continuous 

Jj in complete 
lattices 

In general, none of these implications can be inverted. 

EXAMPLE 1. (cf. [11 ]). Let X be an uncountable set and S the system of 

all subsets of X which have either at most one element or a countable 
2
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complement. Then S is a compactly generated (hence weakly continuous) 
and upper continuous A - semilattice, but S is not continuous since for 
y e S, the way - below set ;^y = { {x} : x 6 y } U {0} is not directed un­
less y is a compact element of S (i.e., a singleton or empty). 

Many examples of continuous complete lattices which are not algebra­
ic can be found in the Compendium [12]. The standard example is the unit 
interval [0,1]. Every complete Boolean lattice is upper continuous, but 
only the atomic ones are (weakly) continuous (cf.[12,1-4.1 8]) . An example 
of a compactly generated poset which is not even upper continuous is ob­
tained as follows: 

EXAMPLE 2. For n € ]N = {1,2,3,...} let 

n : = {1 ,. .., n}. 

Consider the following system of subsets of IN : 

P = ( (n): neiNlUin: n£3N} U {3N-^{n}: n6PJ}U{0,IN}, 

P is partially ordered by inclusion and closed under directed unions, 
hence up-complete. The compact members of P are exactly the finite 
ones. Thus P is compactly generated; however, it is not upper contin­
uous because for m £ IN , we have 

3N^{m}< \/{n:n£IN} = ]N, 

but there is no directed subset D of P such that IN (m) = V D and 
IN ̂  (m) D. (In other words, the co - atoms IN {m} are inaccessible 
but not compact). By the way, we notice that the atoms of a weakly 
upper continuous poset are necessarily compact. 

In contrast to Example 2, a compactly generated A - semilattiae must 
always be upper continuous, as our first proposition shows. 

PROPOSITION 1. Fov an up - complete A -semilattice S, the following 
conditions are equivalent; 

(a) S is meet - continuous; that is, XAVD = VCxAdrdED) 
for all X £ S and each directed subset D of S. 

(b) V A V D2 = V{ d^ A d2 : d^ £ D.| , d2 6 D2 ) for any two directed 
subsets D^,D2 of S. 

(c) The join map V : MS) S, D H- \/D preserves finite meets (and di- 3
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reoted joino).-

(d) S IB upper aontinuoua. 

(e) S is weakly upper continous. 

PROOF, (a) <=> (b) <=> (c): Straightforward. 
(a) => (d): If X < V'D for some directed set D then the set 
E = {xAd: dGD}is directed, contained in iD, and has join x, 
(d) => (e): Trivial. 
(e) => (a): For y := x A VD _< VD, we find a set E 5 +0 with y = VE. 
Hence for each e £ E, we have e £ x A d for some d £ D. Since y is an 
upper bound for the set F={xAd : dGD } and E 5 IF, it follows that 
y = V F, as desired. 

REMARK. In the preceding statements, "directed" may be replaced with 
"non-empty totally ordered" or "non-empty well-ordered". This fol­
lows from a well-known (but non-trivial) set - theoretical fact (see, 
for example, MAYER - KALKSCHMIDT and STEINER [19]): Suppose X ie a sye-
tem of Bets suah that for every non -empty Guhsystem U which is well -
ordered by inclusion, the union UU belongs to X. Then so does the 
union of every directed subsystem of X (i.e. X is "inductive"). 
Applying this principle to the system of all subsets of a fixed poset 
which have a join, one concludes that it suffices to postulate the ex­
istence of joins for all non-empty well-ordered subsets in order to 
guarantee up - completeness. Similarly, if 

(») XA\/D = V{xAy :y£D} 

holds for all elements x and all non - empty well - ordered subsets D of 
an up - complete A - semilattice, then (») must also be true for every 
directed subset D of S. To see this, consider the system X of all D c s 
possessing a join and satisfying (*) for all x £ S. If TJ c X is non -
empty and well - ordered by inclusion then W := (VY : Y £ U } is a non -
empty well - ordered chain in S, whence XAVIJU = XAVW = 
VIXAVY : YGy}= V{V{xAy : yGY}: Y£y} = 
V{xA y : yG UllJf so (J y £ X. Now, if D is a directed set then 

+ 0= U{+y:y£D} belongs to X since ly e X for all y £ S, and it 
follows that XAVD = XA V + D= V{XA y : y£ +D} = 
V{xAy:yGD}.^ 

These considerations show that our definition of upper continuity in 
4
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fact generalizes the classical definition of upper continuous lattices 

(cf. CRAWLEY and DILWORTH [5 , p.15 ] ) . 

