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A CLASS OF EXTREME X-HARMONIC FUNCTIONS

JOHN VERZANI

Abstract. Salisbury and Verzani introduced a class of martingales for the
Brownian superprocess related to conditionings of the process to exit the
boundary of a bounded domain in Rd in a particular way. The corresponding
class of functions, denoted Hg,h1,...,hN

, was generalized by Dynkin to more
general superprocesses and shown to be X-harmonic. Salisbury and Verzani
conjectured that a certain choice of g and h’s would yield minimal functions
in the Brownian case. This paper shows that this conjecture is true.

1. Introduction

The measure-valued processes called superprocesses have been well-studied in
recent years (e.g. [2], [7], [3], [5]). However, certain areas are still relatively un-
known. The Martin Boundary theory of X-harmonic functions, as summarized
in [4], is an example. The aim of this paper is to extend the class of known ex-
treme X-harmonic functions for super Brownian motion to include a family of
harmonic functions first identified in [12]. This family arises when one conditions
the exit measure for the superprocess to behave in certain ways.

Before stating the theorem, we need a number of definitions.

1.1. Superprocesses. For our purposes, a superprocess will be defined as in [4].
That is, let E ⊂ Rd, M(E) be the set of finite measures on E and B+(E) be
the class of all positive Borel functions on E. Let (ξ,Π) be a diffusion in E with
generator L and Green and Poisson operators GD and KD in D. Suppose that for
every open set D ⊂ E and every µ ∈ M(E) there is a random measure (XD,Pµ)
on Rd such that for every f ∈ B+ we have

Pµ(exp−〈f,XD〉) = exp−〈VD(f), µ〉, (1.1)

where 〈f, ν〉 is the integral of f against ν and the function u = VD(f) satisfies

u+GDψ(u) = KD(f).

The family (XD,Pµ) is called an (L,ψ)-superprocess, VD is the transition operator.
Existence is known for a wide class of ψ, in particular ψ(x) = x2/2 which is the
Brownian case considered in this paper.
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336 JOHN VERZANI

1.2. X-harmonic functions. Recall, a function, h, is called L-harmonic if for
all x ∈ E one has h(x) = Πx(h(ζτD

)) for all D b E (D is a bounded domain
with closure in E), τD, as usual, standing for the exit time from D. In analogy,
a function H : M(E) → R is called X-harmonic if for all finite µ supported on
a compact set and D a subset of E, Pµ(H(XD)) = H(µ). In particular, if h is
L-harmonic, then H(µ) := 〈h, µ〉 is X-harmonic, as in general one has by the
properties of the mean operator that

Pµ(〈v,XD〉) =
∫

Πx(v(ζτD
))µ(dx).

1.3. The X-harmonic functions Hg,h1,...,hN
. In the papers [12] and [11] a class

of X-harmonic functions was introduced that arose in the study of conditioning
the superprocess to behave in a certain way as it exited E. To describe the process
we need to review killing and transformations of processes.

1.3.1. Killed Processes. Let g ∈ B+, the process ξ killed at rate g is a strong
Markov process with generator denoted Lg, lifetime denoted by ζ that satisfies

Πg
x(ξt ∈ A, ζ > t) = Πx((exp−

∫ t

0

g(ξs)ds), ξt ∈ A, ζ > t), (1.2)

where, the ζ on the right hand is for the process under L.
We define the Green and Poisson operators for the killed process as usual

Gg
D(f)(x) = Πg

x(
∫ τD

0

f(ξt)dt) (1.3)

= Πx

∫ τD

0

(exp−
∫ t

0

g(ξs)ds)f(ξt)dt,

Kg
D(f)(x) = Πg

x((exp−
∫ τD

0

g(ξs)ds)f(ξτD
)). (1.4)

1.3.2. Conditioned Processes. The u- transform is defined for positive, L- har-
monic functions as follows. Let τ be a stopping time, then

Πu
x(Φτ (ξ)1ζ>τ ) =

1
u(x)

Πx(Φτ (ξ)u(ξτ )1ζ>τ ) (1.5)

for Φτ (ξ) ∈ σ{ξs : s ≤ τ}. If 0 < u <∞ in E then this new process is a diffusion.
If u is L-harmonic, it dies on the boundary of D, if u is a potential then the process
dies in the interior of D and will satisfy

Πu
x[Φ(ξ)] =

1
u(x)

∫ ∞

0

Πx(Φ(ξ(· ∧ t))f(ξt)1ζ>tdt. (1.6)

For X-harmonic functions H we can define the H-transform1 of Xn accordingly.
In particular we have

PH
µ (F (XD)) =

1
H(µ)

Pµ(F (XD)H(XD)). (1.7)

1[4] uses exit laws and term this the F -transform.
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1.3.3. The functions Hu,f1,...,fn . The equation Lu = ψ(u) in E is intimately
connected to the theory of superprocess. Let U denote the class of all positive C2

functions which solve the equation. Let u ∈ U be chosen, and assume f1, f2, . . . , fN

are positive functions. For a finite set C let Pr(C) denote the set of all permu-
tations of C with r factors and P(C) the set of all permutations of C. Then for
each subset C of {1, 2, . . . , N} define functions

vC :=

{
K ũ

D(fi) C = {i},
Gũ

D(
∑

r≥2 qr
∑
Pr(C)(v

C1 · · · vCr )) |C| > 1,
(1.8)

where ũ = ψ
′
(VD(u)) and qr is defined by

q1 = 1, qr(x) = (−1)rψr(VD(u)) for r ≥ 2. (1.9)

Using
∏

C to indicate the product over all factors of the permuation C, set

Hu,f1,··· ,fN
(µ) := exp−〈u, µ〉

∑

C∈P({1,2,...,N})

∏

C

〈vCi , µ〉 := exp−〈u, µ〉H̃(µ).

(1.10)
It is shown in [4] that if the fi are positive solutions to the equation

Lv = ψ
′
(u)v

in E then Hu,f1,··· ,fN is a X-harmonic for a wide class of ψ. As well, the fi are
harmonic for the process ξ killed at rate ũ and v{i} = K ũ

D(fi) = fi.
In [12] the above was shown for ψ = x2/2. In this case, (1.10) simplifies quite

a bit. The function u solves VD(u) = u as it is in U and ψ
′

= x so ũ = u. The
terms ψr in (1.9) involve derivatives, and in this case, ψr = 0 for r ≥ 2. Thus, the
term for vC in (1.8) when |C| > 1 simplifies to

vC(x) = Gu
D(

∑

P2(C)

vC1vC2).

