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1. Introduction. 
The purpose of this paper is to study some of the basic properties of certain 

intrinsic topologies one may define on a semilattice, particularly those in which 
every open set is an upper set. Some aspects of such "one-sided" topologies were 
considered previously in [3, VII-1]. Of particular interest is a topology which we call 
the "upper Z-topology". It can be defined by taking as a subbasis for the closed sets 
the solution sets to semilattice polynomial equations (hence it bears a resemblance 
to Zariski topologies); we give a different (but equivalent) formulation in Section 4. 
Section 2 contains preliminary material on the notion of locally finite breadth. In 
Section 3 we define the Z-topology and discuss some of its basic properties. The 
major topologies are introduced and some basic comparisons obtained in Section 
4. Section 5 introduces the dual topology and in Section 6 we show that the Scott 
topology and the upper Z-topology agree for complete meet-continuous lattices of 
finite breadth. 

2. Distributive Lattices of Locally Finite Breadth. 

S.l. Definition, (i) Let L be a lattice and let A C L be a finite subset. If for 
every a G A we have inf(A\ {a}) ^ a, then A is called A - irredundant. The term 
V - irredundant is defined dually. 

(ii) If a; G L is an element, then the A - breadth of x is defined as 

= sup{|A| : A is A -irredundant and inf A = a;} 

(iii) if br^(a;) is finite for every x E L j then L is said to have locally finite 
A -breadth. 

(iv) The V -breadth of an element x £ L as well as the property of having 
locally finite V -breadth are defined dually. 

(v) If L has both locally finite A -breadth and locally finite V -breadth, then 
L has locally finite breadth. [] 
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Clearly, every lattice of finite breadth has locally finite breadth. Examples 
show that the converse is not true (take a linear sum of the Boolean algebras 2^^, 
n E N} i.e. a sequence of increasing Boolean algebras piled on top of each other). 
Moreover, the lattice of finite subsets of N demonstrates that a lattice can have 
locally finite V -breadth but infinite A -breadth. 

For every x E Live let 

P(x) = {F Q L : P is a minimal prime ideal containing x}. 

The following result connects the number of minimal prime ideals containing 
X with br^(2) : 

2,2. Proposition. Let L be a distributive lattice and let re G L . Then br^(a;) 
is finite if and only if P{x) is finite. In this case we have bry^(a;) = [/'(a;)!. 

Proof. A standard result in lattice theory tells us that 

ix = n^(a:)-
Assume that ^(2;) is finite, say P{x) = {Pi,..P„}. If A is a finite set with inf A = 
X E Pi n ... n PR, then for every 1 < t < n there is an element Ui E An Pi. 
We obtain a; < ai A ... A fln G Pi fl ... D P^ = ja;, i.e. x = ai A ... A fln-
Hence, if A is irredundant, A = (ui,..., a„} showing that br^(a;) is finite and that 

Conversely, let Pi,...jPn E P(x) be n different prime ideals each of which is 
minimal with respect to containing x. We show that the A -breadth at x is at least 
n. Hence, we have to construct an irredundant set A with |A| = n and inf A = a;. 
Firstly, we show 

For every i E {1,..., n} there is an element 
(c) xi E (Pi n.. • n Pf-i n Pi+i n. •. n Pn) \ P» such that 

Xi A Xj < x if i 7^ j. 

(Note that this is trivial for the case P[x) = {Pi,..., Pn}-) 
Our first observation is that Pi fl ... 0 Pi-i fl Pi+i n... n 2 Pi for 

every 1 < i < w, since otherwise Py C P,- for some j ^ i. Because both P,- and 
Py are minimal with respect to containing a;, this implies P,- = Py, contradicting 

Now pick xi E (P2 n ... n Pn) \ Pi arbitrarily and assume that 

Xi e (Pi n.. .P,_i n P,+I n... n P„) \ P.-
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is already diosen so that A xj x for all j <C i. We then will assure the existence 
of ajt+i in the following manner: Let 

y — xi W ,.. W Xi 

and assume that z A y i x whenever z G (A PI •. • H -P» 0 Pi-\-2 H . •. fl Pn)\Pi-¥i • 
Then, since 

