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§ 8 Appendix

Correcting a mistake in [Baz]cor.z,p.24o, we provide
necessary and sufficient conditions in order that the
greatest essential extension space AX of a To—space X be
an injective To—space: Counterexamples to the claim made
in [Baz] were recently obtained by K.H.Hofmann and
M.W.Mislove [HM,]. We take [Ba,] section 2 for granted,
but no information from [Baz] section 3 will be used..
(See [Hoz] for a somewhat different approach.)

Also, some additional comments are given correcting
the statements of the results in [HG] and [Hg] which are
based upon [BaZ] cor.2,p.240.

8.0 For a To—space X, AX is - by the very construction -
stable in @X under the formation of arbitrary joins
(=suprema). Thus there is a "kernel operator” k:@x — AX
assigning to every open filter F of x the greatest join
filter
Viow |x ex,0(x) F}
contained in F. This map k is left inverse to the embedding
AX <y §X. (Indeed, by [Baz] prop.3,p.239, k:x —2X is the
only continuous left inverse of the embedding ax‘_,§x
if there exists any.)
Note that
V{g(x)]xes}={veg(X) | there are Xyreen X €S
(n 2 0) and open neighborhoods
U1""'Un of KyreeesXy respec;
tively with U, ... NU €V 1
for every subset S of X.

8.1 THEOREM:
" For a To—space X, the following are equivalent:
(i) The essential hull 4X of X is an injective
T -space. _
(ii) There is a (topological) embedding e:X <3y J
into an injective To-space J which is join-dense
with regard to the specialization of partial order of J.

https://repository.lsu.edu/scs/vol1/iss1/72
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(iii) For every x €X and every open neighborhood V of
X in X there exists an open neighborhood W of x in X,
finitely many elements Yqe¥greeos¥y (n20) of X and
open neighborhoods U1,UZ,...;Un of Yqree-r¥,, respec-
tively, such that

welzex]y, e c1iz}}
for every i=1,...,n, and

c
U n...nun_v .

1
Proof:
(i) implies (ii): Evidently, ﬂx:x.;aax is ~ by the very
construction - join-dense with regard to specialization
order (which coincides with the inclusion relation of AX
and §x, respectively).
(ii) implies (iii): By Scott's result, [Sc,]2.12 ([c]1I-3.8)
J is a continuous lattice L endowed with its Scott topology
GL. The sets
fa={peL|g«p} (gelL)
form an open basis of GL ([C]II—1.10(1)). We may clearly
restrict ourselves to the basic open subsets of X,
V = xN%fq

with g ranging through L.

Suppose x € V=X n$q for some q € L. By the interpolation
property of « in a continuous lattice ( C I-1.18), there
is some peL with q«p«x in L, hence

‘ X e W:=X ﬂ*p €V .

Since, by hypothesis, e:X ., J-is join-dense, we have

p=sup{s € X|s <pl.
On the other hand,
y=sup{t €L It«y i
for every y eL (since L is a continuous lattice). Conse-
quently (by the associativity law for the operation "sup"),
p=sup{t €L|t«y<p for some yé€X}.
Since g«p, it results that there are finitely many
t’l""’tn €L (n>0) and y1,...,yn6X with
qgsup{t1“..,tn}
and
t,xy. £p
Published by LSU Scholarly Repository, 2023 13



Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 72 .

for i=1,...,n. It results that every neighborhood, in X,
of Yy contains W=X(\$p, and there are open (in X) neigh-
borhoods Ui=X n?ti of Y; (i=1,...,n) with
uyn... nungv=xn$q .
(iii) implies (i): We shall prove that the kernel
operator k:@x —»AX is a continuous map, hence a retrac-
tion in Eo Since @X is an injective To—-space, then so
is its retract AX.
Suppose F is any open filter of X and

k() e, .
Then there are yseoorXy (m > o) and open neighborhoods
V1 goes ,Vm of qreee Xy respectively with

O(x,) cF
for every i=1,...,m and

V1l\... nV cVv .