In the case when u is the maximal solution in U and fi are minimal harmonic
for Lg it was conjectured in section 6 of [12] that the functions Hu,f1,...,fN

should
be minimal.

1.4. Extreme X-harmonic functions. In [4] the notion of extremeX-harmonic
functions is developed. In particular, extreme X-harmonic functions may be de-
fined as minimal X-harmonic functions on E. That is, fix a reference point x0 ∈ E
and let H(X,x0) denote all non-negative X-harmonic functions in E normalized
so that H(δx0 , x0) = 1. Let He(X) be all non-zero elements of H(X,x0) with the
property that if for any H̃ ∈ H(X,x0) that if H̃ ≤ H then H̃ = cH for some c.
These are the extreme X-harmonic functions. Furthermore, there is a unique rep-
resentation (due in this context to Evans and Perkins) in terms of these extreme
functions

H(µ) =
∫

He(X,x0)

K(µ, γ)νH(dγ),

where ν is a finite measure supported on the extreme elements.
Now we state the main theorem of this paper:
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Theorem 1.1. Let E be a bounded domain in Rd, L be the generator for Brownian
motion in E and ψ(x) = x2/2. Assume

(1) The function g(x) is the unique, maximal solution to L(u) = ψ(u) in E
with infinite boundary condition.

(2) The functions {hi, i = 1, . . . , N} are extreme Lg-harmonic functions.

Then Hg,h1,...,hN
is an extreme X-harmonic function.

Remark 1.2. Clearly from the definition of vC in (1.8) if the hi are not minimal,
then H can not be minimal. In the case N = 0 it is clear that g must be maximal,
this is not the case in the theorem though where N ≥ 1 is assumed. In the course
of the proof, it becomes clear why g needs to be the maximal solution.

2. Preliminaries

2.1. Quick sketch of proof. The proof will follow several steps analogous to
those used in a proof by Evans ([6]) as outlined in [4]. The goal is to construct
a process related to the H-transform of the superprocess. A process in [12] was
shown to have an equivalent Laplace transform. This process is extended here to
show that and its “backbone” process (similar to the immortal partical of Evans)
is related to the H-transform. Then it is shown that only the backbone process
contributes to the tail events. Finally, the backbone process is shown to have a
trivial tail.

The proof requires the following ingredients.

2.2. An associated Markov chain. Fix {Dn} to be any sequence of domains
with Dn b E, Dn ⊂ D̄n ⊂ Dn+1 and ∪Dn = E. We define transient Markov
chains by ξn := ξτDn

and Xn := XDn . Let F⊂D be the σ-algebra generated by
XD′ when D

′ ⊂ D, Fn := F⊂Dn and F⊃D be generated by XD′′ when D
′′ ⊃ D.

The latter chain is Markov due to the Markov property of the superprocess, namely
if A ∈ F⊂D and B ∈ F⊃D then

Pµ(AB) = Pµ(APXD (B)). (2.1)

2.3. The extended moment formula. The fact that Hg,h1,...,hN
is harmonic

follows from a moment formula (Theorem 4.1 of [4]) which takes the following form
with C = {1, 2, . . . , n}.

Pµ[exp−〈u,XD〉
∏

i∈C

〈fi, XD〉] = Pµ[exp−〈u,XD〉]
∑

γ∈P(C)

∏

|γ|
〈vCγi, µ〉. (2.2)

3. The Superprocess Conditioned to not Charge the Boundary

The class U is defined as all functions which are solutions to L(u) = ψ(u). If g is
in U then the function Hg(µ) = exp−〈g, µ〉 is X-harmonic. Let the H-transform
defined by Hg be referenced with a tilde. and the resulting process be denoted X̃.
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Then for D b E we have

P̃µ(exp−〈u, X̃D〉) =
1

Hg(µ)
Pµ(exp−〈u,XD〉 exp−〈g,XD〉) (3.1)

=
1

exp〈g, µ〉 exp−〈VD(u+ g), µ〉, by (1.1)

= exp−〈ṼD(u), µ〉,
where

ṼD(u)(x) := (VD(u+ g)− g)(x). (3.2)

Lemma 3.1. If g is maximal and Hg(µ) > 0, then under P̃ the process X̃n is a
super process conditioned to not charge the boundary of E.

Proof. The Hg-transform of X is a strong Markov, measure-valued process. We
show that for all µ with Hg(µ) > 0 one has for ε > 0 limn P̃µ(〈1, X̃n〉 > ε) = 0.

By Chebyshev’s inequality we have for a fixed ε > 0

0 ≤ P̃µ[〈1, X̃n〉 > ε]

≤ 1
ε
P̃µ[〈1, X̃n〉]

=
1

εHg(µ)
Pµ[〈1, Xn〉Hg(Xn)]

=
1

εHg(µ)
exp−〈Vn(g), µ〉〈Kg

n(1), µ〉 by (2.2)

≤ 〈Kg
n(1), µ〉
Hg(µ)

.

The proof will follow by showing that Kg
n(1) goes to 0 as n goes to ∞. As

g ∈ U , Vn(g) = g, it is enough to show

Kg
n(1)(x) := Πx[exp−

∫ τn

0

Ψ
′
(Vn(g)(ξs))ds] (3.3)

= Πx[exp−
∫ τn

0

Ψ
′
(g(ξs))ds] → 0.

By assumption, the function g is the maximal solution in E and the unique
solution with infinite boundary condition. From [3] chapter 11, there exists a
function with fine trace representation (∂ME, 0) which is the minimal σ-moderate
solution in U which blows up on the boundary of E. Because we assume such a
solution is unique it is our g. Thus the singular set SG(g) is ∂ME which says that
for all y in ∂ME we have

Πy
x[

∫ ζ

0

ψ
′
(g)(ξs)ds = ∞] = 1. (3.4)

In particular, Πy
x − a.s one has

∫ τn

0

ψ
′
(g(ξs))ds→∞. (3.5)
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We need to show this is true for the unconditioned process. We use the charac-
terization of the h-transform as a conditioned process. (That is, as in proposition
2.7 of [1] one has Πx0 [A] =

∫
∂E

Πz
x0

[A]Px0 [XτD
∈ dz] for FτD

-measurable A.)
As equation (3.5) is true for all y ∈ ∂E we have with An,M denoting the event
{∫ τn

0
ψ
′
(g(ξs))ds > M} that

Πx(An,M ) =
∫

Πx(An,M | ξτE
= y)Πx(ξτE

∈ dy)

=
∫

Πy
x(An,M )Πx(ξτE

∈ dy)

→
∫

1Πx(ξτE
∈ dy) = 1, as n→∞.

