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TOPIC: Continuity concepts for partially ordered sets

1. Continudity and upper continuity

Recently, several successful attempts have been made to extend
the theory of continuous lattices to partially ordered sets ("posets");
see, for example, [7 1,[15]),[18],[20]}. A similar generalization of
meet - continuous lattices ( that is, upper continuous lattices in
the sense of [5]) will be discussed in the subsequent paragraphs.
Moreover, we shall see that both notions of continuity are covered by

a common general concept presented in Section 2.
The following notations will be convenient. Given a poset P and an
element y € P, define
vty :={x €P : x y } (prineipal ideal generated by y),
ty :={x €EP : vy

IN A

x } (prineipal dual ideal generated by y),

and for Y < P,

4y s={J{+y : y € Y] (lower set generated by Y),
+Y :=U{4y : y € v} (upper set generated by Y).

Both the lower sets and the upper sets form a topology on P, called
the lower A(lexandroff) - topology 0(P) and the upper A=-topology Oi(P),
respectively. Notice that the 0(P) -closed sets are precisely the

0*(p) -open sets. Hence 0(P) and O*(P) are also topological closure

systems.

A subset D of P is directed if every finite subset of D has an up-
per bound in P (whence D # @). The system of all directed lower sets
("ideals" in the.sense of [12]) is denoted by 1(P).

Henceforth, let P be an up -complete poset; that is, every directed
subset D of P has a join (denoted by \/D). Using the so -called "way -

below" sets
ix ={D e i(p) : x <VD} (x € P),
we say P to be weakly continuous if x = \/}x for each x € P. If, in ad-

dition, each way -below set ¢x is directed then P is called a continu-

ous ronqt

. {cf, R,-E. .
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these two properties may also be described as follows. An up - complete
poset P is weakly continuous (resp., continuous) iff for each x € P,
there is a (directed) set E such that x = \/E and E < D for all D € 1(P)
with x < V' D. Now we only change the position of the gquantifiers in this
definition and call an up - complete poset P weakly upper continuous
(resp., upper continuous) provided that for each x € P and each D € i (P)
with x < \/D, there exists a (directed) set E < D with x = \/E. Hence in
this definition the set E may depend not only on the choice of x but al-

so on that of D.

REMARK. Replacing directed sets with finite sets in the preceding defi-
nitions one arrives at the notion of distributive v -~semilattices in the
sense of KATRI&AK [17] (see also GRATZER [13,p.99) and ERNE [ 9] for
slightly modified definitions).

An element x € P with x € §x is called compact, and P is said to be
compactly generated 1if every element of P is a join of compact elements.
If, moreover, for each x € P there exists a directed set D of compact
elements such that x = \/D then P is an algebraic poset. For more de-
tails on compactly generated and algebraic posets, respectively, see
[11] (cf.also [14],[15])). At the moment, we only mention the important
fact that the systems 1(P) are, up to Zsomorphiem, precisely the alge-

braie posets.

The following implications between the various kinds of compact gen-

eration and continuity are obvious:

DIAGRAM 1.

f
\algebraic] somzecl> Icontinuous! =D lupper continuous

lL ﬂ/ ﬂ {? in complete

lattices

compactly

weakly — | Weakly
generated

continuous upper continuous

In general, none of these implications can be inverted.

EXAMPLE 1. (cf. [11]). Let X be an uncountable set and S the system of
all subsets of X which have either at most one element or a countable

https://repository.lsu.edu/scs/vol1/iss1/90 2



Erné: SCS 89: Continuity-Céneepts for Partially Ordered Sets

complement. Then S is a compactly generated (hence weakly continuous)
and upper continuous A -semilattice, but S is not continuous since for
y € S, the way ~below set yy = {{x} : x € y } U {@#} is not directed un-

less y is a compact element of S (i.e., a singleton or empty).

Many examples of continuous complete lattices which are not algebra-
ic can be found in the Compendium [12]. The standard example 1s the unit
interval {0,1]. Every complete Boolean lattice 1is upper continuous, but
only the atomic ones are (weakly) continuous (cf.[12,I-4.18]). An example
of a compactly generated poset which is not even upper continuous is ob-

tained as follows:

EXAMPLE 2. For n € N = {1,2,3,...} let
n := {1,...,n}.

