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ilarl H.tiofmarm D 

Topic: Bernhardina 
(The essential hull revisited) 

REFSREIJCESi A All papers "by R.-EcEoffnann on essential hulls ana continuous 
posets (l) Essentially complete T -spaces,^'^nuscr,-lath, 22 (l?77) 
401-432;(2) Essentially complete T -spaces II, A lattice theoreti 
approach, IlatheZe 179(19S2), 73-90; ° (3) Erojiective sooer spaces, 
Lecture Kotes in i.Iath.671 (1901), 125-136; (4) Cc-ntinuous posecs, 
prime spectra of completely distributive complete lattices, and 
Hausdorii conpactifications, loc,cit159-205/^The CL-compacoi-
fication and the infective hull of a continuous poset, Amer.J. 
liath, ,to appear; (6) The Fell compactification revisited, prepri: 

B 

C 

D 

BanaschevrskijBemhard, Essential extensions of T -spaces, G-en. 
Applol (1977),253-246 (submitted 28-2-72). ° 
GierZjG, et al,, A Compendium of Continuous Lattices, Sprinrer-
Verla^ Berlin Heidelberg,Reu York, 19SO. 

Hofnann, E.H,, and Ll,tlislove, Discontinuous CL-compact posets, 
SOS-Memo 5-28-82, 

Oo Introduction, \ 

Banasch^ki's paper on essential hull^j is, next to Scott's seminal article on 
continuous lattices, one of the very early sourc.es'of their theory (B); since it 
intrduces features relating to continuous posets^'vrhi ch are at the focus of more 
current research^ long before the concept of a continuous poset congeled^it has, 
in recent years, spawned a whole line of research (A.), 

The objective I of this memo is a review of Banaschewski' s paper and its 
principal results. The rev^w may be timely for the following reasz-ns; (i) ".7e now 
have a well developed theory of continuous lattices and standard sources (C). (ii) : 
original article (B) is not easily readable in all places, and the GorcllaTW' 1 xo 
Proposition 35 on which many results in C^) are based, is false/Lyiii) The basic ideas 
of (B) are important and viable and it might be useful to take stock of wha.t the 
precise status is. 

The basis of our discussion here will be in the framework of continuous and 
algehraic lattices. At a later stage, we merge into the langaage of filters which 
Banaschewski uses to construct the essential hull of a space, R,-E.Hoffmann has 
given alternative construct ions A.2). 

d \ 
1, Sup-closed subsets in continuous lattices. 

b'e fix a continuous lattice L, From the theory' of Galois corciections (C,p,1l 
we know that there is a ci^onical bijection between the set of sup-closed subse-

of L and the set of kernel operators k: L >1; indeed each kernel operator k 
determines a sup-closed subset A = k(L), and from each sup-closed subset A we 
obtain a kernel opei-ator k via k(x) = sup( ^xr\ A) = max(|^ x o A), The two ore: 

invert each otherc All of this requires the completeness, but not the continuiu; 

of Lc Our objective is to find explicit criteria for the continuity cf A if L 

is continuous., Ii7e know from C, Pc63, Theorem 2.14 that A is contir.urus whcurVr . 
i 

associated kernel operator k is continuous relative to the Scott tc cio fcf 1
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Tne converse may fail, as shows the example l]—> [o, ij with k(x)= x j'm 

or x < ~\/2 and with k(x)= 1 /2 else. 
? i ->• 

i X Ai kd 
However, there are cases, when the continuity of k is necessary and sufficient for 

the continuity of A. 

1.1. LZff.IA. Let k:L—be a kernel operator on a continuous lattice and A = k(L). 

Suppose that L is the smallest subset of L containing A and being closed under 
arbitrary infs and directed sups (i.e. A generates L as a CL- algebra). Then the 

following are equivalent: 

(l) k is continuous. (2) A is continuous. 

Remarks, i) Here and in the following, continuity of a map between posets always 

refers to the Scott topologies,unless noted otherwise, ii) A special case of Lemma 1.1 

is implicit in Proposition 3 of (B). 