By (iii), for every 1—1,...,m there is an open neighborhood
of x, and finitely many elements y P _,,Y?(i)and open

i i
neighborhoods Ui' o ,Unmof y}_, - ,yn(i) respectively with

W, cjzex | yie c1{z}} )
or, equivalently,
O(yi) cwf
(where w‘P {M eo(x)lwcm} denotes the smallest member of
@W' the open filter generated by W)
-for every 3j=1,...,n(i), and
' 1 n(i) v

Ui(\...nUi
It results that
Jy ¢ b 4
Q(yi) _(WIn...nwm)
for every i=1,..,m and every j=1,...,n(i), and
Ao [i=1,...,m and 3=1,...,n(1)}

C V.Nn...0V _CV .
= ms

1
Thus
xw? =Viow)|yex, oy gw?}
for W:= -W1 Nn... nwn contains V. Consequently, (because
https://repository.Isu.edu/scs/vol1/iss1/72 14
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k is isotone and @V is an upper set,) we have

k(G) € ¢,

for every G e@w.
Since
3 j h
U7 eQ(yj) €Wy

= w1‘?v... vwzgg(x1)v...vg(xm)

CF "
- ’
we can also infer that k(F)e @v, hence
k:@x-—azx is continuous -(at F).
This completes the proof.

8,2 REMARKS:

i) Note that in 8.1(iii) necessarily
wev.

ii) Suppose e:XecyJ is a join-dense topological embedding
into an injective To—space J=(L,6L). Let L' be the con-
tinuous lattice generated by e[X]in J (in the sense that
it is the smallest subset of J containing e[x]closed
under arbitrary infima and suprema of non-empty up-directed
subsets). Then the induced map ‘

e':X ey J':=(L",6p,)
is the injective hull of X. (The arguments given in section
1 go through.)

8.3 DEFINITION:
Suppose X is a To-space with an injective hull X ,,AX .
We say that

degX <{r , .
i.e. X has degree at most r (a natural number > o) iff
8.1(iii) can be fulfilled for every point x in X and
every open neighborhood V of x in X by some n<r.

Published by LSU Scholarly Repository, 2023 15
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8.4 REMARK:
A To—space X with an injective hull satisfies deg(X)<1
iff for every x € X and every open neighborhood V of x
there is some open neighborhood W of x and some y &V v
with T
Wefzex |yeclizl} .
B.Banaschewski ([Bazjcor.z, p-240) observes that this
class of To—spacgs has an injective hull in 20, and he -
claims the other implication to be true, too. The error
is hidden in the proof of [Ba,]cor.1, p.239 (line 3 from
below)

o(x) = Vk(E{U})
need not be a set-theoretic union if AX is injective
(but this is true if every join filter of X is a neigh-
borhood filter, as it is assumed there).

In [HG]3.14 it is established that the continuous
posets in their Scott topology are precisely those sober
spaces X with an injective hull satisfying deg(X) £ 1.
All the statements in [Hg] on spaces X with an injective

hull (except for 4.3) require the additional hypothesis
deg(X) £ 1. In this regard, the following is certainly of interest.

8.5 PROPOSITION:
Suppose a To-space X is a conditional o,v-semilattice
with regard to its specialization order. If X has an
injective hull, then deg(X) < 1.

Proof:
A poset,is a conditional o,v-semilattice if every finite
subset which has an upper bound has a supremum.
In 8.1(iii) one may put

y=sup{y ...,y 1
where the "sup" is taken in (X,<). Then

y EU1 ﬂ...l\Un cv,
and

wety .

https://repository.lsu.edu/scs/vol1/iss1/72 16
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8.6 COROLLARY:
A To—space X is injective iff
i) X is sober, )
ii) X has an injective hull in T and
iii) X is a o,v-semilattice in its specialization
order.

Proof:
See [HQ] 2.8.

8.7 COROLLARY:

If a T1—space X has an injective hull, then X is

discrete.
Proof: . .
Suppose X has at least two points. For x ¢ X choose some
neighborhood V # X of x. Then let We€O(X) and
y1,...,yne}{'01zo) and U;,...,U, be chosen as in 8.1(iii)

Since every point-closure in a Tl—space is a
singleton,

XEWC]z exlyie clizl}}
implies - if n ¥ o - that YT e SY =X, hence W={x} is
open. If n=o, then
X = U1 n... nUngV

contradicting the hypothesis that X § V.