Consider the following system of subsets of IN:

P={{nt:nemN}uU{n: nem} U {mW~{n}: nenN}U{g W}

P is partially ordered by inclusion and closed under directed unions,
hence up - complete. The compact members of P are exactly the finite
ones. Thus P 1is compactly generated; however, it is not upper contin-

uous because for m € N, we have
N~{m} < V{n:ne N} =,
but there is no directed subset D of P such that N ~ {m} = \/D and
N ~ {m} ¢ D. (In other words, the co -atoms IN ~ {m} are inaccessible

but not compact). By the way, we notice that the atoms of a weakly

upper continuous poset are necessarily compact.

In contrast to Example 2, a compactly generated A -semilattice must

always be upper continuous, as our first proposition shows.

PROPOSITION 1. For an up -complcte A ~sgemilattice S, the following

conditions are equivalent:

(a) S 18 meet - continuoua; that 2e, x A VD = \/{x A d :de€D}
for all x € S and each directed subset D of S.

(b) VDA ND, = Vidy A d, : 4 € Dy, d, € D, } for any two directed
subgets D,,D, of 8.

"‘Efblf??fed‘b’)}‘LS’[’J{deola‘rIS?Reb&it&yf2653 precerves finite meets (and di- 3
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rected joins).
(d) S <8 upper continuous.

(e) S is weakly upper continous.

PROOF. (a) <=> (b) <=> (c): Straightforward.

(a) => (d): If x € VD for some directed set D then the sect
E={xAad: d € D}is directed, contained in +D, and has join x.

(d) => (e): Trivial.

(e) => (a): For y := x A /D < VD, we find a set E € +D with y = VE.
Hence for each e € E, we have e < x A d for some d € D. Since y is an

upper bound for the set F ={x A d : d € D}and E « VF, it follows that
y =\VF, as desired.

REMARK. In the preceding statements, "directed" may be replaced with
"non - empty totally ordered” or "non -empty well -ordered". This fol-
lows from a well -known (but non -trivial) set -theoretical fact (see,
for example, MAYER - KALKSCHMIDT and STEINER [19]): Suppose X is a sys—
tem of sets such that for every non —empty subsystem Y which is well -
ordered by inclusion, the union U1 belongs to X. Then so does the
union of every directed subsystem of X (Z.e. X is "inductive").
Applying this principle to thé system of all subsets of a fixed poset
which have a join, one concludes that it suffices to postulate the ex-
istence of joins for all non -empty well -ordered subsets in order to

guarantee up - completeness. Similarly, if
() x AVD= V{xAay :y €D}

holds for all elements x and all non - empty well -ordered subsets D of
an up - complete A -semilattice, then (#) must also be true for every
directed subset D of S. To see this, consider the system X of all D« §
possessing a join and satisfying () for all x € S. If § € X is non -
empty and well - ordered by inclusion then W := {\/Y : Y € {}1is a non -
empty well - ordered chain in S, whence x A VU1l = x A VW =
VIixAVY :Yell= VI{Vi{ixay:yevl:vyell=

V{ixaAay:ye Uy}, and so Uy € X. Now, if D is a directed set then
4D = U{ty : y € D}belongs to X since +y € X for all y € S, and it
follows that x A VD =x A ViD= V{xaAay:yeiD}=
V(xAy:yeo}.rJ

These considerations show that our definition of upper continuity in

https://repository.lsu.edu/scs/vol1/iss1/90 4
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fact generalizes the classical definition of upper continuous lattices

(cf. CRAWLEY and DILWORTH [5 ,p.151).

An immediate consequence of Proposition 1 is

COROLLARY 1. Every upper continuous A - semilattice S is the image of an
algebraic A -semilattice (namely 1(S)) under a map which preserves bi-

nary meets and directed joins.

However, the image of an arbitrary algebraic A -semilattice under a

map of this kind need not be upper continuous in general.

EXAMPLE 3. The following subsets of the unit square [0,1]2 are partial-

ly ordered componentwise:

{ (0,0),(0,1),(1,1) },

= {(%,1._%) :1<m<n; mné€W}UA,

={ (1,1 -%) :m € N} U A.

o
W

w
1

3
'I

(1,1)

(0,0)

The following facts are easily checked:
(1) s and T are complete lattices.

(2) S satisfies the ascending chain condition and is therefore algebra-
10.

(3) T is nct upper continuous.

Published by LSU Scholarly Repository, 2023 5



Seminar on Continuity in Sefnifattices, Vol. 1, Iss. 1 [2023], Art. 90

(4) The map £ : S » T, £(x,y) = {8";’; e AR
. is

is onto and preserves finite meets (and of course directed joins).

