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The Wallman compactification of a T, space X , defined as
the set of maximal closed filters on X, provided with the hull-
kernel topology, has abysmal functorial properties. This changes
radically if prime closed filters are used.

We have a contravariant functor 7T : TOPop —> IAT which
assigns to a space X the lattice of closed sets of X .

Adjoint on the right is X : LATop —>TOP, with IL the set

of prime filters in L, provided with the hull-kernel topology
for which the sets a* = {@e XL : ae®}, for aeL, form a basis
of open sets. Maps f : X —> ¥L in TOP and g : L —> IX in
'IAT are adjoint if always ac f(x) & xeg(a) .

The adjunction of ¥ and T produces a monad W = (W,n,u)
on TOP, with W = %8 b 3 and nX : X — WX the prime Wallman

compactification of X
An algebra (X,a) for w turns out to be a compact ordered

space 7Z (compact pospace in [1l]), where X is Z with the
upper topology, i.e. open sets of X are increasing open sets
of Z, and the order of Z is the specialization order of X,
with x <y iff xe CIX[Y}’ with a(clxco) the limit of ® in
Z for an ultrafilter ¢ on 2Z

In this situation, X is a guasicompact locally quasicom-

pact sober space, and 2Z has the patch topology for X .
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Put "C>SK for closed sets A and € of X if C is in
every ultrafilter ® on X with all limits of @ for X
in A ; this is dual to "way below" for open sets. A topo-
logical space X has at most one W-algebra structure, and we

have the following theorem.

THEOREM. For a quasicompact and locally guasicompact sober
space X, the following statements are logically equivalent.

(i) X has a W-algebra structure.
(ii) X has the upper topology for a compact ordered space.

(iii) The patch topology of X is compact.
(iv) The intersection of two saturated cuasicompact sets in

X is always cuasicompact.
(v) If c>>A and C>B for closed sets in X, then

always C>>AUB .
(vi) The adherence of an ultrafilter on X 1is always an

irreducible closed set.

The ecuivalence of (ii) through (vi) is already in [1].

-

For maps, we have:

THEOREM. If (X,a) and (Y,B) are W-algebras, then the
following are logically ecuivalent for a mapping £ X e 4
(i) £ is a homomorphism of W-algebras.

(ii) £ 1is a continuous and order preserving map of compact

ordered spaces. :
(iii) f : X — Y is continuous, and f-l(Q) is quasicom-

: pact in X for every quasicompact saturated subset Q of Y .

(iv) £ is continuous for the given topologies of X

and Y, and also continuous for the patch topologies.

If the spaces and maps characterized by these theorems are

called spectral spaces and spectral maps, then WX 1is always a

spectral space, with the following

UNIVERSAL PROPERTY. If Y is a spectral space and f :
X —> Y a continuous map, then there is a unigue spectral map

f* : WX —> Y such that £ = f£* nx
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