Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 77

1-9-1983

SCS 76: The Trace of the Weak Topology and of the **F**-Topology of L^{op} Coincide on the Pseudo-Meet-Prime Elements of a Continuous Lattice L

Rudolf-Eberhard Hoffmann Universität Bremen, D-2800, Bremen 33, Germany

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Hoffmann, Rudolf-Eberhard (1983) "SCS 76: The Trace of the Weak Topology and of the Γ-Topology of L^{op} Coincide on the Pseudo-Meet-Prime Elements of a Continuous Lattice L," *Seminar on Continuity in Semilattices*: Vol. 1: Iss. 1, Article 77.

Available at: https://repository.lsu.edu/scs/vol1/iss1/77

SCS 76: ፕቼ፪፻፳፭ቅ/bRthe WeakToppalogy and/of the ? ፕሮሶ/ በ መንግር መንግር የመንግር የመንግር በ Second Se

NAME:	Rudolf-E.	Hoffmann	DATE	. M	D	Ϋ́
				1	9	83

TOPIC: The trace of the weak toplogy and of the **\Gamma-toplogy** of L^{op} coincide on the pseudo-meet-prime elements of a continuous lattice L

REFERENCES: The Fell compactification revisited. Preprint. (Preliminary version in :"Continuous Lattices and Related Topics", pp. 68- 141. Mathematik Arbeitspapiere Nr. <u>27</u>, Universität Bremen, 1982) and literature quoted there

This is a <u>partial</u> response to a private communication in which Karl H. Hofmann attempts to delineate a somewhat different approach to some of the results of my paper mentioned above (employing implicitly - to some extent the apparatus of [HL₂] and [HM]).

Recall that, in a $1, \Lambda$ -semilattice L,

 $a \longmapsto b \quad ("a is <u>relatively meet-prime below</u> b")$ for a, b ϵ L iff whenever $\inf \{x_1, \ldots, x_n\} \leq a$ for $x_1, \ldots, x_n \epsilon$ L $(n \in \mathbb{N}, the set of natural numbers including o), then <math>x_i \leq b$ for some $i \in \mathbb{N}, o \leq i \leq n$. The sets

 $\begin{array}{l} & \Gamma^{\star}(x) := \left\{ y \in L \mid x \leftarrow y \right\}, \\ \text{with } x \text{ ranging through } L, \text{ form a (sub-)basis (cf. [H_8] 1.3(ii)) of} \\ \text{the } \underline{\text{closed sets of the } \Gamma^{\star}\text{-topology (the } \underline{\Gamma}\text{-topology of } L^{\text{op}}, \text{ cf.} \\ & \left[\text{H}_3\right] \$3, \ \left[\text{H}_8\right]). \text{ The sets} \end{array}$

 $\begin{array}{l} \uparrow x := \{y \in L \mid x \leq y\} \quad (x \in L) \\ \text{form a subbasis of the closed sets of the lower topology } \\ \text{of } L \ (= \text{ the } \underline{\text{weak topology}} \text{ of } L^{\text{op}}). \end{array}$

An element p of a complete lattice L is called 1) <u>meet-prime</u> iff $p \vdash p$,

2) <u>pseudo-meet-prime</u> iff $p = \sup P$ for a prime ideal P of L, 3) a χ^{\pm} -element (i.e. a χ^{-} -element of L^{op}) iff $\uparrow p$ is closed in (L, $\overline{\Gamma}^{\pm}$) iff $p = \sup \{x \in L \mid x \vdash p\}$ ([H₈] 1.5, 2.7).

Every meet-prime element is pseudo-meet-prime. Every pseudo--meet-prime element is a γ^{\pm} -element ([H₈]3.4). In a distributive Published by LSU Scholarly Repository, 2023, *-element is a supremum of pseudo-meetprime elements.([H₈]3.6). -2 - - 2 witv.in Semilatti

(f hope Seminakon Continuity in Semilattices, Yol 12 is that 7, the present context, the notion of a γ -element is not a "red herring [das Objekt einer Fixierung auf eine Nebensächlichkeit, die einem den Weg zu einer direkten Einsicht versperrt]", but one of the most intriguing and <u>central</u> themes of today's continuous lattice theory research .)

Endowing the set

of pseudo-meet-prime elements of a distributive continuous lattice L with the trace τ of ω_L , Karl H. Hofmann sketches a proof for

$$DO(\psi^{x}L, \tau) \cong Filt_{c}L$$

W/T.

which closely parallels my result

$$DO(\psi^{\mathbf{X}}L) \cong Filt_{c}L$$

where $\psi^{\pm}L$ carries the trace of the Γ^{\pm} -topology of L (see Corollary 4.10 of my paper). From a comparison one may be inclined to infer (note that one cannot !) that there topologies coincide on $\psi^{\pm}L$.

Indeed, arguments very similar to those used in the proof of theorem 4.9 of my paper provide a "<u>direct</u> proof" of this (which "is bound to exist").

PROPOSITION:

For a continuous lattice L (not necessarily distributive), the weak topology ω_L of L^{op} and the Γ^{\star} -topology of L have the same trace on the set $\psi^{\star}L$ of pseudo-meet-prime elements of L. For every $x \in L$, we have

$$\psi^{*}L \cap \uparrow x = \psi^{*}L \cap \bigcap \{ \Gamma^{*}(y) \mid y \in L, y \ll x \}$$

Proof:

Since the $\lceil x^*$ -topology of L is always weaker than ω_L ([H₃]3.3), the above formula suffices to establish the assertion. (a) Let $z \in \bigcap \{ \lceil x^*(y) \mid y \in L, y \prec x \}$. Then $z \in \lceil x^*(y)$, i.e. $y \vdash z$ for every $y \in L$ with $y \prec x$. Thus $y \leq z$ for every such y. Since L is a <u>continuous</u> lattice, it results that

$$x = \sup \{ y \in L \mid y \ll x \} \leq z,$$

hence

(b) Now let
$$z \in \psi^{\star}L \cap \uparrow x$$
 and let $y \in L$ with $y \ll x$. Then
 $z = \sup P$

for some prime ideal P of L. However, $x \leq \sup P$ implies $y \in P$, since y << x. On the other hand, since P is a prime ideal, $y \in P$ https://repository.lsu.edu/scs/vol1/iss1/77

2 - 3 - f the Weak Topology and of the ?-Topology of L^{op} Coincide on the Pseudo-Meet-Prime Eler

and $z = \sup P$ imply $y \vdash z$, i.e. $z \in \Gamma^{\star}(y)$ for every $y \in L$ with $y \ll x$. Thus $\psi^{\star}L \cap \uparrow x \subseteq \cap \{\Gamma^{\star}(y) \mid y \in L, y \ll x\}$. This completes the proof.

REMARK 1 :

For <u>every</u> complete lattice L, the \Box^{\star} -topology and $\omega_{\rm L}$ have the same trace on Spec^{*}L, the set of meet-prime elements of L (cf. [H₃] 3.7).

REMARK 2 :

It is an open question whether the above proposition holds for <u>all</u> complete lattices L. It is also unknown whether it extends to $\gamma^{\pm}L$, the set of γ^{\pm} -elements of L (i.e. γ -elements of L^{op}). The latter extension is known to be true for <u>completely distributive</u> complete lattices L - cf. $[H_9]5.5$. (A revised draft of $[H_9]$, entitled "The injective hull and the <u>CL</u>-compactification of a continuous poset" will be distributed in a Seminarbericht, Fern-Universität Hagen.)

Rudolf-E. Hoffmann Fachbereich Mathematik Universität Bremen D-2800 Bremen

Published by LSU Scholarly Repository, 2023