It is evident that the ascending chain condition implies compact
generation and (upper) continuity. A less trivial result is

PROPOSITION 2. 4 poset satisfying the descending chain condition is up-

per continuous Tff it ie algebraic.

PROOF. Let P be upper continuous and satisfy the descending chain con-
dition. Assuming that P be non -algebraic, we find a minimal x € P for
which there is no directed set of compact elements whose join is x. In
particular, x itself cannot be compact, and we find a directed lower

set D with x < VD but x ¢ D. By upper continuity, we may choose a di-
rected set E < D with x = V E and x ¢ E. Hence, by minimality of x, each
y € E is the join of the set Ky - a;l compact elements dominated by y.
As the assignment y v Ky is isotone, it follows that the union

K = LJ(KY :y € Elis a directed set of compact elements with VK =
VE = x, contradicting the assumption on x.D

Example 2 shows that there-exist weakly upper continuous (moreover,
compactly generated) posets satisfying the descending chain condition
which are not algebraic.
the descending chain condition need not be upper continuous (in partic-
ular, not compactly generated), as the lattice T in Example 3 demon-

strates.

In [11] there has been given an example of an algebraic poset con-
taining a complete interval which is not even (weakly) upper continu-

ous:

EXAMPLE 4. o 0.

not upper continuous
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This example shows that none of the six properties depicted in
Diagram 1 1is inherited by intervals (or principal dual ideals).

This cannot happen if we are concerned with complete lattices.

2. (i,m) - continuous posets

A common generalization of the previous continuity concepts is ob-
tained by the following definition. Let m be any cardinal number greater
. than 1, and write Y g X if Y is a subset of X with less than m eclements
(i.e. |Yl < m). An up -complete poset P is called weakly (i,m) -contin-
uoug if for each system { = 1(P) and each x € P with x < VY for all
Y € {, there exists a set E € [}{ such that x = VE. Similarly, we say P
to be (1,m) = continuous if in the preceding definition E can be chosen
in 1(pP). Obviously, "(weakly) upper continuous" means " (weakly) (i,m) -
continuous", and "(weakly) continuous" means " (weakly) (i,m) - continu-
ous for all m > 1". The following observation is almost evident for A -
semilattices but non - trivial for arbitrary posets:

PROPOSITION 3. Let 1 < m < w. Then a poset is weakly (i,m) - continuous

iff it is weakly (i,w) = continuous.

This follows from a more general result in [ 9, Satz 3.2]. Later on,
we shall see that an analogous statement on (i,m) - continuity is valid

only if m > 2.

For any poset P, the cut operator A : P(P) - P(P) is defined by
A(Y) = (N {4x : Y & ¥x} (Y = P).

The fixed points of A are called cuts; they form a closure system §(P),
called the Dedekind - MacNeille completion of P (cf. (3], [6])~-{9]), [21]).

A stralghtforward computation (involving Proposition 3) yields

PROPOSITION 4. Let m > 2. Then an up -complete poset P <8 weakly (i,m) -

continuous 1f and only if

Nal¥] = a(NW for all ¥ ¢ i(P).

Using the fact that in a complete lattice L
Published by LSU Scholarly Repository, 2023 7
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Nalgl =+ A{VY : Y Eeq]land
NY=+{AplY] : v € TY} (¥co(L)
Yey

we arrive at

PROPOSITION 5. Let L be a complete lattice and m a cardinal greater

than 2. Then the following statements are equivalent:
(a) The distributive law

A{IVY Y el lt= V{IApY : ¢ € nuy }
e
holds for every system U of dirvected (lower) sets of L with
U] <m .

(b) The Zdentity
ANIVY s Yell= VIANIVYY + YeU) :ye T {2:32¢gVY]}}
holds for every system Y of subsets of L with |§]< m.

(c) The join map v : i1(L) - L, Y » \/Y preserves meets of systems with
less than m elements: i ; (L) implies v(NT) = AvIH].

(d) L €8 (1,m) - continuous.

(e) L ¢8 weakly (i,m) ~ continuous.

PROOF. (a) => (b): Let ¥: = +{VZz :2c Y} (Yel). Then ( ¥: Yel)
is a family of directed lower sets whence A{VY : Ye U}=
AIVE s vell= VIAYT :yvye 1 ¥ )=

VAV Yed i ve T :écgyn.
(b) => (a): If Y 1is a directgd lower set then we have \VZ € Y for all
Z < Y , so the identity in (b) reduces to that in (a).

