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At the Bremen Conference, Alan Day mentioned that semilattices also have 
injective hulls and that there may be a connection between the Zariski topology on 
semilattices and essential extensions. And indeed, he was right, and we will discuss 
this matter in these notes. 

1. Injective Hulls of Semilattices* 

Let 5 be a semilattice. We say that S is injective^ if it is injective in the 
category of all semilattices with semilattice homomorphisms as morphisms. The 
following definitions and results are taken from [5] and [1]: 

LI. Proposition. A semilattice S is injective if and only if S is a complete 
Brouwerian lattice (i.e. a distributive complete meet-continuous lattice). 0 

Let S and T be semilattice and let t : T be an embedding. If for every 
semilattice homomorphism g :T —> L the composition goi is injective if and only if g 
is injective, then T is called an essential extension of S. Every semilattice S admits 
a maximal essential extension and this maximal essential extension happens to be 
injective. We will denote this maximal essential extension by D{S); this semilattice 
P{S) is called the injective hull of 5. The injective hull of a semilattice S can be 
constructed in the following way: 

A subset AQSis called admissible if and only if the following two conditions 
hold: 

(a) The supremum sup A exists in 5. 
(b) For every element s £ S the supremum sup(A A «) exists in S and we have 

sup(A A s) = 8 A sup A. 

A subset M C 5 is called a D-ideal if and only if 
(c) M is a lower set. 
(d) If A C M is an admissible subset, then sup A G M. 

Let P{S) be the set of all D-ideals of S. Then D{S) is a complete lattice 
(where the infima agree with set theoretical intersections); this lattice turns out be 
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be Brouwerian. 

1,2. Proposition. Under the canonical embedding 

is : S D{S) 
s [s 

the semilattice D{S) becomes the injective hull of S. Moreover, the embedding / : 
5 T is an essential embedding if and only if there is an embedding g : T D{S) 
such that is = g 0 f. [| 

2. Essential Extensions and the Zariski-Topoiogy. 

Let 5 be a semilattice and let p and q be semilattice polynomials an one variable 
with constants from S. We define 

b = 9ls = {2 € 5 ] p(a:) = 9(1)}. 

The Zariski-topology (Z-topology) on S is the coarsest topology making all sets of 
the form = q\s closed, where p and q ranges over all semilattice polynomials in 
one variable with constants from S. Recall from [3] that the following sets form a 
subbase for the closed sets of the Z-topology: 

[a A a; < 6]5 = {a; € 5 I a A a; < 6}, 
fa = {a; € I a < «}. 

2.1. Proposition. Let 5 be a semilattice and let a, 6 E 5' be given. Then 
[a A a; < b]s is a 2)-ideal, i.e. we have [a A a: < 6] E D{S). 

Proof. Let M C [a A a; < 6)5 be an admissible set. Then for every 
m £ M we have a Am < b. Since M is admissible, this implies la A; sup M == 
sup(M A a) < 6} i.e. supAf E [a A a; < 6]5. fl 

Next, we show that conversely every D-ideal is closed in the Z-topology. We 
will even show a stronger result, namely that the sets of the form [a A a; < 6)5 
order generate D{S). We will start with a lemma: 

2.2. Lemma. Let be a semilattice and let Af C 5 be D-ideal. If XQ E 
S \ Af, then there are elements a, 6 E 5 such that for all elements m E M we have 
m A a < b < a < XQ. 
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Proof. Since XQ ^ , and since M is a X)-ideai; either the set jaJo fl ̂  
is not admissible or this set has not supremnm XQ. In the first case, there is an 
element bo £ S such that 60 A (i^o n M) = i(6o A a:o) 0 M has not bo A 2:0 has 
its supremnm. In the second case, we can find such an element 6©, too, namely 
aiQ = bo. Hence in either case we can state: 

There are elements bo,b £ S such that for all elements m £ M haye 
m Abo A XQ < 6 < 60 A ajQ. 

