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ABSTRACT:

The Fell compactification H(X) of a locally quasi-compact
To~space X can be viewed as a compact ordered space. Then
H(X) corresponds to a quasi=-compact, locally gquasi-compact
super-sober space VX whose open sets are all the open
upper sets of g(xy. There is an essential extension Xe%qn{
in the category 20 of To-spaces and continuous maps.
We show that '
Ofyx) # ¥ pID(L)

for the dlstrlbutlve continuous lattice L=0Q(X) - where
O(Y) is the lattice of open sets of a space Y, D(P) is the
dual of a continuous poset P, and I(P) is the continuous
lattice underlying the injective hull of P (endowed with
the Scott topology 6 ) in the category T .

This result relies upon 2a representation of ID(L) for
a continuous 1,pA-semilattice L, viz.

ID(L) € Filt,/L,

the (continuous) lattice of all those filters of L which
are generated by Scott-open subsets of L. For a distribu-
tive continuous lattice L, the meet-prime elements of
DFilt L in their (hull-kernel) topology are {torologically)
identified with the pseudo-meet-prime (=weakly meet-prime)
clements of L endowed with the [ -topology of L°P.

Furthermore both H(?) and w(?) are shown to be
functorial on the category of locally quasicompact To—

spaces and continuous ?erfect mappings.
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2§] Art. 64

In mmm ] J3.M.G.Fell considers, for a topological
®pace X, a omnnmwn topology on the complete lattice A(X)

‘ .Wm all closed subsets of X (ordered by the inclusion
‘Telation) for which the sets

U(CiVyseeesV ) :={A e A |ANC=$,ANV, 4B for i=1,...n}

anr o ﬂpwmvtnoavmon and < open in X, bmsaCMOw‘ form an

uoms basis.

s, Vol. 1, Iss

n Se

ntin

$s noted in [C]pp.151/152, the Fell topology is, for a
moanww quasi-compact space X, the Lawson topology A of

Mvm lattice O(X) of open subsets of X (ordered by inclusion)
mHm:mmmnnmm to A(X) along the bijection 0(X) »aA(X),

,h_lwx V - where a space X is said to be locally quasi-
compact iff every point has a neighborhood basis consist-
ing of acmm»ooaﬁmoﬂ (but not necessarily open) subsets. R

The Fell compactification mﬁxv of a woomww% quasi-

compact space X is the closure of

{c1{x}|x ex}

i It has been observed by J.Flachsmeyer [F1.], that
for a locally compact Hausdorff space X, the mmmw topology
induced on A(X)-{@}, coincides with the swUOtwovoHoo% of
S.Mrdwka [Mr].

in A(X) with regard to the Fell topology. By ~n~<H|w 4(1)
and VI-1.14, (0(X) 9oﬂxvv is a compact p(artially) o(rdered)
space (in the sense of L.Nachbin [N],[c]VI-1.1), hence so
is H(X) in its inclusion order (reversing the order is no
problem in a p.o.space).

For a locally compact, non-compact
Hausdorff mvmmm X, H(X) is the Alexandrov one-point~com-
pactification of X with @ adjoined as a new point ﬁmmmmum.
475) -~ considered as a compact p.o.space in which @ |.ﬁxw
for every x €X is the only non-trivial occurrence of <.
Thus, in the setting of locally quasicompact spaces, the
Fell compactification may be viewed as a substitute for
the Alexandrov osmnvownﬁlooavwmﬂwMHnmﬁHos. (In other
contexts, of course, different substitutes can be adequate,
cf. e.g. [H,]§ Wi, ).

In ﬁmmd_mu. Fell has provided, in a special case,
an interpretation of his construction:in functional-
analytic terms.

In mmhwu,x.m.momamsb and J.D.Lawson have given, for
a distributive continuous lattice L, various characteri-
zations of the closure of the set consisting of the great-~
est element 1 of L and of all meet-prime elements of L
with regard to the Lawson topology of L. By the celebrated
theorem of K.H.Hofmann and J.D.Lawson that the distributive
continuous lattices L are - up to an HmOBOvawma,r precise-
ly the lattices O(X) of open sets (ordered by the inclusion
relation) of locally quasi-compact AAOlvm@womm X, these
results are - as has been observed in mmm - intimately
related to Fell's construction H(X), since X can be chosen
as a sober space: In that case, X is uniquely determined
by L {(up to a homeomorphism) and can be canonically rep-
resented by the set of meet-prime elements of L (endowed
with a topology): The points of H(X) correspond - via the
obvious anti-isomorphism A(X) — O(X)¥L - to the pseudo-
meet-prime elements of L, i.e. the suprema of the prime

https://repository.lsu.edu/scs/vol1/iss1/64
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ideals (1) of L. 2).

Using this latter observation, we have noted in Hmm_
(with benefit from discussions with K.H.Hofmann) that the
points of the Fell compactification H(X) of a locally quasi-
compact eoam@mom X are contained in an extension xﬁrw%x of
the space X studied in Hmwuuv. This extension X<,yX,
defined for arbitrary 60|mvmnmm X, is an equivalent rep-
resentation of the greatest essential extension X, AX of

the T -space X discovered by B.Banaschewski meAumw.
Thus, for a locally guasicompact HO»mowom X, the co-rest-
riction of the extension X «,}X to the points of the Fell
compactification H(X) gives an extension.
anv,*\x

(with a new topology on yX such that X is contained in yX
as a subspace ) which is an essential extension.

Whereas in Hmmumu~ the extension yX .,yX for .an ar-
bitrary A801vamoo X has been studied, we shall investi-

gate here the extension
for locally quasicompact 601mwmomm X or, slightly more

2) It has to be noted, however, that 1€ L is (in the
definition used in [H.]) never meet-prime and that it need
not be contained in tfle cTosure of the set of meet-prime
elements of L with regard to the Lawson topology. To this
extent the definitions of [Hg] differ from those of [HL,].

3) This observation can be also based opon Fell's re-
sult Aﬁmmmuv.aqmv that the points of H(X) are the_ conver-
gence set§ of the "primitive™ nets of X - cf. Hmwuv.pdw~
mmmuw.dw.

e

general bv. for those Ho:mwmnmm X for which O(X) is a con-

tinuous lattice. We show that under this hypothesis,
X is a sober space, and O(yX) is a continuous
lattice, in which the greatest element is compact
and the way below relation « is multiplicative, i.e.

U« V and UKW imply UK VAW,

or, equivalently, (by a result of K.H.Hofmann and
M.W.Mislove [HM]) X is a quasi-compact, locally
quasi-compact super-sober space,

and, furthermore, )
the canonical embedding VX ec,y(yX) is a homeo-
morphism.

and, finally, .
nsm,mmmom yX corresponds to the compact ordered
space H(X) via an isomorphism between the category
of compact ordered spaces and isotone continuous maps
and the cateqory of quasi-compact, locally quasi-
compact, super-sober mvmomm and “"perfect" continuous
maps (where "perfect" means that the pre-image map
between the lattices of open sets preserves the way
below relation), which is (a slight modification of
the isomorphism) described in [C]VII-3. Moreover,
both H(?) and y(?) can be extended to functors
defined on the category of locally quasicompact sobe

2023

spaces and continuous perfect mappings.

For the proofs, we develop a program which seems to
be of interest in itself, since it exhibits an intriguing
interaction between two of the basic constructions for
continuous posets: the dual ([L.],[L,],[H,]) and the in-
jective hull (in the category Mo of HOlmumomm and con-

tinuous maps, cf. [H,]3.14).

4 J.R.Isbell [I] and K.H.Hofmann and J.D.Lawson ﬂmbwu
have provided an example of a T -space X for which Q(X)
is a continuous lattice but X f2ils to be locally quasi-
compact. Note that a sober space X is locally quasi-compac
if and only if O(X) is a continuous lattice.

blished by LSU Scholarly Repository,
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For a distributive continuous lattice L, let
D (L) .
denote the "dual" of L, consisting of those filters
(= down-directed upper sets) of I which are open in the
Scott topology ab of L. This is - with regard to the
inclusion order - a continuous 1,A-semi-lattice. Then we
form the injective hull" \

(D(L) 6 (1)) ey (TDAL)) 1 6p 1))

in the category T+ using the result of ﬁm»uu.g»"
.The continuous posets in their Scott topology are
precisely those 60|m©mnmw which are sober and have
an injective hull in mo~ i.e. their greatest es-
sential extension space (in the sense of
B.Banaschewski [Ba,]) is an injective T -space
(i.e. - by D.Scott's result [Sc,]2.12 - a continuous
lattice in its Scott topology).

Let us motivate briefly why we did expect that

ID(L) or rather DID(L) is related to our problem viz.
DID(L) ¥ O (yX) o

if L=0(X) is a distributive continuous lattice :

Firstly note that we had seen in Hmmu (slightly
extending a result of K.H.Hofmann and J.D.Lawson Hmﬁwuv
that the canonical embedding xnlttx for a locally quasi-
compact sober space X is a homeomorphism iff the way below
relation of O(X) is multiplicative and the greatest
element of O(X) is compact.

Secondly recall that, by a result of u;u.vamoaﬁbA?
the dual D(S) of a continuous 1,a-semi-lattice S is a
continuous lattice iff 1 is compact in S and the way
below relation << of S is multiplicative. Thus, for a
continuous lattice L, D(L) has these properties (since
DD (L) =L) .

Now there is some hope that these properties are
preserved under the injective hull

D(L) < ID(L),

since an injective hull of a continuous poset preserves
arbitrary infima (to the extent they exist) and the way
below relation A—zmuu.qv. Thus the greatest element of
ID(L) must be compact, and also a torso of multiplicati-
vity of the way below relation m: ID(L) is present.

As one may suspect, the proof of the full multiplica-
tivity of <« in ID(L) requires the use of a suitable rep-
resentation: T
The one we need, has not been used before. The inspira-
tion to find it orsw from the problem which is still left
open when it is established (via the proof of multiplica-
tivity) that DID(L) is a continuous lattice, viz:

Is DID(L) distributive? .

It is not difficult to see that this 3 is equivalent to
Is ID(L) distributive? .

It is well known that a lattice L is distributive iff the
complete lattice FiltL (of all filters of L, ordered by
inclusion) is &»mﬁan:ﬁw<m._ FiltL. contains DL, but it
must be too big in am:mﬁmp: since it is an algebraic
lattice. Thus
Mwwnab.

the complete lattice of all nTowm filters of L which are
generated by Scott-open subsets of L, ordered by inclusion,
seemed to be a reasonable candidate for ID(L). 1Indeed,
Filt L is (isomorphic to) ID(L). (The "handling" of Filt L
in this paper owes much to the mxuwmcp{wmor:wasmm introduced
by J.D.Lawson for D(L) in mﬁduAOM.mbuuv.v

I am indebted to K.H.Hofmann for discussions on some
of the material in section 1 of this paper.

=0 The dual D(L) of a distributive continuous lattice
L is distributive provided that it is a complete lattice.
(A proof of this observation is immediate from the repre-
sentation of D(L) in terms of quasicompact saturated sub-
sets of a locally quasicompact space, cf.|[HM] §2.)

https://repository.Isu.edu/scs/vol1/iss1/64
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§ o Basic concepts

o.1 For an arbitrary partially ordered set (= poset,
for short) (P,%), we have

x4y ("x is way below y")

"1ff whenever y < supD (the supremum of D) for some non-

empty, up-directed subset D (i.e. a,beD 1implies a,b<c

for some c €D) of P, then x<d for some d €D Anm.mmo-~u.d__ov. :
We note the following properties of < :

sft, t«x, x4y imply s&Kyvy,

X <4y implies x4y,

X<KY and y<£z imply x<K 2z

for s,t,x,y,z€P,

0.2 A poset (P,4) is said to be a continuous poset iff
i) P is "up-complete", i.e. for every up-directed
subset D of (P,<), supD exists; ,
11) ' for every x €P, {y €P|y « V.L is pon-empty and
up~directed, and
sup{y e Ply «x} = x .
Note that, in a continuous poset P, the way below relation

has the following interpolation property: If XKy in P,
then x <z and z «y for some zeP (cf.[Ma]2.5),
A continuocus lattice L is a continuous poset which is
a complete lattice (or, equivalently, a o~<lmmawwmﬁnwnmv.
The notion of a continuous lattice is due to D.S.Scott

_Hmofmowf that of a continuous poset is a natural generali-
zation of it in the realm of up-complete posets. It was
suggested first by G.Markowsky Hz& (in the setting of
chain-complete posets). Cf. also [H], _Hzmd " ?.L i ?L "

[0, (i) -

0.3 For an arbitrary poset (P,4), a subset M is said to
be open in the Scott topology (= Scott-open) ( ﬂmauun.dodv ;
iff
i) M is an "upper set”, i.e. x<y, x &M, y €P imply
Y € M; :
1i) whenever supD ¢ M for a non-empty, up-directed

- subset D of M, then DNM not = @,
The Scott topology on a poset P is designated by Kmﬁ

For up-complete posets P,Q, a map f: Aw.awv — S.Qoy
is continuous iff f preserves suprema of non-empty up-
directed subsets, i.e. f(supD) = sup(f[D]) for every non-
empty up-directed subset D of P (cf. [Wy]3.5).

