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Hofmann SCS 65 Bernhardma (The Essential Hull Revisited)_ . ... . . __

Nzmes hzrl Z.Hofmann ]
. 6 8 1867
Topic: Bernhardina
(The essential hull revisited)
: 1
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Oo Introduction. RN N

Banaschebki's paper or#léssential hullg is, next to Scott's seminzl erticle on
continuous k ttices, one of the very early sources ‘of their theory (B8); since it
intmiuces features relating to continuous Dosets} ‘which are at 'Lne focus of more
current research,long before the concept of a mntinuous DOSGo congelea, it hzs,
in recent years, spawned a whole line of research (4).

The objective . . of this memo is a review of Banaschewski's Dapn
principal results. The rev&iw may be timely for the following res
have a well developed theory of continuous latiices znd standzard so-
original article (B) is not easily readable in 211 places,
Proposition 3, on which many results in (A) zre based,is fzl
of (B) are important and viable and it might be useful to i
precise status ise.

The basis of our discucsion here +ill be in the framework of continuous znd
algebraic lattices. At a later stage, we merge into ithe language of il S Tt
Banaschewski uses to construct the essentizl hull of a2 space. R.-E.Hofi:
given elternative constructioms £2).
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Sup-closed subsets in continuous lattices.

e fix a continuous lattice L. From the inheory of Galois commeciions (C,p.737
we know that there is a cripomical bijeciion beiween the set of sup-closed subseis 24
of L and the set of kernel operators k: I—>L; indeed ezch kernel operator k
determines 2 sup-closed subset A = k(L), znd froz each sup-closed subset & we
obtain a kernel operator k via k(x) = sur( Jxn %) = mex(] x n ). Tre two orzratic
invert each other. All of this reguires the cozpleiensss, buti not ihe conitinuiiyr
of Lo Our objective is to find explicit criteria for the continuity c¢f & if L
is continuous. We Xmow from &, P-6%2, Theorez 2,14 ihzt
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Th.e converse may fail, as shows the example 1:: [c,‘l]-——} I"u, I Wiaseh s k(o) = @1

or x < 1/2 and with k(x)= 1/2 else.

A

Wl g+ L)

However, there are czses, when the continuity of k is necessary and sufficient for

vhet continuity ofi A,

1.7. LZ2A., Let k:1I—>L be a kernel operator on 2 continuous lattice and A = 1),
Suppose that L is the smzllest subset of L contzining A end being closed under
arbitrary infs and directed sups (i.e. A generates L as a CL- algebra). Then ihe
following are eguivaknt:

(1) k is continuous. (2) & is continuous.

Remarks., i) Here and in the following, continuity of & map between posetis always
refers to the Scott topologies,unless noted otherwise. ii) A special case of Lerma 1.1

is implicit in Proposition 3 of (B).

Proof. We only have to prove (2) == (1). Thus suppose that A is continuous. Then
4 is a continuous retract of L, since A is injective (with its Scott topologr) in
the category of T -spaces and is embedded into the space 3L = (L, 6(L)), where
6(L) is the Scott topology. (See C,p.121 ff.) Thus there is a contimious
rrojection operator pL —>L with p(L)= & (cf. C,p.21, Definition 3.8.i). liextwe
define 1L, = fx e 1: p(x) < x} (see C, p.22, Lemms 3.11and p.63, Theorem 2.14).
How Lk is closed in L under infs and directed sups (C,p.63,loc.cit.).For ac k :
we have p(z)= a,hence a ¢ Lk' Since A CL-generates L by hypothesis, we hzve Lk=L’ f
1.€. p is a kernel operator with p(L) = & = k(A). Then x > k(x) implies p(x) > rk(x)
= k(x), and likevise x > p(x) implies k(x) 2 k(x). Thus k=p and k is continuous. [J

We record the following observation: -
1.20 EXERCISE., If A is sup-closed in a continuous lattice L, then the following

statements are ecuivalent:

x € L the relation x <<L & implies the existence of

1 2,b € A the reletion a ((A b ir zlways a consecuence of a (<L b but 5

e
-
=
I\
3
2
~:
N
p—
=

old, then the converse is also true.d (Cf.C,p.181,Corollary 1.7) |

1
{
We omit the (simple)proof and now concentrate on the continuity of a kernel orsrator.