Hence, the elements b and a — bo A XQ have the required properties, fl 

2.$. Proposition. Let 5 be a semilattice and let M C 5 be a D-ideal. If 
xo £ S \ Mj then there are elements a,b £ S such that XQ (. [a A x '< b]s and 
M C [a A X < b]s' 

Proof. If we pick the elements a, 6 G 5 as stated in Lemma [2.2), then 
a < a;o implies a A XQ = a b, hence XQ ^\a> A x ^ 6)5. Clearly, a A x ^ b for 
all m G M implies M C [a Ax < b]s- ^ 

2.1^. Proposition. Let iS be a semilattice. Then the D-ideals of S are exactly 
the intersections of sets of the form [a A 2; ^ 6)5, a,b £ S. Especially, all D-ideals 
are closed lower sets in the Zariski-topology. 0 

For the following result, note that the Z-topology on every semilattice which 
happens to be a Brouwerian lattice is equal to the interval topology.. 

2.5. Theorem. The embedding is : S D{S) is a topological embedding for 
the Z-topologies on S and 

Proof. Since P{S) is a Brouwerian lattice, the Z-topology on D{S) is the 
interval topology. 

First of all, we show that the mapping is is continuous. Thus, let M £ D{S) 
be any jD-ideal of 5. Then 

^5(2?) < M Ix Q M 
^x£M, . ^ ^ 

hence ig^ {{N £ D(S) | N C M}) = M, and this set is closed by Proposition (2.4). 
Moreover, 

^*5(2?) M M C Ix /gx 
^ x£ n{T''^ I ^ ̂  
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and this set is closed in the Z-topoIogy of S, too. 
It remains to check that the embedding is is open onto its image. Let M = 

[a A 2 < 6]5. Then, by (1), M = (jM). If 2 € 5 is given, then, by (2), we have 
|a; = ({M G PliS") I {2 C M}). Hence the relative topology on S inherited 
from the interval topology on P{<S') is as least as fine as the Z-topology. O 

From this last result and from proposition (1.2) we conclude: 

2.6. Theorem. Let S and T be semilattices and let / : 5 —>• T be an essential 
embedding. Then / is a topological embedding for the Z-topologies on S and T, 
respectively, fl 

We now study some properties of the closure operator in the Z-topology: 

2.7. Proposition. Let 5 be a semilattice and let A C 5. Then A is: admissible 
and 2 = sup^ A if and only if ^*5(2) = sup^^^^ 

The proof of (2.7) follows immediately from the meet-continuity of P{S) and 
the definition of admissibility, fl 

2.8. Proposition. Let 5 be a semilattice and let A C 5 be a lower set. Then 
the closure of A in the Z-topology is a lower set, too. 

Proof. This statement is true for meet-continuous lattices in the interval 
topology and hence for arbitrary semilattices by (2.5), fl 

For the next result, recall that an ideal of a semilattice is an directed lower set. 
The set of all ideals of S will be denoted by Id{S). Note that Id{S) is a semilattice 
under n (see [2, p.6, Exercise 1.15]). Also, in order to avoid confusion, we will 
denote suprema taken in 5 by sup^ and suprema taken in P(5) by supp^^p 

2.9. Proposition. Let 5 be a semilattice and let / C 5 be an ideal of S. Then 
the closure 7 of / in the Z-topology is given by 

I = {x ^ S \ Iz f] I admissible and has supremum 2}. 

Moreover, 7 is a D-ideal. 

Proof. Let 4*5(7) be the image of I in ^(5). Furthermore, let 4*5(7)" be the 
closure of is{I) in the Z-topology of D{S). Then 7 = ig^ (^*5(7)"") by (2.5). Let 
A = supp(5) 45(7) e D{S). Since on D{S) the Z-topology and the interval topology 
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agree, J, A is closed in the Z-topology on D{S). Hence, we conclude that 

is{ir Q 

Now let x G /• Then 
45(«) = £ A 

therefore the meet-continuity of P(5) yields 

iz = sup p(5)(ia; n 
= supp(5)(i5(i«n/)). 