For a continuous poset P, the sets of the form

»x"nmkm _w_x « %w
with x ranging through P, form an open basis of the Scott
topology Qm.. It results that, in a continuous poset
P, xKy Iiff

& yeUuctx :={zeprP|x <z}
for some Scott-open subset U of P (cf.[Ma]3.2).

A subset U of a continuous poset P is Scott-open iff
it is an upper set of P and for every y € U there is some
X €U with

X <KY .

0.4 Every topology T on a set M induces a pre-order
AmGGWMMsonmmnv. i.e. a transitive and reflexive Hmwwnuoa.
on this set

x¢y iff xecliyl (x,ye€mM),
the "specialization pre-order” ({aGv]IV,4.2.2); this pre-
order is antisymmetric (i.e. a partial order) iff (M,T)
is eo, The compatible topologies on a pre-ordered set

are those which induce the given pre-order.
On every pre-ordered set (P,4) there is a weakest
compatible topology, the "weak topology" for which the

sets

Ix:={y e Ply ¢ x}

with x ranging through P, form a subbasis for the closed
sets. (See [H,]§2 for references). In [C]LI-1.16, this
topology is called the "upper topology" (P) of P. The
weak topology -on r,<)°P nu.m. the "opposite" nv~m»v of
(P,<) - where x M»< iff y £x) will be designated by Wy
(= the "lower topology" of (P,%) in HOHHHHld.aV.

Note that the Scott topology on a poset is oosvmnwv»m.

Published by LSU Scholarly Repository, 2023
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The pre-order induced on a subspace is the induced
pre-order, i.e. a topological embedding induces an order-
embedding. (For pre-ordered sets P and Q, a map e:P—Q is
an order-embedding (= order-extension) iff e is one-to-one

and x<¢y in P is equivalent to e(x) < e(y) in Q.)

0.5 A subset F of a poset (P,<) is said to be a filter of(!)
P or in (!) P iff
i) F is an upper set;
ii) F is non-empty and down-directed, i.e. for every
X,y €F there is some z€F with z<x and z<y. °
A filter F is said to be proper iff F$P, aotherwise F is
improper. A filter F on (!)a set M is a filter in the
complete lattice P(M) of all subsets of M, ordered by the
inclusion relation. An open filter of a topological space
X is a filter in the lattice O(X) of open subsets of X.
For 1,A-semilattices P, condition 1i) can be re-
placed by: 1 e¢F and xAy € F whenever x and y € F,
A subset J of a poset P is an ideal iff it is
a filter in P°P,
0.6 The following observation, due to J.D.Lawson '
A—bﬂg. cf.[C]p.84), is crucial for the duality of continuous
posets:
If x <« y 1in a continuous poset P, then, by the
interpolation property, i
XK oo Ky Ko Ky, Ky =y
for some Yqi¥orees € P. Thus
F n.;~+<b_:m.zw
is a Scott-open filter of P with
yeFCHx .
Thus every Scott-open subset of a continuous poset P is
the union of Scott-open filters.
The dual D(P) of a continuous poset P is the set of

all Scott-open filters of P, ordered by inclusion. The
poset D(P) is a continuous poset: For F,G € D(P)

F&G in D(P) 1iff FecTx¢cG for some x P,
The natural map

E,:P—DD(P), x+={GeD(P)| xeG}

1o

is an isomorphism. The inverse

\;mnc_u:wv.lvw
of t, assigns to F € DD(P) the supremum, in P, of the non-
empty up-directed subset

{xeP|Gctx for some GeFl.

The dual of a continuous poset P is uniquely de-
termined up to an isomorphism by the fact that it is a
continuous poset whose lattice of Scott-open sets is
anti-isomorphic to am.

The duality theory for continuous posets has been
developed in mhwu and mmqu with forerunners in ﬁrdu and

[mg]. :

o.7 A topological space X is called “sober" ([AGV]IV,4.21;
mmnuHH. condition (1) on p.17 mvv iff every non-empty, irre-
ducible, closed subspace A of X has a unique "generic"

point x, i.e. a point x with mewwu». (A subspace A is
irreducible iff it is not the union of two proper closed
subsets; "sober" is strictly between ao and aw~ it does

not imply, nor is it implied by eﬂ.v

The category Sob of sober spaces and continuous maps

is a full reflective subcategory of the category Top of all
topological spaces and no=ﬁm::o s maps. For a space X,

let %X be the space of all :o:umawﬁ< irreducible closed
subsets of X with open sets

So:={c €3x]jcno % ¢}
with O ranging through the lattice Q(X) of all open sub-
sets of X, then the mapping
8y:x %X, x >clix] (the closure of x in X)

is the Sob-reflection morphism ([AGV], IV,4.2.1). This
mapping mx is one-to-one iff it is an embedding iff X is

a eOtmvmomm Sy is bijective iff §, is a homeomorphism

(onto) iff X is sober. Further, Wonm that the lattice
homomorphism

. 0(8y) : 0(%x) — 0(x)
is an wwOEONQTwma.

~

induced by Sy

6)

Further historical information is given in Hmduwv.wmm\
366.

https://repository.lsu.edu/scs/vol1/iss1/64
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1

0.8 For T,~spaces X and Y, a continuous map £:X —Y

1s called an essential extension in the category mo of
eorwumcmm and continuous maps iff

i) f£:X —Y is an embedding (=extension), and
ii) whenever gf:X —2Z 1is an embedding for some
continuous map g:Y —Z, then g is an embedding.

In Hmwu prop.2 (p.237), B.Banaschewski has shown that
every eoumvmom X has an essential hull, viz. a unique
greatest essential extension vx“xnlw9x~ i.e. whenever
f:Xe3Y 1is an essential extension, then rmuyx for some .
embedding h:Y «_, X. Banaschewski's space 9X is a subspace
of the filter space &Axv~ the algebraic lattice of all
(proper or improper) open filters of X (ordered by the
inclusion relation) endowed with the Scott topology.

A a01mmmnm X 18 said to be essentially complete iff
vx"xnl*»x is a homeomorphism, i.e. iff X does not admit
any non-trivial essential extension. Every essentially
complete a0|mvmom is sober Ammwuc.dv. For further infor-
mation see ﬁ:uu. in particular sectiongl and 2.

This theme will be pursued further in section 4 below.

0.9 One of the major insights at the root of the theory
of continuous lattices is a result of D.S.Scott's mmnwuw._wm
The continuous lattices endowed with their Scott topology
are precisely the injective 301wvmomm~ i.e. the injective
objects X in the category mo of eOImvmowm and continuous
maps with regard to the class of all (topological)
embeddings, i.e. whenever e:Ye 2 is an embedding for
HOlm@momm Y and Z and f:Y-—Z is a continuous map, then
there is a continuous map g:%-—X rendering

~~.9

Z
e % T x
Y

f

commutative.

Every injective eonmvmnm is essentially oosvanm~
hence - a fortiori - sober.

12

o.lo In [H,]3.14 it is shown that the continuous posets
in their Scott topology are precisely those sober spaces
X which have an injective hull in mo~ i.e. whose greatest
essential extension space AX is an injective e0|mcmnm~
i.e. - by mwow_w.dw - a continuous lattice éndowed with
its Scott topology. Thus, for a continuous poset v.,ﬂrm
essential hull is of the form

(P,6p) ey (L,61)
where the continuous lattice L is =~ up to an isomorphism l\
uniquely determined (via the specialization order of the

space). Therefore it is a natural abuse of language to
call the order-extension

. Pey L,
thus obtained, the injective hull of .the continuous poset
P, viz. the injective hull in Mo induced by the Scott
topology.

The continuous posets endowed with their Scott topo-

logy are also known as the projective sober mvmomm~mmn%~.dw7

o.11 The Lawson topology (or A-topology or CL~topology)

of a (continuous) poset (P,<) is the weakest topology on
P finer than both the Scott topology of (P,<) and the
weak topology of (P,<)°P (cf.[c] IT1-1.5).It is designated
by ym.

The Lawson topology of a continuous lattice is
compact Hausdorff ([C]III-1.10).

" Published by LSU Scholarly Repository, 2023
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13

§ 1 Meet-prime, pseudo-meet-prime, and
quasi-meet—-prime elements. roowwww
quasi-compact strongly sober spaces.

This is a survey of known results.

After having reviewed the (classical) theory of
meet-prime elements, we discuss the notion of a pseudo-
meet-prime element and that of a quasi-meet-prime element.
The latter notion is - in a continuous lattice - essen-
tially an equivalent description of what has been called
a "weakly prime element" by K.H.Hofmann and J.D.Lawson
Ammrd_~ 1.7, p.313). The notion of a pseudo-meet-prime
element 1s essentially due to K.Keimel and M.W.Mislove
[kM] and K.H.Hofmann and J.D.Lawson [HL,]. “Essentially"
indicates the following difference: Whereas these authors
assume that the unit element 1 of a complete lattice L
is always "prime", we insist mmﬁm that 1 1s never meet-

prime. It is, in a sense (which will become precise
later), a consequence of this modification that 1 can be,
but need not be pseudo-meet-prime or quasi-meet-prime,
Thus the results of these authors need a slight adaptation
to the present definitions.

The results of K.H.Hofmann and J.D.Lawson a—mrdu~m=v&v
and K.Keimel and M.W.Mislove [KM] appear in [C], in
particular in [C]I-3.23 to I-3.27 and V-3. In mmm_mw
some of the modifications, we need here, have been derived
from the results in [C]. Here we give direct proofs. The

ideas involved are not new,but we have reduced the number
of "auxiliary concepts" introduced in [C], and we have
tried to single out the precise hypotheses actually needed
for the lemmata into which the proofs are decomposed.

We conclude with a theorem, largely due to

K.H.Hofmann and M.W.Mislove Hmzu~ on strongly sober locally

quasi~compact spaces.

14

Let L be a complete lattice.
1.1 An element p €L is said to be meet-prime iff for
every finite wcvwmw.w of L infF< p implies x<p for

some X €F.
Note that 1=inf@ is not meet-prime (in contrast to
the definition of a "prime" element given in [cj1-3.11).

« A theorem due to J.R.Bichi [Bd] and S.Papert' [Pa]
(and other authors) says that a complete lattice L is
isomorphic to the lattice O(X) of open subsets of a topo-
logical space X iff every element x of L is the Msmwgca of
a family of meet-prime elements.

The set of meet-prime elements of a complete lattice
L will be endowed with the trace of the weak topology of
Wovu The resulting space will be designated by

m@mo»h.

This notation is a compromise between the notation used
in mnw~ﬁmrw_ and that of H”ww.mmmu.qv The specializa-
tion partial order of Spec
duced by L.

A subset M of mvmn»h is closed iff

M= m@mn»b«;ax

L is inverse to the order in-

<

for some x€ L.
For every complete lattice L, mvmo»r is a sober
space Aﬁmwuu.m~ﬂn_<ip.»v. and we have |
mamvmn»ru TL
iff every element of L is a meet of meet-prime elements.
Note that, for a space X, there is a homeomorphism
Sx — Spec*0 (X)
since the elements of °X are the join-prime elements of
the lattice A(X) of all closed subsets of X ordered by
inclusion which correspond - via the anti-isomorphism

A(X) — 0(X), ArX-A - to the meet-prime elements of O(X).

7 5 In [c] and [HL,], "SpecL" is used to designate
Spec”L, whereas in Hmw_-mwu “SpecL" (or "v-SpecL")
designates the set of join=prime elements -of L, endowed
with the trace of the weak topology of L.
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1.2 An ideal J in a O,v-semi-lattice is said to be a
“"prime" ideal iff J is a Bmmr|vﬂwam element in the
complete lattice IdL (ordered by inclusion) consisting
of all ideals of L.

An ideal J in a lattice L with O and 1 is a prime
ideal iff
(i) XAy €ed always u.am.w.wmw x€J or YE€EJ,

(ii) 1 noteJd, i.e. I not ¥ L .

A prime filter in a lattice L with O and 1 is a meet-
prime element of mwwﬁb”nHaﬁbovv. Note that, by the preced-
ing criterion (and its dual), McL is a prime filter iff
L-M is a prime ideal (cf.[C]I-3.16).

Now, an element x of a lattice L with O and 1 is

meet~prime iff Ix is a prime ideal.

1.3(1) An element a of a complete lattice is said to be
pseudo-meet=-prime 1ff there exists a prime 1ideal J such
that

a = supJ .,

(ii) An element b €L 1is guasi-meet-prime iff, when-
ever infF«b for afinite subset F of L, ﬁrwﬁ there is
some x EF with x<b.

(Note that F=¢ is not excluded).

The set of pseudo-meet-prime elements of L and the
set om asmmwnammnlwnpam elements of L will be designated
by f,h and x L, respectively.