|
1¢3. LUTA. Let k be 2 kerrd operator on 2 continuous latticé. Then the Tollowing

(1) % is contimuous.
(2) Z:f}:') = sup }:(4,):) Hox al o e
7=\
2 B = osupilol foxr all A (=k(1)).
https://repésitqry.lsu.edu/sc_s/v_ol’l§|£e176)6 i 2 e 2 (=x( )) 2
Y--Tie .nf Tz¥ below relztion <K refers toc L unlescs otherwise specified.
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we 11)
uses only the continuity of the domzin S, and a simple modificziion of the rroof
(5)=>(2) shows (5) =>(1) without the hypothesis that the rance T be continuous.
In other words; the equivalence of (1,2,3,5) holds whenever S is continuous and T
is complete,
(2)=>(3): Trivial since k(a)=.a for a € A.
(3)=>(2): Let x € L and set a = k(x) € A. Then =
< sup k(é;x) (since a = k(x) € x) < k(x) = a. Thus k(x)

sup k({a) (by (2))
sup !:({L/x). g

=
o}
£l
0]
¥
42!

uppose that G is an arbitrary subset of the continuous iattice L and le:
Ak be the set {x eLl: x=sp ({xnG)} —_— = = which is sup-generated vy &

let k be the kernel operator associated wauth AL
1e4. LT.JA, The following statements are ecuivalent:

(1) k is continuous.

(2) 2 = sup(fan & for all a & A.
(3 = sup({8nC for gll g €iG.
Proof. (2) > (1) By 1.2 we know ),g,/an G =
. Fo el - LLar\ G < }(v &),

wiience & = sup (i,van G) < sup l{(\.[;a) £ Thus\ a = sup n({l,a), vhence k is
continuous by 1.3.

(1) > (2% I X is contlnuous, then A is oniinuous. Let & € A and suppose

x << a. We find . > an'x' ¢ L with  x G0 < a o" heplnterpola:‘on
N Q K

property (C p.46), and then we find 2 b € A with x'<ih <€ a by 4—4‘. Tow bzsup(_}‘: n G)

by hypothesis.Since x < b there is a finite set Fc Jbn G such¥ that x

hq

sup

=

=

L%
Since sup F <K a we conclude F€yan G. Tus x< sup F £ sup{é, anG) <
Since x <K a was aro¢trary and a = sup J,a, as L is continuous wez conclude

v
sun(i/ anG) =
(2) > (3) is trivial. 4
(B)adi(2): @ = sup(.\lian G) = sup {g 6 6: X a}

= sup {h € G: h<{g £ a for some g\e G} RS sup@a\q G) £ a, hence a = sup(é gn G.o [

Te5¢ L=JlA. Let L be z complete lattice arna suppose that L is inf_generated t:- G
(i.edix = 4nf (¥xAG) for 211 x ¢ I} let A= fx € L: o3
the complete lattice A is inf-generated by G WITHIN & yicee i x = inf (£'x ) G)
forell e A, 5
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Prod’s Let k:L—>L be the kernel operator associated with 4. Let g:1—>2 be
corestriction of k; then g is upper 2djoint to the inclusion gei——>l hence
preserves infs. Now let x € A. By hypothesis, x = inf{Tx N G), rhence x = k(=
= g(x) = inf, g(fxne6) - inf, ( Tt D

:
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We are ready for the principal Theorem of this section:

1.6. THEOREM. Let G be a subset of a continuous lattice L and let A denote
the subset {x& L: x = sup(lxnG)} which is sup-generated by G. Consider the
following conditions:

(1) A is a continuous lattice in its own right.