An immediate consequence of Proposition 1 is 

COROLLARY 1. Every upper continuous A - semilattice S is the image of an 
algebraic A - oemilattice (namely x kS)) under a map which preserves bi­

nary meets and directed joins. 

However, the image of an arbitrary algebraic A - semilattice under a 

map of this kind need not be upper continuous in general. 

2 
EXAMPLE 3. The following subsets of the unit square [0,1] are partial­

ly ordered componentwise: 

A := { (0,0),(0,1) , (1 ,1) > , 

S •= { (-1,1 -1) : 1 < m < n; m,n € IN } U A, 

T := { (1 ,1 -^) : m 6 :iN } U A. 

(1,1) (1,1) 

(0,1) 1,0) (0,1) (1,0) 

(0,0) (0,0) 

The following facts are easily checked: 

(1) S and T are complete lattices. 

(2) S satisfies the ascending chain condition and is therefore algebra­

ic . 

(3) T is not upper continuous. 

5
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,4, The „ap £ = S . T. f(x,y, = ^ ^ 

is onto and preserves finite meets (and of course directed joins). 

It is evident that the ascending chain condition implies compact 
generation and (upper) continuity. A less trivial result is 

PROPOSITION 2. A poaet satisfying the descending chain condition is up­
per continuous iff it is algebraic, 

PROOF. Let P be upper continuous and satisfy the descending chain con­
dition. Assuming that P be non - algebraic, we find a minimal x € P for 
which there is no directed set of compact elements whose join is x. In 
particular, x itself cannot be compact, and we find a directed lower 
set D with X _< V D but x D. By upper continuity, we may choose a di­
rected set E c D with X = V E and x ̂  E. Hence, by minimality of x, each 
y e E is the join of the set of all compact elements dominated by y. 
As the assignment y is isotone, it follows that the union 
K;= U^K jy6E}isa directed set of compact elements with V K = 
VE = X, contradicting the assumption on x.^ 

Example 2 shows that there-exist weakly upper continuous (moreover, 
compactly generated) posets satisfying the descending chain condition 
which are not algebraic. 
the descending chain condition need not be upper continuous (in partic­
ular, not compactly generated), as the lattice T in Example 3 demon­
strates . 

In [11] there has been given an example of an algebraic poset con­
taining a complete interval which is not even (weakly) upper continu­
ous: 

EXAMPLE 4, 

algebraic not upper continuous 6
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This example shows that none of the six properties depicted in 
Diagram 1 is inherited by intervals (or principal dual ideals). 

This cannot happen if v/e are concerned with complete lattices. 

2. - cont^nuou6 points 

A common generalization of the previous continuity concepts is ob­
tained by the following definition. Let m be any cardinal number greater 
than 1, and write Y c x if Y is a subset of X with less than m elements 
(i.e. |Y| < m). An up - complete poset P is called weakly (x^m) -contin­
uous if for each system U «= I (P) and each x e P with x < V Y for all m — 
Y G y, there exists a set E ̂  0 U such that x = VE, Similarly, we say P 
to be (x,m) -continuous if in the preceding definition E can be chosen 
in 1 (P). Obviously, "(weakly) upper continuous" means "(weakly) (i,m) -
continuous", and "(weakly) continuous" means "(weakly) (i,m) -continu­
ous for all m > 1". The following observation is almost evident for A-
seroilattices but non - trivial for arbitrary posets: 

PROPOSITION 3. Let 1 < m < o). Then a poset is weakly (x,m) - continuous 
iff it is weakly (x^w) - continuous. 