Proof. he only have to prove (2) =» (l). Thus suppose that A is continuous. Then 

A is a continuous retract of L, since A is infective (with its Scott topology) in 
the category of ^-spaces and is embedded into the space 2L = (L, «(L)), where 

C(L) is the Scott topology. (See C,p.121 ff.) Thus there is a continuous 
projection operator pL >L with p(L)= A (cf. C,p.21, Definition 3.8.i). liejrtwe 

define LR = {x eL: p(x) < x} (see C, p.22, Lemma 3.11and p.63, Theorem 2.1A). 

how L^ is closed in L under infs and directed sups (C,p.63,loc.cit.).For a c A 

we have p(a)= a,hence a s L^. Since A CL-generates L by hypothesis, we have L, =L, 

i.e. p is a kernel operator with p(L) = A = k(A). Then x > k(x) implies p(x) > pk(x) 

kivx)£ and likewise x p(x) implies k(x) ̂  k(x). Thus k=p and k is continuous. Q 

we record the following observation:. • 

1.2. PXHPCISB. If A is sup-closed in a continuous lattice L, then the following 

statements are equivalent: 

(1) A is continuous. 

('-) * cr e ach a e A and x e L the relation x a implies the existence of 

a b e A with x < b « a 
J-i 

: cr all a,b E A the relation a <<^ b is always a consequence of a b, but if 

(l) and (2) hold, then the converse is also true. O (Cf.C,p. 181,Corollary 1.?) 

-e omit the (simple)proof and now concentrate on the continuity of a kernel operator. 
* 

h— - la.Let k be a kerni operator on a continuous lattice. Then the following 

statements are equivalent: 

(1) k is continuous. 

(2) k(x) = sup k(^x) for all x E L. \ « 

a = sup k(^a) for all a E A (=k(L)). 

• ._.r.-. - r.e way beiow relation << refers tc L unless otherwise specified. 
2
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s :ooi . (1) <->(2) : oee C,p.,11 ,. rc> o. it ion 2.1, (1) <=>(y); the li:au_ . x 1 -

uses only the continuity of the domain S, and a simple modification of the proof 

of (5)=>(4) shows (3) =>(l) without the hypothesis that the range* T be continuous. 

In other words, the equivalence of (l»2,3»5) holds whenever S is continuous and T 

is complete. 

(2)=>(3): Trivial since k(a)= a for a E A. 

(3)=>(2): Let x e L and set a = k(x) e A. Then a = sup t(.^a) (by (3)) 
< sup k(^x) (since a = k(x) < x) < k(x) = a. Thus k(x) = sup k(^x). Q 

3<;ow suppose that G is an arbitrary subset of the continuous lattice L and let 

A oe ^he set E L: x = sup (4,XR\G)J — which is sup-generated by G 

Let k be the kernel operator associated with A. 

1.4* L-l^.LA, The following statements are equivalent: 

(1) k is continuous. 

(2) a = supfj>an G) for all a E A. 
(3) g = sup(^gn G) for all E G. 
( 2 )  =? (1): B y  1.2 w e  k n o w  l a n  G = Proof. (2) =5> (1): By 1.2 we know n G = 

-  '  -  | l ^ G C  k ( ^ L a ) ,  

whence a = sup (̂ A G) < sup.k(^a) < a. Thus^ a = sup k(^a), whence k is 

continuous by 1.3. 

(1) ̂  (2). If k is continuous, then A is continuous. Let a E A and suppose 

x << a. We find 1 "an x' e L with x « xv « a by the interpolation 

property (C p.46), and then we find a b e A with x'< b « a by Low b=supQ,b r> G] 

Ly hypothesis.Since x << b there is a finite set Fc^bn G sucht' that x sup ?. 

Since sup F << a we conclude FC^a n G. Thus x < sup F < sup(^ an G) < a. 

Since x << a was aroutrary and a = sup J,a.as L is continuous we conclude a\ 1 
an G) = a. 

v' 
(2) => (3) is trivial. 

(3) => (2): a = sup[X. an G) = sup .[g o G: a = |ug sug h ( 

g< a h«g 

= sup £h E G: h«g <_ a for some ̂ E G}< sup^a^ gJ < a, whence a = sup(J, an G.J 

1.3. LX..1,IA. Let L be a complete lattice and suppose that L is inf-generated by G 

(i.e. x = inf (FXO G) for all x E L). Lei A = -[_x e L: x = su?{( >: N G)). Then 
the complete lattice A is inf-generated by G WlTHlL A ,i.e. x = inf, (t x o G) 

for all x E A. 