(2) g = sup (égn G) for all g& G.
Then (2) = (1) and if the smallest subset of L,which contains A and is closed
under arbitrary infs and directed sups, is L, then both conditions are equivalent.,
Proof. By 1.1, conditions (1) is equivalent to the continuity of the kernel
operator k associated with A, provided that L is the smallest subset of L
containing L and being closed under infs and directed sups. By 1.4, the continuity ¢
of k is equivalent to (2). Since (1) follows from the continuity of k in

general, the Theorem is proved. O

1.7. REMARK, If in addition to the hypotheses of 1.6, the set G inf-generates L,
then G inf-generates A within A, i.e. a = ian‘ an G) for all a¢ A. In this
case, G is both meet and join dense in A.
“Froof. Lemma 1.5 O
1.8. COROLLARY. Suppose that G is a subset of an algebraic lattice and A is
defined as in 1.6. Then of the following conditions,(2) = (1):

(1) A is a continuous lattice.

(2) g = sup {he G: there is a ¢ € K(L) such_\ that h< cg g} for all g€ G.

If L is the smallest subset of L containing A which is closed under infs and
directed sups, then both conditions are equivalent. Remark 1.7 applies to

this special case.

Proof. The equivalence of conditions 1.6(2) and 1.8(2) is an immediate consequence

of C p.86, Proposition 4.5. 3

Notice that in 1.6 and 1.8 the continuity of A is determined solely by the

way by which the generating set G of A is embedded into L.

2. Algebraic lattices. \\

2.1. DEFINITION. Let L be an algebraic lattice. We say that a subset G of L
is K-generating provided that the following conditions are satisfied:

where Lrr L
@) GcIrr L (the set of completely irreducible elements of L,

"cf. C, p.92, Definition 4.19)

s \
1

H

::J& _/
N
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(2) For all ce K(L) we have c = inf(Tkn G).

Notice that (2) is equivaleht to

(2') 1If c,é'e K(L) and c $ ¢' , then there is a g€ G with c_f-ﬁ\ g
‘and c' g.

2.2. LEMMA. Let L be an algebraic lattice and G a K-generating subset. Then L

is the smallest subset of L containing G and being closed under arbitrary infs and
directed sups. In particular,thé;inf—semilattice generated by G is CL-dense in L.
Proof. Let L' be the smallest aubset of L containing G which is closed under

infs and directed sups. (Cf.C, p.60, Definition 2.6 ff.).

By condition 2.1 (2) it follows that K(L)& L. Since L is algebraic, for

each x€ L we have x = sup (Jx n K(L)) and Jx n K(L) 1is directed

(see C,p.85 ,4.3 and 4.4). Hence x & L'. Thus L' = L. The remainder follows

from C,p.146, Theorem 1.11. [0

2.3. REMARK. For a subset G of Irr L in an algebraic lattice L, the following
statements are equivalent:

(1) G = Irr L.

(2) x inf(fx A~ G) for all x¢ L.
Proof. C, p.93, Theorem 4.23. 01

In particular, if G is a K-generating set which is properly smaller than Irr L,

then for at least one x£ L we must have x= inf(fxn G), and vice versa.

2.4 NOTATION. For a K-generating subset G in an algebraic lattice L we write
A(G) = {xé L: x = sup(dxn G).

Then A(G) is a sup-closed lattice in L which is a complete lattice in

its own right. []

2.5. THEOREM. Let L be an algebraic lattice and G a K-generating subset (2.1).
Then the following statements are equivalent:
(1) A(G) is a continuous lattice . ’
- (2) For each g€ G we have g = sup {qe G: gscs g fbr some ¢ € K(L)} .
3) (Vege 6, re Irr L) g & r = (g q€e G, cekR(L)) q<£r and ggecgg.
(4) TFor each gg G and each ¢ € K(L) with c< g there are finitely many

p1,...,pn€G and a d € K(L) such that c<p V...Vp_ = d<g.

1
Proof. By 1.8 we know that (1) and (2) are equivalent. (2) = (3) : Let g€G
and r& Irr L with g = r . Since g is the sup of all q & G with gq<c<g
Publispgd by Ll SehQlgry Beppsifeihd0%he of these q with q == T . Conversely/ 3) >@):5
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Let g € G and set g' = sup {q €6G: qg cx gt for some ce K(L)}. Assume g'# g.