This follows from a more general result in [ 9 , Satz 3.2], Later on, 
we shall see that an analogous statement on (i,m) - continuity is valid 
only if m > 2. 

For any poset P, the out operator A : P(P) -> P(P) is defined by 

A(Y) ;= n { 4-x : Y c +x } (Y c P) . 

The fixed points of A are called cuts; they form a closure system 6(P), 
called the Dedekind - MacNeille completion of P (cf. [3], [6]-[9j, [21]). 

A straightforward computation (involving Proposition 3) yields 

PROPOSITION 4. Let m > 2. Then an up -complete poset P is weakly (x^m) -
continuous if and only if 

A[V] = A(ny) for all y C i (p) . 

Using the fact that in a complete lattice L 

7
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n A [ y ] = + A { V Y : Y e y } and 
n y = + { A -^[Y] : i|) e IT Y } (y c 0 (L) ) 

Yey 
we arrive at 

PROPOSITION 5. Let L he a complete lattice and m a cardinal greater 
than 2. Then the following statements are equivalent: 

(a) The distributive law 

A{VY ;Yey}= V{AiKy]:t|je n Y } 
YE y 

holds for every system y of directed (lower) sets of L with 
i y! < in . 

(b) The identity 

A{VY : Yey}- V{ A{V>f'(Y) : Y e y) ; V 6 n {Z : Z c Y}} 
Yey 

holds for every system y of subsets of L with 1 y 1 < m . 

(c) The goin map V : i (L) L, Y i->- N/Y preserves meets of systems with 
lees than m elements: y c i (L) implies v(ny) = Av[y]. 

m 
(d) L is (\,m) - continuous, 

(e) L is weakly fijm} - continuous. 

PROOF, (a) => (b) : Let Y: = +{VZ;ZcY} (Yey). Then ( Y : Y e y) 
iii 

is a family of directed lower sets whence A{\/Y :Y€y}-
A {V Y : Y 6 y } - V{ A.|^[y] : ^ e U Y } = 

YG y 
V { A { Vi|i(Y) : Y € y} : tl; G R { Z : Z c y }} . 

Yey 
(b) => (a): If Y is a directed lower set then we have VZ e Y for all 
Z c Y , so the identity in (b) reduces to that in (a). 
(a) <=> (c): Straightforward. 
(a) => (d): We may assume that m is infinite. If x £ VY for all Yey 
where y ̂  }(L) then 

IT\ 
X = V ix A A{ V Y : Y e y } = V {A ijj[y] : e n Y } 

Yey 
where y = y U {4-x} , and |y | = [ y | < m since m is infinite. 
Hence E = +{AiJi[y]:ij>e 11 Y }=4-xnnyei (L) , X - V E, and 

Y e y 
E c oy. 
(d) => (e): Clear. 
(e) => (a): Apply Proposition 4. • 

8
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Of course, the statements in Propositions 4 and 5 fail to be equiv­
alent for m = 2. In this case , (a), (b) and (c) are trivially ful­

filled for every complete lattice. 

For m > j L 1 condition (b) is the "equational characterization" of 

continuous lattices (cf. [12,1-2.3]). 

COROLLARY 2. The class of (i,m) -continuous complete lattices is closed 
under the formation of direct products and subcomplete lattvc.es. 
Furthermore, the image of an (\,m) - continuous complete lattice under 
a map which preserves meets of sets with less than m elements and arbi­
trary joins is again an (\,m) - continuous complete lattice. 

However, Example 3 shows that the image of an upper (i.e. {i,a)) -) 
continuous complete lattice under a map which preserves finite meets and 
directed joins need not be upper continuous. 

As was pointed out in [2 ]/[10] and [20]>±t appears reasonable to 
take as morphisms between continuous posets those upper adjoint maps 
(see [12,Ch.0.3]) which preserve directed joins. The next proposition 
justifies this choice within the theory of (i,m) -continuous posets: 

PROPOSITION 6. The image of an (\,m) - continuous poset P under an up­
per adjoint map f which preserves directed joins is again (\,m) - con­
tinuous. 

