Seminar on Continuity in Semilattices

Volume 1 | Issue 1 Article 74

9-14-1982

SCS 73: Meet-Continuous Lattices in which Meet is not **Continuous**

Marcel Erné

Leibniz University Hannover, 30167, Hannover, Germany, erne@math.uni-hannover.de

Hartmut Gatzke

Leibniz Universität Hannover D-30167 Hannover Germany

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Erné, Marcel and Gatzke, Hartmut (1982) "SCS 73: Meet-Continuous Lattices in which Meet is not Continuous," Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 74. Available at: https://repository.lsu.edu/scs/vol1/iss1/74

Erné and Gatzke: SCS 73: Meet-Continuous Lattices in which Meet is not Continuous

SEMINAR ON CONTINUITY IN SEMILATTICES

NAME:	Marcel Erné and	Date	М	D	Y	
	Hartmut Gatzke		9	14	82	

TOPIC: Meet-continuous lattices in which meet is not continuous

- REFERENCES: [Bi] G.Birkhoff, Lattice Theory
 - [C] A Compendium of CL
 - [E 1] M.Erné, Order-topological lattices. Glasgow Math.J. 21 (1980) 57 - 68
 - [E 2] M.Erné, Topologies on products of partially ordered sets III: Order convergence and order topology. Algebra Universalis 13 (1981) 1 - 23
 - [Fla] J.Flachsmeyer, Einige topologische Fragen in der Theorie der Booleschen Algebren. Arch.Math. 16 (1965) 25 - 33
 - [Flo] E.E.Floyd, Boolean algebras with pathological order topologies. Pacific J.Math. 5 (1955) 687 689.

At the Bremen Workshop 1982 on Continuous Lattices, the problem arose to find examples of meet-continuous lattices in which the binary meet-operation is not (jointly) continuous with respect to the Scott topology. As complete Boolean lattices are always join- and meet-continuous, it appears reasonable to look for examples within this class. It turns out that a complete Boolean lattice whose meet-operation is continuous in the Scott topology (or order topology) must be Hausdorff in its order topology (see the Theorem below). Papers of Floyd [Flo] and Flachsmeyer [Fla] provide us with enough examples of Boolean lattices whose order topology fails to be Hausdorff, e.g. the lattice of regular open subsets of \mathbb{R} . Such lattices cannot be topological (semi)lattices with respect to the order topology $\mathcal{O}(B)$ or the Scott topology $\sigma(B)$; in particular,

 $O(B \times B) \neq O(B) \times O(B)$ and $\sigma(B \times B) \neq \sigma(B) \times \sigma(B)$.

THEOREM. Consider the following statements on a complete Boolean lattice B:

- (a) B is atomic (i.e. isomorphic to a power set).
- (b) B is continuous.
- (c) $O(B \times B) = O(B) \times O(B)$.
- (d) $\sigma(B \times B) = \sigma(B) \times \sigma(B)$.
- (e) (B, O(B)) is a topological lattice $(v semilattice, \Lambda semilattice)$.
- (f) $(B, \sigma(B))$ is a topological lattice.
- (g) $(B, \sigma(B))$ is a topological Λ -semilattice.
- (h) $(B, \sigma(B))$ is a topological v-semilattice.
- (i) The Bi-Scott topology $\sigma(B) \vee \sigma(B^{op})$ is Hausdorff.
- (j) The order topology O(B) is Hausdorff.
- (k) The Scott topology o(B) is sober.

The following implications are always true:

$$(a) \Leftrightarrow (b) \Rightarrow (c) \Rightarrow (d)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(e) \Rightarrow (f) \Rightarrow (g) \Rightarrow (i) \Rightarrow (j)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(h) \Rightarrow (k)$$

All implications except (g) \Rightarrow (i) are easily verified or well-known from [C], [E 1] and [E 2]. The implication (g) \Rightarrow (i) may be strengthened as follows. If (B, σ (B)) is a topological \wedge -semilattice then for x \not y in B there exist U \in σ (B) and V \in σ (B) with $x \in U$, $y \in V$ and $U \cap V = \emptyset$. In other words, the relation \leq is closed with respect to the order topology, and in particular, O(B) is Hausdorff.

PROOF. $x \nleq y$ implies $x \in B \land \forall y \in \sigma(B)$. As $x = x \land x$, there exists $U \in \sigma(B)$ with $x \in U$ and $U \land U \subseteq B \land \forall y$, i.e. $u \land v \nleq y$ for all $u, v \in U$. Define $V := \{ v \in B : u \land v \leqq y \text{ for some } u \in U \}$. Then $y \in V$, $U \cap V = \emptyset$, and $V \in \sigma(B^{op})$. Indeed, if F is a filter in B with $\bigwedge F \in V$ then $u \land \bigwedge F \leqq y$ for some $u \in U$, whence $u \leqq y \lor (\bigwedge F)' = \bigvee \{ y \lor z' : z \in F \}$. This is a directed sup, and since $u \in U \in \sigma(B)$, it follows that $y \lor z' \in U$ for some $z \in F$, i.e. $w \land z \leqq y$ for some $w \in U$, and so $z \in F \cap V$.

Certainly it would be interesting to investigate which of the implications in the Theorem may be inverted.