Procf . Let k:L >L be the kernel operator associated with A. Let g:L—>A be the 

corestriction of k; then g is upper adjoint to the inclusion d:A >1,hence 

preserves infs. Low let x E A. By hypothesis, x = inf (fx G), rhence x = k(x 

= g(x) = infA g( fx n G) = inf ( tx n G). 0 

3
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We are ready for the principal Theorem of this section: 

1.6, THEOREM. Let G be a subset of a continuous lattice L and let A denote 

the subset L: x = sup( ixoG)} which is sup-generated by G. Consider the 

following conditions: 

(1) A is a continuous lattice in its o\m right. 
(2) g = sup (^gn G) for all G. 

Then (2) 4>' (1) and if the smallest subset of which contains A and is closed 

under arbitrary infs and directed sup^ is L, then both conditions are equivalent. 

Proof, By 1.1, conditions (1) is equivalent to the continuity of the kernel 

operator k associated with A, provided that L is the smallest subset of L 

containing L and being closed under infs and directed sups. By 1.A, the continuity c 

of k is equivalent to (2). Since (1) follows from the continuity of k in 

general, the Theorem is proved. D ' 

1.7. REMARK. If in addition to the hypotheses of 1.6, the set G inf-generates L, 

then G inf-generates A within A, i.e. a = G) for all a^ A. In this 

case, G is both meet and join dense in A. 

'^raof- lemma. 1.S JJ 

1.8. COROLLARY. Suppose that G is a subset of an algebraic lattice and A is 

defined as in 1.6. Then of the following conditions, (2) =^(1): 

(1) A is a continuous lattice. 

(2) g = sup .^h € G: there is a c K(L) such that h<c^ gj. for all gG' G. 

If L is the smallest subset of L containing A which is closed under infs and 

directed sups, then both conditions are equivalent. Remark 1.7 applies to 

this special case. 

Proof. The equivalence of conditions 1.6(2) and 1.8(2) is an immediate consequence 

of C p.86, Proposition A.5. D 

Notice that in 1.6 and 1.8 the continuity of A is determined solely by the 

way by which the generating set G of A is embedded into L. 

2. Algebraic lattices. \ 

2.1. DEFINITION. Let L be an algebraic lattice. We say that a subset G of L 

is K-generating provided that the following conditions are satisfied: 

(1) G Q Irr L (the set of completely irreducible elements of L, 

cf. C, p.92, Definition A.19) 

4
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(2) For all cC'K(L) we have c = infCfkO G) . 

Notice that (2) is equivalent to 

(2') If c,c*0 K(L) and c ^ c* , then there is a G with 8 

and c' g. 

2.2. LEMMA. Let L be an algebraic lattice and G a K-generating subset. Then L 

is the smallest subset of L containing G and being closed under arbitrary infs and 

directed sups. In particular,the^inf-semilattice generated by G is CL-dense in L. 

Proof. Let L' be the smallest aubset of L containing G which is closed under 

infs and directed sups. (Cf.C, p.60, Definition 2.6 ff.). 

By condition 2.1 (2) it follows that K(L);C L'. Since L is algebraic, for 

each x€ L we have x = sup n K(L)) and n K(L) is directed 

(see C,p.85 ,4.3 and 4.4). Hence x^ L'. Thus L' = L. The remainder follows 

from C,p.146, Theorem 1.11. D 

2.3. REMARK. For a subset G of Irr L in an algebraic lattice L, the following 

statements are equivalent: 

(1) G = Irr L. 

(2) X = infCtxrv G) for all x^ L. 

Proof. C, p.93, Theorem 4.23. Q 

In particular, if G is a K-generating set which is properly smaller than Irr L, 

then for at least one we must have x =?t inf ( t" x n G) , and vice versa. 

NOTATION. For a K-generating subset G in an algebraic lattice L we write 

^(G) = -^x^ L: X = supC^-xn G). 

Then A(G) is a sup-closed lattice in L which is a complete lattice in 

its own right. Q 

2.5. THEOREM. Let L be an algebraic lattice and G a K-generating subset (2.1). 

Then the following statements are equivalent: 

(1) A(G) is a continuous lattice . 

(2) For each g £- G we have g = sup ̂ q € G: q^sc^g: g for some c S K(L)]f . 
(3) ( \/g^ G, r e Irr L) g r = ( 3 q 6" G, c<5 K(L)) q r and q:$c^g. 