(Pi n... n Pt n P.-+2 n... n Pn) \ Pi+i = 
= (Pi n... n Pi n P.-+2 n ... n P«) n (i/\Pi+i) 

is an ideal of the filter L\P,+i , the filter G generated by L\P,+i and is equal to 
the filter generated by (Pi fl • •. H Pi D P»+2 fl • • • fl Pn) \ P»+i VJ hence 
does not contain x. Pick a prime ideal P such that a; G P and P fl <? = 0-

Since L\Pi+i C G, this implies P H (L\ P^+i) = 0, i.e. P C P,>i. Since 
Pi^x was a minimal prime ideal containing x,P — Pi^i. Now note that xj E Pt+i 
for every j < i and hence y G P«+i = P contradicting Pr\'\y^PnG = 0. 

Hence we conclude that there is an element 

ajj-fi G (Pi n ... n Pt n Pt+2 n •. • n Pn) \ Pt+i 
such that 

y A Xi+i =(21 V ... V Xi) A Xi^i 
= (aji A Xi+i) V ... V (a;,- A Xi+i) 
< 

i.e., Xj A Xi^i < X for all j < i. 

Now let 
y^ z= Xj V X, 1 < y < n. 

Since x G Py but Xj ^ Py, we obtain Xj y x ^ x. Moreover, if i 7^ j then yi A yy = 
(xi V x) A (xj V x) = (xi A Xj) y x = x. Finally, let 

= y V ... V yt-i V yv+i V ... V yn, I <i <n. 

Using the distributive law, we obtain 

oi A ... A a,-i A flt+i A ... A On = y* 
oi A ... A fln = 2; 

Hence {ai,..., a^} is an irredundant set of cardinality n with infimum x, fl 
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The next proposition tell us more about the nature of minimal prime ideals: 

S.S. Proposition. Let L be a distributive lattice, let x ^ L an assume than 
bry^(a;) is finite. If P C L is a prime ideal of L which is minimal with respect to 
containing x, then there exists an element y E L such that 

P = {zeL : z Ay < x}. 

Proof. From (2.2) we know that P[x) is finite, say P{x) = 
Without loss of generality we assume that P = Pi. Since P2 fl... H P« 2 
may pick an element y G (P2 fl . •. fl Pn) \ Pi. With this element y we obtain: 

P = {ze L : z Ay < x}. 

Indeed, if z Ay x E Pf then z E P since P is a prime ideal and y ^ P. 
Conversely, if 2: G P, then 2: A y G P fl (P2 0 ... fl Pn) = Pi fl ... fi Pn = i®, 
i.e. z Ay < X. fl 

£.4' Theorem. Let L be a meet-continuous up-complete distributive lattice 
and let a; G L . Then bry^(a:) = n < 00 iff there are pairwise incomparable prime 
elements pi,.. .,p„ G L such that a: = pi A ... A Pn-

Proof. Standard arguments in lattice theory show: If z = pi A •.. A Pnj 
where the p,* are pairwise incomparable prime elements, then br^(z) = n. 

Conversely, suppose that br^(z) = n < 00 and let P[x) be again the minimal 
prime ideals of L containing x. From (2.2) and (2.3) we know that there are elements 
yii" 'iVn ^ L such that P[x) = {Pi,...,P„} where Fi — {z : z A yi < 2}. Let 
Pi = sup Pi. Since L is meet-continuous, we obtain 

Pi A yi = (snpP.) A yi 
= sup(P,- A yi) 
= sup{2r Ayi : z A yi < x} 
< 

i.e. Pi E Pi and hence P,- = J.p,\ Thus, pi is a prime element and 

z < Pi A ... A Pn G Pi n ... n Pn = iaj.O 

4

Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 82

https://repository.lsu.edu/scs/vol1/iss1/82



2.5. Coroilary. Let L be a meet-continuous an up-complete distributive lattice. 
Tben L bas locally finite A -breadth if and only if every element of L is an infimum 
of finitely many prime elements. [] 