PROOF. (The case m > IP! has been treated in the more general frame­
work of so - called Z - continuous posets; see [ 2 ]) . 
Let Q = f[P], and let g : Q P denote the lower adjoint of f. Notice 
that the surjectivity of f ensures that f o g is the identity on Q. 
Given a directed subset D of Q, we know that g[D] is a directed subset 
of P (because g is Isotone); consequently, g[D ] has a join x, and 
f(x) = f(Vg[D]) = Vf[g[D]] = VD. Hence Q is up-complete. 
Now consider a system y c \(Q), and define 

Z := { lg[Y ] ; Y G V )c { (P) . 

Suppose X £ V Y for all Y 6 y. Then x £ V f [g [Y ] ] = f (Vg [Y ]) , g (x) £ 
Vg[Y] = \./4-g[Y], that is, g(x) £ VZ for all Z GZ. Hence we find a 
directed set E c Z such that g(x) = VE, whence x = f(g(x)) = V f[E]. 
Furthermore, f [E ] is a directed set with f[E ] c Y for all Y C y. indeed, 
EC 4g (Y 1 implies f (E ] c f [ig [Y 1 ] c 4f [g [Y ] ] = 4Y = Y.^ 

9
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COROLLARY 3. The image of an (\,m) - continuous aomptete lattice under 
a map which preserves arbitrary meets and directed joins is again 
(Xytn) - continuous. 

(But see Example 31) 

COROLLARY 4. For a poset Pj the following conditions are equivalent: 

(a) P is continuous. 

(b) The join map V : \ (P) ->• P is well - defined and has a lower adjoint 
(namely the way -below map : P -<• i (P) J. 

(c) P is the image of an algebraic poset under an upper adjoint map 
which preserves directed joins. 

In the light of this characterization, continuous posets appear as a 

very natural generalization of algebraic posets. 

3. Iht Scott opsAatoH. and Scott - clo6cd ictA 

Given an arbitrary poset P, we define the Scott operator 
l : Jt(P) -> ?I(P) by 

E(Y') := { X e P : x 6 A(D) for some directed D c 4Y } (Y c p) . 

ViJhenever D has a join then x G A(D) means x _< V D . A set Y with 

E(Y) = Y is called Scott closed. Special Scott - closed sets are the 
finitely generated lower sets, i.e. the sets IZ with Z c P. But clear­
ly not all Scott -closed sets must be of this kind. For example, if P 

satisfies the ascending chain condition then every lower set is Scott -
closed. The Scott - closed subsets of a power set Jl(X) (considered as a 

complete lattice) are precisely the systems of finite character con­

tained in (X) . 

Let us return to the general case of an arbitrary poset P. As E is 

always extensive and preserves finite unions, it is clear that the 

Scott - closed sets form a topological closure system a(P)'". The cor­

responding system of open sets, denoted by o(P), is the so-called 

Scott topology of P (cf. [8 ] , [12 ] ,[22]). 

We denote by E the corresponding closure operator, i.e. 

E(Y) = n { A G 0(P)^ : Y c A } (Y c p) . 10
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Obviously, E is idempotent if and only if I = I. But unfortunately Z 
may fail to be idempotent even if P is an upper continuous complete 

lattice. 

EXAMPLE 5. Let L denote the complete Boolean lattice of all regular 

open subsets of IR (with respect to the Euclidean topology). Consider 

the following elements of L; 

^n,k ^ "^n'^F" ~ n'- = ^ = 0/ • • • ^ U ]1 /k-[ 

(n,k CM, n > 2k (k+1 ) ) , 

Xj^ := ]0,k[ (k e 3N) , 

X := (where ]a,b[ = {xeK;a<k<b}). 

o 
^ ' X 

6,1 6 

'5,1 6 

26,3 

25,3 
14,2 

13,2 

Obviously, 

^n,k S n < m, 

while for k < I, x^ j, and x^ ̂  are incomparable. Indeed, x^ includes 

an open Interval > J " jriTSTT ° k?T ̂  

this interval contains a number j with r £ {0,...,£-1), while - x 
i £ m, t 

On the other hand, -f-4-ex „"^x 
2 m,f n,k 

Now in L we compute 

V { Xn : n > 2k (k+1) } = Xj^ (k e IN) , 

V { Xj^ : k 6 IN } = X, 

and for Y = { ; n,k 6 3N , n > 2k(k+1) } it follows that 

X £ Z {Z (,Y) ) but X E (Y) . Hence L is an upper continuous complete lat­
tice with E o £ ^ J:. 11
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In contrast to this situation in the "finitary" case, one can 
prove: 