Thus, for all M we have

lim
n

Πx(
∫ τn

0

Ψ′(g(ξs))ds > M) = 1,

which yields

lim
n

Πx(
∫ τn

0

Ψ′(g(ξs))ds = ∞) = 1.

Consequently equation (3.3) holds. ¤

4. Labeled Trees

The backbone process will be a labeled tree – a branching diffusion where the
particles carry along a certain label that makes the process Markov. This section
fixes some notation for labeled trees and then defines the Markov process that will
be the backbone process for the conditioned superprocess

4.1. Definition of a labeled tree. We define a labeled tree in terms of an index
set which governs the branching, a collection of paths which are the segments of
the trees and a consistent collection of labels.

An index set: Let T = {δ}⊗∪nNn. For an element a = (δ, a1, a2, . . . , an),
define the length |a| = n (|δ| = 0), the truncation operators for j ≤ n by
tj(a) = (δ, a1, . . . , an−j) if |a| ≥ 1 and t(δ) = δ . Set t(a) := t1(a). A set of
tree-indices is a subset I ∈ T subject to the tree-consistency requirement
that

a ∈ I =⇒ t(a) ∈ I. (4.1)
For a set of tree indices I define sisters(a) := {b ∈ I : t(b) = t(a)}.

A set of labels: Let C ⊂ N be a set of labels for the tree. A tree-adapted
labeling is a map ψ : a 7→ Ca from I into subsets of C such that

Ct(a) = ∪b∈sisters(a)C
b (4.2)

and the Ca,Cb are disjoint if a, b are sisters. Denote T (C) to be the class of
all binary trees with distinct tree-adapted labelings. such that ψ(δ) = C.
Such trees have a recursive decomposition as follows

T (C) = {δ, C} ∪ ∪P2(C)T (C1)⊗ T (C2). (4.3)
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The first term corresponds to the tree which does not branch, the other
terms decompose a branching tree into the the trees that made from the
first two branches.

A tree based on I: . A continuous tree with a tree-index set I is defined
as a mapping from I into the space of continuous paths in E with finite
lifetime ζ. That is, each path is a pair (w, ζ) with the understanding that
w(·) is continuous on [0, ζ) with a left limit at ζ. We denote the mapping
with superscripts: φ : a 7→ (wa, ζa).

We impose a continuity condition on the paths:

wa(0) = wt(a)(ζt(a)−). (4.4)

For a finite index set I, define the boundary of I, ∂I, to be those a
which are not the image of t(b) for some b ∈ I (∂I := I \ {t(a) : a ∈ I}).

Define the history of a path ya(s) by

ya(s) =

{
wδ(s) s < ζδ

wtj(a)(s− ζtj+1(a))
(4.5)

where j is chosen so that
n∑

i=j+1

ζti(a) < s ≤
n∑

i=j

ζti(a).

This is just the branch from the root to the path associated with a.
Isomorphisms: We are really concerned about trees labeled by subsets of
C and not the index set. Suppose we have two index sets I and I ′ with
maps φ and ψ (and φ

′
, ψ

′
), and a map θ : (I) 7→ I ′ such that

φ(a) = φ
′
(θ(a)), ψ(a) = ψ

′
(θ(a)),

then we say the two labeled trees are isomorphic.
A Forest: A forest will be defined as a finite collection of labeled trees. The

labeling sets are assumed to be disjoint. We use the same notation for
a tree and a forest, letting context be the guide. We define |Υ| as the
number of trees in a forest. If we wish to refer to individual trees within
a forest we will use use a superscript. That is, despite the awkwardness,
we enumerate a forest by Υ = {Υ1, . . . ,Υ|Υ|}.

4.1.1. Tree functionals. We define several functionals on a labeled tree.
Tree integrals: Let f be a real-valued real function. Define the tree integral

of f as an integral along each segment of the tree:

〈〈f,Υ〉〉 =
∑

a∈I

∫ ζa

0

f(wa(s))ds. (4.6)

We remark that the tree integral is obviously linear, and by Fubini’s the-
orem satisfies the following for positive functions:

〈〈
∫
f(·, t)dt,Υ〉〉 =

∫
〈〈f(·, t),Υ〉〉dt. (4.7)
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A Forest Integral: The forest integral uses the same notation and is simply
the tree integral over all the trees in the forest:

〈〈u,Υ〉〉 =
|Υ|∑

i=1

〈〈u,Υi〉〉.

The pre-D tree.: Let D b E and define the tree stopped on first exiting
D by setting ID = {a ∈ I : ζtn(a) + · · · + ζt1(a) ≤ τD(ya)} (the paths
have not exited D before their last branch), w̄a(·) for a ∈ ID by w̄a = wa

if τD(ya) = ∞ and (w̄a(·), τD(w̄a)) if τD(ya) < ∞. Thus, the paths are
always inside D and the boundary paths just exit D. The labels stay the
same only restricted to ID.

We refer to the stopped tree as ΥD. A stopped forest has a similar
definition.

The post-D forest: For a tree Υ and a domain D b E we refer to the
post-D forest as the paths after first exiting D. In particular, For each
a ∈ ∂ID we have a tree started at w̄a(ζ̄a−) (the w̄ are for the stopped
tree, the w reference the original tree). The initial segment is w̃δ(t) =
wa(t+τD(wa)), 0 ≤ t ≤ ζa−τD(wa) := ζ̃δ, the other segments are the same
as before only reindexed. The new index set for the tree corresponding to
a ∈ ∂I is I ◦ΘD := {t|a|(b) : b ∈ I, tj(b) = a for some j ≥ 0}.

We refer to this post-D forest by the notation Υ ◦ΘD.
The exit tree: We will be interested in how the tree exits D. For boundary

paths in ΥD we have the exit points {xa := wa(ζa−) : a ∈ ∂ID} and their
corresponding labels. Let ΥD = ⊗(xa, Ca) (we use Υi,D if we wish to refer
to tree i in the forest Υ). Clearly, Ca partitions the original label set C.
We will refer to the state space E = ED,C in several ways as is convenient.
In particular,one of these ways:
• as a product of points and disjoint subsets

∪|C|r=1 ⊗r
i=1 (xi × Ci);xi ∈ E,C = (C1, . . . , Cr),

• as a vector of points and a partition of C

∪|C|r=1E
r × Pr(C),

• or, as an atomic measure on E with mass r and a partition

∪|C|r=1MA,r(E)×Pr(C).