3. The Zariski Topology for Semilattices, 

Before we continue out study of semilattices of finite breadth, we would like 
to introduce a topology on semilattices which up to now has not received much 
attention, namely the Zariski topology. As in the case of rings, the Zariski topology 
is the coarsest topology for which solution sets of semilattice polynomials in one 
variable are closed. For semilattices, we have three different types of polynomials 
in one variable, namely 

p(a;) = a 
p(a;) = a A 2 
p(a;) = X 

Let us introduce some notations for solution set of equations: If p and q are two 
semilattice polynomials, then we let 

[p(i) = g(z)] = {xeL : p(x) = g(i)} 
[p(®) < 9(a:)] = {xeL : p(x) < q(x)} 

3.1. Definition. The Zariski topology (or Z-topology for short) on a semilattice 
L is the coarsest topology for which all sets of the form [p(a;) = p and q 
semilattice polynomials, are closed. [] 

Since we have only 3 different types of semilattice polynomials, taking into ac
count all possible combinations of those we obtain the following 4 different "typical" 
closed sets: 

[a/\x = h/\x\ = {x^L:x/\x = h Ax} 
[a A x = b] = {x E L : x A a = b} 

[2 = a] = {a} 
[a A X = x] = {x E L : a A X = x} 

Obviously, [a A a; = ft A x] is a lower set and we have [a A x = a] == fa and 
[a A ® = 2] = ia. Moreover: 

3.2. Proposition. On every semilattice L the sets [a A a; < ft] and fa, a^b E L 
form a subbase for the closed sets of the Z-topology. 
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Proof. We have [flA®<i^] = [aAa; = 6AaAa;] and [a A » = a] = 
hence these sets will generated a topology which is coarser than or equal to the 
Z-topology. 

Conversely, we have to show that the 4 "typical" Z-closed sets mentioned above 
are also closed in the topology generated by sets of the form [a A a; < &] and |a. 
But this follows from the following 4 equalities: 

[a A a; = 6 A a;] = [a A a; < 6] n [6 A a; < fl] 

[a A a; = 6] = I [a A a; < 6] n T& if a > 6 
0 if a ^ 6 

la= [a A X = x]= Q [a: A c < a] 
C^la 

[a; = fl] = J.fl n T^- D 

The following result is immediate from (3.2): 

3,S. Proposition. If L is a Heyting algebra (i.e., a relatively pseudocomple-
mented distributive lattice), then the Z-topology is equal to the interval topology 
II 

It is clear that for meet-continuous, up-complete semilattices the Zariski-topology 
is equal to or coarser than the CL-topology (for the definition of the CL-topology 
see [3]). However, in general the CL-topology on a semilattice will be strictly finer 
than the Z-topology. In order to demonstrate this fact, take any distributive con
tinuous lattice which is not completely distributive. In this case, the CL-topology 
will be Hausdorff and hence strictly finer than the interval topology. (Recall that 
the interval topology on a distributive complete lattice is Hausdorff if and only if 
the lattice is completely distributive.) However, on a meet-continuous distributive 
lattice the Z-topology is equal to the interval topology by (3.3). 

We will show later on that on lattices of finite breadth the CL-topology and 
the Z-topology actually agree on meet-continuous semilattices (see the results in 
section 6). At this point we would also like to mention that every semilattice is a 
semi-topological semilattice in the Z-topology, i.e., the mapping A : LX L Lis 
separately continuous. As a matter of fact, the Z-topology is the coarsest topology 
with this property containing the interval topology (see also Proposition (5.1)). 

There is also a very canonical way to define the Z-topology on a lattice by 
using lattice polynomials instead of semilattice polynomials (and of course, to invent 
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similar definitions for universal algebras). The Z-topology for distributive lattices 
was discussed in [GS 83]. 

4. Comparing Topologies on Lattices of Locally Finite Breadth. 

Normally, one is interested in topologies on lattices wbicb are Hausdorff or 
compact. Thus, these topologies should have sufficiently many open upper sets and 
open lower sets. However, it is often more convenient and very fruitful to consider 
just one 'half of these topologies, namely either the one given by all open upper 
sets or the one given by all open lower sets. For instance, the Scott topology is just 
one half of the CL-topology, but, of course, this Scott-topology is also important in 
its own right. 