Later (in section 4), we will m:&os.% L with a
topology: The resulting space will be also designated by
%xr . The notation 4ﬁ will be reserved to designate
both the set and the space v Arovv of all vmmcaOIqu:z
prime elements of L. Note that in this section < L is
always the set of pseudo-meet-prime elements of L with-

out any topology.
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1.4 LEMMA:

a) Every meet-prime element is pseudo-meet-prime.

b) M<mn< pseudo-meet-prime element is quasi-meet-
prime.

Proof:

a) % €L is meet-prime iff lx is a prime ideal. Clearly
XHmCmubun- (CE. —O_@.NWV w

b) cf.[c]1-3.24 "(1) implies (2)". Axmmmnﬂwsa to the
continuity of L is clearly unnecessary).

We now have the mOwwOinsu p:ow:mwosm
mvmab J\bn,xr -
of sets.

1.5  REMARKS:

Let L be a complete lattice.

(1) An element p 1is ﬂnmwﬁnsmwnuwnw§m in L iff the filter
generated by L-ip does not meet ¥p.

(2)  In the unit square [o,1]x[o,1] (a distributive con-
tinuous lattice) the element ﬁd~ﬂv is Smmnlvnpam hence
acmmwismmnxmnwsm and (1,0) >Ao~6VAAAA.IV, but neither .
na\ovAAA4~Mv nor no~¢VAAAﬂ.MV. since (1,1) is the supremum
of the ideal [o,1)x[0,1). Thus the definition of a quasi-
meet-prime element b cannot be strengthened to infF«b
with FcL finite implies x<«b for some x €F. - Cf. [c]
¥-{remark after) 3.4 (p.248).

(3) If the greatest element 1 is compact in L, i.e.

1«1, then 1 fails to be quasi-meet-prime.
(4) If, in addition, L is distributive, and if 1 is
not pseudo-meet-prime, then 1 is compact.

Proof: &
(1) The filter generated by L-lp is
lyew _»En.m. Ly for some finite F Mhtevw.
Now our assertion is immediate from (the contraposition)
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of the definition of "quasi-meet-prime”.

(3) If 1 'is compact, then inf@1, vm:cm 1 mmwwm to be
quasi-meet-prime.

(4) If 1 not « 1, then there exists an ideal J of L such
that supJd=1, but 1 not €J. By a standard argument for
distributive lattices (cf.[C]I-3.19), there is a prime
ideal P with J <P, but 1 won € P. Clearly, dumcvu“mmsvv <1,
hence 1=supP is pseudo-meet-prime.

Note that 1.5(1) corrects a slight inaccuracy of [C]
I-3.24 (where it is overlooked that a filter F - by defi-
nition [C] 0-1.3 - contains inf@=1).

. parts (2) and (3) of the following lemma 1.6 are modi-
fications of [c]I-3.27"(2) iff (3)" and [c]l1-3.24 " (1)
iff (2)", respectively. Part (1) extends the additional
remark in [C]I-3.27 set free from the hypothesis of con-
tinuity for L.

1.6 LEMMA:
Let L be a complete lattices;
(1) mcvvcmm. in addition, that L is mwmnﬂwcﬁn»<m.
If Spec buﬁ‘r. then 1 is compact in L, i,e. 1«1,
and the way below relation « in L is multiplicative,
i.e. x&y and x«z imply x«yaz for all x,y,z€L.
(2) Suppose L is a continuous lattice, 1.¢ L is compact,
and « 1s multiplicative, Then m@mo»ﬁuiwv~ i.e.
every quasi-meet-prime element p of L is meet-prime.
(3) If L is a distributive continuocus lattice, then
.é%rnxnb. i.e. every quasi-meet-prime element of

L is pseudo-meet-prime.

Proof:

(1) a) Assume & is not multiplicative, hence there are
elements a,x,y €L with a &« x and a«y, but a not « xAYy.
Thus there is an ideal J with x Ay <supJ, but a not € J.
By a standard argument for distributive lattices (cf. [C]

18

I-3.19), there is a prime ideal P with JCP, but a not

€ P. Now let p=supP. Clearly, X Ay < supJ < supP=p. How-
ever, x< p would give a<«x < supP, hence aeP - contra-
dicting the choice of P. Thus x not £ p and, analogously,
y not {p. As a ooammacm:om..n:m pseudo-meet-prime

element p fails to be Smmntmﬁwim. A contradiction.

b) If 1 not « 1, then 1 is pseudo-meet-prime by 1.5(4),
but not meet-prime. A contradiction.

(2) Suppose x Ay <p with x,y € L. Then, by continuity of
L, x{p or y<p - as in [C]1-3.27 “(2) implies (3)".
Since 1 is compact, it fails to be quasi-meet-prime (by
1.5(3)), hence J+v. Thus p is meet-prime.

(3)  See [C]I-3.24 "(3) implies (1)".

Recall that 9\ denotes the Lawson- or A-topology of
a complete lattice L (cf. o.11 above).

1.7 LEMMA:
Let L be a complete lattices.
(1) If every element of L Mm a meet (=infimum) of
Emmntwﬂwsm owwsmznm. then 4.b is contained in the

A-closure of mvmo L in L.

(2) Suppose that the way below relation « has the
interpolation property, i.e. x Ky implies x«z

and z«y for some z €L, then X»h is A-closed in L.

Proof:

(1) Suppose a €L is pseudo-meet-prime, i.e. wlmcwm for a
prime ideal P of L and a€ c|nax ...p;qx ) for some Scott-
open subset U of L and X;,...,X € L(ne 2.L~0wv note that
these sets are the standard basic Lawson-open neighborhoods
of a in L. Since U is Scott-open and P is an ideal with
supP € U, there is some q €P with q €U. Assume now that
Hsmwxd.....x }<4q, then X, €P for some i m*a.....sw. since
P is prime. Thus x»..mcmmlm - contradicting our hypothesis

10
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that aeu-(Tx,U... Caxnv . Thus we have x.nm:mﬁxd e s .x:.w
not 2 g.

By hypothesis, anwzmﬁvw_wm mw for meet-prime elements
P of L., There is some wo €K such that x not < p,_  (other-
wise x m»:mmvw_xminas contradicting the above). It re-
sults that cxo not m»xd LV S C?ﬁ:. Since qeU and q<p,,
we have Py €U. Thus, as required,

Pk € cuzxd U...utx ).
(2) Let p€L denote a limit of a net :uuvumu of @cwmww
meet-prime elements of L in the A-topology, and let
x"nw=m~x~.....x:wAAv A

for some x.?.lx:mﬁ. We have to show that xnmw for
some 1 € {1,...,n}. Suppose, on the contrary, that X, not
£ p for every i mmi....~ﬁw. Then cnn%xlneuﬂrb...rh%xsv
contains p. Since & interpolates, $x is Scott-open,
hence U is Lawson-open. Thus there is some j € J with ﬁum u.
However, H:mmx-....x=wanwu implies x, £ Py for some
Hmﬁf..:nw. ?m.wumef.logﬁnﬂ:oﬁbmvumc, Thus
x; 4 p for some i€ {1,...,n}. This shows that p is quasi-
meet-prime. el
1.8 REMARK:
It is immediate from 1.6(2) and 1.7(2) that in a continuous
lattice L, not necessarily distributive, with 1 compact in
L and <K multiplicative, mwmo»b is closed with regard to
the A-topology of L. (Cf.[HL,]6.8).

1.9 PROPOSITION:
For a distributive continuous lattice L,
‘ v = 2L
is the closure of mvmo»ﬁ with regard to the Lawson
topology Aon L.

‘Proof: .
By 1.6(3), %Mbux»h. Since, by [C]I-3.7, every element of
a distributive continuous lattice L is the meet of meet-

prime elements, we have

mmmawb < i»h u;w»ﬁ < waﬁmmmn»bw

by 1.7(1). Since in mlno:ﬁuD:OCm lattice L the way below

20

relation interpolates ({c]I-1.18), X»r is A-closed

x
by 1.7(2). Thus %*L=cl, (Spec L). _

1.10 COROLLARY: "
For a distributive continuous lattice L, Spec’L is
A-closed 1iff 1 is ooacmnw in L and the way below

relation « is multiplicative.

Proof:
The first implication is established in 1.8. Suppose
% ®
mmmo»r is A-closed, then - by 1.9 - Spec” L=y L. Now 1.6(1)
applies.

The preceding results modify (and sharpen) analogous results
in [c]v-3.

1.11 By a celebrated theorem of K.H.Hofmann and J.D.Lawson
ﬂmhmﬂ~ every distributive continuous lattice is isomorphic
to the lattice 0(X) of ovm:.mcvmmﬂm\ ordered by inclusion,
of a topological space X, and X can be chosen as a locally
quasicompact sober space, ﬁwamw<.xnmvmo»ﬁ. Furthermore,
if X is a locally quasicompact space, then 0(X) is a dist-
ributive continuous lattice. Thus every result on dist- -
ributive continuous lattices may be viewed as a result
on locally quasicompact (sober) spaces, and - for sober
spaces - conversely.

For a space X, let

‘ % b 3
v K=y o(X)
and
%x"ufwav.
Note that there is a canonical mapping
T WX oy, xmiycwmxw

the composite of mx"x —°X (1.1) and the inclusion
mx.¢<x. This mapping is one-to-one iff X is a ao:mvwom.

Note that, for a locally quasicompact (sober)
space X, %x consists - by 1.9 - of the same points as
the Fell compactification H(X) of X. (As noted in [Hg]
3.13, this observation extends to non-sober locally quasi-

compact spaces).

11
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For a filter F on a space X, let
convE = {x eX|0(x) S F}
denote the "convergence set"” of F - where O(x) denotes
the open neighborhood filter of x in X. Note that the
improper filter Wﬁxv"umz_z <X} is here not excluded.

1.12 DEFINITION:
A space X is said to be strongly sober iff for

every ultrafilter U on X, convU has a unique
generic point, i.e.

convU = cl{x}
for a unique element x of X.

The notion of "strong sobriety" is a slight modification
of the notion of super-sobriety AMOE<HH:..¢O~ p.310;
strongly sober = super-sober + quasicompact).

Every essentially complete T o~ Space is strongly
sober, since - by ﬁm 13.11 ~ a space x is an essentially
complete eOvamom iff, for every filter F on X, convF has
a unique generic point. Every strongly sober space is
sober ([C]VII-1.11), since - by ﬁm ]1.9 - a space X is
sober iff convU has a unique am:mnwnﬁowsn for all those
ultrafilters U which enjoy the property that convU e U
("irreducible" ultrafilters, mmd_d 4). Further, note that

the strongly sober ednmvmomm are precisely the compact
Hausdorff spaces.

The following result is (up to slight modifications
0m the statement) due to K.H.Hofmann and M.W.Mislove
([amM] 4.8).

1.13 THEOREM:

Let X be a locally quasicompact sober space, then the

following conditions are equivalent:

(1) The way below relation of the (continuous) lattice
0(X) is multiplicative, and the unit element of

22

0(X) is compact (i.e, X is a quasicompact space),
(2) spec™ Q(X) is A-closed in O(X).
(3) X is strongly sober.
(4) X is quasi-compact and the intersection of two
quasi-compact saturated subsets is quasi-compact.
(A subset of a space is saturated iff it is the inter-
sectlon of its open neighborhoods - cf.[c]v-5.2,p.258).

The equivalence of (1) and (2) is established in
1.70. In view of 1.9 we may add the following equivalent
condition:
(5) The canonical mapping fx"x - yX is bijective.
It has been observed in mmm_u.dw that this is equivalent
to:
(6) For every open prime filter F on X, convF has a
unique generic point. !

1.14 It may be worth pointing. out that strong sobriety
wmﬂ se aomm not imply local quasicompactness: The essential
hull x* of a Hausdorff space X (i.e. XU{0,1}, where O and
1 are adjoined as a msmpwmmn and a largest point, respec-
tively - cf. szwmmv is, of course, essentially complete,
hence strongly mocm&~ but X is m: intersection of an open
and a closed set of x hence x cannot be locally quasi-
compact, unless X is locally compact.

1.15 REMARK:

In [Si], H.Simmons has shown that the strongly sober local-
ly quasicompact spaces form the Eilenberg-Moore algebras
for a “triple" (or aoswmzvj&r Aw~5.»pv on the omnm©0ﬂ<
of T o Spaces and continuous maps. The functor part p om

this monad assigns to a T o Space X its space of open prime

filters (i.e. meet-prime mwmamsnm in the complete lattice,
ordered by inclusion, of all filters of the lattice o (X)

of open sets of X) - with the topology inherited from the

12
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space of all open filters of X (cf. mwwd_mav. This space
P(X) is - via a result of J.Schréder Hmord_‘ homeomorphic
to the extension space of X induced by the open finite
decomposition spectrum ﬁszHHmms:mmmﬁmmeca=v of X
introduced by J.Flachsmeyer Hmwduw.wm»v. The Y-homomor-
phisms are those continuous maps f:X — Y which enjoy the
property that the induced map O(f):0(Y) — O(X) (assigning
to an open subset of Y its inverse image) preserves the
way below relation.