We will refer to the pieces of an exit tree as follows: m ¦ ΥD will denote
the atomic measure

∑
δxi formed by the exit points x1, x2, . . . xr which

are denoted by x ¦ ΥD and p ¦ ΥD refers to the partition of the set C given
by ΥD.

Remark 4.1. Equipped with this notation we remark for future usage the relation-
ships for measurable u, v

〈〈u,Υ〉〉 = 〈〈u,ΥD〉〉+ 〈〈u,Υ ◦ΘD〉〉 (4.8)



A CLASS OF EXTREME X-HARMONIC FUNCTIONS 343

and if D b D
′
then

〈v,ΥD
′
〉 := 〈v,m ¦ ΥD′ 〉 =

|p¦ΥD|∑

i=1

〈v,m ¦ (Υ ◦ΘD)i,D
′
〉. (4.9)

That is, the tree integral breaks up into two pieces depending if the paths have
exited D yet, and the exit points are unchanged when the shift is applied.

4.2. Definition of ΥD, ΥD. We now construct a random labeled tree that gives
the backbone of the conditioned process. This is the same process identified in [12].

4.2.1. A non-homogeneous branching diffusion. Let C be a subset of {1, 2, . . . , N}
and functions hi : i ∈ C be Lg̃-harmonic. Recalling the definition of vC based on
h in (1.8), we inductively define a branching diffusion under a measure ΠC

x as
follows:

The process starts at x and evolves as a Lg̃,vC

particle until its lifetime ζ.
If |C| = 1 then this occurs on the boundary of E and our tree is just I = {δ},

wδ the path up to its lifetime ζδ and labeling Cδ = C.
If |C| > 1 then the function vC is a potential as it satisfies

vC = Gg(
∑

P2

(vC1vC2)(·)).

Thus the Lg̃,vC

process will die in the interior of E. Pick a random partitioning
of C according to the probability

P ((C1, C2)) = (
vC1vC2

∑
P2(C) v

C̃1vC̃2
)(ξζ−), (C1, C2) ∈ P2(C). (4.10)

Then for i = {1, 2}, let ai = (δ, i) and the ai-particle evolve as a Lg,vCi particle
started at ξζ− stopped at its lifetime and labeled by Ci. Again if |Ci| > 1 these
particles will die in the interior.

Repeat this until eventually there are |C| particles each evolving as a Lg̃,hi

particle which die on the boundary of E.
This process will be continuous ΠC

x a.s. and so will be a labeled tree.

4.2.2. The branching forest. We extend the previous definition to a forest. Let
C be an initial index set, and γ ∈ P(C) and points x1, x2, . . . x|γ| be given. The
forest Υ evolving from x × γ is given by evolving |γ| independent trees started
from the x’s. Let Π⊗(xi×γi) be the measure under which Υ evolves. Then one has
for all D b E by independence

Π⊗(xi×γi)(exp−〈〈u,ΥD〉〉 exp−〈v,ΥD〉)

=
|γ|∏

i=1

Πγi
xi

(exp−〈〈u,Υi
D〉〉 exp−〈v,Υi,D〉). (4.11)

We now show that the branching forest is a Markov process in the following
sense.
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Lemma 4.2. Let D b D
′ b E. Then for any initial planting of the forest x× γ

we have

Π⊗(xi×γi)[exp−〈〈u,Υ′
D〉〉 exp−〈v,ΥD

′
〉]

= Π⊗(xi×γi)(exp−〈〈u,ΥD〉〉ΠΥD [exp−〈〈u,Υ′
D〉〉 exp−〈v,ΥD

′
〉]).

Proof. We note that it is clear from the construction of Υ under Π that given the
information contained in ΥD (the exit points and labels) that the pre- and post-D
forests are independent. Thus, from the decompositions in (4.8) and (4.9) we have

Π⊗(xi×γi)[exp−〈〈u,ΥD′ 〉〉 exp−〈v,ΥD
′
〉]

= Π⊗(xi×γi)[exp−〈〈u,ΥD〉〉 exp−〈〈u, (Υ ◦ΘD)D′ 〉〉 exp−〈v, (Υ ◦ΘD)D
′
〉]

= Π⊗(xi×γi)[exp−〈〈u,ΥD〉〉Π[exp−〈〈u, (Υ ◦ΘD)D′ 〉〉 exp−〈v, (Υ ◦ΘD)D
′
〉

| ΥD]]

= Π⊗(xi×γi)[exp−〈〈u,ΥD〉〉ΠΥD [exp−〈〈u,ΥD′ 〉〉 exp−〈v,ΥD
′
〉]].

¤

5. Proof of Theorem 1.1

The goal of the proof is to give a tractable representation of the H-transform
of Xn. This representation is in terms of a measure, Zn, and a “backbone”, Υ
(below). One then shows that the tail information is determined by only the
backbone process. This relates the tail of the superprocess to that of a diffusion
which allows us to say the tail σ-field is trivial.

5.1. The random points (YD ×ΥD, Qγ
x). The following lemma is used to con-

struct a piece of the conditioned process. In particular, it describes a measure YD

and a backbone process ΥD.

Lemma 5.1. Let D b E and µ be a finite measure on D. For each x ∈ D and
γ ⊂ {1, 2, . . . , N} there exists a random point (YD × ΥD) ∈ M(D) × ED,γ and
measure Qγ

x for which

Qγ
x(exp−〈u, YD〉 exp−〈v,ΥD〉) = Πγ

x [exp−〈〈ṼD(u),ΥD〉〉 exp−〈v,ΥD〉],
for all measurable u, v ≥ 0.

Proof. Using the results of section 5 of [4] applied to the infinitely divisible measure
X̃D we have that there exists a canonical measure R̃ = R̃D which satisfies

P̃µ(exp−〈u, X̃D〉) = exp−
∫

M
(1− e−〈u,ν〉)R̃(µ, dν).

Fix a labeled tree Υ = ΥD stopped on exiting D and define a Poisson random
measure on M (Λ, PΥ) with intensity

λ(C) = 〈〈R̃D(·, C),ΥD〉〉. (5.1)
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Then, we can define YD by its action on measurable functions:

〈u, YD〉 =
∫

M
〈u, ν〉Λ(dν). (5.2)

Now by the definition of a Poisson random measure with intensity λ we have

PΥ[exp−
∫

M
F (ν)Λ(dν)] = exp−

∫

M
(1− e−F (ν))λ(dν).