We introduce four topologies on an A -semilattice L, which are the 'upper 
halfs' of other better known topologies: 

The upper topology: A subbase for the closed sets in the upper topology is given 
by sets of the form \.Xj x . (This is the upper half of the interval topology.) 

The upper Z-topology: A subbase for the closed sets is given by sets of the form 
[6 A a; < a] and J.a, a,b £ L, 

The upper Frink-topology: This time, we define a topology on L be specifying 
a subbase for the open sets: Let x £ Lhe given and let F be a filter maximal with 
respect to not containing x. Then F is a subbasic open set. 

The Scott-topology: A set ?7 C L is said to be Scott-open, if for every directed 
set D Q L we have sup D EU if and only if D n Cf 7^ 0. 

The upper topology and the Scott-topology are discussed in detail in [3]. The 
upper Frink-topology is a one sided version of Frink's ideal topology (see [2]); as a 
matter of fact, Frink*s ideal topology is the supremum of the upper Frink-topology 
and the lower Frink-topology (defined dually). 

4-1. Examples. (i) If L = [0, Ij", n £ N, then all four topologies agree. A 
subset A C. L is closed in any of those topologies if and only if A is a lower set 
which is closed in the usual Euclidean topology. 

(ii) If L = 2^ , then the upper topology, the upper Z-topology and the Scott 
topology agree (closed sets are again lower sets which are closed in the product 
topology) whereas the upper Frink-topology is much finer, since every ultrafilter of 
the Boolean algebra 2^ is open in the latter topology. 

(iii) If L = X 9^, then the upper Z-topology, the upper Fink-topology and 
the Scott-topology agree, whereas the upper topology is coarser: {(a;, y) : x > 0} 
is open in the first three topologies but is not open in the upper topology. 0 
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Further examples show that all four topologies are distinct in general. 

J^,2. Proposition, Let L be a A -semilattice. Then the upper topology is 
equal to or coarser than all the other three topologies and the upper Z-topology is 
contained in the upper Frink-topology. 

Proof. Only the last claim is worth verifying: Let a,b E L and let x ^ 
[b A X < fl], i.e., b A X a. Pick a maximal filter F containing b A x but missing 
a. Then x E F and F n [b A x < a] = ili, [] 

If iy is a distributive lattice, then the complements of maximal filter missing 
X E L are exactly the minimal prime ideals containing x. Hence (2.3) yields: 

4,S. Proposition. If L is a distributive lattice having locally finite A -breadth, 
then the upper Z-topology and the upper Fink-topology agree, fl 

Tt is obvious that for meet-continuous distributive lattices the upper topology 
and the upper Z-topology agree. Moreover, using (2.4) we obtain the "if" part of 

4-4' Proposition. Let L be a meet-continuous up-complete distributive lattice. 
Then the upper topology and the upper Frink-topology on L agree if and only if L 
has locally finite A -breadth. 

Proof. Assume that the upper topology and the upper Frink-topology on L 
agree and \Qi x E L . We would like to show that x is the infimum of finitely many 
prime elements. Firstly, note that every minimal prime ideal containing x is closed 
in the upper topology and hence in the Scott-topology. Thus p = sup P E P and 
p is a prime element. Now let F be the filter generated by {supP : P E If 
X E Fj then x is the infimum of finitely many prime elements. Hence, assume that 
X i F. Then we can pick a minimal prime ideal P containing x such that P f] F — 
0. Again, supP E P and, by the construction of P, supP E P, a contradiction. 0 

4.5. Theorem. Let L be a distributive complete lattice. Then the following 
statements are equivalent: 

(I) The Frink topology is compact. 
(H) L is a compact topological lattice in the Frink-topology. 

(III) L has locally finite breadth and is infinitely distributive. 
(IV) L has locally finite breadth and is completely distributive. 
(V) Every element a; E L is an infimum of finitely many primes and a supremum 

of finitely many coprimes. 

8 
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Proof. (T) =>• (11): Every distributive lattice is a topological lattice in the 
Frink-topology. 