(4) For each g^ G and each c 6 K(L) with c g there are finitely many 

Pi »• • • JP ^ G and a d ̂  K(L) such that c^p.V...Vp < d^g. I n 1 n 

Proof. By 1.8 we know that (1) and (2) are equivalent. (2) (3) : Let g6^G 

and r <9 Irr L with g r . Since g is the sup of all q ̂  G with q^c^g 

for some c there must be one of these q with q ^ r . Conversely (3) =#* (2) ̂ 5
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Let g 6 G and set g' = sup |q^G: g^for some ceKCL)}". Assume gV g. 

Since clearly g':^ g we have g g' and thus, since Irr L is order generat­

ing , there is an r IrrL with g*^ r and g ^ r.By (3) we find a q^ G 

and a c K(L) such that q ̂  r and q^c^g. By the definition of g' 

this q satisfies q^^g':^ r, and this is a contradiction. 

(2) =^(4): Let c c?" g with c ̂  K(L) and gG G. Since c-<?<-c, whence cc^ g, from (2) 

we obtain a finite sequence of elements p.^d.^g , j= 1,.. . ,n with p.^ G, SL 
11 1 

dj ̂  K(L) and c ̂  p^ V ...V p^. If we set d = d^V.-.v'd^, then de K(L) , 

since K(L) is closed under finite sups, and condition (4) is satisfied. 

(4) =>(2): Assume (4) and take an arbitrary g C G and an arbitrary CCKCL) 

with Cj^ Let p- and d be as in (4). Then c p^V. ..V sup i^q€ G : q^ e< g 

for some eeK(L)J ^ g. Since g = sup(4^g/0 K(L)) by the definition of and alge­

braic lattice (cf.C, p.85,Definition 4.4), conditions (2) follows. £J 

So far we considered ,A(G) as a lattice in its order structure. There 

are, of course, numerous possibilities of endowing with a topology, 

in the light of later applications we make the following convention: 

2.6.CONVENTION. Unless specified otherwise, we consider on v ^(G) the topology 
X 

induced from the Scott topology of L,i.e. the topology generated by the 

sets t^c n A(G) , c€ K(L) as basic sets. In accordance with the notation 

in C we denote this topology with <5"(L) j A.(G) . 

The Scott topology 6"(A.(G)) of the complete lattice A(G) is at least 

as fine as <f(L) | A(G), but it may be properly finer . The two topologies agree 

if for each Ue ̂ (A(G)) the set U is in (fCL). By C, p. 181, 
Li 

Corollary 1.7 this is the case iff the kernel operator associated with A(G) 

is continuous,i.e. iff A(G) is continuous. Thus we have the following 

complement to Theorem 2.5: 

2.7. COMPLEMENT TO THEOREM 2.5. The conditions of Theorem 2.5 

imply each of the following: \ 

(5) ^(X,(G)) = ^(L) { X(G),i.e. the topology of X(G) is the Scott topolo­

gy (of A(G)). 

(6) For a,b ̂  A(G) we have a « iff ^ "^L^ there is a c6K(L) 
with a^cc b» 

(Proof see C, p.181, Corollary 1.7).Q 

2.8.COMPLEMENT TO THEOREM 2.5. If , in Theorem 2.5 we have G = Irr L, then 

G is both inf - and sup - dense in A(G). 

Proof. This follows from 1,7. Q 

6

Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 66

https://repository.lsu.edu/scs/vol1/iss1/66



3. Algebraic lattices and general topology. 

Let X be an arbitrary T^-space, then 0(X) is a complete Heyting algebra 

with X as spectrum. We can form the complete Heyting algebra Ij=Filt 0(X) of 

filters on 0(X). Then L is in fact an algebraic Heyting algebra with 

an isomorphism U»—>tU: 0(X) >K(L)°^ , where lU =(V€:L: U£V3 is 

the principal filter generated by U in L.Indeed L is arithmetic (cf.C,p.86,def.4£) 

The topology 6'(L) is generated by the basic sets f(fU) ̂  L . 

3.1 LEMMA. For each x£ X , the neighborhood filter 2^(x) is an element 

of Irr L. 