Since clearly g'= g we have g == g' and thus, since Irr L is order generat-
ing , there is an re Irr Lwith g'= r and g s 7r.By (3) we finda qg€ G
and a ¢ K(L) such that q :f r and q=c<g. By the definition of g'

this q satisfies q=< g'< r, and this is a contradiction.

(2) > (4): let c < g with c € K(L) and g€ G. Since c<w<c, whence c<x< g, from (2)
we obtain a finite sequence of elements pjsdjsg , 3= 1,...,n with pje G, %

dj € K(L) and ¢ < PyV ...V P If we set d = d1v...\/dn, then d € K(L),
since K(L) is closed under finite sups, and condition (4) is satisfied.

(4) =(2): Assume (4) and take an arbitrary g€ G and an arbitrary ceK(L)

with cx p. Let p; and d be as in (4). Then c < P,V.. .V P sup {qe G : qees g
for some e€K(L)] <« g. Since g = sup({gn K(L)) by the definition of and alge-
braic lattice (cf.C, p.85,Definition 4.4), conditions (2) follow;;.ﬂ

So far we considered A(G) as a lattice in its order structure. There
are, of course, numerous possibilities of endowing A(B) with a topology.

in the light of later applications we make the following convention:

2.6.CONVENTION. Unless specified otherwise, we consider on . A(G) the topology
AR , L

induced from the Scott topology of L,i.e. the topology generated by the

sets Tcn A(G) , c€ R(L) as basic sets. In accordance with the notation

in C we denote this topology with &(L)]| A(G).

The Scott topology ©( A (G)) of the complete lattice A(G) is at least
as fine as (L) | A(G), but it may be properly finer . The two topologies agree
if for each Ue& 6(A(G)) the set 1‘LU is in &(L). By C, p.181,
Corollary 1.7 this is the case iff the kernmel operator associated with  A(G)
is continuous,i.e. iff A(G) 1s continuous. Thus we have the following

complement to Theorem 2.5:

2.7. COMPLEMENT TO THEOREM 2.5. The conditions of Theorem 2.5

imply each of the following: \
(3) 6 (X(G)) = G(L)' A(G),i.e. the topology of A(G) is the Scott topolo
gy (of A(G)).

(6) For a,be A(G) we have a << (G)b iff a<<Lb iff there is a cEK(L)

with a<csg be
(Proof see C, p.181, Corollary 1.7).T]

2.8.COMPLEMENT TO THEOREM 2.5. If , in Theorem 2.5 we have G = Irr L, then

G is both inf - and sup - dense in  A(G).
Proof. This follows from 1.7. [J

https://repository.lsu.edu/scs/vol1/iss1/66 6
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3. Algebraic lattices and general topology.

Let X be an arbitrary To—space, then O0(X) is a complete Heyting algebra
with X as spectrum. We can form the complete Heyting algebraIzFilt O0(X) of
filters on O(X). Then L is in fact-an algebraic Heyting algebra with
an isomorphism U= fU: 0X)— K(L)op , where 1U ={V€ L: UEVY is
_ the principal filter generated by U in L.Indeed L is arithmetic (cf.C,p.86,def.46).
The topology 6(L) is generated by the basic sets f(ty) < L.

3.1 LEMMA. For each x€ X , the neighborhood filter Z((x) is an element
of Irr L.

Proof. This will follow from

3.2. LEMMA. Let Y C X be a closed irreducible set. Then the filter
F(Y) = {UG 0(X): Un Y#@Y} is completely .prime - in L.

Proof. Among all filters on 0(X) which do not contain X \ Y there is a
unique largest one,namely, F(Y). Thus F(Y) is maximal in L\A( £(X\Y)).

Hence F(Y) € Irr L by C, p.92,Proposition 4.21. . Better still: If p =max L k

with an algebraic lattice L and a k K(L) with a prime k in K(L)OP, then p is
completely prime.( -
Indeed if x € X, then F(4{x} ) = 24(x), and thus 3.1 follows from 3.2. Q

We denote the set of all neighborhood filters &(x) with G.