It may be noted that - as a consequence of this
result - the category of locally quasicompact strongly
sober spaces and those continuous maps whose inverse
image map preserves the way below relation is complete
(i.e. has (projective) limits for all diagrams indexed
over categories which are "small' with regard to the given
universe) and that these limits can be constructed in
the category Mo. (An Eilenberg-Moore category over a
complete category is complete and limits are "“constructed"
in the underlying category - cf. [ML]VI-2, exercise 2;
mmowwuwd.w.w.v A different argument results from the
isomorphism explained in section 6 below.

1.16 REMARK:

Suppose X and Y are locally quasicompact sober spaces.
In [c]v-5.14, 5.15 it is shown that for a continuous map
f:X — Y the following conditions are equivalent:

(i) 0(£f):0(Y) — 0(X) preserves the way below relation.
(ii) The inverse image of every saturated gquasicompact

subset of Y is quasicompact (and saturated) in X.
For locally compact Hausdorff spaces X and Y the mappings
enjoying property (ii) are known as the perfect maps (note

that in a T, -space every subset is saturated). This name

1
may be extended to the setting of locally quasicompact

sober spaces.

24

1.17 REMARK: |

It has been observed in m:mau.m that the <mn& definition
of /rx 1= {Awﬁxvv implies ﬁ:mm the points of <x are the
convergence sets of the open mwnsﬁ filters of the space X.
For a locally quasicompact space X, the points om.ix also
can be characterized as the convergence sets of the pri-
mitive nets; this results - via the observation in 1.11
above - from [Fe,]p.475. (A net is said to be primitive
iff every adherence point of the net is also a limit point.
Via the topological equivalence Umﬁtmmv nets and filters -
observed in [BrS] - primitive nets can be replaced by
primitive filters). I do not know whether every member

of %x is a convergence set of an ultrafilter (under the
proviso that X is a locally quasicompact sober space).

1.18 REMARK: .
It has been observed in Hzm_mu (in the notes added) that
the greatest essential extension of a strongly sober (not

necessarily locally quasicompact) space coincides - on the
level of the specialization orders ~ with the MacNeille
completion. Thus a wvwom X is essentially complete if (and
only if) X is strongly sober and a complete lattice in its
specialization order.

Also note that every spectral space (i.e. every prime
spectrum of a commutative, associative ring with 1, cf.
mmc_v is strongly sober and locally gquasicompact. Indeed
the strongly sober locally quasicompact spaces are pre-
cisely the retracts, in T_, of the spectral spaces ([J] §2,

lo
[si]; cf. also [Ba,] prop.2).

13
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§ 2 The injective hull of D(L) for a continuous
T,A-semilattice L

In this section, L denotes a continuous 1,A-semilattice L.
However, some of the results are based on the assumption
that L is a distributive continuous Hmnwwom..

2.0 For a continuous 1,a-semilattice L, let

Filt L= {all filters in L which are generated by

a Scott-open subset of L}
Recall that, in a 1,a-semilattice I,the filter generated by
a subset M of L (i.e. the smallest filter of L containing
M) is the set
¢M) = {x€L|infF <x for some finite set FcM}

If L is a distributive latice and M is an upper set, then
(x) ¢M) = {xeL|infF = x for some finite set FcM)

2.1 For a continuous 1,A-senilattice w~ we have
(1) D(L) ¢ Filt L
where D(L) denotes the dual of L (consisting of all Scott-
open filters of L) - cf.o.6.
(11) Filt,L is a complete lattice, since
62%3“2 = 62% énzu.:

is the supremum of A£A3wvvpmw in Filt L for every family

AzpvpmH of Scott-open sets M, of L.

(1ii) Since every Scott-open set is the union of Scott~-
open filters (cf. o0.6), D(L) is join-dense in Filt,L, i.e.
every member of Filt L is a supremum of a family of members
of D(L) in Filt L.

2.2 LEMMA:
For a continuous 1,a-semilattice L, and F,G eFilt L,
the following are equivalent:
(1) FKG 1in Filt.L
(i1) Fctx cG for some x€L.

-26~

Proof:

It is readily owmmn,n:mn. for ww mwwp#nr.

UF
i

is the supremum of AMp_Hm I} in Filt L if this family is
non-empty and up-directed.

(a) Thus " (ii) implies (i)" is evident.

(b) In order to prove that (i) implies (ii), let F=¢(X),
G=¢(M) for K,M me (=the Scott topology of I). For every
X €M choose some x'€M with

i

x'« x
in L (by 0.3), and some Scott-open filter mx in L such that
xmmxmax.
(by J.D.Lawson's arqument, cf. 0.6).
Then ‘
M= U{F_|xen], ,*
hence

¢M) = mcmmmx_x eMy,
where "sup" denotes the supremum.in Filt L.
Since ‘
2 ]
F cTx' EM c M),
we have
F o <<e(M)
by part (a), hence, by hypothesis (i), there are
KpeeoarX €M (n 20) with
¢(K) € mclm.xd ‘- ...m.x:w.
Clearly
mcwqu

....,qxsw

’ n*im.u.n._c...Cm.un )

1 n
1] )
¢ (1] U.utx)
< e?ix?....xt.
Since xm~....xmhmz~ we Infer that
KHHwSmTJ_ ree X} €M)

in

Thus

@ (K) €Ty Copm),
as claimed. |

|
"
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2.3 ~ PROPOSITION:
For a continuous 1,A-semilattice L, Filt L is a

continuous lattice,

Proof:

For Me qn. we have

¢M) = sup{F_|x eu]
where (as in the proof of 2.2) x €F, ctx! for some
mx €D(L) and some x' e M, hence, by 2.2,

m.xAA.«AZV
in mx._.wnar for all x eM.

2.4 The dual D(L) of a continuous l,a-semilattice L is a
continuous 1,A-gemilattice.

In order to show that

D(L) «, FiltyL

is the (an) injective hull in mo (with regard to the res-
pective Scott topologies), the following characterization
of the injective hull of a continuous 1,A-semilattice will
be used: '

Suppose S is a continuous 1,a-semilattice. A map
f:5 —K 1into a continuous lattice K is an injective hull
iff the following conditions are satisfied
(1) mnﬁm~9wv I¢Axsvwv is a (topological) embedding with
regard to the Lawson topologies »m and 9% of S and K,
respectively;
(2) £[s] is dense in (K,2,) 5
(3) f S—K 1is an order-embedding;
(4) £[S] is join-dense in K, i.e. m<mﬂ< member of K is
a supremum, in K, of elements of £[s]. |

This has been established in szuw.m. It is also
shown there Aﬁmwuw.w, 3,10, 3.11) that, in the presence
of (3) and (4), condition (1) may be replaced by the con-
junction of (a) and (b):
(a) £:8 — K preserves suprema of non-empty up-directed
lower sets,

(b) £:5 -+ K preserves the way below relation.

-28-

2.5 THEOREM:
For a continuous 1,A-semilattice L,

. . D(L) <y Filty L
is an injective hull.

Proof:

We have already seen that Filt L is a continuous lattice
(2.3). Condition (3) in the preceding remarks is evident.
For condition (4) see 2.1(iii). Now (a) and (b) are immedi-
ate consequences of the explicit description of suprema ow
non-empty up-directed subsets (=set-theoretic unions) and
of the way below relation in D(L) and Filt, L, respectively
(cf.0.6 and 2.2). _ :

Thus it remains to show that D(L) is (topologically)
dense in wwwnaﬁ with regard to the Lawson nomowom<"

Suppose

v = tF - (te,u...ute))

{where, for once, % and 1 have to be interpreted in Mwwnarv
is non-empty for w~m-...kwmePunmr (n2o0), i.e.

FetxcH
and

G, notcH (i=1,...,n)

i
for some H€Filt,L and some x €L.

For every i=1,...,n, there is some x»mm.swns
xHAAx in L and
G, uonm?»
(otherwise owm D»\:\_%mw: y<xy = TxcH.
Thus, for anszxw~...~x=w\ we have
z Kx,
and
.Gy notCtz .
There is a Scott-open filter M of L such that
xEMcFz . .

Clearly, F<tx <M and G, noteM (i=1,...,n),

i
hence
MEV,

as claimed.
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Since these sets V form an open basis of the Lawson
topology of Filt L, this proves that D(L) is dense in
MHwnab with regard to the Lawson topology.

2.6 For a 1,a-semilattice L, let FiltL denote the complete
(algebraic) lattice of all filters of L. Note that the
meet (=infimum) in FiltL is the set-theoretic intersection.
For a continuous 1,A-semilattice L, we have:

(a) FiltyL is stable in FiltL under arbitrary joins.

(b) The order-embedding Filt L <3 FiltL preserves and
reflects the way below relation, i.e., for F,G €Filt L,
F«G in Filt L 1iff F«G in FiltL,

Proof:

(a) is clear from 2,1(ii), mw:nm the formula given there
describes the suprema in FiltL - when z» is interpreted
as an arbitrary subset of L.
(b) In the algebraic lattice FiltL we have
G«F
(for G,F e FiltL) iff
G ctxgF
for some x €L (since the principal w»pwmwm 1x are the
compact elements of FiltL). Now 2.2 applies.

2,7 LEMMA:
For a distributive (!) continuous lattice L, Filt,L
is stable in FiltL under finite meets.

Clearly, L is the greatest element of both wﬁuﬂav and
FiltL.
Suppose K,M are Scott-open subsets of L.
We prove that
¢ (K) N (M) € @(KNM) .
(The other inclusion is evident).

30

- If x€ @(K)ne(M), then - by m.oﬁ»v - there are |
kiseeirky €K, and Mmy,eeom €M (1,neNVjo]) with
x = Hzmﬁwds....Www = w:mwsd~...~asw.
It results that [
xp<5.mx:3

J
and, by distributivity of L,

x = w=m~x»< Eu_ 1ef{l,...,1} and j €{1,...,n}]
This implies that

X mﬂmzADzv ’

as claimed.

2.8 The dual D(P) of a continuous poset P is a continuous
lattice if and only if P is a 1,A-semilattice, the way
below relation <X of P is multiplicative, i.e. x«y and
x«z for x,y,z€P imply x Ay«z, and the greatest element
1 of P is compact, i.e. 1«1 ~_bd_-hm_w.m.~=q~u.Auv.

2.9 LEMMA:
For a continuous -lattice L, we have:
(a) The greatest element L of Filt L is compact.
(b) If, in addition, L is distributive, then the
way below relation of Filt L is multiplicative.

Proof:

(a) Evidently, L=%to, hence L«L, by 2525
)
(b) If G«F, and G«F, in Filt L, then
. nm»xdmm.._ m:anmaxumm.f 5

hence

Geflxyvx,) SFyNF, ,
hence

G«F, wa .
(Recall that, by 2.7, F,NF, 1is the meet of F, and F,
in Filt L). .

16
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It is well known that a lattice L is distributive
iff the lattice FiltL of all filters of L is distributive.

The following observation is now immediate from 2.3,
2.6(a) and 2.7.

2,170 LEMMA:
For a distributive continuous lattice L, m»wnab
is a distributive continuous lattice.

2,11 LEMMA: ) _
Let K be a distributive continuous lattice such
that 1 €K 1is compact and nrmﬁtww below relation
is multiplicative. Then D(K) is a mHmnn~ucnw<m
continuous lattice.

Proof:
For F,G,H€D(K) we clearly have
(FAG) V(FAH)CF A(G VvH)
where A and v denotes the binary infimum (=intersection,
by 2.7) and the binary supremum Hz.cﬁﬂwa wmmwmon»<mw<.

For the proof of distributivity of D(K), suppose
Xx€FNI(G vH)=F N(GVH), hence x¢F and xe€G vH. Since
GvH={y €L{gah=y for some g €G and some héeH}
(by distributivity of K, multiplicativity of <« and
compactness of 1),
x =gnah
for some g € G, h € H, hence
geFNG and he€FnH,
hence '
x = gAah €(FAG) v (F AH),
as we want.

2.12  THEOREM:

For a distributive continuous lattice L, D(Filt L)
is a distributive continuous lattice.

Prcof:
Inmediate from 2.10 and 2.11.

~32=

2,13 REMARK:
For a continuous 1,a-semilattice L, the order-embedding

DL, Filt L
preserves finite meets (as every join~dense order-embedding

does) and non-empty up-directed joins. Thus it induces a
Scott-continuous 1,A-homomorphism

DFilt L — DDL
assigning to a Scott-open filter % of Filt L the Scott-open

filter 9 A DL

of DL. Via the canonical isomorphism \Huccb.l*r (cf.o.6)

this induces a morphism
DFilt L -— L.

2.14 REMARKS:

a) For a continuous 1,a-semilattice L,
DFilt (L)

is an "idempotent" construction in the sense that the w:n
duced morphism (cf.2.13)

UQHHnaAUmMunahvl¢ DFilt L
is an isomorphism. !