From (2.7) we obtain that J,® fl / is admissible and has supremum x.. This verifies 

J C {« G -S" I n / is admissible and has supremum x}. 

Conversely, assume that fl / is admissible and has supremum x. Using (2.7) 
again, we obtain 

iz = sup p(s)(«5(ia: n /)). 

Since the intersection of two ideals is again an ideal, fl I) is directed and 
hence converges to its supremum in the interval topology. Hence Ix f) I converges 
to X in the Z-topology by (2.5). This proves the other inclusion. 

It remains to show that / is a D-ideal. First, note that / is a lower set by 
(2.8). Let M C / be an admissible subset and let x = sup^ Af.. We have to 
show that X Q I. By (2.7), ^5(2;) = supp^5ji5(M) C supp^^j 45(1) and therefore 
ig(x) = supp(5)(t5(2;) n ^*5(7)) by the meet-continuity of P(S), Proposition (2.7) 
now yields that ja; fl / is admissible and has supremum x. Thus a; G / by the part 
of the proposition we already proved. J 

For the following result, recall from (2.4) that every element A G ^(5) is a 
subset ACS which is closed in the Z-topology. 

S.IO. Proposition, Let 5 be a semilattice. 
(i) For every ideal I G Id{S) we have I = sup{«5(a;) | a; G /}• 

(ii) The mapping 
- : Id(S) D{S) 

preserves finite intersections, i.e. is a semilattice homomorphism. 
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Proof. (i): Let A = isil) € D{S), We have to'show that A = L We 
already saw in the proof of (2.9) that ja; C A for every x Q1. This shows I ^ A. 
Conversely, let x G A. Then Ix C A and hence the same arguments as the once 
used in the proof of (2.9) show that [x n I is admissible and has supremum x. By 
(2.9), this shows that XGI. This verifies the inclusion ACL 

(ii) Let I and J be two ideals of S, Then the meet-continuity of D{^S) and the 
fact that is preserves finite infima yield 

Slip P{S){is{T)) n sup P(5)(^*5(«^)) = sup i?(5){«5(«) | K G /} (1 SUp i?(5)0*5(y) \ V ^ J} 
= sup :>(5)0*5(a; Ay)\xeIjyeJ} 
= sup p{s){is{z) \z Gl n J} 
= supp(5)(i5(/n /)). 

Therefore, (ii) is a consequence of (i). fl 

The proof of this proposition would be much easier if we could assure that the 
closure of an ideal is again an ideal. However, this is not the case as the following 
example shows: example shows: 

IB. 11. Example. Consider the following subsemilattice S of the unit square 
[0,1] X [0,1]: 

S = {(a;, I/) € [0,1] X [0,1] I a; = 0 or 1/ = 0 or a; = y < 1}. 

Then the unit square is an essential extension of S, hence the Z-topology on S 
agrees with the ordinary Euclidean topology. Moreover, 

/ = 5\{(1,0),(0,1)} 

is a directed lower set of hence an ideal. Note that / is dense in 5, i.e. 1 — S. 
However, S itself is not directed (the elements (1,0) and (0,1) do not have an upper 
bound in 5). Therefore, S is not an ideal of S. This shows that the closure of an 
ideal does not have to be an ideal. 

3. Semilattices for which the Z-Topology is Hausdorif. 

For distributive lattices L, the lattice version of the Z-topology lis Hausdorff if 
and only if L admits an essential extension which is completely distributive. We will 
prove a similar result here for semilattices. We will show that for a semilattice 5, 
the Z-topology on S is Hausdorff if and only if S admits an essential extension p{S) 
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whicli is a continuous semiiattice (i.e. a continuous lattice without largest element 
1) such that on p{S) the Lawson topology and the Z-topology agree. Examples 
for such semilattices are semilattices of finite breadth (see Theorem (3,10)) and 
hypercontinuous lattices (see Theorem (3.11)). 

