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The study of the monoid, under direct sums, of all isomorphism 
types of countable Boolean algebras has led to the notion of a refine
ment monoid [M, Dl], cf. {K]: 

A commutative monoid M = (M,* + ,0) is called a refinement monoid 
provided that 

(RMI) x+y =0 only for x = y = 0 (x, y € M) , 
(RM2) M lias the refinement property, that is,, whenever E Xj^ «• E yj 

for x^, y^ € M (i < n, j < m) then there are ^ 
with X. = E. 2. . and y. = E. 2. . . 

i D il 3 i iD 
A homomorphism h : M > N between commutative monoids is said to 
be a V-homomorphism if h(x)' = y.j + y2 (x G M , y^, y2 e N) implies 
X = x.^ + X2 and h(X£) = yj, for some x^, X2 G M , and h(x) = 0 ^ 
only for x « p (x G M). Observe that a V-homomorphic image of a 
refinement monoid is again a refinement monoid. 

PROPOSITION 1. A semilattice L = (L;+,0) with 2ero is distri
butive (in the sense of [G; p. 99]) iff L is a refinement monoid. , 

It is well-known that the category of distributive semilattices 
with 2ero and homomorphisms having the property that pre-images of 
prime filters are always prime filters is dually equivalent to the 
category of Stone spaces (sober T^-spaces having a base of compact 
sets) and strongly continuous mappings (pre-images of compact-open 
sets are compact-open); see [G; II.5]. 

Let VSL be the category of distributive semilattices with zero 
and V-homoraorphisms. We want to supply the category STS of Stone 
spaces with suitable morphisms so that VSL and STS become equi-
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valent categories: First^ let us call a subset U of a space X 
almost open if there is a smallest open set, say U, containing Uj, 
and U is a strict subset of U (i. e., the inclusion map from U 
into U is strict in the sense of [C; V.5.8]). Note that, for 
instance, every space is almost open in its sobrification. Of course, 
open sets are almost open. Now suppose that X and y are Stone 
spaces, then mor(X,Y) consists of all continuous functions from 
X into y mapping open sets onto almost open sets. Thus, all 
continuous-open mappings are morphisms in STS , Probably, the con-* 

. verse is false. However, I have no counterexample, 

PROPOSITION 2, PSL and STS are equivalent categories. MwcKOt umnimm I'.iiiiiilg iiiMW»nrinw* . T( 

Proof. Let Ly L2 fc obj(PSL) and h 6 mor(L^,L2) . Then the 
associated mapping fj^ : X(L^) > X(L2) between the prim.e filter 
spaces is given by setting ih(P) . Conversely, if 

. X^, X2 e obj(STS) and f 6 mor(X^,X2) then h^^ : L(X^) L{X2) 
is defined by hj(C) = f(C) , where L(X) denotes the semilattice 
•of compact-open subsets of a Stone space X . It is not difficult 
to show that in fact f^^ e inor (X(L^) ,X(L2)) and h^ e mor(L(X^ ) ,L(X2)) 
The remainder of the proof is similar as in the case of the previously 
mentioned duality. 

Question A. Is every distributive semilattice L with zero 
a V-homomorphic image of some generalized Boolean lattice? (Note 
that the converse is obvious.) 

In [D2j it has been shown that the answer is positive when L 
is a lattice or has not more than many elements. Moreover, if 
Ut will turn out that the morphisms of STS are not necessarily 
continuous-open then the following question arises: 

Question B.' Is every Stone space X the image of a locally , 
compact, zero-dimensional Hausdorff space under a continuous-open 
mapping? 

At present, I only have an affirmative result when X is 
first countable and in addtion L(X) is a lattice or |L(X)1 < . 
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