PROPOSITION 7. The Saott operator Z of a aontinuous poaet P ie idem-
potent, 

PROOF. This follows from results in [8] and [20], but for the sake of 
convenience, we give a direct proof. 
Let X 6 E(E{Y)). Then there exists a directed set D c Z(Y) with 
X £ V D. Each way - below set 4^y is a directed lower set, and the sys­
tem { ̂y : y 6 D } is directed by inclusion since the map y ^y is iso-
tone ; hence E = [J{^y;y6D}isa directed lower set. For y e D c 
E (Y) we find a directed set with D c -f-y and y £ VD^, whence ^y <~ 
iDy c 1-Y. Thus we obtain E c ID, and finally x £ V D = 
VtVity : y G D}=VE, which proves x 6 E (Y) 

In terms of the operators E resp. E, upper continuity can be char­
acterized as follows: 

PROPOSITION 8. Let P be an up -complete poset. Then 

(1) P is upper continuous iff 

+x n E(Y) = E{+x n lY) for all X £ P, Y c P. 
c (2) The lattice a(P) of Scott -closed seta is upper continuous iff 

Ix n E(Y) = E(+x n lY) for all x 6 P, Y c P. 

(3) If P is upper continuous then so is a(P)^. The converse holds if 
I (P) is closed under binary intersections (e.g., if V is a /\ - semi-
lattice) or if E is idempotent. 

More general results have been proved in [ 9 ,Satz 3.6], where the 
system of directed sets is replaced with an arbitrary system of sub­
sets. For complete lattices. Proposition 8(3) has been established 
in [12 ,n - 4.15] . 

The following example shows that (in contrast to the complete case) 
an up - complete poset P with upper continuous need not be upper 
continuous in its own right. 

EXAMPLE 6. The set 2Z U {+w,a)+1} is linearly ordered as usual: 

12
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Let 

•a)<n<(ij<w + 1 (neZZ). 

= (0,-U),0), X := ((jD,0,a)), 1;= (a),0,a)+1) , 

= { (k,-m,n) : k,m,n E to, k < m } U {©}, 

= { Xj^ : k € (0 } , Xj^ = (k,0,(o) , 

= ; n 6 to } , y^ = (to+l ,0,n) , 

= A U B U C U {x,l}. 

(0,0,2) 

A (0,0,1) 

(0,0,0) 

© 'o 

P is an up - complete poset (partially ordered componentwise). 
In this poset we always have 

+y n i; (Y) = z (4y n iv) 

unless y = X, while 

4x n Z(C) = 4x f 4x {x} = Z(A) = E(4x 0 4C) . 

But since HY) = Z^Y) = |x if z (Y) = 4B and Z (Y) = z (Y) otherwise, it 
is easy to see that 

^ A 

4y n Z(Y) = Z(+y n 4Y) for all y E P and all Yep. 

Hence, by Proposition 8, a(P)^ is upper continuous while P is not. 
But see Proposition 10! 

13
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In analogy to Propositions 4 and 8, we have the following character­
ization of (i,m) -continuity; 

PROPOSITION 9. Let m > 2 and P an up -complete poset. Then 

(1) P is {\,m) - continuous iff 

KflU) = for all 0(P) (I'esp. y c UP)). 
c • (2) a(P) te (\,m) -continuous rff 

E(ny) = n£[U] for all U ^ e{p). 