This 1s readily clear from the observation r:mn. for
a continuous 1,A-semilattice w..mcn: that DK is complete,
i.e. 1 is compact and <« is multiplicative in K, Filt K
coincides with DK (in other words: the filter generated by
a Scott-open subset of K is itself moomﬁnowmzv‘

The idempotency of Uﬁwwﬁnﬁmv can also be based upon
2.5, This argument may be sketched in the following way:
(oFile ) 2(L) ¢ (b1D)2%(L) 2 DID?ID(L)

# pr?p(L) € pID(L) ¥ DFilt L

Since Uwﬁmymm und Hwﬁmvaavv for every continuous poset P
(where P ., I(P) denotes an injective hull of P).

n

b) For a distributive continuous lattice L,
. (F12e) 7L € FiltgL
since, by 2.12, DFilty L is complete (i.e. IDIDL=DIDL) hence
(F1lt ) 3L 2 (1p)%L 2 1pIDIDL ¥ 1D%IDL
2 1%pr, € IDL ¥ Filt L .
2.15 REMARK:
For a distributive continuous lattice L
v Drilt L = Spec*DFilt L
by 2.8, 2.12 and 1.6(2) . .

17
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§ 3 The meet-prime elements of DFilt L
correspond to the quasi-~meet-prime elements .of L,
for a distributive continuous lattice L

In this section, L denotes a continuous lattice, cﬁrv its
dual (o0.6), and Filt L denotes the continuous lattice
defined in 2.0. The hypothesis of distributivity for L
can be deferred until the final step in the proof of pro-
position 3.9.

3,1 LEMMA:
Suppose L is a continuous lattice. An element F €DL
is meet-prime in DL iff
(1) o not € F, and
(2) whenever x vy €F for some x,y €L, then x ¢F

or ye€EF. |

Proof: W“

(a) Suppose (1) and (2) are satisfied. W:n: m+ﬂ\ by (1).
Suppose G NH ¢F for some G,H €¢DL. Assume, on the contrary,
G notCF and H notCF, i.e. x€G, vyeH and x,y not ¢F for
some x,y €L. Then xvye€GnHCF, hence, by (2), xeF or

y € F - a contradiction. Thus F is meet-prime in DL.

(b) Suppose F is meet-prime in DL. Then F$L, hence o

not EF. Suppose xvy EéF for some x,y EL. Since

x = supyx and y = supyy,
in the continuous lattice L, we have
X vy = supD
9&01&m<1mkmb-mﬁ50ﬁ<? Since D is non-empty
and up-directed, and since F is Scott-open, there are
s«x and t«y with svt eF. Since s<«x and t«y,
there are Scott-open filters F_ and m< with
x EX, cts and <mm.<m%n.
hence
mx3m<m+m nft = f(svt)CF.
As a consequence,

F._cF or F _cF,
X = Y

-y

18

| )
since F is meet-prime (by hypothesis), hence x€F or
y €F, as claimed, "

3.2 Suppose G €PFilt L, the power set of Filt/ L, for a
continuous lattice L. Let
A(G) :={x €L | x is a lower bound of some F¢G {
and
x () :=supA(G) .
It is easy to see that X"mepﬂmﬁ — L is an isotone map.

3.3 LEMMA:
For a continuous lattice L and G € DFilt L, A(G) is
a non-empty and up-directed lower set of L.

Proof:
We shall write A instead of A(G), for UHm<HL<.

If a,béA, then Fcfa and GctTb for some F,GeG.
Since G is a filter, there is some HeG with HCF and
Hc G, hence !

HcTantb = Navb),
hence avbéeA. Consequently, A is a non-empty (oeA)
and up-directed lower set of L.

'

For a continuous lattice L and x €L, let
H :={F ¢ Filt L|x €F},
K :={FeFilt L|x € intF}
={F € Filt (L|x'«x for some x'€ F}.
(where int denotes the interior operator of the Scott

topology) .
We also write H(x) instead of H and K(x) instead of K.

3.4 LEMMA:

For a continuous lattice L, and x €L,
K :={F e Filt L|x € intF}
is an element gf DFilt L.
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Proof:

(a) Clearly, K, is an upper set of Filt L.
(b) If ?.»f&
members of FiltiL and
sup{F, |1 eIi= U[F,[ie I} €K ,
then there is some x'E€ Cmm.w_ i eI} with x'<< x. Consequently,
Xx'€EF

is a non-empty up-directed family of

. i
for some i €I, hence

X € H:nm.»u?m MH_K.AAV\ for some u«.m m,b .
It results that m.nmxx for some 1 €1.
By (a) and (b), xx is a Scott-open subset of Filt L.
(c) In order to see that K 1is a filter in the lattice
m_wwnar. note first that bm%x. If mJnmwui then
intF N intG 1is a Scott-open neighborhood of x in L, hence
there is a Scott-open filter H of L with '
x €H € intF 0 intG,
since the Scott-open filters form a basis for the open
sets of the Scott topology of L. Clearly, we have He€ _Ax
and HCP,G. F
3.5 LEMMA:
For a distributive (!) continuous lattice L and

x eL,
H ={F e Filt L|x eF}
is an element of DFilt L.

Proof:

Similar reasoning as in the proof of 3.4 yields that :x

is a Scott-open subset of Filt L. Part (c¢) of this proof
can be substituted by the observation that, for a dist-
ributive continuous lattice L, the meet of a finite

number of members of Filt L is, by 2.7, thelr set-theoretic

intersection. ;
3.6 REMARK:
For a meet-prime element p of a continuous lattice L

we have

~36~

347 LEMMA:
For every element x of a continuous lattice L,

.x = \X:wnv = .X:Axv

Proof;

Since K cH , we have .DCAUL {4 Dﬁmxv , hence

K, ) Uwszxxv < m:@DExvanxv .
Since y<{x for every ve¢ DExv , Wwe can infer
‘ X Amxv < X.
Suppose 2z €L with z<«x, then there is some Scott-open
filter F in L with

X €eF .nl&”N~
hence z is a lower bound of F mxx. Thus
i
z < ‘x;xv .
for every z ¢ L with z<«x. As a consequence,
) t ]
X < .x:Axv '

since x=sup{z e L|z «x]j.

3.8 LEMMA:
Suppose G €DFilt,L for a continuous lattice L. Then
KeeG cHy
for x:=%(G).

Proof:
We write A instead of A(G).
(i) Suppose x € intF for some FeFilt L, i.e. x'«x
for some x' € F. Since x=supf, and A is a non-empty up-
directed lower set of L' (by 3.3), we infer that x'€ A,
hence there is some G & G such that
Gectx' ¢F.
Consequently, F €G, as claimed.
(ii) Suppose HEG. Since G is a Scott open subset of
Filt,L, H'<«H in Filt L for some H'E€ G, H.m._ﬁ by 2.2,
H'etycH, ,
for some y e L, hence ye A. Consequently, vy £x, hence
x € H, as claimed. '
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3.9 PROPOSITION:

Suppose L is a distributive continuous lattice,

A member P of DFilt L is meet-prime in DFilt L iff
P =K = {SeFilt,L| xeint 5}

for a quasi-meet-prime element x of L. This element
X is uniquely determined:

= x(R)

Proof:

(a) Suppose x ¢ L is quasi-meet-prime. Let
K :={S €Filt,L | x'e¢ S for some x'« XJ,
We verify the conditions (i) and (ii) of 3.7 for K :
Suppose FvG mxx Then there is some x'¢ Fv G with
x'« x, hence
»:mmmﬂ...,~m 19yese a9y 1<x!
for some hd.....m € intF and some aé....«m € intG
with natural numbers n,m 2 o.
Since x is quasi-meet-prime in L, there is some
natural number i with 1<i<n or 1<igm such that
mH.A.x or mwmv?
hence x € intF or xmf3m~=QGmmex or Qmmﬁ
It remains to show that {i} =u(@) 1s not an element
of K, . Suppose, on the contrary, that {1} e K_, hence
x €{1} and there is some x'«x with x' ¢ {1}, i.e., 1&1..
However, 1 fails to be quasi-meet=-prime wm it is ooamwnﬂ
(by 1.5(3)).

(b) Now suppose that P is a meet~prime element of DFilt L.

Let x:=%(P)

(1) Since we already know from 3.8 that
K _¢P,
x S5

suppose that FE€P. Since P is a Scott-open subset of
Filt L, there is some F'€EP with F'F 1in wwwnmﬁ~ i.e.
(by 3.1)
F'ctlycF

for some ye L. Consequently, %mDAWv , hence y <x. Since
y € F, there are Y € intF (i=1,...,n) with n 2 o such that

H:mmu\_ 3es . .<5w <vy.
Since Yy € intF, there are %h.<m €F with

-38~-

<MAA<hAA<ﬁ (i=1,...,n). (The existence of the <mm is
guaranteed by the interpolation property of < ). Thus
there are Scott-open filters G, in L such that |
Y; € G, cfyj sF.
Since inf ~<d.....<=wm Y, we conclude that
Mmmd<...<m=‘ 1 .

i

where “ " denotes the join (=supremum) in Filt,L
Since F'cty and F'eP, we can infer that
Frcty €Gyv ... VG , hence
Gyv...vG €P . |
Since P ‘is meet-prime in DFilt H: we conclude, E\ 3.1, that

-

G,EP
for some 1ie¢{1,...,n}. Consequently,

, Y] <x,
since KM is a lower bound of OMm P. It results that

KMAﬂx. Since %H €F, we infer that xé€ intF, as claimed.
In all this says that
K, = B,

(2) We infer from P = x% that

y=Y(Ky) = X(B) =} (K )=x,
hence x is uniquely determined.
(3), 1In order to show that x=y(P) is quasi-meet-prime,
suppose that
»:mM<ﬂ....~<:wAAx
for some Yyreees¥y €L and a natural number n2o. Then
Hiy,)N ... NH(y )= E:_m?:...:w V) ek <P,
since every m.mmdpnqb containing »:med.....<:@ contains
X as an inner point.
Since L is, by hypothesis, a,distributive lattice,
H(z) € DFilt L
for every z €L, by 3.5,

Consequently, (in view of 2.7)
Hiy,)cP
for some u.mm8~...~=w‘ since P is meet-prime in cm»unaﬁ.
Since ) is an isotone map Wﬂwpqu - L, we infer
<Muxamﬁ<»vvm 2(P)=x,
as we want.
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§ 4 The trace of the ﬁ»ln060w0a< on {»b

In [#,] §3 I have given another representation
Yx:¥<yX of the essential hull A :Xey2X of a T, -space X,
discovered by B.Banaschewski [Ba,] . The elements of yx are
the convergence sets of X, i.e. those (closed) subsets M of
X such that either M=X or there exists an ordinary proper
filter (or, equivalently, a net) on X which converges pre~
clsely to the points of M.

Also, in Hmw_w.aﬁmv the notion of a %rmwmaosn of a
lattice L has been defined and it has been shown there
that the y-elements of the (complete) lattice A(X) of all
closed subsets (ordered by inclusion) of a GOtmvmom X are
precisely the convergence sets of X Aﬁmwuu 9, [Hg]2.8).
Furthermore, the - —-topology 1s introduced on L such that
the set of y-elements of L endowed with the trace of this
topology constitutes a space g

g L
which, for the lattice L= A (X) of closed subsets of a e -
space X, colncides with ¥X.

In ﬁmm_ an extensive study of the space 7L has been
made and it is observed there that every pseudo-join-prime
element (1.3) of a complete lattice L is a “rmwmam:n
([Hg]3.4(2)).

Since in the present paper the basic notion is that
of a distributive continuous lattice, i.e. a continuous
lattice which is - by a celebrated theorem of K.H.Hofmann
w:m,q.c.ﬁmzmoﬁmmbwun representable as the lattice 0(X) of
open subsets (ordered by inclusion) of some eoswnwnm X, it
is convenient here to adapt the definition of the ﬂrﬁovOHOI
gy and of a Y-element so as to apply to the lattice O (X)
rather than A(X), i.e., in a sense, to dualize:

4.1 For a complete lattice L and a,b¢€ L we write

arb
iff, whenever infF<a for a finite subset F of L (where
F=@ is not excluded) then x<b for some x €F.

~40~

This is the dual of the relation —of [H4],
—mma. It "relativizes" the notion of a meet-prime element
p of a complete lattice L in the same way as the way below
relation relativizes the notion of a compact element, viz.
pP€L is meet-prime in L ymm .
4 pi—p .
Thus I— may be read as "relatively meet-prime below".

4.2 It is observed in mmmué.d that infFr-a for a finite
subset F of a complete lattice L implies xia for some
x éF, It results that the sets ,

M*(a):={x € L]alx}
(with a ranging through L) form a basis for the closed sets
for a topology on (the underlying set of) L which will be
referred to as the *-topology of L (i.e. the ['- novoHoaw

of L°P-ct. [1,]3.2, (gl 1.2).