(I) (II): In a compact topological lattice L an ideal P is closed if and only 
if it is of the form J.2 for some x ^ L . Hence, if X is a compact topological lattice 
in the Frink-topology, then the lower Frink-topology is contained in (and hence 
equal to) the lower topology. Since every compact distributive lattice is infinitely 
distributive, (II) implies (III) by (4.4). 

(III) (V) follows from (2.4). 

(V) =>• (IV): Firstly, note that L has locally finite breadth by (2.4). Moreover, 
every lattice which is generated by primes in the sense that every element is an 
infimum of prime element is meet-continuous (see [3, 1.3.13]). Hence L is infinitely 
distributive. It follows from [4, 1.7] and [5, 4.7] that L is Hausdorff in the topology 
generated by the sets of the form [a A < 6] and [c\J x > d\. Since we already 
know that L is infinitely distributive, this topology is the interval topology. Hence, 
Lisa Hausdorff space in the interval topology and therefore completely distributive. 

(IV) =^(I): Since every completely distributive lattice L is compact in the 
interval topology, it is enough to verify that the interval topology and the Frink-
topology agree. But this follows immediately from (4.4). fl 

Using results from M. Mislove and J. Luikkonen (see [7, Corollary 2.2], [6, 
Proposition 2.1]), we may add another equivalent condition to (4.5), namely the 
following: 

(VT) L is a compact topological lattice and for every closed subset A Q L there 
is a finite subset F C A such that inf A = inf F and sup A = sup F. 

5. The Dual Topology. 

Let F be a poset. The lower topology on F has a subbase for the open sets all 
sets of the form P\'\x, x £ P, By the Alexander subbasis theorem a lower set A is 
quasicompact in the lower topology if and only if every subbasis open cover has a 
finite subcover. This translates to the following: A lower set A is quasicompact in 
the lower topology if and only if the following condition holds: 

(Q) If 0 ^ F C A has the property that every finite subset F of B has an 
upper bound in A, then B has an upper bound in A. 

We take the lower sets with this property, i.e., the lower sets quasicompact in the 
lower topology, as a subbasis for the closed sets of a new topology, which we call 
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the dual topology^, 

5.1. Proposition. Let F be a poset. If U is open in the dual topology, then it 
is Scott-open. If P is an up-complete poset with the property that a,b < x implies 
that sup{a, b} exists, then the dual topology agrees with the Scott-topology. 

Proof. Let A be a subbasic closed set in the dual topology, and let D Q A be 
a directed set with x — supD. Since each finite subset of D is bounded above in D 
(and hence in A), there exists an upper bound y of P in A. Thus x = sup D < y. 
Since A is a lower set, z E A. Thus A is Scott-closed. It follows that every set open 
in the dual topology is Scott-open. 

Conversely, suppose A is Scott-closed, and that 0 7^ P C A has the property 
that every finite subset F of P has an upper bound in A. Then by hypothesis 
sup F exists for all finite subsets F C B. Since A — jA, sup F ^ A. Thus D = 
{sup F : F finite , F C P} is a directed subset of A. Since A is Scott-closed and 
P is up-complete, sup D exists and is in A. But F C | sup P, so A is closed in the 
dual topology. |] 

The Upper Z-Topology. 

In this section we develop some basic properties of the upper Z-topology and 
compare it with other semilattice topologies (see Section 4 for the definitions). 

6.1. Proposition. Let 5 be a semilattice. The lower Z-topology on S is the 
coarsest topology containing the lower topology for which the meet operation is 
separately continuous. 

Proof. Let A = [b A x < a]. Fix s £ S and let P = {y : s Ay £ A}. 
If y G P, then {s A y) A b < a. Thus y G [(6 A «) A 2 < a]. Conversely, if y G 
[(& A «) A a; < a], then s A b A y a, i.e. 6 A (s A y) < a, and thus x A y £ A. 
Hence y £ B. We conclude P = [(6 A «) A a; < a]. This argument shows that the 
inverse image under translation by s of a subbasic closed set in the upper Z-topology 
is closed. Thus translation by s is continuous. Since s £ S was arbitrary, the meet 
operation is separately continuous. 