(a) <=> (c): Straightforward.

(a) => (d): We may assume that m 1is infinite. If x < /Y for all ¥ € |
where = 1 (L) then

x=Vix AN VY :Yey) = VIAp) :ve T v)

Yey!
where Y¥' =¥ U {¢x} , and [¥'| =|¥ | < m since m is infinite.
djence E = 4 {AP[']l: € T Y }=4xn Ny e1@), x=\VE, and

Yey!
Ec NY.
(@) => (e): Clear.
(e) => (a): Apply Proposition 4. Qj

https://repository.Isu.edu/scs/vol1/iss1/90 8
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Of course, the statements in Propositions 4 and 5 fail to be equiv-
alent for m = 2. 1In this case, (a), (b) and (c) are trivially ful-

filled for every complete lattice.

For m > |L| condition (b) is the "equational characterization” of

continuous lattices (cf. [12,1-2.3]).

COROLLARY 2. The class of (i,m) - continuous complete lattices is closed
under the formation of direct products and subcomplete lattices.
Furthermore, the image of an (i,m) = continuous complete lattice under

a map which preserves meets of sets with less than m elementa and arbi-

trary joins is again an (1,m) ~ continuous complete lattice.

However, Example 3 shows that the image of an upper (i.e. (1,w) =)
continuous complete lattice under a map which preserves finite meets and

directed joins need not be upper continuous.

As was pointed out in [2 ],[10] and [20],it appears reasonable to
take as morphisms between continuous posets those upper adjoint maps
(see [12,Ch.0.3]) which preserve directed joins. The next proposition
justifies this choice within the theory of (1,m) -continuous posets:

PROPOSITION 6. The image of an (i,m) —= continuoue poset P under an up-
per adjoint map f which preserves directed joins is again (1,m) - con-

tinuous.

PROOF. (The case m > |P! has been treated in the more general frame-
work of so -called Z -continuous posets; see [2]).

Let Q = f[P], and let g : Q » P denote the lower adjoint of f. Notice
that the surjectivity of f ensures that f o g is the identity on Q.
Given a directed subset D of Q, we know that g[D] is a directed subset
of P (because g is isotone); consequently, g{D] has a join x, and

f(x) = £(\V/g[D]) = VE[g[D]] = VD, Hence Q is up ~complete.

Now consider a system { ﬁ i(Q), and define

Z o= {4gly] : Y ezv)ch:\{(P).

Suppose x < \V/ Y for all Y € Y. Then x < VElglyll = £(Vgly]D, g(x) <
Vag(Y] = Vig[Y], that is, g(x) < V2 for all 2 € 2. Hence we find a
directed set E ¢ N £ such that g(x) = VE, whence x = f(g(x)) = vV flE]

Furthermore, f{E] is a directed set with f{E] ¢ Y for all Y ¢ {. Indeed,

Publisied by 18U Een5 iy Repadtdy) Sogg laly 1) = w = vy 9
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COROLLARY 3. The image of an (i,m) - continuous complete lattice under
a map which preserves arbitrary meets and directed joins is again

(1,m) -~ CONELNUOUS.
(But see Example 31!)

COROLLARY 4. For a poset P, the following conditions are equivalent:
(a) P 78 continuous.

(b) The join map Vv : {(P) + P 19 well ~defined and has a lower adjoint

(namely the way -below map § :+ P » 1 (P)).

(c) P is the image of an algebraic posgset under an upper adjoint map

which preserves directed joins.

In the light of this characterization, continuous posets appear as a

very natural generalization of algebraic posets.

3. The Scott operator and Scott - closed sets

Given an arbitrary poset P, we define the Scott operator
L : §(P) » P(P) by

(Y) :={x € P : x € A(D) for some directed D < +Y} (Y € P).

Whenever D has a join then x € A(D) means x < VD . A set Y with
$(Y) = Y is called Scott closed. Special Scott -closed sets are the
finitely generated lower sets, i.e. the sets +Z with 2 & P. But clear-
ly not all Scott -closed sets must be of this kind. For example, if P
satisfies the ascending chain condition then every lower set is Scott -
closed. The Scott - closed subsets of a power set {I(X) (considered as a
complete lattice) are precisely the systems of finite character con-
tained in P (X).

