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At the Bremen Workshop 1982 on Continuous Lattices, the problem
arose to find examples of meet-continuous lattices in which the binary
meet-operation is not (jointly) continuous with respect to the Scott
topology. As complete Boolean lattices are always join- and meet-con-
tinuous, it appears reasonable to look for examples within this class.
It turns out that a complete Boolean lattice whose meet-operation is con-
tinuous in the Scott topology (or order topology) must be Hausdorff
in its order topology (see the Theorem below) . Papers of Floyd
[Flo] and Flachsmeyer [?la] provide us with enough examples of
Boolean lattices whose order topology fails to be Hausdorff, e.qg.
the lattice of regular open subsets of IR. Such lattices cannot be
topological (semi)lattices with respect to the order topology 0(B)
or.the Scott topolaogy o (B) ;7 in particular)

0(BxB) £ 0(B) x0(B) and o(BxB) ¥ 0(B) x0o(B)
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THEOREM. Constider the following statements on a complete Boolean
lattice B

(a) B is atomiec (i.e. isomorphic to a power set).

(b) B is continuous.

(e¢) 0(B xB) 0(B) x0(B).

(d) o(B xB) o(B) xo(B).

(e) (B,0(B)) Zs a topological lattice (v -semilattice,A —semilattice).
(f) " (B,o(B)) i8 a topological lattice.

i

(g) (B,0(B)) Zs a topological A -semilattice.

(h) (B,0(B)) Zs8 a topological v -semilattice.

(2) The Bi-Scott topology 0 (B) vo(B°P) is Hausdorff.
(j) The order topology 0(B) is Hausdorff.

(k) The Scott topology 0(B) <& sober.

The following implications are always true:

(a) » (b) = (e) = (d)

¥ ¢

(e) = (f) » (g) = (Z) = (j)
¥
(h) = (k)

All implications except (g) = (i) are easily verified or well-known
from [C], [E 1] and [E 2] . The implication (g) = (i) may be streng-
thened as follows. If (B,0(B)) Zs a topological A -semilattice

then for x $ y in B there exist U € 0(B) and V € o (B°P) with

X €EU, y€Vand UNV =@ . In other words, the relation < is
closed with respect to the order topology, and in particular, 0(B)
s Hausdorff.

PROOF. x § y implies x € B~ yy € 0(B) . As X = X AX , there exists

U € o(B) with x € U and UAUCS B ~ Yy , i.e. uav ¢ y for all u,v € U.
Define V:= { v €B : uAv sy for some u € U}. Theny €V , UNV = @,
and V € 0(B?P?). Indeed, if F is a filter in B with /\F € V then
uA/\F s y for some u € U , whence u s yv (AF)' =\/{yvz':2 EF}.
This is a directed sup, and since u € U € 0(B) , it follows that

yevz' el fordsome z € F ijeltw A Z s v for some whE UN iand 5o

A e IR Y

Certainly it would be interesting to investigate which of the

implications in the Theorem may be inverted.
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