3.1. Definition, Let 5 be a semiiattice. By p{S) we denote the smallest 
subsemilattice p{S) C D{S) such that 

(1) isiS) C p{S). 
(2) p{S) is the smallest subsemilattice of D(S) which satisfies (1) and at the 

same time is closed in D{S) under the formation of directed suprema and 
arbitrary non-empty infima, [J 

Note that p{S) is always an essential extension of 5. It is clear that p{S) is 
always a meet-continuous complete semiiattice (i.e. infima of non-empty sets and 
suprema of directed sets always exist). We will now show that the Z-topology on 
p(5) is Hausdorff if and only if the Z-topology on S is Hausdorff. 

3.2. Proposition. Let 5 be a semiiattice. Then p(5) is the smallest subset 
of D{S) which is closed under the formation of directed suprema and (non-empty) 
filtered infima. 

Proof. Since D(S) is meet-continuous and since 4*5(5) is closed under finite 
infima, the smallest subset containing is{S) closed under the formation of directed 
suprema and (non-empty) filtered infima is a subsemilattice again and hence agrees 
with p{S), [] 

3,3. Proposition. Let 5 be a semiiattice. Then the Z-topology on 5 is Hausdorff 
if and only if for every pair of elements ico j yo € 5 such that XQ < yo there is a 
finite set F C F and finitely many elements ai, 6i,...,a„, 6^ E 5 such that 

(1) 350 g 
(2) Vo ^ K A s < 6i]s U •.. U [On A a < 
(3) 5 = ti'' U K A ® < &i]s U ... U [a„ A I < 6„]s-

Proof. Assume first of all that the Z-topology is Hausdorff and let XQ , yo G 
5 be given such that SQ < yo. Then we can separate XQ and yo by disjoint 
open neighborhoods. Translating this into closed subsets of 5 and taking into 
account that set of the form ja and [a A a; < b]s form a subbase for the closed 
sets, we therefore can find elements ai, 6i,..., a^, bmi • • -fln; € 5 and finite subset 
Pi 1^2 Q 5 such that 

(a) XQ ^[ai Ax < 6I]5 U ... U [flm A « < bm]s U . 

7 
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(D) VO i [dm+i A a; < bm^i ]5 U . •. U [fln A a; < b„]s U Ti^2-
(c) 5 = t^i U ti^2 U [fli A a; < 61)5 U ... U [^n A a; < 6«]s. 

Since ICQ < Vo, the elements ai, &i,..a„, 6„ € S and the finite set F = 
FiU F2 C S satisfy (1) - (3) of the proposition. 

In order to proTe the converse, let 2:1,2/1 E 5 be given and assume that 2:1 yi-
Without loss of generality we may assume that 2:1 ^ t/i- Let yo = t/i l®t 
XQ = xi A yi- Then a;o < 2/0 hence we may find a finite set F C 5 and 
elements ai, 61,..., a^, 6^ E S such that (1) - (3) hold. Then, since sets of the form 
[a A a; < 6]^ are lower sets and since XQ xi, properties (1) - (3) also hold with 2:1 
and yi instead of 2:0 and yo. Hence 

U = S\ {[ai Ax< 5I]5 U ... U K A a; < b„]s) 

and 
F = 5 \ 

are disjoint neighborhoods of 2:1 and yi respectively, fl 

S,^. TheoreiTi. Let be a semilattice. Then the Z-topology on S is Hausdorff 
if and only if the Z-topology on p{S) is Hausdorff. 

Troof. If the Z-topology on p{S) is Hausdorff, then the Z-tqpology on S is 
Hausdorff by (2.6). 