Let us return to the general case of an arbitrary poset P. As I is
always extensive and preserves finite unions, it is clear that the
Scott —~closed sets form a topological closure system o(P)®. The cor-
responding system of open sets, denoted by o(P), is the so -called
Scott topology of P (cf. [81,[12],[22]).

A

We denote by ! the corresponding closure operator, i.e.

https://rep%éitbry.lsﬁkédu/’sc@/\}’éﬁ/FssYI/QO’\ ! (y € P). - 10
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~
€

Obviously, I 1s idempotent if and only if I = I. But unfortunately I
may fail to be idempotent even if P is an upper continuous complete
lattice.

EXAMPLE 5. Let L denote the complete Boolean lattice of all regular
open subsets of IR (with respect to the Euclidean topology). Consider
the following elements of L:

N U {]%-*%,5%1--% :r=0,...,k-1} u 11,kl

(n,k € W, n > 2k(k+1)),

Xy 1= Jo,k| (k € ),

x := ]O,»[, (where Ja,b[ = {x € R: a<x <bl).
)
_ -7 x
X o”///

*14,2
X
13,2
X6,1 ’
X5,
Obviously,
xn'k [ xm,k for n < m,

while for k < L, xn,k and xm,t are incomparable. Indeed, xn’k includes

112 el s Ao e 1 o]
an open interval ]E’E ;[ of length E n"s R KRED) e itd 7 and
this interval contains a number % with r € {0,...,£-1), while 5 ¢ X p°
I’

4
On the other hand, ¢ 3 € xm'[ ~ X0,k

Now in L we compute
\ . > = =
v {xn,k :n o> 2k(k+1) )= xp (k € W),
Vix, + ke N)}=x,

and for Y = {xn k ° n,k € W, n > 2k(k+1) } it follows that
’
x € I(Z(Y)) but x ¢ I(Y). Hence L is an upper continuous complete lat-

Pailoliskédhoy: LSU: Seholarly Repository, 2023 11
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In contrast to this situation in the "finitary" case, one can

prove:

PROPOSITION 7. The Scott operator L of a continuous poset P <s idem-
potent.

PROOF. This follows from results in [8] and [20], but for the sake of
convenience, we give a direct proof.
Let x € I(Z(Y)). Then there exists a directed set D < I(Y) with
x < V' D. Each way -below set ¢y is a directed lower set, and the sys-
tem{ gy : y € D }is directed by inclusion since the map y » {y is iso-
tone ; hence E = |J{yy : y € D}is a directed lower set. For y € D c
L(Y) we f%pd a directed set Dy with D € 4Y and y < \/Dy’ whence y <
D < VY. Thus we obtain E € 4D, and finally x < \VD =
VI{Viy : y € D}=VE, which proves x € (YY) .,

In terms of the operators I resp: E, upper continuity can be char-

acterized as follows:

PROPOSITION 8. Let P be an up -complete poset. Then

(1) P 28 upper continuous Tff
¥tx n L(Y) = I(¥x n +Y) for all x € P, ¥ c P,

(2) The lattice o(p)° of Secott -eclosed sets 18 upper continuous 1ff
tx N E(Y) = E(%x N ¥Y) for all x € P, Y € P.

(3) If P 28 upper continuous then so is o(P)C. The converse holds Zf
L(P) 78 closed under binary intersecticone (e.g., tf P i8 a A -gsemi-

lattice) or if L 18 idempotent.

More general results have been proved in [ 9 ,Satz 3.6], where the
system of directed sets 1is replaced with an arbitrary system of sub-
sets. For complete lattices, Proposition 8(3) has been established
in [12,II-4.15].

The following example shows that (in contrast to the complete case)
an up - complete poset P with upper continuous o(P)c need not be upper

continuous in its own right.

EXAMPLE 6. The set Z U {tw,w+1} is linearly ordered as usual:
https://repository.lsu.edu/scs/vol1/iss1/90 12
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-w <n <w< p+1 (n € 2Z) .

Let

= (0,~w,0), X := (w,0,w), 1:= (w,0,w+1),
:= { (k,-m,n) : k,myn € w, k <m} u {0},
=1{x :k €ul, x = (k,0,0),

i= {yn :n€wl, ¥, = (w+1,0,n),
:=AUBUCU {x,1}.