Proof. This will follow from 

3.2. LEMMA. Let Y C X be a closed irreducible set. Then the filter 

F(Y) = £U€0(X): U n Y^^jf is completely -prime i" 

Proof. Among all filters on 0(X) which do not contain X \ Y there is a 

unique largest one,namely, F(Y). Thus F(Y) is maximal in LVt'C t'CXXY)). 

Hence F(Y) £ Irr L by C, p.92,Proposition 4.21. Better still: If p =max L k 
with an algebraic lattice L and a k K(L) with a prime k in K(L)°P, then p is 
completely prime.Q _ 

Indeed if x 6 X, then F(-^3 ) ~ 2Z.(x), and thus 3.1 follows from 3.2. Q 

We denote the set of all neighborhood filters £^(x) with G. 

3.3. LEMMA. (Banaschewski) . The function XH-»2^(X): X >(G,- ^(L))G^ 

is a homeomorphism. 

Proof. See B. 

In this fashion we may consider every T^-space as a subspace of 

(Irr L, (L)|lrr L ) for an arithmetic lattice L. 

3.4. LEMMA. The subset G of L is K-generating (2.1). 

Proof. Let c(£ K(L). Then there is a U£0(X) with c = tu. The Lemma follows 
since 

tu =n£2^(x): X6 ui . 0 
3.5. CONVENTION. Under the present circumstances we will denote the 

complete lattice and topological space A(G)(see 2.4 and 2.6) by Xx. D 

3.6. THEOREM. (Banaschewski) . The map x 2/(x) X > is the (unique) 

essential hull of X. 

Proof. See B. U 
We say that X has an injective hull iff the space Ax is infective in the 

sense of Scott and C iff XX = X(G) is a continuous lattice. A translation of 

the conditions of Theorem 2.5 allows us to characterize the spaces X which 

have an injective hull. 

7
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We need the formalism of the specialisation order, which we record 

for the sake of completeness: 

3.7. DEFINITION. We associate with a T^-space X two transitive relations: 

(i) The specialisation order ^ given by y iff ^yj iff 

2ir(x)C ^(y). 

(ii) The Scott order given by X ̂  y if y^ intr t X , where 'tx denotes 
the upper set of x w.r.t. the specialisation order. 

Following Banaschewski we write for any subset A of X 

r^(A) : a € Aj=/^-|^^a: a6A}= -[^x ^ X: \J € '2^(x) implies AC U^. 

If V is an open subset of X, then P (V) = -Tx^^ X: c^(x)stv} = 

^x ^ X: VcTxJ = we V^. 

With the specialisation order ^ we associate as usual a thrird order: 

(iii) The way below relation x <5C y (see C,p.38, Def. 1.1) Q 

The relation xy implies x<c;y, the converse fails even in complete 

lattices with the Scott topology (see C,p.1l1, Ex.1.25). The equivalence of the 

two relations means that the sets T x are all open in X. 

X 

3.8. THEOREM. Let X be a T^-space. Then the following conditions are equivalent: 

(1) X has an injective hull. 

(2) For each x ̂  X, the neighborhood filter ̂ (x) is the sup in the filter 

lattice Filt 0(X) of all ^(y) with y-^ x. 

(3) For each x ̂  X and each completely irreducible filter ̂  not containing 

2/(x) there is a point z with ^(z) ̂  2^ such that for some 

open neighborhood V of x we have z £ ( i.e. ^(z)^ t V ) 

(4) For each point xC X and each open neighborhood W of x there is an 

open neighborhood V of x and finitely many points x^,...,x^ such that 

x.,...,x (V) and W,O ....A W c W for suitable neighborhoods W, 
1 no 1 n— J 

of X. (i.e.. such that WG tox.) v»wV^(x ) ̂ t V ) . 
J ^1 n 

Proof. For two points x and y of X, the following three statements are equivalent: 

(i) there is an open set V such that ^(x) ̂tv 9 ̂  (y) , 

(ii) there is an open set V such that xcP(V) and y^ V , 

(iii) x-< y. 

Clearly 2.5(1) is equivalent to (1) above. In the light of our preceding remarks, 

2.5(2) is equivalent to (2) above. Hence (1) ̂  (2). Condition (3) above is a 

translation of 2.5(3), and condition (4) above is a reformulation of 2.5(4) 

in the present circumstances. Q 

3.9. COMPT.FMENT li) THEOREM 3.8. The conditions of Theorem 3.8 imply each of the 

following: 8
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(5) For each x G X we have x = sup ̂ x = sup 

(6) The topology of Ax is the Scott topology. 