4.3 An element p of a complete lattice L is said nk be

a qwxmwmam:n (i.e. y-element of ﬁowv iff it enjoys one of

the following conditions (1), (2) and (3) which are pair-

wise equivalent ([Hg]1.5, 2.7): .

(1) p = mcm?mﬁ_x_lw?

(2) P sup(L-F) for some filter (i.e. non-empty, down-
directed lower set) F of L,

(3) ftp={yeL] p<y} is closed in the 1»|ﬁomoHom< of L.

It results from (3) that the trace of the 1»|novowom< of

L on the set of all M%lmwmamsnm defines a topological

eonmvmom

yL
whose associated specialization partial order is inverse
to (the trace of) the order of L.

4.4 For a T -space x there is an embedding
. .m»
into the space y Xx:= »Aoﬂxvv given by
X X~cl{x}.

Obviously %muxntww%x is (an equivalent representation of)

the greatest essential extension of the H0|mvmnm X.
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4.5 DEFINITION;
a) For a complete lattice L, let énr.am:Onm (both the

set and) the space of a all pseudo-meet-prime elements of
L endowed with the trace of ﬁ:m ﬁ»»nov0pom< of L.

b) For a T o Space X let y x.u% (0(X)), and let
A\N.Nr$/fﬂx

denote the embedding
X3 x..o“;xw
to be referred to as the iﬂ -extension" of X.

4.6 It is immediate from 4.3(2) that every pseudo-meet~
prime element of a complete lattice is a 4M4mwm5m=n (cf. amm_
< aamvv- since the nosmpmam:ﬁ of a prime ideal is a filter,
hence y *X is a subspace of ¥ *X. Thus we can infer (from
?J_ , lemma 2,p.235).

4.7 PROPOSITION: '

monme |mvmnm x~ 4x.x r¢,* xum mbmmmm:npuwmxn
nm:mwo:. i

4.8 REMARK:

It is convenient to topologize also the set 4r of all
join-prime elements of a complete lattice L with the trace
of the ﬁlﬁO@OpOQ% of L.

For a T -space X, we obtain an essential extension,
the “y-extension" of X,

4Kux.lv<x"ﬂ*wﬁxv
co-restricting the extension %xuxnlvﬂx.

The points of yX are - as observed in 1.11 - pre-
cisely the points of the Fell compactification H(X) of X
if X is a locally quasicompact space.

The mpmaoanm of yX are the ooawpmamanm. in x of the
members of ¥ x Obviously, every result on the <.|mxnm=|
sion has an analogue for the y-extension.

—42-

4.9 THEOREM :

For a distributive continuous latticéd L, the
mapping
K:iy*L — Spec™DFilt L
with
K(x):={F e F11t ,L| x € int F}
is a homeomorphism.

Proof:

In 3.9, it is shown that, for a distributive oosn»::wcm
lattice L, K(x) is a member of mvmnnvwwwwnr. i.e. a meet-
prime element of DFilt,L, if and only if x is a quasi-
meet-prime element of L. Moreover, this element x €L is
uniquely determined. By 1.6(3), an element x €L is quasi-
meet-prime iff x is pseudo-meet-prime. Thus

K:y*L — Spec*pFilt L
is a bijection.

It remains to show that this Emmvpsm K is continuous
and that every (basic) closed mcvwmﬂ of %.b is the inverse
image of a closed m:Ummm of Spec Umﬁwnmﬁ.

(a) We first show .that the inverse image of a closed set
of mvmoucqupnmr under ﬂ:m Bm@vwsm
K: By b Ivmwmo Uwan L
is closed in 4*r i.e. the trace, on ¥ b. Om a ﬂNIQMOmm&
subset of L. Since a closed subset of mvmn DFilt L can be
{uniquely) represented in the form
{G espec™DFilt L |FcG}
for some F €DFilt L, it suffices to establish the: following:
mxm,w»b_ F ck(x)}=n{I*(y) |yed,t,
where
u: €L | there is some G EF with Gely}l,
i.e. D consists of those Y € L which are the lower UOJuam
of some member of E.

m:cvowm first that F ¢ K(x) for some F € DFilt L and
sone xm,r L. Let ye¢L be a lower bound of 'some member G
of F. Assume that

»:m*cd~....c=wm

for some u,,...,u_¢L and some ne N, n 2o.
1 n d
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Since F cK(x), x is an inner point of G with regard
to the Scott topology of L , hence
ZKX )
for some z€ G. It results that wsmmcd~...~:lwm y £ z2<<x,
hence
u, <x
for some k € {1,...,n}, since x is quasi-meet-prime in L.
In all this says that
Y X
for every y € > , whence
{xey r_MnxCSw Dﬂﬂ Qv_mem
In order to prove the inverse wbowswwOb. suyppose
F eDFilt; L and
Y X
for every y € Dm Assume that G €F. We have to show
that x 1is an inner point of G with regard to the Scott
topology of L, in order to prove that F £K(x). Since F
1s a Scott-open subset of Filt L, there is same FeF vwith
F&G,
where <« denotes the way below relation in Filt L, hence
rctzea
for some z €L, by 2,2. We infer from Fc¢Tz that N,mD,m.
hence zi-x by hypothesis. Since z €G, there are -
(neN Uf{o}) with
z = H3m~sﬁ....~z=w~
by the very definition of Filt L. Since z|-x, We can
infer that

:d....zr_muanm

uy £ X
for some 1i€{1,...,n}, hence x¢€int,G, as claimed.
AUV It remains to show nrmn every basic closed subset of
v *L, i.e. the trace, on 4.b~ of a basic ﬁ»nawowma set of L,
is an »=<wumm »Emam of some closed subset of m@mo DFilt r
under K:y h I¢mvwn DFilt4L.
A basic closed subset of the ﬂ»tnOﬁowom< of L is of

the form

Mo =y en | xy)
for some x € L. Using the member g

H(x) = {GE&F1lt L | x G}

1=

of DFilt,L (cf.3.5), we shall establish that

{vey *L | H(x) ¢ k(P} u,«»vpﬂ»cc.
First assume that x|~y for some x ¢ L and some <mA£»h.
Suppose that G ¢H(x). We want to show that Ge K(y), L.e.
y is an inner point of G with regard to the Scott topology

of L. Since x€G, there are Wyoe..,u € int G {ne N U{o})

with
x > »:mmcd.....==w~
by the very definition of Filt L - cf.2.0.
Since xi—y, we can infer] that
cu.mx
for some 1i¢€¢{t,...,n}, ﬁmunm y € int G.
This proves
yiLar*: c ?Q L|HGOCRWY.
In order to prove the inverse inclusion, we assume
that H(x) € K(y) for some x €L and some ylE 4»? Let us
assume, to the contrary, that '
x not —y .
Then there are Uyseea u €L with n€N CMOW such that
inffug,...,u}g
but
w, not £y ' :
for every k mmd~....:w. Since L is m,oo=Ww=so:m lattice,
we have _
u = sup{vel |v«u}
for every u ¢ L, hence there are VyreeorVy €L with
Vi <€uy and Vi not Ly
for every k e¢{1,...,n}. We consider the filter G
generated by n:m Scott open set
“T\dc ...C%<=.
i.e. G=¢(fvju...ugv ). Since
w:mﬁcd.....cswm
we have x €G, hence - by hypothesis - y € int G. Thus
there is some z €G with
NmAw .
As a consequence, there are Zyreess2 €L
z = wsmmnd....-5w.
such that for every j €{1,...,m} there is some
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k(3) ¢ {1,...,n} with

<.13AANu i
by the very definition of G.
Since y is quasi-meet-prime, we can infer that

Nu <y

for some 9 e{l,...m}, hence
<_n$vauu.m Y

contradicting the assumption that Vi not £y for every k=1,...,n.
Thus we have

Xy ,
as we want.

Since for a distributive continuous lattice L,
DFilt L is a distributive om:nwncocm lattice (by 2.12), we
can infer from the result of K.H.Hofmann and J.D.Lawson
?w& that _
0Spec®DF11t L ¥ DFilt L.
Thus we have

4.10 COROLLARY:

For a distributive continuous lattice L,

~

0(/*L) ¥ DFilt L 2 DID(L) .

Here, as before, P, I(P) denctes a representation of the
injective hull of a continuous poset P.

4,11 PROPOSITION:
For a eolmvmom X whose lattice O(X) of open subsets
is a continuous lattice, éux is a strongly sober

locally quasicompact space.

Proof:

(1) since y*0(X) is homeomorphic to Spec*DFilt 0 (X)

(by 4.9), and since mvmo»x is is sober for every complete

lattice K (cf.1.1), <»waV is sober.

-46-

(2) By 4.1o, ,

0™ '= DF11t,0(X)
hence mﬂ+»xv is a continuous lattice in which the mmmmnmmn
element is compact and the way below relation is multi-
plicative. Now, 1.13 “(1) iff (3)" applies.

4.12 COROLLARY:

For a T ~space X whose lattice O(X) of open subsets

is a continuous lattice, the canonical embedding
FyxYE oy X

is a homeomorphism.

Proof: \ .
By 1.13(5), 4<u&n¢,*< is bijective for every strongly
sober locally quasicompact space. By 4.11 this applies

to K"n4x.

The above result says that the y-extension is
“idempotent" (up to an isomorphism) for spaces X with
0(X) continuous. ’

]

4.13 REMARK:
From the proof of 4.11 we extract that, in wﬁé»hv
(for a distributive continuous lattice L), the pseudo-meet-

prime elements are exactly the meet-prime elements:
%»wgéubv = wvmo»mﬁfnbv.

4.14 REMARK:
We shall need (in the following section) a little

bit more information about the relationship between the
homeomorphisms
xu4»b I*mvmoucwuwnar

and
P x *, %
¥ YL ¥y {y

X
X = y*y*L)
for a space X with L:=0(X) continuous. :

‘

)
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Clearly, there is an induced homeomorphism
K' 1y (0 (y*L)) —» Spec™DFilt L such that
Y

4}; !|,__IW|lv %» © ,T».S

] .N-h
x

Spec” DFilt, L

commutes.
* - S * * i
Since y~ (Qy"L)=Spec” (Qy L), K' is induced by an
isomorphism
K":0y*L — DFiltyL :
(which assigns to <MNW£»E
inf{K' (P) | V <p ¢ Spec™ (0y*L) }

where the infimum is taken in DFilt L), .
such that

yioy*n) « oy'L

z._ _w..
Spec*DFilt L e, DFilt L
commutes - where the horizontal maps are the lnclusions,

48

§ 5 The relationship between
the Fell compactification H(yX) of yX and H(X)
when O(X) 1is a continuous lattice

For a space X whose lattice O0(X) of open subsets is
a continuous lattice, we-have seen in 4.12 that
,}\x"éx .\.:12&3
is a bijection, hence a homeomorphism. Since, for a
locally quasicompact space X, 4% has the same points as
the Fell compactification H(X) of X and 4;€xv has the same
polnts as the Fell compactification of m¢1xv of yX, vﬂ is
a natural question whether the given bijection
H{X) — HyX)
is a homeomorphism,
It is convenient for the proofs to use the represen-

tation 4»x of {x by open subsets of X, i.e. we shall show
that the bijection {

/_\* " v n/_a»x nlv..+.» Euﬂxv
y X)
gives a homeomorphism
5 00 — 1 ")
where mwﬁxy denotes the space of pseudo-meet-prime elements
of 0(Y) with the topology inherited from the Lawson topo-
logy of O(Y) - under the proviso that O0(Y) is a continuous
lattice. (Note that mwa<v has the same points as <»< and
that - by the remarks in the introduction of this paper -
passing to complements relative to Y gives a homeomorphism
B (v) S HW L)
5.1 Recall that the inclusion
e:DL., Filt L ,
for a continuous lattice L, preserves 1,A and suprema of
non-empty up-directed subsets and - as noted in 2.13 - e
induces a map
D(e): DFilt4L — DDL
which takes ¢ € DFilt L into
dapL .
This map D(e) also preserves 1,A and suprema of non-empty
up~directed subsets, hence it is continuous with nmawwm
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to the respective Scott topologies.

5.2 In [L,]9.7, J.D.Lawson establishes a necessary and
sufficient criterion in order that, for continuous posets S
and T, a map £:S — T with the property that an inverse
image of a Scott-open filter of T is a Scott-open filter
of S be right adjoint wv. viz. that the induced map

D(f) :D(T) — D(S) preserves the way below relation « .
(Note that a 1,ar-preserving Scott-continuous map £:S —T
between continuous 1,a-semi-lattices S and T automatically
has the property that inverse images of Scott-open filters

are Scott-open).

5.3 We have already observed in 2.5 that, for a continuous
lattice L, m"Ubn!WMwwnar preserves the way. below relation.
Thus we ‘can infer, by 5.2, from the commutativity of

DL ——2— Filt,L

movk p2(e) . ‘—mmﬁnmr
pdL — 3 DLl L

(where the vertical arrows are isomorphisms)
that
D(e) : DFiltyL —DDL

is right adjoint, hence so is the composite

muu\ﬁooamanMHpnmr -+ DDL —L
where &r"UUbA!+ﬁ denotes the isomorphism, lnverse to
mH.uH. —> DDL.