O W e

P is an up -complete poset (partially ordered componentwise).
In this poset we always have

vy NOZ(Y) = I(dy N YY)

unless y = x, while

]

X N Z(C) = 4x F 4x ~ {x} L{B) = T(¥x N 4C).

But since L(Y) = I°(Y) = 4x 1f I(Y) = 4B and 3(¥) = 7(y) otherwise, it
is easy to see that

ty NOI(Y) = Z(+y N 4Y) for all Yy € P and all Y € P,

Hence, by Proposition 8, O(P)c is upper continuous while P is not.
But see Proposition 10!

Published by LSU Scholarly Repository, 2023 13
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In analogy to Propositions 4 and 8, we have the following character-

ization of (1,m) -continuity:

PROPOSITION 9. Let m > 2 and P an up -complete poset. Then
(1) P ie (i,m) -continuous iff

(N = N[y for all U S 0(P) (resp. U S (P)).
(2) o(P)€ e (i,m) -continuous iff

BN = NI for atl U g 0(R).

PROOF. (1) Suppose P is (1,m) -continuous, and = 6(P). Of course,
we have Z(NY) = MEI[{]. Conversely, consider an element x € N I[Y].
Then, by definition of £, we find directed sets D, =¥ with x < \/DY
(ye®.as | {p, : Yeq }| < m, there exists a directed set D such
that x =V D and DS (V{4Dy, : Y € ¥ }S N}, whence x € Z(NY).

Now assume Z((1) = MNZI[Y] for all systems I consisting of less than
m directed lower sets. Let | be one such system and suppose x < VY
for all Y € §. Then x € NI{¥] = (N . Accordingly there is a di-
rected set E < N1 with x < VE, and it follows that x € Ix N I(E)

= L(¥x N VE). (Use the fact that m > 2). Thus we find a directed
Dc¥x N +E < NY with x <D, and D € +x ylelds x = \/D.

(2) Suppose E(N1) = r\E[U] for all |} ¢ 6(P), and let be given a

)€

family (Uj : J € J) of subsets of o(P)~ with |J| < m. Then each union

LlUj is a lower set, and we compute in the complete lattice a(p)C:
AV +3€d)= NITWUT) 3 €d)=E(N(UY; : 3 ed)) =
LU (Nela) - Ve T Uy} = VAV - v € T 150 By Proposi-
tion 5, this implies (i,m) - continuity of the coﬁplete lattice o(P)c.
(Notice that we did not need the hypothesis that the systems Uj be di-
rected, so we have shown in fact more, namely " (g,m) -continuity '

of o(P)°).

Conversely, assume O(P)C is (i,m) - continuous, and let } be a system
of lower sets with |§] < m. Then for each Y € ] the system ZY =

{v2 : 2z E Y }is a directed subsystem of o(pP)%, and we compute
Nz s yedl= A{Vz, txetl= VIAYY s ve 1 2 )=

yey
sUNI) « v e - 2,0 = 0N{Uz, s yeud) = 2.
Ye
Combining the last two propositions we arrive at
https://repos@ory.lsu.edu/scs/vol1/|ss1/90 14
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COROLLARY 5. Let P be an up -complete poset with idempotent Scott
operator, and let m be any cardinal greater than 1. Then P is

(1,m) - continuous iff 6(P)S is (i,m) =continuous.
For large m, this result can be strengthened as follows:

PROPOSITION 10. For an up -complete poset P, the following conditions

are equivalent:

(a) P 78 continuous.

(b) G(P)c 18 continuous.

(c) o(p)© (resp. o(P)) is completely distributive.

(d) The Scott operator L of P preserves arbitrary intersections of

lower sets.

Each of these conditions implies that L is idempotent.

PROOF. By Propositions 7 and 9, it only remains to show that complete
distributivity of a(p)€ implies continuity of P. For the proof of this
fact, see [ 8 ],[16] or [18].

Notice that a continuous topological closure system must already be

completely distributive.g
Obviously Proposition 9 cannot be extended to m = 2. Unfortunately,
an (1,2) - continuous poset need not be (i,3) - (i.e. (i,w) -) contin-

uous, although being weakly (1i,w) - continuous (see Proposition 3).

EXAMPLE 7. Define inductively up - complete posets P, as follows.

Choose pairwise distinct elements x,xn,yn (n € IN) . Then
P, o= {x} U {xn :n€eE W} U {yn: n € W} is partially ordered by
setting

Xp S Xp <Xy, <y, <X (n < m)

and no further relations.