PROOF. (1) Suppose P is (i,m) -continuous, and y ̂  0(P). Of course, 
we have 1(0^) c ni[y]. Conversely, consider an element x £ nJ^[V]. 
Then, by definition of I, we find directed sets c Y with x £ V 
(Y 6 y). As I { Dy ; Y 6 y } I < m, there exists a directed set D such 
that X = V D and D 5 H { +0^ : Y £ U 1 5 01?/ whence x £ i ( Oy) . 
Now assume f(ny) = nf[y] for all systems y consisting of less than 
m directed lower sets. Let y be one such system and suppose x £ VY 
for all Y £ y. Then x £ Olfy] ~ 1(0 y). Accordingly there is a di­
rected set E e Oy with x £ VE, and it follows that x £ Ix fl 1(E) 
= E(lx n IE). (Use the fact that m > 2). Thus we find a directed 
D c ix n IE c Q y v;ith x £ V'D, and D ̂  Ix yields x = VD. 
(2) Suppose E(ny) = Olfy] for all y c e{P), and let be given a 

family (y^ : j £ J) of subsets of o(P)'^ with |J| < m. Then each union 
IJ y^ is a lower set, and we compute in the complete lattice d{P)'^: 

A{Vyj : j £J}= 0(1 (Uy ) : j eJ}=i(n{Uyj : 3 e^}) = 
1 ( U { 0 Ij'[ J ] : £ n y^ } ) = V { A |J^[ J ] : I)/ £ n y^ } . By Proposi-

j£j_ j£j 
tion 5, this implies (i,m) -continuity of the complete lattice o(P) . 
(Notice that we did not need the hypothesis that the systems yj be di­
rected, so we have shown in fact more, namely " {0,m) -continuity " 
of o{p)'^ ) . 
Conversely, assume o(P)^ is (i,m) -continuous, and let y be a system 
of lower sets with |y| < m. Then for each Y £ y the system = 
{ IZ : Z c Y } is a directed subsystem of a{P)^, and we compute 
0 { 1(Y) ! Y € y } = A { V : Y £ y } = V { A \i;[y] : •4' £ n Z } = 

i( U (Oij'iy] : £ n z }) = i( O (U z^ : Y £ y }) = 1 (Oy) 
Y£y ^ ^ 

Combining the last two propositions we arrive at 
14
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COROLLARY 5. Let P be an up - aomp>lete poaet with idempotent Scott 
operator, and let m be any cardinal greater than 1. Then P is 
(\,m) - continuous iff a(P)'^ is ('\,m) - continuous. 

For large m, this result can be strengthened as follows: 

PROPOSITION 10. For an up -complete poset P, the following conditions 
are equivalent: 

(a) P is continuous. 
c (b) 0(P) is continuous, 
Q 

(c) o(P) (resp. a{P).1 is completely distributive. 

(d) The Scott operator Z of P preserves arbitrary intersections of 
lower sets. 

Each of these conditions implies that Z is idempotent. 

PROOF. By Propositions 7 and 9, it only remains to show that complete 

distributivity of a{P)*^ implies continuity of P. For the proof of this 

fact, see [ 8 ],[16] or [18]. 

Notice that a continuous topological closure system must already be 

completely distributive 

Obviously Proposition 9 cannot be e.xtended to m = 2. Unfortunately, 

an (i,2) - continuous poset need not be (i,3) - (i.e. (i,a)) -) contin­

uous, although being weakly (l,w) -continuous (see Proposition 3). 

EXAMPLE 7. Define inductively up - complete posets Pj^ as follows. 

Choose pairwise distinct elements x,Xj^,y^^ (n e IN) . Then 

P^ := {x} u{x^:n6lN} U{ y^^: n € IN } is partially ordered by 

setting 

X < X < X, y < y < X (n < m) n m -* n •* m 

and no further relations. 

We call the sequences (x^) and (y^) generating chains of level 1. 

Now suppose up - complete posets P-] <= . . . <= Pj^_^ have been defined 

together with certain generating chains of level 1,...,k-1. Then, 

for every generating chain (z^^) of level < k and all w 6 P)j_-] with 

w £ z = V { Zn ; n t IN }, choose a sequence (w^^) of new elements 
(not in Pj,_-]), call it a generating chain of level k, and set 

15
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w„ < w < w, n in 

n n 
(n < m) . 