Conversely, assume that the Z-topology on S is Hausdorff. Let € P{^J 
and assume that To C ro,Xo 7^ Fo. We would like to verify (3.2) with the elements 
Xo and ^0- Since Xo.Jo C S are D-ideals, this means that there is an element 
!/i e 5 such that yi € lo \ X). By Lemma (2.2) we can find elements a, 6 € 5 such 
that 

mAa<b<a<yi for all m E XQ, 

Since the Z-topology on S is Hausdorff, we can apply (3.2) in order to find a finite 
subset F C /S and elements ai, &ij. • o-m bn ^ ^ such that 

(1) 
(2) ai:[ai Ax < bi]s U . • • U [a« A 2 < bn]s, 
(3) 5 = t'f' U [ai A a; < &i]5 U ... U [a« A a; < 

Now let (7 = F \ Xo. Then G is still a finite set. Moreover, let 

= a,- A a for all 1 < ^ < n. 

Then we have 

8 
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(1') ^ , 
(2') a (i[a A X < b]s \J [ai A X < ^.ijs U ... U ^ ® ^ ̂ n]s-
(3') 5 = TC U [o A s < 6] U [o'l < ''lis U ... U K < b„]s-

Here, (1') and (2') are obTious. To verify (3'), let u£S. Consider the element 
a A « and assume that 

a A u ^ [fl A 2 < 

and 
a A u ^ [a'- A a; < &,-]5 all 1 < i < n, (2) 

Then we conclude that 

a A u 0 [a,- A z < bi]s for all 1 < i < n. 

Since 5 = U [fli A a; < 6i]5 U ... U [an A a; < 6„]5, we conclude that a A u G 
We would like to show that in fact a A « G ff'- L®!' / G ^ such that f < a Au 

and assume that / G -Xo- By the choice of a and 6, this would imply that a A / b. 
Since f < a A u < a, this would imply / = / A a < 6, contradicting b'i^F. 

Therefore, statements (1) and (2) above imply 

a A tf G Tf^-

Finally, note that a A « G [a A a; < 6)5 is equivalent to u G [a A a; < 6)5 and 
a Au G [a,- A a A a; < bi]s is equivalent to « G [a,- A a A a; < &,•]>§. Hence (3) 
follows. 

In the next step, we show that 

(1") Xo g ^is{G); 
(2") YQ i [t5(a) n X C ^5(^)]p(5) U [^*5(ai) D X C t5(^n)]p(S) U ... 

... U [^5(a',i) n X C ^5(^n)l/j(5)i 
(3") p(5) = T»s(G) U [is(a) n X C »s(ft)]p(s) U [«s(ai) n X C i»s(6n)]p(S) U 

... U [»s(a'„) n X C »s(6„)];,(s)-

In order to verify (1"), assume that we had XQ € tis(^)- Then isis) £ XQ for 
a certain 3 € G and therefore j € XQ n G 0, contradicting the choice of G. 

Next, assume that (2") does not hold, i.e. that 

Yo e [i5(a) n X C »s(6)]p(S) U [ts(o'i) H X C »s(6n)]p(S) U • • -
• • • U [*s(®'») n X C ls(^n)],j(S)-

9
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Then either YQ H isia) Q is(o) or To H 45(^9 £ 1 < 4 < n. In the 
first case, this would imply 

a G it/1 n jfl 
C To n ia 
= lo n 45(a), 
c 45(6) 
= 16 

i.e. a < 6 < a, a contradiction. Hence there has to be a number i € {1,..n} such 
that 

Yo n 45(a;.) c is{bi). 
In this case, we obtain 

a A a,- G it/i fl ia,- n ja 
= iyi n la'i 
C Ko n »s(a<) 
C is(6.-) 
= ibi, 

i.e. a € [a,- A X < 6,-]s, contradicting (2). Hence we verified (2"). 
Finally, we have to verify (3"). Let 

A = T45(<^) U [45(a) n X C 45(6)]p(5) U [45(a'i) n X C 45(6n)|lp(5) U • • • 
... U [45(a'J n X C 45(6„]]p(5). 