3.3. LEMMA. (Banaschewski). The function x+»Z&(x): X—> (G,. G(L)}G)
is a homeomorphism.

Proof. See B.

In this fashion we may -consider every To—space as a subspace of

(Irr L, © (L)/ Irr L ) for an arithmetic lattice L.

3.4. LEMMA. The subset G of L is K-generating (2.1).
Proof. Let ¢ K(L). Then there is a U€0(X) with ¢ = fU. The Lemma folows

since

U =mi21(x): xe vy .0

3.5. CONVENTION. Under the present circumstances we will denote the

complete lattice and topological space )(G) (see 2.4 and 2.6) by AX. O3

3.6. THEOREM. (Banaschewski). The map x(—-)Z{(x) X — ZX is the (unique)
essential hull of X.

Proof. See B. [] )

We say that X has an injective hull iff the space AX is injective in the
sense of Scott and C iff AX = A(G) 1is a continuous lattice. A translation of
the conditions of Theorem 2.5 allows us to characterize the spaces X which
have an injective hull. '

H

Published by LSU Scholarly Repository, 2023 ' 7
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We need the formalism of the specialisation order, which we record

for the sake of completeness:

3.7. DEFINITION. We associate with a To—space X two transitive relations:
(i) The specialisation order < given by x <y iff xe {y} - iff
U E Y.
(ii) The Scott order < given by x~y if yeg int % x , where Tx denotes

the upper set of x w.r.t. the specialisation order.

Following Banaschewski we write for any subset A of X

T—;(A) =ﬂ{{a}- :aé€ A}=ﬂ{,}a: a€A}= {x€ X: Ue x) implies AC UJ.

If V is an open subset of X, then r’o(V) = {xé X: '(’,é(x)ETV} =
{x € x: V_c_'f'x} = (Y {4w: we vi.
With the specialisation order £ we as}tsociate as usual a thrird order:

(iii) The way below relation x<< y (see C,p.38, Def. 1) [

The relation x < y implies x<<y, the converse fails even in complete
lattices with the Scott topology (see 'C,p.111, Ex.1.25). The equivalence of the

- A
two relations means that the sets ?x are all open in X.

\

AN
3.8. THEOREM. Let X be a To—space. Then the following conditions are equivalent:

s

(1) X has an injective hull.

(2) TFor each x € X, the neighborhood filter 2 (x) is the sup in the filter
lattice Filt 0(X) of all Z{(y) with y < x.

(3) For each x € X and each completely irreducible filter Z{ not containing
2(x) there is a point z with &lz) € & such that for some
open neighborhood V of x we have'z e rc')(V) (i.e. ) tVv)

(4) For each point x€ X and each open neighborhood W of x there is an

open neighborhood V of x and finitely many points x o X such that

17°°

x1,...,an r'O(V) and W1r\ I & an W for suitable neighborhoods Wj

of Xj (i.e., such that W€ 86(;(1)v..;v&{(xn) e tTv ).

Proof. For two points x and y of X, the following three statements are equivalent:

(i) there is an open set V such that #(x)<€?tvec Z(y),

(ii) there is an open set V such that xcr(')(V) and y& V ,
(iii) x< y.
Clearly 2.5(1») is equivalent to (1) above. In the light of our preceding remarks,
2.5(2) is equivalent to (2) above. Hence (1) & (2). Condition (3) above is a
translation of 2.5(3), and condition (4) above is a reformulation of 2.5(4)

in the present circumstances. (]

3.9. COMPLEMENT IO THEOREM 3.8. The conditions of Theorem 3.8 imply each of the

httfis/}depeiingy.lsu.edu/scs/vol1/iss1/66 8
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(5) For each x€ X we have x = sup J.x = sup&x.

(6) The topology:of AX is the Scott topology.

(7) For ’L(,'Ve'ZX we have 2 <</IX )  iff there is
an open set V€ )) such that 2/€ Ttv.