Since a right adjoint preserves arbitrary infima, it
results that g:DFilt,L —L is continuous with regard to
the respective Lawson topologies ([C]III-1.8).

mu esmnmnSwnowom<0mﬁhHwm»noosmpﬁonzwnrnwmosm

used above which is omsonmww< accepted among categorists:

An isotone map £:S — T is right adjoint to g:T —S iff
g(y) ¢ x 1is equivalent to vy <£f(x)

for xe€S, ye€T (cf.[ML]I.2,p.11).

50

5.4 LEMMA;

For a distributive'!continuous lattice L, the mapping
m"cqunmb|¢r defines, by restriction and co-restric-
tion, a bijection

_ d:Spec™DF1lt L — 'L
inverse to K(?) (defined in 3.4).

Proof:

Every meet-prime element F of DFilt L is of the form

K(x) :={F € Filt L|x € intF}
for a unique quasi-meet-prime element x of L, by 3.9.
Evidently

D(e) (K(x)) = {FeDL |x€eF} =¢ (x) |,
where mb"h —DDL denotes the canonical isomorphism.
Thus

mﬁxaxvvnmﬁzAxvvuhkbeunmvvAxaxvvm\rmrﬁxuux .
Since, by 3.9, K(?) is a bijective map
4»h lomvmonumwwnab~

we can infer that 4 is inverse to K.

Now we have

5.5 PROPOSITION:
For a distributive continuous lattice L, the mapping
K: y*L — Spec®™Filt L with
K(x)={F e Filt L | x € int F}
is a homeomorphism with regard to the topologies
inherited from the Lawson topologies of L and
DFilt L, respectively.

y '

i

Proof;

We observe first that i

d:Spec™DFilt L — y*L
is continuous with regard to the traces of the Lawson topo-
logies of DFilt, L and L, respectively (since it restricts
and co-restricts the Lawson-continuous map g:DFilt L —L).
By 1.9, both the domain and the co-domain of this mapping
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1
are compact Hausdorff spaces. (Recall from 2,15 that
Spec®DFilt L=y*DFilt L.} Thus the inverse K of d is also
continuous and, in fact, a homeomorphism.

5.6(1) It has been observed in 4.14 that, for a distri-
butive continuous lattice L, the bijection K' making
» »
N .
* x *
¥y —H s you'n

/ e

mwmoucmwwﬂaﬁ

commutative is induced - by restriction and corestriction
- from an isomorphism N=um~+»ﬁv.IWUM#pﬂab. This isomophism
K" is, of course, a homeomorphism for the respective
Lawson topologies, hence K' is a homeonmorphism with regard
to the traces of these nowo~omwmm.

Combining this observation with 5.5 we obtain that,
for a distributive continuous lattice L,

* x %
4?%»71 Yokt

is a homeomorphism with regard to the traces of the Lawson
topologles of L and wafnrv respectively, i.e. (by the
remarks in 5.0) a homeomorphism
#* (x) — B (y*1)

provided that X is a space with L=0(X).
(11) Since, by 4.12, the mapping

Tign* ¥ gl «
for a space X with 0(X) a continuous wmﬁnmom. is a homeo-
morphism (with regard to the genuine topologies of these
spaces), it is an order-isomorphism with regard to the
respective specialization orders. These are the partial
orders induced from the wmﬁﬁwommAwﬁxv and Wofxv~ respec-
tively, i.e. the (restricted) inclusion relations.

In all this gives

52

5.7 =~ THEOREM:
For a space X whose lattice 0(X) of open subsets

(ordered by Inclusion) 1is a continuous lattice, the
canonical embedding

L A
“"is" (i.e. determines) a homeomorphism and an
order~-isomorphism

HX) — .mjzc '
i.e. an isomorphism in the category of compact
ordered spaces.

5.8  REMARK:
The mapping Namv"4wb I¢mvmo»0mwwﬂmr extends (with the same
definition) to a map

L —DFilt L.
which is easily shown to,be Scott-continuous. I do not
know whether it is Lawson-continuous. (This would give
an alternative proof of 5.7).

27
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.,.. § 6 The relationship between H(X) and yX for a space X

6.1 LEMMA: ‘ ‘
Let L be a distributive continuous lattice in which
m@mo»b is closed with respect to the Lawson topology

whose lattice O(X) of open subsets is continuous.
Functoriality of H(?) and 4Amv.

»b of L. A subset U of mwmn»ﬁ is an open lower set

For a space X whose lattice O(X) of open subsets is a of aéxb.y.v iff

continuous lattice we want to show that the open sets of 4x
are precisely the open upper sets of H(X).

U= m@mo»ﬁ - ta
for some a€L, i.e. 1ff U is open in the space

Due to the homeomorphisms mmmo»b.

yX—yyX and H(X) — H{yX)
established in 4.12 and 5.7, respectively, this question can
be reduced to the study of those spaces X for which 0(x) is
a continuous lattice and the canonical mapping

Proof:
If mvmn»b is closed in Aﬁ~ybv..n=m: so 1is wdwr‘mﬁmo»b.
Now [C]vII-3.1 applies.

x.l~4x )
is a homeomorphism, i.e. - by 113 - the strongly sober local-

ly quasi-compact spaces X. ‘ 6,2 PROPOSITION: °

Thus the result, we claim, is a consequence of an Let X be a compact p(artially) o(rdered) space.

isomorphism between the category _ : The system Q(X) of all open lower sets of X is a
whose objects are the strongly movmn. locally quasi- topology on |X| which is a (distributive) continu-

ous lattice with the property that mwmn»nxxv 1s closed

with regard to the Lawson topology on Q(X).

The specialization order of ( [X| ,Q(X)) is the inverse

of the order the p.o. space X.

compact spaces and whose morphisms are the continuous

perfect maps (i.e. those continuous maps which enjoy

the property that the inverse image of every saturated

quasi-compact subset of the co-domain is quasi-compact)
and the category The mapping

of compact ordered spaces and continuous isotone maps.
This isomorphism is implicit in the construction of an iso-
morphism between the category of compact ordered spaces and
isotone continuous maps and the category of distributive
continuous lattices with 1 compact and « multiplicative and
those mappings preserving <« , finite infima and arbitrary
suprema, described in [C]VII-3, cf. in particular VII-3,7(ii).
(The result is ~ on the object level ~ due to G.Gierz and

X X-Tx  (x€X)
is a bijection |X| —3 _mvmompax:
which is a homeomorphism
X — M%), A)
where 7' is the trace, on mwmQJMCCn“»nkxv. of the
Lawson topology of QX(X).

Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 64

Proof:
K.Keimel [GK].) This is an obvious modification of [C]VII-3.3 (cf.also [C]
VIiIi-3.7).
We reformulate the key results of [C]VII-3 in order to
make visible the ingredients of the desired isomorphism. 6.3 The above results 6.1 and 6.2 establish (in view of

For the subset _fub_ of a (distributive) continuous

1.13) a one-to-one correspondence between compact partially
lattice L, let ) denote the trace of the Lawson topology »roar, s .
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ordered spaces and strongly sober locally anm»nooawwaa
spaces.

) It is not difficult to prove - along the lines of
[clpp.323/324 - that a continuous isotone map £:X — Y
between compact partially ordered spaces X and Y induces
a continuous map

£:(X,Q(X)) — (¥,Q(¥))
with the property that the induced map

QUE) = Q(Y) — QAX)
preserves the way below relation.
Also, the arguments given in [C]p.324 suffice to show that
every continuous perfect map between strongly sober,
locally arom»lQOSﬁmon spaces is induced by a (unique) con-
tinuous map between the wmmoowmnmm compact ordered spaces.

In all this gives ;

6.4 THEOREM : %
There is an »moaonv:st u» between the category of
compact partially ordered spaces and continuous
isotone maps and the category of locally quasicompact

strongly sober spaces and continuous perfect mappings.
The functor u» assignes to a compact ordered space X
the space with the same points as X whose open sets
are the open lower sets of X, and leaves the Sonvrwwau

unchanged.

6.5 REMARK :

Reversing the order defines an automorphism (of order 2)
of the category of compact p(artially) of{rdered) spaces
and isotone continuous maps. Thus, by cbmposition with

I* (of 6.4), we obtain an isomorphism J from the category
of compact p.o.spaces and isotone continuous map to w:m
category of locally quasicompact strongly sober spaces and
continuous perfect maps. The functor J assigns to a
compact ordered space X the space with the same points as
X whose open sets are the open upper sets of X, and leaves

the morphisms unchanged.

~56=

In view of 4.12 and 5.7, lemma 6.1 gives

6.6 THEOREM:
Let X be a eo:mvwnm with O(X) a continuous pmwn»omn,
a) The open sets of 4»x (in its genuine topology)
are precisely the open lower sets of the compact
ordered space m»ﬁxv. ;
b) The open sets of yX (in its genuine topology)
are precisely the open upper sets of the Fell
compactification H(X).

6.7 For locally compact (non-compact) Hausdorff spaces X
and ¥, a map u:X —Y extends (uniguely) to a continuous
map c+”x+:|v<+ of the Alexandrov-one-point-quasi-compacti-
fications X' and w+ of X and Y, respectively, such that

X —t 5 ¥

! l
gt ——s gt
ut
+ .
commutes and u Aaxvukw (where « denotes the adjoined point)
if and only if u:iX — Y is continuous and perfect (i.e. the

inverse image of a compact ermmn of Y is compact in X).
Note that =+
a non-constant map v:H(X) — H(Y) is isotone iff v (0 ) =0y .
(Recall the definition of the partial order of x*t given in
the introduction.)

The following ‘result partially extends these facts
to spaces X and Y with 0(X), O(Y) a continuous lattice.

Recall that for spaces X,Y with o(x), 0(Y) a conti-
nuous lattice, a continuocus map u:X— Y is called perfect
iff the inverse image map 0(u):0(¥) — 0(X) preserves the
way below relation.

is perfect iff it is continuous, and that
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6.8 THEOREM:
For (T Jspaces X and Y for which O(X) and 0(Y) are
continuous lattices, a continuous perfect map

u:X — ¥ uniquely extends to a continuous perfect map
L

(u) :yX — y¥Y such that
Y Yy ¥

x —2 Y

,_\x_ h,}«

J\x ——y 4,%

commutes.

Both 4va and H(?) extend to functors defined on
the category of those A60|vamnmm whose lattice of
open sets is a (distributive) continuous lattice and
the continuous perfect mappings. The nomoamnb of y
is the category of locally quasicompact strongly
sober mwmomm.mnm continuous perfect mappings; whereas
the codomain-of H is the category of compact ordered
spaces and continuous isotone maps. The functors ¥
and H are related by the isomorphism J of 6.5;:

JoH=v.
Both y and H are retractions.

Proof:

(1) Uniqueness of 4A:v"

If there exists a continuous perfect map m“+x.|v4x

rendering
X lll—.—l‘v.&
wl oo, w
u
4x —> ¥ .

commutative, then - by 6.5 and 6.6(b) - U:H(X) — H(Y) is a
continuous isotone map. Since H(Y) is (compact) Hausdorff
and éxﬁx_ is dense in H(X), U is uniquely determined by u,
i.e. there 1s at most one such morphism a.

By a standard argument, it results from the unique-
ness of 6 that Y and H are functors provided that the

induced morphism always exists.

: ~58~
i
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When the functoriality of éavvwm established, we may
infer from the idempotency of yX for those spaces X with
0(X) a continuous lattice (4.12) that y is a retraction.
Consequently, H = unaeA\Av< 6.6(b)) is - under the proviso

that it is functorial - also a retraction.

TI) The proof of existence of 4A=v"4x‘|»4< is more
subtle.
We reduce the problem to a lattice-theoretic question

and transfer the solution back.

(1) First note that, since Sob is a full reflective sub-
category of Mo (and Top, the category of all ROGOPOMwan
spaces and continuous maps), there is a unique map u

rendering
X —0— Y
~d ~
mv& Tn
Su
: 3% ey Sy

commutative. Furthermore, by the same argument, there is

a splitting

F 3
/
/
N

X ey J\X
Yx
(and an analogous splitting for 4x“«r¢.«mv. since yX 1is
sober (by 4.11).

Since wAmxv"m”wxv|¢ 0(x), the inverse image map ,
is an isomorphism, it results (via the functoriality of
0(?)) that

4w ] mxpifvx
is equivalent to {am v"mx laxlmxv. since the definition
E X
of <x depends only on the lattice o(x).
" In all this gives that we may assume without loss
of generality that both X and Y are sober. Now the iso-

Trepository.Isu.edu/scs/vol1/iss1/64

morphism 0(?) between the category of locally quasicompac

gsober spaces and continuous maps and the
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category of distributive continuous lattices and those maps
Preserving 1, o and arbitrary suprema ([HL,]; [C]V-5.16)
"reduces" the problem to the question whether there is a

map O (yY) — maéxv preserving 1,4, « and arbitrary suprema

rendering
WAJ\MV »»»»»»»» Y murr_«vc
otyy)] | oty
oY) —— 0(x)
0 (u)
commutative.