In particular, when F (ν) = 〈u, ν〉 this becomes

PΥ[exp−
∫

M
〈u, ν〉Λ(dν)] = exp−

∫

M
(1− e−〈u,ν〉)λ(dν). (5.3)

However, by (3.1) we have

P̃[exp−〈u, X̃D〉] = exp−〈ṼD(u), µ〉 = exp−
∫

M
(1− e−〈u,ν〉)R̃(µ, dν)

or, for all x

ṼD(u)(x) =
∫

M
(1− e−〈u,ν〉)R̃(x, dν), (5.4)

which leads to

PΥ[e−〈u,YD〉] = PΥ(exp−
∫

M
〈u, ν〉Λ(dν)) (by (5.2))

= exp−
∫

M
(1− e−〈u,ν〉)λ(dν)) (by (5.3))

= exp−
∫

M
(1− e−〈u,ν〉)〈〈R̃(·, dν),Υ〉〉 (by (5.1))

= exp−〈〈
∫

M
(1− e−〈u,ν〉)R̃(·, dν),Υ〉〉 (by (4.7))

= exp−〈〈ṼD(u),Υ〉〉. (by (5.4))

Finally, define a measure Qγ
x on M×E by randomizing Υ according to Πγ

x :

Qγ
x(C) =

∫
Πγ

x (dΥ)PΥ
x ((YD,ΥD) ∈ C).

Then the pair (YD,ΥD) satisfies

Qγ
x(exp−〈u, YD〉 exp−〈v,ΥD〉) =

∫
Πγ

x (dΥ)PΥ
x (exp−〈u, YD〉 exp−〈v,ΥD〉)

(5.5)

= Πγ
x [exp−〈〈ṼD(u),ΥD〉〉 exp−〈v,ΥD〉].

¤
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5.2. The process (Zn × Υn, Qµ,⊗(xi×γi)). Fix a “forest” γ ∈ P({1, 2, . . . , N}),
starting points x1, x2, . . . , x|γ| and initial measure µ supported in Dr. Then define
the process (Zn × Υn, Qµ,⊗(xi×γi)) as follows. For each i = 1, 2, . . . , |γ| define
independent Y i

n,Υi,n under Qγi
xi

as above. Then set for n ≥ r

Zn(ω) = X̃n(ω0) +
|γ|∑

i=1

Y i
n(ωi),

Υn(ω) = ⊗Υi,n(ωi),

Qµ,⊗(xi,γi)(dω) = P̃µ(dω0)Qγ1
x1

(dω1) · · ·Qγ|γ|
x|γ|(dω|γ|). (5.6)

Lemma 5.2. For all γ ∈ P, and x1, . . . , x|γ| ∈ E, The process (Zn × Υn) is a
Markov process under Qµ,⊗(xi×γi). Furthermore, the process Υn under Q evolves
like the branching diffusion based on h1, . . . , hn described in section 4.2 stopped on
leaving Dn, that is (ΥDn ,Π).

Remark 5.3. The process is almost an example of Branching Exit Markov system
on E ( [3]). The difference being the need to carry the extra information contained
in the labels to make a Markov process.

Proof. The last claim follows from the first by projecting onto the second coordi-
nate after remarking that the law is correct by (5.5)

Qµ,⊗(xi×γi)[exp−〈v,Υn〉] = Π⊗(xi×γi)[exp−〈v,Υn〉].

To show Zn × Υn is Markov, it suffices to show if µ ∈ M(Dr), xi ∈ DR then
for r < m < n that for u, v measurable functions that

Qµ,⊗(xi×γi)[exp−〈u,Zn〉 exp−〈v,Υn〉]
= Qµ,⊗(xi×γi)[QZm×Υm [exp−〈u,Zn〉 exp−〈v,Υn〉]]. (5.7)

Working from the inside out, right to left we have

QZm×Υm [exp−〈u,Zn〉 exp−〈v,Υn〉]

= QZm×Υm [exp−〈u,Xn〉 exp−
|p¦Υm|∑

i=1

〈u, Y i
n〉 exp−

|p¦Υm|∑

i=1

〈v,Υi,n〉

= P̃Zm [exp−〈u, X̃n〉
|p¦Υm|∏

i=1

QΥi,m

xi,m [exp−〈u, Y i
n〉 exp−〈v,Υi,n〉]]

= exp−〈Ṽn(u), X̃m〉
|γ|∏

j=1

exp−〈u, Y j
m〉

|p¦Υm|∏

i=1

QΥi,m

xi,m [exp−〈u, Y i
n〉 exp−〈v,Υi,n〉].
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Then the right hand side of (5.7) becomes by (5.6)

P̃µ[exp−〈Ṽn(u), X̃m〉]
|γ|∏

j=1

exp−〈u, Y j
m〉Qγj

xj
[exp−〈u, Y j

m〉

|p¦Υm|∏

i=1

QΥi,m

xi,m [exp−〈u, Y i
n〉 exp−〈v,Υi,n〉]]

= exp−〈Ṽm(Ṽn(u)), µ〉
|γ|∏

j=1

exp−〈u, Y j
m〉Πγj

xj
[

exp−〈〈Ṽm(u),Υj
m〉〉ΠΥi,m

xi,m [exp−〈〈Ṽn(u),Υi
n〉〉 exp−〈v,Υi,n〉]].

The Markov property of X̃n ensures us that Ṽm(Ṽn(u)) = Ṽn(u) (from simplifying
P̃δx

[exp−〈u, X̃n〉] = Pδx
(P̃X̃m

[exp−〈u, X̃n〉])). We have using (5.2)

exp−〈Ṽn(u), µ〉Π⊗(xj ,γk)[exp−〈〈Ṽm(u),Υj
m〉〉

×ΠΥm [exp−〈〈Ṽn(u),Υi
n〉〉 exp−〈v,Υi,n〉]]

= exp−〈Ṽn(u), µ〉Π⊗(xj ,γk)[exp−〈〈Ṽn(u),Υi
n〉〉 exp−〈v,Υi,n〉]

= P̃µ[exp−〈u, X̃n〉]
|γ|∏

j=1

Q(Xj ,γj)[exp−〈u, Y n〉 exp−〈v,Υn〉]

= Qµ,⊗(Xj ,γj)[exp−〈u,Zn〉 exp−〈v,Ψn〉].