We call the sequences (xn) and (yn) generating chains of level 1.
Now suppose up - complete posets P1 € .0 C Pk—1 have been defined
together with certain generating chains of level 1,...,k-=1. Then,
for every generating chain (zn) of level <k and all w € Pk_1 with
w<azs= V’{zn : n € N}, choose a sequence (wn) of new elements

(not in Pk—l)’ call it a generating chain of level k, and set
Published by LSU Scholarly Repository, 2023 15
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w,. < W < w,
(n < m).

By adjoining the elements of all generating chains of level k, the po-

set Pk_1 is enlarged to an up - complete poset Py .

It is then easy to see that the directed union P = U {Pk : k € N}

is an(i,2) - continuous poset, but P is not (i,3) - continuous because
there is no directed set DS +{x :n € N} N ¥y :n € W} with

x = VD. < &

x3/o/ "o Y3
xz/ ’ Yy

https://repository.lsu.edu/scs/vol1/iss1/90 16
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4. Trnreducible elements

In this section, we derive a common generalization of the following

two important theorems of lattice theory:

(I) Every element of an algebraic complete lattice is a meet of com-
pletely irreducible elements (cf. [4],[5, 6.1}, or [ 12 , I-
4.23]) .

(II) Every element of a continuous complete lattice 4is a meet of ir-
reducible elements (cf. [12, I-3.10]).

Let m be any cardinal number >1. An element g of a poset P is called
m - trreducible (or, to be more precise, m-meet - irreducible) if g
cannot be the greatest lower bound of a set Y unless |Y| >mor q € Y.
Hence "completely irreducible" means "
all) m > |P|". If P is a A -semilattice then "irreducible" means "m -

irreducible for one (resp. all) m with 2 < m < 0", However, in arbi=-

m - irreducible for one (resp.

trary posets there can exist (m-1) - irreducible elements which are not
m - irreducible (m € N, m > 2).

EXAMPLE 8. Consider a 2m -element set P = {x1,...,xm} u {y1,...,ym},
partially ordered by x, <y <=>k #nork=1¢( <k, n<m.

Here X, is (m=-1) ~irreducible but not m - irreducible.

Recall that a subset U of an up -complete poset P is Scott open
(i.e. U € o(P)) iff for each directed set D c P, /D € 41U implies
DN U4 @ (in particular, U must be an upper set). Now we say U is
m~ A-glosed if for all Y €U, x =AY implies x € U. Finally, we
call P m-generated if for all X,y € P with x { y there exists an
m - /\ -closed open subset U with x € U and y ¢ U. This is certainly
fulfilled if o(P) has a base of m - /\ -closed sets.

The following fact is well -known in the case of complete lattices
(cf. [12, I-3.7 and I ~-4.22])) .

Published by LSU Scholarly Repository, 2023 17
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PROPOSITION 11. (1) Every compactly generated poset is m - generated

for all m > 1.

(2) Every weakly continuous poset ie w - generated.

PROOF. (1) If x i Yy in a compactly generated poset then there exist a
compact element z with z < x and z j y, whence U = tz is an open set

with x € U and y ¢ U, and clearly U is closed under arbitrary meets.

(2) Given x } y, we may choose inductively elements z such that

Z = X, 2 € vz, and z f{ y. Then U = + {zn :n €wlis an w=-/A\ -

o n+1
closed open set with x € U and y ¢ U.4

It is clear that a complete lattice 1is compactly generated (i.e.
algebraic) 1f and only if it is m -generated for all m > 1. However,
there are up - complete posets which are m - generated for all m > 1
but not compactly generated, as the poset P1 in Example 7 shows.

An w - generated complete lattice which is not even (weakly) upper con-
tinuous will be presented in Example 8,

Now Theorems (I) and (II) admit the following common generalization:

PROPOSITION 12. Every element of an m - generated up —-complete poset P

18 a meet of m-irreducible elements.

PROOF. We have to show that for x,y € P with X i y, there exist an m -
irreducible g with y < g but x f q. Choose an m ~/\ -closed open set U
with x € U and y ¢ U. Then P ~ U is closed under directed joins and
has therefore a maximal element q > y. Clearly g } x, and q must be m~
irreducible. (For the case m =w, see [12,1-3.7]).4

COROLLARY 6. (1) Every element of a compactly generated poset is a

meet of completely irreducible elements.