By adjoining the elements of all generating chains of level k, the po-
set Pj^_^ is enlarged to an up - complete poset Pj^. 
It is then easy to see that the directed union P = ' k63N} 
is an(i,2) r continuous poset, but P is not (i/3) - continuous because 
there is no directed set D c 4-{ ; n E ]N } n •l-{ y^ : n £ IN } v/ith 

XA 

x^ c/^ 

X A> 

16
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4. ln.K2.dac.-iblz 

In this section, we derive a common generalization of the following 

two important theorems of lattice theory; 

(I) Every element of an algebraic complete lattice is a meet of com­

pletely irreducible elements (cf. [ 4 ],[ 5 , 6.1], or [ 12 , i-
4.23] ) . 

(II) Every element of a continuous complete lattice Is a meet of ir­

reducible elements (cf. [12, 1-3.10]). 

Let m be any cardinal number >1. An element q of a poset P is called 

m - irreduaible (or, to be more precise, m-meet - irreducible) if q 
cannot be the greatest lower bound of a set Y unless |Y| ̂  m or q 6 Y. 

Hence "completely irreducible" means "m - irreducible for one (resp. 

all) m > |P|". If P is a A - semilattice then "irreducible" means "m-

irreducible for one (resp. all) m with 2 < m £ co". However, in arbi­

trary posets there can exist (m-1) -irreducible elements which are not 

m - irreducible (m 6 IN , m 2) . 

EXAMPLE 8. Consider a 2m - element set P = {x.,...,x } U {yi,...,y }» 1 m ^ J •] ' '•'m 
partially ordered by Xj^ < y^ <=> k=|=nor)c=1 (1j<k, n£m). 

m = 4 

Here x^ is (m-1) - irreducible but not m - irreducible. 

Recall that a subset U of an up - complete poset P is Scott open 

(i.e. U e o(P)) iff for each directed set D c P, V D e -HJ implies 

D n U 0 (in particular, U must be an upper set) . Now we say U is 

m - A - closed if for all Y c u, x = A Y implies x G U. Finally, we 
call P m - generated, if for all x,y E P with x ̂  y there exists an 
m- A-closed open subset U with x G U and y ({; U. This is certainly 

fulfilled if o(P) has a base of m - A - closed sets. 

The following fact is well - known in the case of complete lattices 

(cf. [12, I-3.7 and I - 4.22] ) . 

17

Erné: SCS 89: Continuity Concepts for Partially Ordered Sets

Published by LSU Scholarly Repository, 2023



- 11 

PROPOSITION 11. (1) Every aompaotly generated pooet ia m - generated 
for all m > 1. 

(2) Every weakly aontinuoue poset ia u) - generated. 

PROOF. (1) If X y in a compactly generated poset then there exist a 
compact element z with z £ x and z j: y, whence U = +z is an open set 
with X e U and y ^ U, and clearly U is closed under arbitrary meets. 
(2) Given x y, we may choose inductively elements z such that 
Z„ = X, z n+1 G l-z^ and z t Y- Then U=f{z :n6a)}isanw-A-n n n 
closed open set with x G U and y U.^ 

It is clear that a complete lattice is compactly generated (i.e. 
algebraic) if and only if it is m-generated for all m > 1. However, 
there are up ~complete posets which are m - generated for all m > 1 
but not compactly generated, as the poset P^ in Example 7 shows. 
An 0) - generated complete lattice which is not even (weakly) upper con­
tinuous will be presented in Example 8. 

Now Theorems (I) and (II) admit the following common generalization: 

PROPOSITION 12. Every element of an m - generated up - complete poset P 
is a meet of m - irreducible elements. 

PROOF. We have to show that for x,y G P with x t. y, there exist an m -
irreducible q with y 5^ q but x q. Choose an m - A - closed open set U 
with X G U and y ̂  U. Then P ̂  U is closed under directed joins and 
has therefore a maximal element q ̂  y. Clearly q ̂  x, and q must be in -
irreducible. (For the case m = w , see [12, 1-3.7] )•• 

COROLLARY 6. (1) Every element of a compactly generated poset is a 
meet of completely irreducible elements. 

(2) Every element of a weakly continuous poset is a meet of w - irre­
ducible elements. 