Let X be the collection of closed sets for some topology on S containing the 
lower topology and making the meet operation separately continuous. Then {a G X 
for each a E S. The inverse image of la under translation by 5 G P is equal to 
[6 A a? < a], hence closed. Thus X contains all sets which are closed in the upper 
*Tbis is the cocompact topology £or the lotver topology: see [3, p.312]. 

10 
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Z-t.opology sincfi it contains the siibbasis. [] 

6.2. Corollary. Let S be an np-complete semilattice for which, the meet 
operation is meet-continuons. Then the upper Z-topoIogy is contained in the Scott-
topoiogy. 

Proof. It is immediate to verify that translations are continuous in the Scott-
topology under the given hypothesis. The corollary then follows from Proposition 
(6.1). 0 

The main result of this section depends on the following lemma: 

6.8. Lemma. Let 5 be a semilattice of finite breadth and assume that S is 
quasicompact in the lower topology. Then S can be written as a finite union of sets 
of the form J,a and [a A 6], a, 6 € 5, a ^ 6. 

Proof. The proof proceeds by induction on n, the breadth of S. 

If n = 1; then 5 is a chain. If S fails to have a largest element then : 
a; € 5} is an open cover of S in the lower topology without a finite subcover. Thus 
S must have a 1; i.e. 5 = |1. 

Assume the lemma is true for all semilattices which have breadth less than n. 
We then want to verify the result for all semilattices S which have breadth equal 
to n. For every non-empty finite set F C 5, we define 

^F = i^'u -seGCF, 
|<T| = n, (T is irredundant } 

If for any F, Ap = 5, then the proof is complete. Hence we assume for every finite 
set F, there exists yp G S \ Ap. 

Let (j C F be an irredundant subset, \G\ = n. Since yp ^ J.F, we conclude 
that yp ^ Gj and therefore the set = <? U {I/F} Las n -f 1 elements. Thus H is 
redundant since S has breadth n. Pick z E H such that 

MH = ̂ (5" \ {z}). 

If z E G, then 
yp A inf G = inf H 

= inf(jBr \ {z}) 
= yp A iiif(G \ {z}) 

11 
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It follows that 
inf G > yp A mf((? \ {z}), 

and hence 
yp G [(inf G \ {;?}) A x < inf G] C Ap, 

an impossibility. We conclude that 

z = yp-

Thus yp A mfG — inf G, i.e., inf G < yp. 
Consider the set 

B = {inf G : |(7| = n, C is irredundant }. 

We claim that B has an upper bound. Indeed, if this would be not the case, then 
{5 \ |6 : b £ B} would be an open cover of S in the lower topology. Since 
S is quasicompact, there exist 61,...,£ B such that S = 5 \T6,-. Let 
F == Ur=i where |Cj| = n, Gj is irredundant, inf Gi = 6,-. By the preceding 
paragraph inf G{ < yp for all i. Hence yp ^ Ur=i ^ \ ^ contradiction. Thus B 
has some upper bound, call it u. Then u has the following property: 

(+) For every irredundant set G with |C| = n we have inf G K u. 

We now repeat the preceding argument with a slight variation. For F finite, 
let 

D/p = U tj{[iiif G Ax <u] : G <Z F y\G\ — n—lyG irredundant, inf G ^ «} 
U |J{[inf G Ax < inf(G \ {g})] : g £ G C F ,\G\ = n - I, 

G irredundant, inf G ^ u} 

Again if Dp = S for some finite set Fj then the proof is complete. Thus we assume 
that for every finite set F there exists zp £ S \ Dp. Let G C F be irredundant, 
|G?| = n —1, and inf G ^ u. As before |G U {^F}| = since zp ^ [F. If G U {^F} 
were irredundant, then 

inf(G U {zp}) — Zp A vd G < u 

by (*), and hence 
Zp £ [inf G A X < «] Q Dp, 

an impossibility. Hence G U {zp} is redundant. Thus 

Zp A inf G = inf(G U {zp} \ {^CF}) 
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for some xp £ G {J {zp}- Reasoning as before, we conclude xp = zp and bence 
inf G < zp. 