Proof. Since the specialisation order of X is induced by the order of L
= Filt 0(X), condition (5) is a consequence of (2), considering that
+x = {;x by a remark following 3.7.
(6)and (7) follow by 2.7. [

3.10. COMPLEMENT TO THEOREM 3.8. Assume, in addition to the hypotheses of

3.8,that every completely irreducible element of Filt 0(X) is a neighborhood
filter of a point. Then the following conditions are equivalent:
(1) X has an injective hull.
(8) For each point x € X and each point y with x =% {y}— there is
a point z & {y} " and an open neighborhood V of x such that
ze [ (V). '
(8') For each point x € X and each point y with x ¢ y there is
az £ vy with z < X. N
(9) For each x € X we have x = sup+4 x in X.

Moreover, under these circumstances, (the image of ) X is inf- and sup dense in AX.
Proof. Under the present conditions, (8) is €quivalent to 3.8(3), and (8) is

equivalent to (8'). By 3.9 we know that (1) implies (9) Remains to show that

(9) implies (1). First we observe that the present hypotheses mean that

G=1Irr L for L = Filt 0(X). Thus 2.8 applies and shows that X is inf- and
sup-dense in X (if we identify X with its image via 3.3 in AX). Lemma 0.3 on
p.9 of A(5) (R.-E.Hoffmann) applies to show that under these circumstances,

the embedding X —» AX preserves all existing sups. The inclusion AX — L preserve
sups anyhow. Thus the embedding X —> L preserves all existing sups. But then

condition (9) above implies 3.8(2). (A direct proof of (8') € (9) is also possile.
i

3.11. REMARK. A sufficient condition that f&ar a To-space X every completely

irreducible filter on 0(X) is a neighborhood filter is that X be sober and Filt OX
be joini~continuous. and distributive

Proof. If L is an algebraic 1lattice such that L is join-continuousj then

every p€Irr L is uniquely determined by a c(p)€& K(L) such that c(p) =

min L\Vp, where c(p) is a prime of K(L)°P ; conversely, every prime c

of K(L)°P yields a p(c) € Irr L given by p(c) = max L\fc. (See C, p.92,

Proposition 4.21 and LNM 369 (1974) p.60, Corollary 1.15.). Thus if L = Filt 0(X),

the completely irreducible elements of L are those filters which are determined

by a prime element U of O0(X) as maximal filters not containing U; since X is

sober, U = X\{x}-‘ for some x and the maié(mal filter not containing U is Z((x). O

Published bynga%:olﬂ?yﬁé:peosﬁSX/é'?@Bhere is that in a join continuous algebraic lattice, evegy

completely irreducible element is completely prime.)
T T o T T S O T TR
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Theorem 3.6 replaces the incorrect Corollary 2 to Proposition 3 in Banaschewski':
paper B. The mistake in his proof appears on p.239 ,line 7 from the bottom, whet

the unions must be replaced by suprema.

3.12. PROPOSITION. (Banaschewski). A T, -space has an injective hull iff it

1

1s discrete.

Proof. This follows from 3.8(4)

3.13. EXAMPLE. The boundary of the square in its Scott topology has the
square as injective hull. (See D). The open subset of all (x,y) with

y=1 and x>0 , or x= 1 and y>0 does not have an injective hull by 3.8. g
This example shows that Corollary 4 in B on p 240 is false.

The following example is instructive:

3.14. EXAMPLE. Consider the following subset of the square:

The space arising from this set by endowing it with the topology induced from
the Scott topology of the square we call X. The space XO = X \ {C} carries
its own Scott topology and was discussed in D. The embedding into the square
X1 = {o,1}2 (with the Scott topology ) is the essential hull of XO as was
shown in D. By Banaschewski's Lemma 2 on p. 235 of B we then know that

the embedding of X into X, is the injective hull of X1, since Xo—a X +'X,

is a sequence of embeddin;s. Thus X has an injective hull. (It is instructive
to verify explicitly the equivalent conditions of 3.8.)We also know from 3.9
that the Scott topology of the square is the topology induced from the Scott-
topology of Filt 0(X). But we observe:

(i) X is not locally quasicompact at C.