We conclude this note with several applications arising in order 
theory, algebra and geometry. (For several interesting applications 
of continuous and algebraic posets to topology, see [1 ],[12 ] and [18]). 

EXAMPLE 8. The convex closed subsets of IR'^ form a closure system K^. 

18
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Since each singleton is a convex closed set, is a complete lattice 

in which every element is a join of atoms. But none of these atoms is 

compact, so IP cannot even be upper continuous (all the less algebra­

ic) . Moreover, contains no completely irreducible elements at all. 

However, a special version of the Hahn - Banach Theorem states that ev­

ery closed convex set is an intersection of "closed halfspaces" 

^ = { X G m" ; <x,a> < c } (a G IR" s. {0}, c G IR) , 

and it is easy to see that these halfspaces are precisely the irreduc­

ible elements of K . n 

The above mentioned intersection theorem can be reduced to Corolla­

ry 5(2) as follows. 

EXAMPLE 9. Consider the system of all nonempty convex open subsets 

of IR" . It is not hard to see that the closure map Y Y is an isomor­

phism between K° and the system K° of all convex closed subsets of IR" 

with nonempty interior. The inverse isomorphism is induced by the in­

terior map Y H- Y. In particular, each Y G K° is a regular open set. 
Obviously, K° is closed under finite intersections and directed unions, 

so it is an up - complete A - semilattice. (Moreover, K° U {0} is a com­

plete lattice) . For X,Y G K°, X G ^^Y means that X is compact in the 

topological sense and contained in Y, Hence K° has no compact ele­

ments at all, but it is a continuous poset (use the fact that IR" is 

a locally compact space). Hence every convex open set is an intersec­

tion of irreducible ones, and as before it is easy to see that the 

irreducible members of K° are precisely the open halfspaces ^ 
(they are not completely irreducible, although they cannot be repre­
sented as intersections of larger convex open sets!). 

By passage from K° to K°, we see that every closed convex set with 

nonempty interior is an intersection of closed halfspaces. But a non­

empty convex closed set K with empty interior can be represented in 

the form 

K = (x + V) n (K + V"^) 

where x G K, V is a subspace of IR" and its orthogonal space. Now 

K + V is a convex open set with nonempty interior, and as x + V is 

trivially an intersection of closed halfspaces, the same is true for 

K. 

EXAMPLE 10. Let U be a fixed nonempty bounded convex open subset of 
19
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IR and the system of all "similar" open sets contained in U, i.e. 

Py = { X + cU : X e 1R" , c > O, X + cU c u } . 

It is a non - trivial exercise to show that Py is closed under directed 

unions. (Notice that, for example, the system { x + cU : c € IR, c > O } 

is not inductive). However, in general, Py is neither a v - nor a A -
semilattice. For V,W e Py, one finds that V e means V c w (observe 

that V is compact). From this characterization one can deduce by some 

further computations that Py is a continuous poset without completely 

U irreducible elements. However, by Corollary 6(2), each element of p 

is a meet (not: intersection!) of irreducible ones. The feature of 

these irreducible elements heavily depends on the form of U. For ex-
2 ample, if U is an open disk in IR then every element of p is irreduc-

2 ible. On the other hand, if U is an open square in IR then only those 

open squares V «= U which have a boundary in common with U are 

irreducible. 

V G <tU 
V not irreducible 

. L 

1 

L J 

V ^ 
V irreducible 

In the following constellation, the two open squares have neither a 

join nor a meet: 

r • 
r" 

I 

EXAMPLE 11 . The system of all open rectangles 

a,b,c,d =• { (x,y) GIR ;a<x<b, c<y<d} 

(0<a<b< 1, 0£cj<d< 1) 

2 , contained in the unit square [0,1] is a complete continuous lattice 

without atoms. On the other hand, the system of all closed rectangles 

20
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2 contained in [0,1] is also a complete lattice but not (weakly) upper 
continuous, by similar reasons as in Example 8. Dropping the atoms 
of this lattice, we obtain a complete continuous lattice isomorphic 
to the lattice of open rectangles. 
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