¤

Finally define a measure P̂µ by randomizing the choice of γ and the xi as follows.
Let Pµ(dγ) be the probability of selecting a random element of P({1, . . . , N}) with
probability

Pµ(dγ) =

∏
γ〈vγiµ, 〉∑

P({1,...,N})
∏

γ̃〈vγ̃i , µ〉 . (5.8)

Then given a forest, we plant it by selecting starting points xi, x2, . . . x|γ| according
to the probability measure P γ

µ as follows

P γ
µ (dx1 · · · dx|γ|) =

1∏
j〈vγj , µ〉

∏

i

vγi(xi)µ(dxi). (5.9)

Then we can define the measure P̂µ on M as

P̂µ(dν) =
∫
Pµ(dγ)P γ

µ (dx1 · · · dx|γ|)Qµ,⊗(xi,γi)(dν). (5.10)

Where we abuse notation for the measure Q by restricting it to just Zn.
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5.2.1. Tree picture of vγQγ
x. We next rewrite Qγ

x[exp−〈u, YD〉 · exp−〈v,ΥD〉] in
terms of integrals over labeled trees.

Lemma 5.4. Let D b E, x ∈ D and γ ⊂ C. Set

φγ(x) = vγ(x)Qγ
x[exp−〈u, YD〉 exp−〈v,ΥD〉].

Then we have the recursive formula

φγ(x) = Ku+g
D [vγ(·)e−v(·)](x) +Gu+g

D [
∑

P2(γ)

(φγ1(·)φγ2(·)](x). (5.11)

Remark 5.5. This is essentially contained in Lemma 4.4 of [12]. As such, we skip
the proof but note that here is where we use the fact that ψ(x) = x2/2 so that
ψ
′
(x) = x when we identify

Ku+g
D (f)(x) := Πx[(exp−

∫ τD

0

ψ
′
(VD(u+ g))(ξs)ds)f(ξτd

)]

= Πx[(exp−
∫ τD

0

VD(u+ g)(ξs)ds)f(ξτd
)],

and similarly for Gu+g
D .

Remark 5.6. A closer inspection of (5.11) reveals an underlying tree picture for
binary branching. Recall the decomposition of tree-adapted, labeled trees in (4.3).
If we define an operator L : T (γ) 7→ R+ by integrating with Ku+g

D on the leaves
and Gu+g

D on the interior branches, then (5.11) becomes the following by (4.3)

vγ(x)Qγ
x[exp−〈u, YD〉 exp−〈v,ΥD〉] =

∑

T∈T (γ)

L(T ). (5.12)

5.3. The Relationship between Zn and Xn. We have constructed a Markov
process (Zn, P̂µ), we now show how this process is related to the H-transform of
the superprocess.

Lemma 5.7. The Markov processes (Xn,PH
µ ) and (Zn, P̂µ) have the same law.

Note: We will use the fact that the tail σ-field for Xn and Zn are identical.

Proof. We follow the proof outlined in [4]. In particular, we use lemma 8.1 due to
Rogers and Pitman reproduced here for ease of reference.

Lemma 5.8 ((Rogers, Pitman) from Lemma 8.1 of [4]). Suppose that, for every
n = 0, 1. . . . , a measurable mapping φn from a measurable space Sn to a measurable
space S

′
n is given. Let Λn(y, ·) be a Markov kernel from S

′
n to Sn such that,

for every y ∈ S
′
n the measure Λn(y, ·) is concentrated on φ−1

n (y). Let a Markov
transition function p in {Sn} is related to a Markov transition function q in {Sn′}
by a formula

q(r, y;n,B) =
∫

Sn×Sn

Λr(y, dx)p(r, x;n, dx̃)1B [φn(x̃)]. (5.13)

If ∫

Sn

Λr(y, dx)p(r, x;n,B) =
∫

S′n

q(r, y;n, dỹ)Λn(ỹ, B), (5.14)
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then the Markov processes (Xn,Pr,x) and (Yn, Qr,y) corresponding to p and q are
related by the formula

Qr,yfr(Yr) · · · fn(Yn) = P∗r,yfr(φr(Xr)) · · · fn(φn(Xn))

where 0 ≤ r < n, fi is a positive measurable function on S
′
i and

P∗r,y =
∫

Λr(y, dx)Pr,x.

We use the above lemma with the following

Sn = M(En, E),

S
′
n = M(En),

φ(µ× ·) = µ,

µ̂ =
∫
Pµ(dγ)P γ

µ (dx1 · · · dx|γ|),
Λn(µ, ·) = δµ × µ̂.

By construction, Λ is concentrated on φ−1 and Λ is a Markov kernel. The
trouble is verifying equations (5.13) and (5.14).

For a measurable f we have

Λn(µ, f) =
∫

M(En×E)

Λn(µ, dν × dΥ)f(ν ×Υ)

=
∫
µ̂(dΥ)f(µ×Υ).

To verify (5.13), apply the above to the function exp−〈u, µ〉 to get that it is
enough to show

PH
µ [exp−〈u,Xn〉] =

∫
µ̂(dΥ)Qµ,Υ[exp−〈u, φ(Zn ×Υn)〉] (5.15)

=
∫
Pµ(dγ)P γ

µ (dx1 · · · dx|γ|)Qµ,⊗(xi×γi)[exp−〈u,Zn〉].

The formula (5.15) is previously shown in remark 5.9 of [12]. It is not repeated
here although the notation is different as the basic ideas are presented in the
verification of (5.16).

To verify (5.14) it is enough to show it for functions of the form exp−〈u, µ〉·
exp−〈v,Υ〉 which means we need to verify

∫
µ̂(dΥ)Qµ,Υ[exp−〈u,Zn〉 exp−〈v,Υn〉] (5.16)

= PH
µ (Λn(Xn, exp−〈u, ·〉 exp−〈v, ·〉))

= PH
µ [exp−〈u,Xn〉

∫
PXn(dγ)P γ

Xn
(dx1 · · · dx|γ|) exp−〈v,

∑
δxi〉.
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We begin with the H-transformed side. Using (5.8), H(µ) = exp−〈g, µ〉 · H̃(µ)
and (5.9) we have

PH
µ [exp−〈u,Xn〉

∫
PXn

(dγ)P γ
Xn

(dx1 · · · dx|γ|) exp−〈v,
∑

δxi
〉]

= PH
µ [exp−〈u,Xn〉

∑
γ∈P({1,2,...,N})

∏
γ〈vγi , Xn〉∑

γ̃∈P({1,2,...,N})
∏

γ̃〈vγ̃
i , Xn〉

·
∏

γ

∫
vγi(xi)ev(xi)Xn(dxi)∏

γ〈vγi , Xn〉 ]

= PH
µ [exp−〈u,Xn〉 1∑

γ̃∈P({1,2,...,N})
∏

γ̃〈vγ̃i , Xn〉
∏
γ

〈vγi(·)e−v(·), Xn〉]

=
1

H(µ)
Pµ[exp−〈u,Xn〉 1

H̃(Xn)
H(Xn)

∑

γ∈P({1,2,...,N})

∏
γ

〈vγi(·)e−v(·), Xn〉]

=
1

H̃(µ) exp−〈g, µ〉
∑

γ∈P({1,2,...,N})
Pµ[exp−〈u+ g,Xn〉]

∏
γ

〈vγi(·)e−v(·), Xn〉].