We have to show that p{S) C A. We will do this by using (3.2): Note that the 
meet-continuity of p{S) implies that A is closed under directed suprema and non­
empty filtered infima. Moreover, by (3'), the image is{S) of S under 4*5 is contained 
in j^(-S'). Hence, by (3,2), p{S) C A, 

An application of (3.3) now finishes the proof of the theorem. J 

If S is meet-continuous itself, then all the sets of the form [a A a? ^ b]s are 
Scott-closed in S. Hence we can state (see also [3]): 

5.5. Proposition. K 5 is an up-complete meet-continuous samilattice, then 
the Lawson-topology on S is equal to or finer than the Z-topology. lEspiecially, the 
Z-topology is quasicompact. 0 

The last proposition immediately yields 

10 
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3.6. Proposition. Let S be complete meet-continuous semilattice such that 
the Z-topology is Hausdorff. Then the Z-topology and the Lawson topology agree. 
Especially, the Z-topology is compact, fl 

The next result follows from (3.4) and (3.6): 

8.7. Corollary. Let 5 be a semilattice and assume that the Z-topology on S 
is Hausdorff. Then the Z-topology is actually completely regular. 'Moreover, the 
continuous semilattice homomorphisms into the unit interval separate the points of 
S and 5' is a topological semilattice in the Z-topology. [| 

We will now list some properties which insure that the Z-topology of a semilat­
tice is Hausdorff. The first such property is finite breadth. We need some prepara­
tions: If 5 is a semilattice, then we denote by Id[S) the semilattice :of all ideals of 
S (an ideal being an up-directed lower set of 5). 

8.8. Proposition. Let 5 be a semilattice of finite breadth n. Then Id{S) has 
also breadth n. 

Proof. In the case of lattices, this theorem is well known: The ideal lattice 
of a lattice L is a homomorphic image of sublattice of an ultrapower of L. The fact 
that the ideal lattice of L has breadth n, too, now follows from model theoretical 
considerations. Fm sure that (3.8) is also well known in the case where S is merely 
a semilattice, but since I could not find any references, I will present a proof here: 

Since 5 is a subsemilattice of Id{S) under the embedding s >-*• liS : S 
the breadth of Id{S) is at least n. Conversely, we have to show that the breadth 
of Id{S) is at most n. Therefore, let /i,.. .Im G Id{S) be an irredundant family of 
ideals. Wc have to show that m < n. In order to do this, we will pick a family of 
elements Xi £ /,-, 1 < i < m, which is irredundant. 

First, recall that . is irredundant if and only if 

h n... n /t-i n /,+i n.. ./m 2 A" ®^®ry i e {i,...., m}. 
Hence for every number i G {1,. • we can pick an element 

a,-G(/i n ... n li-i nii+i n ...nz^)\ 
Then ay £ I{ whenever i 7^ j. Since all the /Fs are ideals, hence directed, we can 
find elements 6,- such that 

^3 ^ ^ U for every i 7^ j. 

The elements 61,..., 6^. then form an irredundant set. Indeed, if we had 

61 A ... A 6;_i A A ... A bm < bi 

11 
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for some i G {1, • • •, then, since ai < bj whenever i y, we would obtain 
ai < b{ G Iii contradicting the choice of a,-. 0 

S,9. Proposition, Let 5 be a semilattice of finite breadth n. Then p{S) also 
has breadth w. 

Proof. For every subset H C p(5) let 

5"*" = {supD I D C jff is directed }, 
H- = {MF \F CE IS filtered }. 

Firstly, we show 

(C) If 5" is a subsemilattice of p{S)f and if the breadth of H is finite and equal 
to n, then the breadth of the subsemilattices and are also equal 
to n. 