By an argument involving tbe quasicompactness analogous to the one given 
earlier, we obtain w £ S such that inf G < w for all irredundant G with |(T| = 
n — 1. Thus we have 

(**) If (T C 5 is irredundant, |(?| = n — 1, and inf G ^ u, then inf G < w. 

Let / = ju U ity and let T be the Rees quotient S/T obtained by shrinking 
/ to a point. Let (j> : S T he the canonical semilattice homomorphism. Since by 
(**) for any irredundant set G 'mT with |(?| = n — 1 we have inf G = 0, it follows 
that T has breadth less than n. 

The equalities 

(to) =5 
(T^(«)) if M ¥" 0 

U ju U 
([^(p) Ax < <l>{q)]) =[p Ax<q][j\pAx<u]\j\pAx<w] 

imply that <j> is continuous for the upper Z-topologies and for the lower topologies. 
Thus T is quasicompact in the lower topology. By the inductive hypothf.'sis T can 
be written as a finite union of sets of the form [t and [ti A x < t2] where ti ^ t2-
Again by the preceding equalities these sets can be pulled back to sets of the same 
type in S. This completes the proof. 0 

6.4' Theorem. Let 5 be a semilattice of finite breadth. Then the dual topology 
is contained in the Z-topology. If in addition S is conditionally complete, up-
complete and meet-continuous, then the Scott-topology, the dual topology and the 
upper Z-topology all agree. 

Proof. Let XQ E S and let 17 be a subbasic open set around XQ in the 
dual topology. Then G = S \ U is quasicompact in the lower topology on S. Let 
T — n G. Then T is a lower set, hence a subsemilattice. We will show that T 
is quasicompact in its own lower topology: Let A C T be such that {T\ fa : a 6 
A} is a covering of T by subbasic open sets in the lower topology. We claim that 
{G \ f a : a E A} is a covering of G. If it is not, then there exists y EG such that 
J/ 0 G \ ta for all a G A, i.e. a < y for all a E A. Since A C Tj a < y A XQ all 
a E A. But y A XQ ET since G is a lower set. This contradicts the assumption that 
{T \ fa : a G A} covers T. 
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Since G is quasicompact, there exists a finite subset F G A such that G C 
{G\'\a : a £ F}. Then T C {T\]a : a £ F}. This argument shows that T is 
quasicompact in its own lower topology. 

Applying Lemma (8.3), we conclude that T can be written as a finite union of 
sets of the form ly and {x£T : z A x < y} where y,z z y. For each such 
set {x £ T : z A x < y}, form the corresponding {x £ S : z Ax < y}. These 
sets contain [x £ T : z A x y} and miss rco since XQ A Z = Z. Thus by uniting 
the given sets of the form ly and \z A x < f/], we obtain a set B which is closed in 
the upper Z-topology, misses XQ, and contains T. Let C = {w £ S : XQ Aw £ ^}. 
Then C misses XQ and is closed in the upper Z-topology by Proposition 8.1. If 
8 £G, then 8 A XQ £ T C B, so s £ C. Thus G C C. Hence V = S\C is open 
in the upper Z-topology, and we have x £ V G. U. This shows that the identity 
function from the upper Z-topology to the dual topology is continuous, i.e. the dual 
topology is contained in the upper Z-topology. 

The last part of the theorem now follows from Proposition 5.1 and Corollary 
6.2. fl 

6.5. Example. Let L — [0,1] X [0,1] and let 

S = L\{{x,l) : 0<x< i}. 

Then 5 is a sublattice of L. If the Scott topology on L is restricted to 5, then this 
topology agrees with the upper Z-topology on S, but not with the Scott-topology 
on S. The upper Z-topology thus seems a more appropriate topology for many 
purposes on semilattices of finite breadth which are not meet-continuous. 

We conclude these notes with a corollary: 

6.6. Corollary. If S is a continuous lattice of finite breadth, then the Z-
topology and the CL-topology agree. Especially, the Z-topology on S is compact 
and Hausdorff.fl 
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