(ii) X 1is sober.

https://repositofy. i 2d@ies/Senfts 1pepology of X (w.r.t. the specialisation order) is fimer;ghan
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the given topology. It is locally quasicompact sober and quasicompact.
(iv) X'=(X, 6(X, <€ )) ddes not have an injective hull.

Proof.i)Each neighborhood of C must contain a neighborhood of the form
B &\\

This allows us to cover any neighborhood with a countable ascending sequence

of open sets,none of which covers the neighborhood.

il

ii) A closed irreducible set is directed w.r.t. the specialisation order. By

inspection we note that all those sets have a maximum.

iii) The point C has a basis of Scott-open neighborhood of the form:

Since every such has a minimum,namely, C , they all are quasicompact. Thus X'=
(X, 6(X, <)) 1is locally quasicompact sober and quasicompact. The specialisation
order of this space is the natural order of the square and thus agrees with that
of X.

. We show that 3.8(2) is violated.
iv) / The only problematic point is C. In X' we have (0,y) < C iff y:&1/2 4 and

(x,0) < C iff x < 1/2. We DO NOT HAVE C= C. But then the sup of all Z¢ (t)
with t=< C is the neighborhood filter of C w.r.t. 6(X1)‘X' which is bigger than Z/(O.

We notice the following additional information about this example:

. Published by LSU Scholarly Repository, 2023 : o 11
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(v) The point C does not satisfy C<XC even though C is isolated

from below.
This is a subtle point. Suppose we define x <'y by the following relation:
Whenever y = sup D for a directed set D, then x « d for some d € -D.
Then C><'C and X' satisfies the following two conditions:
(a) Every set {y : y<' x} is direct;d for all x.

(b) x = sup {y: y <'x} for all «x.

This means that X' is as close to a continuous poset (it is, of course, up-com-

plete!) as can be without being one. {J

The following diagram illustrates the relationship between various classes

of spaces which arise in the present context. The point is that no general

relation exists.

\\\\\\\ Locer(lef

771/(&’ &7 OCH pac £

However, it is useful to juxtapose com compactness and the property of
having an injective hull. This is most conveniently achieved by focussing on

condition 3.8(4) which we repeat for the sake of self sufficiency and comparison:

. n
m  (Vxe x(Vwerx)) (T ve U (3T X(seesx ) HE \/ Zz(xj>c. fr .
Y
On the other hand, a space is core compact (i.e. 0(X) is continuous) iff

) (Vxe (Ve U@ (T ve o) (AH) weFHtv and F isScort

https://irepository.Isu.edu/scs/vol1/iss1/66 open in 0(X). 12
(cf. C, p.131)
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It follows that a To—space with an injective hull is core compact whenever

a finite sup of neighborhood filters is a Scott open set on 0(X). We recall that
the neighborhood filter of any quasicompact set is Scott open. One conclusion

which one may draw .from this observation is the following:

3.14. PROPOSITION. Let X be a To-space satisfying the following conditions:

(i) X has an injective hull.

(ii) The specialisation order turns X into a topological sup-semilattice.

Then X is core compact.
Proof. We claim that (ii) implies that Z,((X1) V ..V Z((xn) = 2((x1v. eV xn):

The containment € is clear. In order to show the reverse containment let
U be a neighborhood of X, Voo VX . Since v 1is continuous by (ii), there

are open neighborhoods Uj of Xj with U1 Nn...N Un = U1v... \/Un c vu. d

Another class of spaces which arose in 3.10 and 3.11 is not yet sufficiently
clarified. Let us assumefor simplicity that X is a SOBER space. Then the
set G of neighborhood filters in L = Filt 0(X) is precisely the set of completely
prime elements of L. When is G = Irr L ? This is the case for an algebraic lattice
L,iff the complete lattice characters L———> 2 separate the points,iff L is
completely distributive, iff L is join continuous.(I think.) The queston then
becomes the following: If K is a complete lattice, which conditions on K will

make Id K completely distributive?

Published by LSU Scholarly Repository, 2023 13
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