Which by Theorem 4.2 of [4] becomes:

1
H̃(µ) exp−〈g, µ〉 exp−〈VD(u+ g), µ〉

∑

γ∈P({1,2,...,N})

∑

Λ(γ)

〈LΛ, µ〉. (5.17)

The new notations Λ and LΛ are from [4] and correspond to integrals over a certain
type of forest and will be explained further below.

We can simplify the “Q” side of (5.16) to get

∫
Pµ(dγ)P γ

µ (dx1 · · ·x|γ|)Qµ,⊗(xi×γi)[exp−〈u,Zn〉 exp−〈v,Υn〉]

=

∑
γ∈P({1,2,...,N})

∏
γ〈vγi , µ〉∑

γ̃∈P({1,2,...,N})
∏

γ̃〈vγ̃i , µ〉
1∏

γ〈vγ̃i , µ〉 P̃µ[exp−〈u, X̃n〉]

·
γ∏

i=1

∫
vγi(xi)µ(dxi)Qγi

xi
[exp−〈u, Y i

n〉 exp−〈v,Υi,n〉])

=
1

H̃(µ)
P̃µ[exp−〈u, X̃n〉]

=
∑

γ∈P({1,2,...,N})

∏
γ

∫
vγi(x)µ(dx)Qγi

x [exp−〈u, Y i
n〉 exp−〈v,Υi,n〉]

=
1

H̃(µ)
P̃µ[exp−〈u, X̃n〉]

=
∑

γ∈P({1,2,...,N})

∏
γ

〈vγi(·)Qγi· [exp−〈u, Y i
n〉 exp−〈v,Υi,n〉], µ〉
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=
1

H̃(µ)
P̃µ[exp−〈u, X̃n〉]

∑

γ∈P({1,2,...,N})

∏
γ

〈φγi , µ〉

=
1

H̃(µ)
P̃µ[exp−〈u, X̃n〉]

∑

γ∈P({1,2,...,N})

∏
γ

∑

T∈T (γi)

L(T ). (by (5.12)) (5.18)

But (5.17) and (5.18) show the two sides of (5.16) are equal provided
∑

γ∈P({1,2,...,N})

∏
γ

∑

T∈T (γi)

L(T ) =
∑

γ̃∈P({1,2,...,N})

∑

Λ(γ̃)

〈LΛ, µ〉. (5.19)

The left hand side becomes the sum of all forests with initial planting given by γ
which consist of tree-adapted labelings. That is

∑

γ∈P({1,2,...,N})

∑

T (γ)

|γ|∏

i=1

L(Ti). (5.20)

The right hand side is described in section 4 of [4] as a sum over frames, which
are rooted trees described by their exit sets or leaves. The functions L are identical,
where the exit leaves are labeled by functions vγ̃e−v for some γ̃. The equivalence
comes as one side describes the trees by their initial planting, the other by their
final leave structure. As both describe forests, and each tree in the forest has a
1-1 relationship with its root labeling (γi) and it’s final leaf structure (∪i∈C γ̃i, C ∈
P(1, 2, . . . , |γ̃|)) the two sides represent the same value. ¤

5.4. Tail events for (Zn × Υn). The measure Zn has two contributions – the
initial mass started at µ and evolving under P̃ and the measures Yn correspond to
mass “immigrated” along the backbone process. In all cases, this mass is condi-
tioned not to charge the boundary of E by the function g. As such, there should
be no contribution to the tail events from this mass. The following quantifies this.
At first glance it indicates that the initial mass µ is not important, but using the
Markov property, we will see that it applies to the measure Zn as well, that is all
the mass that accumulates as the process leaves Dn.

Lemma 5.9. Let C be a tail event of Zn ×Υn. Then

Qµ,⊗(xi×γi)[C] = Q0,⊗(xi×γi)[C].

Proof. The proof of this is nearly identical to that in step 4 of Theorem 8.1 in [4].
It is repeated here for ease of reference.

We have by (5.6) that for functions g(Zn × Υn) = exp−〈u,Zn〉 exp−〈v,Υn〉
that

Qµ,(x×γ)(g(Zn ×Υn))

=
∫
P̃µ(dω0)Q0,(x×γ)(dω1)g[(X̃(ω0) + Zn(ω1))×Υn(ω1)].

By the multiplicative systems theorem, this holds true for all measurable g.
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In particular, let C be a tail event of Zn×Υn. That is, C is in ∩nF⊃Dn . Then
by the Markov property of Zn ×Υn we have

Qµ,(x×γ)[C] = Qµ,(x×γ)[QZn×Υn [C]]

=
∫
P̃µ(dω0)Q0×Υn(dω1)[g(X̃n(ω0) + Zn(ω1)×Υn)],

where g(·) = Q·[C]. By considering the two cases X̃n = 0 or not we have the
above decomposes into two terms In + Jn with

In =
∫
P̃µ(dω0)1(X̃n(ω0) = 0)Q0×Υn(dω1)[g(X̃n(ω0) + Zn(ω1)×Υn)]

= P̃µ(X̃n = 0)Q0,(x×γ)[C] → Q0,(x×γ)[C],

and

Jn =
∫
P̃µ(dω0)1(X̃n(ω0) 6= 0)Q0×Υn(dω1)[g(X̃n(ω0) + Zn(ω1)×Υn)]

≤ P̃µ(X̃n 6= 0) → 0.

Thus, letting n→∞ we get Qµ,(x×γ)[C] = Q0,(x×γ)[C]. ¤

We now define a process on the N -fold Cartesian product of E by combining
N independent copies of ξ. Let EN = ⊗N

i=1E, and define a process

(Ξn,ΠhN

), Ξn = (ξ1n, ξ
2
n, . . . ξ

N
n )

with generator LN,g = ⊗N
I=1L

g. Finally, let

hN (x1, . . . , xN ) =
N∏

i=1

hi(xi).

For short we write h = hN .

Lemma 5.10. The function h(x) is LN,g harmonic. The h-transform of Ξ has
the following form

Πh
(x1,...,xN )(A1 × · · · ×AN ) =

N∏

i=1

Πhi
xi

(Ai).