(7) For we have ^ there is 

an open set VcV^ such that 2/e fv. 

Proof. Since the specialisation order of X is induced by the order of L 

= Filt 0(X), condition (5) is a consequence of (2), considering that 

-l-x S by a remark following 3.7. 

(6)and (7) follow by 2.7. Q 

3.10. COMPLEMENT TO THEOREM 3.8. Assume, in addition to the hypotheses of 

3.8^that every completely irreducible element of Filt 0(X) is a neighborhood 

filter of a point. Then the following conditions are equivalent: 

(1) X has an injective hull. 

(8) For each point x ̂  X and each point y with x {5^ there is 

a point z ̂  ̂y| and an open neighborhood V of x such that 

zeP (V). 
O 

(8') For each point x e X and each point y with x y there is 

a z y with z x. 
V 

(9) For each x G X we have x = sup 4- x in X. 
Moreover, under these circumstances, (the image of ) X is inf- and sup dense in Ax. 
Proof. Under the present conditions, (8) ia Equivalent to 3.8(3), and (8) is 

equivalent to (8'). By 3.9 we know that (1) implies (9) Remains to show that 

(9) implies (1). First we observe that the present hypotheses mean that 

G = Irr L for L = Filt 0(X). Thus 2.8 applies and shows that X is inf- and 

sup-dense in XX. (if we identify X with its image via 3.3 in A X). Lemma 0.3 on 
p.9 of A(5) (R.-E.Hoffmann) applies to show that under these circumstances, 

the embedding X—> XX preserves all existing sups. The inclusion AX—L preserve 

sups anyhow. Thus the embedding X —^ L preserves all existing sups. But then 

condition (9) above implies 3.8(2). (A direct proof of (8') ̂>(9) is also possiHe. 
• 

3.11. REMARK. A sufficient condition that fcis^r a T^-space X every completely 

irreducible filter on 0(X) is a neighborhood filter is that X be sober and Filt 0(X) 

be joinr.-continuous. , 
and distributive 

Proof. If L is an algebraic lattice such that L is join-continuousy^ then 

every peirr L is uniquely determined by a c(p)eK(L) such that c(p) = 

min Lx4^p, where c(p) is a prime of K(L)°^ ; conversely, every prime c 

of K(L)°^ yields a p(c) ̂  Irr L given by p(c) = max L\tc. (See C, p.92, 

Proposition 4.21 and LNM 369 (1974) p.60, Corollary 1.15.). Thus if L = Filt 0(X), 

the completely irreducible elements of L are those filters which are determined 

by a prime element U of 0(X) as maximal filters not containing U; since X is 

sober, U = X\{xi 'for some x and the mai^mal filter not containing U is £<'(x). Q 

(What we are saying here is that in a join continuous algebraic lattice, every 

completely irreducible element is completely prime.) 
9
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Theorem 3.6 replaces the incorrect Corollary 2 to Proposition 3 in Banaschewski'j 

paper B. The mistake in his proof appears on p.239 ,line 7 from the bottom, whei 

the unions must be replaced by suprema. 

3.12. PROPOSITION. (Banaschewski). A T^-space has an infective hull iff it 

is discrete. 

Proof. This follows from 3.8(4) 

3.13. EXAMPLE. The boundary of the square in its Scott topology has the 

square as infective hull. (See D). The open subset of all (x,y) with 

y=1 and x>0 , or x= 1 and y>0 does not have an infective hull by 3.8. Q 

This example shows that Corollary 4 in B on p 240 is false. 

The following example is instructive: 

3.14. EXAMPLE. Consider the following subset of the square: 

The space arising from this set by endowing it with the topology induced from 

the Scott topology of the square we call X. The space X^ = X \ "{^C^ carries 

its own Scott topology and was discussed in D. The embedding into the square 

(with the Scott topology ) is the essential hull of X^ as was 

shown in D. By Banaschewski' s Lemma 2 on p. 235 of B we then know that^ 

the embedding of X into is the injective hull of X^, since X^->. X 

is a sequence of embeddings. Thus X has an injective hull. (It is instructive 

to verify explicitly the equivalent conditions of 3.8.jWe also know from 3.9 

that the Scott topology of the square is the topology induced from the Scott-

topology of Filt 0(X). But we observe: 

(i) X is not locally quasicompact at C. 