(2) Every élement of a weakly continuous poset is a meet of w -irre-

ducible elements.
We conclude this note with several applications arising in order
theory, algebra and geometry. (For several interesting applications

of continuous and algebraic posets to topology, see (1 ]1,[{12] and [18)).

EXAMPLE 8. The convex closed subsets of IR form a closure system K;.

https://repository.lsu.edu/scs/vol1/iss1/90 18
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Since each singleton is a convex closed set, f; is a complete lattice
in which every element is a join of atoms. But none of these atoms is
compact, so K; cannot even be upper continuous (all the less algebra-
ic). Moreover, i; contains no completely irreducible elements at all.
However, a special version of the Hahn -~ Banach Theorem states that ev-

ery closed convex set is an intersection of "closed halfspaces”

Lac={xemn:<x,a>_<_c} (a € R" ~ {0}, c € R),
’

and it is easy to see that these halfspaces are precisely the irreduc-

ible elements of ?;.

The above mentioned intersection theorem can be reduced to Corolla-

ry 6(2) as follows.

EXAMPLE 9. Consider the system Kg of all nonempty convex open subsets
of R". It is not hard to see that the closure map Y » Y is an isomor-
phism between Kg and the system ig of all convex closed subsets of IR"
with nonempty interior. The inverse isomorphism is induced by the in-
terior map ¥ » ?. In particular, each Y € Kg is a regular open set.
Obviously, Kg is closed under finite intersections and directed unions
so it is an up -complete A -semilattice. (Moreover, Kg u {@} is a com-
plete lattice). For X,Y € Kg, X € Y means that X is compact in the
topological sense and contained in Y. Hence Kg has no compact ele-
ments at all, but it is a continuous poset (use the fact that r" is

a locally compact space). Hence every convex open set 1s an intersec-
tion of irreducible ones, and as before it is easy to see that the

ol
(they are not completely irreducible, although they cannot be repre-

irreducible members of Kg are precisely the open halfspaces LaO

sented as intersections of larger convex open sets!).

By passage from Kg to‘ig, we see that every closed convex set with
nonempty interior is an intersection of closed halfspaces. But a non-
empty convex closed set K with empty interior can be represented in

the form
K= (x+V) n(K+vh

where x € K, V is a subspace of R" ana vt its orthogonal space. Now
K + V 1is a convex open set with nonempty interior, and as x + V is
trivially an intersection of closed halfspaces, the same is true for
K.

EXAMPLE 10. Let U be a fixed nonempty bounded convex open subset of
Published by LSU Scholarly Repository, 2023 19
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R" and ﬂU the system of all "similar" open sets contained in U, i.e.
yU=(x+cU:xem",c>o,x+cU§U}.

It is a non - trivial exercise to show that FU is closed under directed
unions. (Notice that, for example, the system{x + cU : ¢ € IR, c > O}
is not inductive). However, in general, UU is neither a v - nor a A -
semilattice. For V,W € UU, one finds that V € {W means V € W (observe
that V is compact). From this characterization one can deduce by some
further computations that nU is a continuous poset without completely
irreducible elements. However, by Corollary 6(2), each element of ”u
is a meet (not: intersection!) of irreducible ones. The feature of
these irreducible elements heavily depends on the form of U. For ex-
ample, if U is an open disk in IR2 then every element of vU is irreduc-
ible. On the other hand, if U is an open square in IR2 then only those
open squares V € U which have a boundary in common with U are
irreducible.

st 1 r——=-—=-- ""
' Fe=q | | |
! Py ! i |
I

: L__J: | |
| | R
U | ! Vol
| S, | T RS SR T |

V € yU vV ¢ 4U

V not irreducible V irreducible

In the following constellation, the two open squares have neither a

join nor a meet:

| 1

! iy

: | | i
!

! | : 1

i i P i

(I |
(IR — wl

EXAMPLE 11 . The system of all open rectangles

={(X,y)€m2:a<x<b,c<y<d}
(0<a<b<1, 0<cc<dx<)

Qa,b,c,a

contained in the unit square [0,1}2is a complete continuous lattice

without atoms. On the other hand, the system of all closed rectangles

https://repository.lsu.edu/scs/vol1/iss1/90 20
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contained in [0,1]215 also a complete lattice but not (weakly) upper
continuous, by similar reasons as in Example 8. Dropping the atoms

of this lattice, we obtain a complete continuous lattice isomorphic

to the lattice of open rectangles.
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