Let us consider first. In this case, we argue as follows: Consider the 
BuLSpPlIlff 

sup : Id{H) -> p{S) 
I SUPp(5)/ 

Since p{S) is meet-continuous, this mapping preserves finite infima. Moreover, since 
H and therefore Id{H) have breadth n, the breadth of the image of the semilattice 
homomorphism is at most n. Since E'^ is the image of this mapping, the breadth of 

is no larger than n. On the other hand, 5" is a subsemilattice of E^ . Therefore 
the breadth of E'^ is equal to n. 

Next, let us consider E~ . Assume that fli,..are irredundant. We 
have to show that m n. Since the ai,..are irredundant, we know that 

o>x A • • • A —1 A A • • • A fflut ^ 

for every i G {1, • •m}. Every element a; is a filtered infimum of elements of E. 
Therefore, for every 1 < t < m we can pick an element b{ £ E sudh that a,- < 6,-
and 

o>i A • • • A —1 A A • • • A ^ 

Now assume that there would be an i such that 

^1 A • • • A bf—X A A • • • A bffi b^. 
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Then we also would have 

fli A ... A A flt+i A •.. A A • • • A A ^t+i A ... A 6m 
<bi, 

contradicting the choice of the 6,-. Hence the elements 61,...,M form an 
irredundant set. Since the breadth of H is n, this yields m ^ n and therefore the 
breadth of is a most n. The fact that jff is a subsemilattice of E~ shows that 
the breadth of H~ is exactly n. 

The next statement is obvious; 

(D) If Hi, i e /, is an up-directed set of subsemilattices of :and if the 
breadth of each Hi is equal to n, then the subsemilattice has 
breadth n, too. 

We now define inductively for every ordinal i less than |/?(5)| -h 1 semilattices 

Ho = is{S); 
Hi+i = Er+ ; 

Hi = M Hj if i is a limit ordinal . 
J<* 

Then, by (C) and (D), the breadth of all the semilattices Hi is equal to n. For 
a certain ordinal i we have finally to arrive at Hi = H{+i, which means that Hi 
is closed under directed suprema and filtered infima. For this i we have Hi = p{S) 
by (3.2). Thus, p{S) has breadth n. [j 

We now can conclude 

S.IO. Theorem. If 5 is a semilattice of finite breadth, then the Z-topology on 
S is Hausdorff. 

Proof. The semilattice p{S) has finite breadth by (3.9). Hence, iby [3], the 
Z-topology and the Lawson-topology agree on p{L). Since a meet-continuous lattice 
of finite breadth is actually continuous by [6], the Z-topology on /)(5) is:Hausdorff. 
Hence S is Hausdorff in its Z-topology by (3.5). 0 

3.11. Theorem. If 5 is a semilattice which admits an essential extension which 
is hypercontinuous, then the Z-topology on S is Hausdorff. 
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Proof. On a iiypercontinuous lattice, the Lawson topology agrees with the 
interval topology. Since the interval topology is always finer than or equal to the 
Z-topology (note that [a — [a As = this implies that the Z-topology is 
Hausdorff. Theorem (3.11) now follows from (3,4). 0 

The last two results suggest that it may be worthwhile to study continuous 
lattices for which the Z-topology is Hausdorff and hence agrees with the Lawson-
topology. In order to have a preliminary name for those continuous lattices, let us 
call a semilattice S strongly continuous if 

(1) 5 is meet-continuous, up-complete and complete. 
(2) The Z-topology on S is Hausdorff. 

Clearly, every such strongly continuous lattice is continuous. From (3.10) and 
(3,11) we may deduce that every hypercontinuous lattice and every continuous lat­
tice of finite breadth is strongly continuous. Moreover, if 5 is a meet-continuous dis­
tributive lattice, then the Z-topology and the interval topology agree. Hence a dis­
tributive lattice is strongly continuous if and only if it hypercontinuous. What else 
can we say? Is there a equational characterization of strongly continuous lattices? 
Do these strongly continuous lattices in some sense form 'one-point compactifications' 
of semilattices for which the Z-topology is Hausdorff in the same sense as completely 
distributive lattices do for distributive lattices (see [4])? 
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