Proof. Clearly h is harmonic as it is in each term. Further, by the definition of
the h-transform, we have with x = (x1, . . . , xN )

Πh
x(A1 × · · · ×AN ) =

1
h(x)

Πx(A1 × · · · ×AN ;h(Ξn))

=
1

h(x)
Πx(A1 × · · · ×AN ;h1(ξ1) · · ·hN (ξN ))
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=
1

h(x)
Πx(A1h1(ξn)× · · · ×ANhN (ξ1n))

=
1

h(x)
Πx1(A1h1(ξ1n)) · · ·ΠxN

(ANhN (ξN
n ))

=
h1(x1) · · ·hN (xN )

h(x)

N∏

i=1

Πhi
xi

(Ai))

=
N∏

i=1

Πhi
xi

(Ai).

¤

To finish the proof we will show the tail σ-field for Υn is the same as that of Ξ
and that this process has a trivial tail field under our assumptions on H and g.

Lemma 5.11. The following implications hold

ΠhN

is trivial =⇒ Π· is trivial =⇒ Qµ,· is trivial =⇒ P̂µ is trivial.

Proof. Work from the right-hand side back. Recall, a tail σ field is trivial if the
probability of any event is either 0 or 1. Let A be a tail event of Zn × Υn under
Qµ×·. Then we have

P̂µ[A] = 〈Qµ,·[A], µ〉 = 〈1Γ(A), µ〉 = 1Γ(A).

Hence it is trivial.
Next, suppose A is a tail event of Zn ×Υn under Q. Set φ(·) = Q0,·[A]. Then

by lemma 5.9 and the Markov property of Zn×Υn we have with Υr denoting any
starting forest and µ concentrated on Dr

φ(Υr) = Q0,Υr [A] = Qµ,Υr [A] = Qµ,Υr [QZn×Υn [A]]

= Qµ,Υr [Q0×Υn [A]] = Q0,Υr [Q0×Υn [A]] = Q0,Υr [φ(Υn)].

So φ(·) is harmonic and φ(Υn) is a bounded martingale. It converges to φ̄ say. We
have Υn under Q0,Υr evolves as Υn under ΠΥr and so by lemma 5.2, φ̂ is in the
tail σ-field of (Υn,Π) hence is trivial by assumption. Thus,

Qµ,Υr [A] = Q0,Υr [Q0×Υn [A]] = ΠΥr (φ(Υn)) → ΠΥr (φ̄) = 1Γ(A).

That, is the σ-field is trivial.
Finally, we show the first implication. Let A be in the tail field of (Υn,Π).

Then set φ(·) = Π·[A] as before. We have, again,

φ(Υr) = ΠΥr [A] = ΠΥr [ΠΥn [A]] = ΠΥr [φ(Υn)].

So φ(·) is harmonic, and φ(Υn) is a martingale which is bounded, hence convergent
to φ̄ say.

We have the following decomposition for all n > r

φ(Υr) = ΠΥr [ΠΥn [A]; |p ¦ Υn| = N ] +ΠΥr [ΠΥn [A]; |p ¦ Υn| < N ]
= In + Jn.
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We have by the construction of Υn under Π Jn → 0. Thus, if In converges to an
indicator independent of Υr the result will follow.

Recall, that once the branching tree Υn is labeled by a set C = {i} the particle
evolves like a hi transform, independently of the other particles given their starting
points. Thus we have for all m > n

In = ΠΥr [ΠΥn [ΠΥm [A]]; |p ¦ Υn| = N ]

= ΠΥr [ΠhN

x¦Υn [ΠΞm×{1,2,...,N}[A]]]

→ ΠΥr [ΠhN

x¦Υn [φ̄]]
= 0,

as φ̄ is in the tail of Ξ under ΠhN

. ¤

Theorem(1.1) is proven if we can establish the following lemma which states that
the tail σ-field process composed of N -independent h-processes is trivial when each
of the processes has a trivial tail field. By the last lemma and the fact that the
tail fields of (Zn, P̂ µ) and (Xn,PH

µ ) are identical.

Lemma 5.12. The tail σ-field of Ξn is trivial.

Remark 5.13. There are two different ways to prove this – do it for the continuous
process and discretize, or do it for the discrete processes directly. To do the
former, we would generalize the bitransform approach in [10] to multitransforms
applied in the rectangular setting of EN . Then use the fact due to Molchanov [8]
(see Taylor [13] as well) that the extreme harmonic functions for products are
products of extreme harmonic functions for each coordinate. Finally, one could
discretize by considering the appropriate lower-levels in the language of [10].

However, the transient nature of the discretized process Ξn makes a direct proof
possible and so it is shown.

We let p(r, x;n, x
′
) be the transition probability for Ξn to go from x ∈ ∂Dr to

x
′ ∈ ∂Dn. As usual, define the Green operator by

Gr(f)(x) = ΠN
r,x(

∑

n≥r

f(Ξn)) =
∫ ∑

n≥r

p(r, x;n, x
′
)f(x

′
) =

∫
gr(x, x

′
)f(x

′
).

Note, by the transient nature of Ξn that if x
′ ∈ ∂Dn then gr(x, x

′
) = p(r, x;n, x

′
).

Define the Martin kernel by

Kr(x, y) =
gr(x, y)
gr(x0, y)

, (x, y) ∈ EN × EN

and the Martin boundary to be the minimal topology for which Kr(x, y) extends
continuously to EN × ĒN and which separates points. Such a compactification of
EN exists and furthermore, there is a representation of Ξ-harmonic functions over
the extreme Ξ-harmonic functions:

h(x) =
∫
Kr(x, y)νh(dy)
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Now, due to the simple form of gr(x, y) as a single term, it is clear that gr(x, y)
factors as follows

gr(x, y) =
N∏

i=1

phi(e, xi;n, yi),

where phi is the transition function for the conditioned process ξi
n with x =

(x1, x2, . . . , xN ). As such, the martin kernel also factors on EN × EN . As each
individual factor converges, this extends continuously to Ē and we have that the
Martin kernel factors on the whole space EN × ĒN .

By the uniqueness of the representation of Ξ-harmonic functions in terms of
extreme elements, we get that hN is extreme and hence minimal.

To see that it has trivial tail field then follows by a standard argument (e.g. §5.5
of [4]). Namely, if C is a tail event, and one sets φ(x) = ΠhN

x (C) then as

φ(x) = ΠhN

x (ΠhN

Ξn
[C])

so that (φh)(x) = Πx((φh)(Ξn)) and so φh is Ξ-harmonic, which by minimality
implies φ is a constant. That φ is 0 or 1 comes from the fact that φ(Xn) is a
bounded martingale hence convergent, and by the Markov property converges to
1C .
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