8.8 COROLLARY:
Suppose A is a closed subspace of a To-space X.
If X has an injective hull in Io, then so has A.

Proof:

In order to verify 8.1(iii) let xeV'e€ Q(A). Then V'=VNA
for some Ve 0(X), and we may choose WeQO(x), some points
Yqe¥ore-es¥, (n >0) in X and open neighborhoods U1”"’Un
(in X) of Yqr+--sy, respectively satisfying 8.1(iii). The
requirement ,
xewciz ex|y; ec1{z}}

(i=1,...,n) guarantees .
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y; € cl{x} CA
so that we may use W'=sWnA and Ui:=UifjA in order to
fulfill 8.1(iii) for A instead of X.

8.9 PROPOSITION:
Suppose (Xi)i€I
an injective hull in Io’ Then
hull provided that

‘K(I)={i€ I'xi does not have a smallest element

is a family of To-spaces which have
m

Xi has an injective
ieI

. in its specialization order }
is finite.

Proof:
(1) First note that if X and Y have an injective hull,
then so has Xx Y (use 8.1(iii)).
(2) Suppose now K(I)=@ and let o4 denote the smallest
element of Xi in its specialization order. By 8.1(ii),
there are injective T,-spaces J; and join-dense (topological)
embeddings X; <5 J,. Clearly,TEJi is injective. Let

aieJ1 (i€1),
then, by hypothesis,

a; = supAi
for some subset Ai of Xi. We may assume that 0, € Ai’ hence
Ai+¢' Then '

(@) ¢ = (suPRy) 4 ¢ g=sup(TAy) .
el
This proves that Trxi is join-dense in TC Iy hence it has
ieT ieT

an injective hull in T, by 8.1(ii).
Combining (1) and (2), we establish the assertion.

A product of discrete spaces may fail to be discrete,

but it is always T1. Thus (by 8.7) the class of all T -
spaces with an injective hull in Io fails to be productive.
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8.10  REMARKS: ; ‘

The non-validity of one implication 6f‘[Ba2]cor.2,p.24o

makes several results guestionable which were based on

this claim, e.g.: Is every TD—space (=T1/2—space,

[Br]II p.7; "points are locally closed") with an in-

jective hull in T Alexandrov-discrete? (Cf.[Hg]4.3.)
K.H.Hofmann observes that the class of To—spaces with

an injective hull is not open-hereditary (disproving

[Baz]cor.4, p.240).

8.11  REMARK: . .
The reguirement to have an injective hull in Eo does not
impose any restriction on the specialization partial order:
For every poset P, (P,ub) has an injective hull in Zo
([]4.2). ‘ .

However, a sober space X with an injective hull in
T, vields always an "almost-continuous" poset (|X[, 5X)

in the specialization order <X in the sense that it is
up-complete (by sobriety, cf. [Wy]) and, for every x €X,
x = supiy €X Iy«x} o
where « denotes the way below relation of (X, SX). (The
latter assertion results from the fact that (1) X is join-
dense in 2X, by 1.o0(i), and (2) every element F of 9X is,
by injectivity of 2X, a supremum of elements way below F
in A%, since the embedding )XQX;*GX is an order-embedding
preserving suprema of non-empty up-directed subsets, hence
reflecting the way below relation, by 1.2(b)). Note how-
ever that the set v
{y exly<«x}

need not be up-directed, as K.H.Hofmann and M.W.Mislove
[M,] demonstrate. K.H.Hofmann [Ho,] observes that the

" topology of X need not be the Scott topology (this may
even fail to have an injective hull). ' '
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8.12 REMARK:

The notion of a degree for injective hulls leads to a
natural (new) dimension function i-dim for continuous
lattices L themselves ("injectivity dimension"): i-dimL
is at least n (n2o) iff (L,6;) is the injective hull

of a sober space X of degree at least n.

The unit interval I has i-dimension 1. The example
provided by K.H.Hofmann and M.W.Mislove [HMZ] shows that
i—dimI2 >2 and, analogously, i-dimi® >n. Is it true
that i-dimI"=n? Are there continuous lattices L with
i-dimL= c0 ?

8.13 PROBLEMS:

3 rbg— indued e ; a3 3 by that

P

“Prr—hes—an—injeetive—huid> Does every almost-continu-
ous poset carry a <{mmigque?) sober topology inducing the
order and having an injective hull?

One easily sees that for a given poset P the supremum
an injective hull also has an injective hull. Is there

always a coarsest compatible topology on a poset which

has an injective hull (yielding the empty-indexed supremum)?

The finest such topology is the Alexandrov-discrete
topology ([H5]4.3).
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