(ii) X is sober. 

(iii) The Scott topology of X (w.r.t. the specialisation order) is finer thar 10
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the given topology. It is locally quasicompact sober and quasicompact. 

(iv) X'=(X, <^(X, ̂  )) do'es not have an infective hull. 

Proof.i)Each neighborhood of C must contain a neighborhood of the form 

This allows us to cover any neighborhood with a countable ascending sequence 

of open sets,none of which covers the neighborhood. 

rri 1 -

L 

ii) A closed irreducible set is directed w.r.t. the specialisation order. By 

inspection we note that all those sets have a maximum. 

iii) The point C has a basis of Scott-open neighborhood of the form: 

Since every such has a minimum,namely, C , they all are quasicompact. Thus X'= 

(X, ^(X, ̂  )) is locally quasicompact sober and quasicompact. The specialisation 

order of this space is the natural order of the square and thus agrees with that 

of X. 
We show that 3.8(2) is violated. 

/ The only problematic point is C. In X' we have (0,y) C iff y-<ri/2 and 

(x,0)C iff x< 1/2. We DO NOT HAVE C-< C. But then the sup of all ^ (t) 

with t-^ C is the neighborhood filter of C w.r.t. 6'(X^)|x' which is bigger than^CO. 

We notice the following additional information about this example: 

\ 

11
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(v) The point C does not satisfy C<^C even though C is isolated 

from below. 

This is a subtle point. Suppose we define x "C'y by the following relation: 

Whenever y = sup D for a directed set D, then x d for some d ̂  D. 

Then C<*C and X' satisfies the following two conditions: 

(a) Every set ^y : y <' x}" is directed for all x. 

(b) X = sup £y: y <*x^ for all x. v 

This means that X* is as close to a continuous poset (it is, of course, up-com­

plete!) as can be without being one. Q 

The following diagram illustrates the relationship between various classes 

of spaces which arise in the present context. The point is that no general 

relation exists. 

Coy€- Coyi^pac\^ 

(i.,. OCX) 
Cor) rywid j 

Coi^i f-7 V/vui 

h^K>c 

UuXC 

I 

\\\\\^ c t 

However, it is useful to juxtapose COIE compactness and the property of 

having an injective hull. This is most conveniently achieved by focussing on 

condition 3.8(4) which we repeat for the sake of self sufficiency and comparison: 

(IH) (V x6 X) W€Z^(x)) ( ̂ V^^(x))(3 X ,...,x ) W£ E/(x.) ̂  fv 
" j = l ^ 

On the other hand, a space is core compact (i.e. 0(X) is continuous) iff 

(cc) (Vx<^ x)(y 2&x))( 3 ^(x))(35?) we^ct V and ^ is5Cott 

open in 0(X). 

(cf. C. p.131) 

12
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u 

It follows that a T^-space with an infective hull is core compact whenever 

a finite sup of neighborhood filters is a Scott open set on 0(X). We recall that 

the neighborhood filter of any quasicompact set is Scott open. One conclusion 

which one may draw from this observation is the following: 

3.14. PROPOSITION. Let X be a T^-space satisfying the following conditions: 

(i) X has an infective hull. 

(ii) The specialisation order turns X into a topological sup-semilattice. 

Then X is core compact. 

Proof. We claim that (ii) implies that v ...V' Z^(x ) =^/(x^v. ..vx ): 
1 n 1 n 

The containment ^ is clear. In order to show the reverse containment let 

U be a neighborhood of x^ V ... V x^. Since v is continuous by (ii), there 

are open neighborhoods U. of x. with U^r^...nU = U,v...VU c:u. Q 3 3 1 n 1 n •" 

Another class of spaces which arose in 3.10 and 3.11 is not yet sufficiently 

clarified. Let us assumefor simplicity that X is a SOBER space. Then the 

set G of neighborhood filters in L = Filt 0(X) is precisely the set of completely 

prime elements of L. When is G = Irr L ? This is the case for an algebraic lattice 

L,iff the complete lattice characters L >2 separate the points,iff L is 
completely distributive, iff L is join continuous.(1 think.) The questbn then 

becomes the following: If K is a complete lattice, which conditions on K will 

make Id K completely distributive? 

13
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