(2) It is convenient, in the following, to substitute
:=0(Y), M:=0(X), £:=0(u) ,
i.,e. L and M are  distributive continuous lattices
and f:L - M 1is a map preserving 1,A, arbitrary suprema
and - since u is perfect - the way below relation « .
Since
oY) ¥ o(y*L) ¥ DFilt L
(the last = noted in 4.10) and, analogously,
OyX) = DF1lt.M,
what we actually need is a map
7.“UWﬁHnnb Iwcmwwnmx
preserving 1,A, << and arbitrary suprema and rendering a
certain diagram (to be specified in (6), (7) below)
commutative. Such a map is the image under D(?) of a map
h:Filt M —Filt L
preserving 1, A and suprema of non-empty up-directed sub-

n

sets, since h' has these properties (cf. ﬁwwumqv. By
wauaw.qv~ h'=D(h) preserves <« 1iff h has a left adjoint,
i.e. (since the domain of h is a complete lattice) iff h
preserves arbitrary infima.
(3) For distributive continuous lattices L, M and a map
f:L 5 M preserving <<, 1, A and arbitrary suprema, we
define a mapping

E"wHHnmz.l*mMHnmﬁ

by
h(G) s=¢(£™ ' [1ntG])

-60~-

for every G eFilt,M - where int G(or intG) denotes the
interior of G with regard to the Scott topology of M and
£Amv assigns to a subset 6f L the smallest filter contain-
ing it, ‘ .

Recall that, for a family (G,)
We have

171el

>?» [ter] =¢ int (N{6, | 1eI])
and, if (G v»mH is a non-empty and up-directed family,

- yie; liexy= Ufg | ier}
(3a) For a non-empty and su|QWﬁonnmm family Ampv» €I om
members of Filt M we thus have

h(V{e, | 1€1}) = h(U{g | ie1h

= @£ int (Ufe, | 1te1h])

@7 U {int,q, | 1e1}D
e(uls™! [intge, ] |1e1h
V {¢te  [ant 6,1 | 1e 1}
Vine) | tex}.

(A1l the occurring /\ are suprema of non-empty up-directed

]

I

subsets .)
(3b) We shall prove that h:FiltyM — Filt L preserves ar-

bitrary infima.
Note first that for a family ﬁm»vme of members of
Filt K
i>~aw_ 1e1})

it

ii?: nie, f1exhn

@£ ?:2&?2 nic, |tethnh
¢(e  ane(nfs, | 1eTh]
(the last "=", since int¢intF=intF for every filter F of M),
and Af{nG) | 1e1} = Afete  [intg, D | 1e1}

= plint (N{ett  [inte,]) | 1e Th).
The non-trivial implication is that the latter set is con-
tained in the first.
Suppose

x € pint () ?RL [inte ) | 1exh)).
Then , . '
X = Xy Aaee AX
: 1 n

of members of Filt.M
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for some X;,...,X €L with nedNUV {0}, such that there are

f....%smh with
Yy < Xy
and i
=1
¥y € N{p(f '[intG]) | 1e1}
for every k€ {1,...,n}. Since

¢ [inte ) e £ [glinta )] = £7'[6],

we infer that

£y ), £(x )€ N{ey | iex}
for every k=1,...,n . Since f preserves the way below
relation, we have

£ SJnVAA £ Axwv '

hence )

f(x,) € int (N {Gy | 1e1})
for every k=1,...,n. Consequently,

x e £ [ine(N{e, | teTh].
It results that A

x € (£ [int(N{c, | 1e1]],
since xnxa>...>x: . .
(4) Since

h : Filt M —Filt L :
preserves non-empty up-directed suprema and finite infima,
there is an induced map

Dh : DFiltyL — DFilt M
assigning to every Scott-open filter F of Filt L the set
of those members of Filt M which are mapped by h into F.
Clearly, Dh preserves non-empty ﬁvlnwn.mnnm& suprema and
finite infima. Since h:Filt M — Filt L preserves arbitrary
infima, h has a left adjoint, hence - by J.D.Lawson's
criterion T.Lm.q - Dh preserves the way below relation.

We want to show that Dh preserves arbitrary suprema.

We observe first that the smallest element of
DFilt L, viz. mhw (since L is a compact element of
m.uwﬁmrv ., is mapped by Dh into

[M}.

62 i
\

(If, for some Fe Pilt M, Leh(F)=¢f 'intF, then

o = xd>...>x= and maxﬁv € intF for some x

i € H.~ 1i=1
Thus o=f (0)=£ (x;) A

5% >an:vm @intF=F, hence F=M,)

Since Dh preserves suprema of non-empty up-directed
subsets, it suffices now to consider binary suprema
Um.u.wnnb.

in

(4a) ° Let F,G €DFilt L. We show first that
FvG ={FnG|FeF and GeG}

is the supremum of F and G in DFilt L.

Clearly, mmlm._ FeF and Ge m‘* is stable under
finite intersections in Filt;L. If FeF,GEF and
VeFilt L such that FNG<SV, then

V=VV(FNG) = (WF) n (WG)
(where v denotes the binary supremum in Filt L), since
FiltyL 1is a distributive lattice (by 2.12). Since
WF€EF and VG €G, this shows that

{FNG|FeF and GeG}
is a filter of Filt L.

It remains to show that this set is Scott-open in
Filt,L: .

Since F and G are Scott-open in Filt L, there are
F'eF and G'e G with

F'«xF and G'« G
in m.wwnmr. i.e. (by 2.2)
F'<cfTx ¢F and o.mﬁu\ <G
for some x,y ¢ L. It results that
F'nG'cixnTy =T(xvy) € FNG,
i.e. P'NG'KFNG in Filt L. This shows that
{FNG|FeF and Geg) ,
is Scott-open in Filt L, hence it is a member of _um“:nmr.
Clearly, it is the smallest member of cm_:.ﬁab containing
both F and G.
(4b) In order to show that Dh:DFilt L-DFilt M preserves
binary suprema it suffices to verify the inclusion
Dh(F v G) € Dh(F) v Dh(G) .
Suppose WeDh(F vG), i.e. h(W) € FvG.

reee
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Then
h(Ww) = FNG

for some FeF and some G€EG.

We shall consider .
s = T£[F] {zeM| f(x) <z for some x€F}
T = Tf{a] {fzeM]| £(x) gz for some xeG}
We observe first that S, q.mﬂ»wﬁaz. since f preserves both

]
1

[
]

A and <« . Since

h(s) = ﬁsnw:JmEm gintF = F
we conclude that h(S) € F, hence S €Dh(F). Analogously, we
obtain T € Dh(G).

Suppose now p&SNT. Then we have'
f(u)<p and f(v)<p
for some u ¢F and some v €G.
Thus we have
fuvv)<p,
since f preserves (finite) suprema.

Since
uvv EeEFNG = h(W)
= pinte” ]
| ¢ £ [w] .

we can infer

fluvv) €W,
hence

peW.

In all this says that SnT¢cW,
hence

WeDh(F) v Dh(G) .
(5) To the mapping f:L — M which, by hypothesis, preserves

<<, 1, A and <‘ﬁrmnm corresponds a continuous perfect map:

Since f preserves V, and L and M are complete lattices,

-64—

f has a right adjoint M - L taking x €M into
_ sup mldmex_.
This right adjoint takes meet-prime elements of M into
meet-prime elements of L. Thus it defines a map
mmwo»m 3 mvmo»z.lwmwmo»ﬁ

which 1s continuous with nmamwn to the standard topologies
(cf. e.g.[c]IVv-1.26). Indeed,

x

g OSpec
Mvac»z 1Hl||llmlv mmvmo»ﬁ

l ¢ l
M —) L
commutes, hence mwmo»m is a perfect map.
Likewise, czuvmwwqu.lvcwpwnaz induces a continuous
perfect map M
spec™Dh : Spec*DFilt M — Spec*DFilt L
which assigns to a meet-prime element F of DFilt M the
meet-prime element
mamAcsvidﬁeMQ
of DFilt L - where sup (the supremum) is taken in the
complete lattice DFilt;L.
(6) We want to show that

spec™DF11t M ——3 Spec*DFilt L

KZ ﬂ ﬁ XF
x *
Spec’™M s Spec' L

mwwo»m

commutes - where
. ky (x) = AMmMHanz_ X € intF }
for x e Spec™M, and, analogously
. k. (y) = {GeFile L |y e intG}
for y e Spec’L. Thus we have to show that, for every
% '
X € Spec™M,
Amvmoncﬁvvv wzaxv

i

uchU:v:dmeszxvu
sup{G eDFilt L | Dh(G) € ky, (x)}
coincides with ' .

wbﬁmcwmtdﬁhxuv {FeriltyL _m:vm;dm@xu € intF}.
Indeed, we shall establish that
xrAmcwmidmexuv ,

[

it
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i3 the greatest element of
©:={G eDFilt L |Dh(G) € Ky (x)]
Suppose first that
Fe Urnxbﬁmzmmldmhxuv~
i.e.
wsvmadﬁbxum inth(F) .
Since
inth(F) = inteinte ' [F] = intf  [F],
this implies
x 2 mwzwmlaﬁbxu € mHSﬂmldmmu.
since f preserves suprema, and
fintf ' [F] e intF ={xeF | x'«x for some x'e F},
since f preserves <« . Thus we have x € intF, or, equiva-=
lently,
Feky(x) .
In all, this proves that
xrﬁmcmml:xu_v e@®
Now suppose that
GeB® and GEG .
Let
=te[c].
We observe first that S €Filt,M
Evidently, we have
Geginte ' [s],

hence )
h(s) = £H=ﬂml:mu €G,
hence
S €Dh(G) . o
Since Ge® (by rﬁvon:mmwmv , we infer that
x € intS m s
By the very definition of S, we may infer that
f(a) < x .

for some a¢&¢ G. Since G is an upper set and a mntdﬂhx_.
results that
mﬁ@ﬁldmexum G.
This implies that
wsvmldﬁkxu € intG,
or, equivalently,

-66=
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Gekp Amcwmxﬂ [4x],
since m:ﬁmlﬂﬂex_ is ammnlbnwam. (A member G of Filt L
containing a meet-prime element p of L must contain p in
its interior, cf. 3.6).
In all this proves
G ek (supt™ " [{x]),

‘

!

£rm:m<mn G €@, as claimed.
(7) mw:cm. by (6) Awnm 4.9)

¥ & T [ T e .fwr

/NZ» MAH.\
mvwo Um»wﬂaz lllM& Spec Um»wn L

A Spec” Dh
(inclusion) ﬁwz %xb

mvmoux |lil¢ mﬁmo XL
mvma £ )
commutes, the dotted arrow y Acv"4wx Iw%%b resulting from
the fact that K, and K, are homeomorphisms (by 4.9) is -
in view of (1) and (2) above - the desired morphism
4» (u) :«»x r.l\»x.
This completes the @nLom.

[

6.9 REMARK

Possibly there is an alternative (shorter) proof for the
existence in 6.8 relying on tHe explicit description of the
Fell topology of H(X) and H(Y). When I tried to work it
out, I ran into a difficulty which - possibly - cannot mmme%//

64

be circumvented. ~ Also, I hope that the techniques ms©~o<ma.>
in the given proof will turn out to be ‘'useful for further
research. q

6.10 REMARK: .
It may be noted that the functor L', is not a reflector.

Indeed the full subcategory A of locally quasi-compact
strongly sober spaces of the category B of locally quasi-
compact sober spaces and continuous perfect maps is not
reflective in B:

https://repository.lsu.edu/scs/vol1/is



Hoffmann: SCS 63: The Fell Compactification

-67-

The one-element space 1 1is the terminal object
of A, but it is not preserved by the embedding A .,B, since
there is no B-morphism from a non-quasicompact object of B
to 1. -

On the other hand, J.M.G.Fell has observed a certain
universal property of H(X) Apmmwwv.ﬁqmv. However, the
hypothesis employed there seems to be closer to the con-
clusion of 6.8 rather than to its hypothesis.

«

-68—~

§ 7 Concluding remarks

7.1 Suppose P is a continuous poset. Let
mnaw~mmvnl¢ﬁr‘arv

denote any representation of the injective hull of nm.awv

- where L is a continuous lattice (by virtue of the analysis

given in Hmhuw.dav. The closure of e[P] in L with regard

to the Lawson topology (=CL-topology) »b of L, (without

any topology, but) endowed with the partial order inheri-

ted from L, is denoted by C. By corestriction, we obtain

an order-—extension

Pco,C,
called the CL-compactification in mme. It is shown in
[Hg]2.1 that C is a continuous poset, that the Lawson topo-
logy yn of C is the trace'of the Lawson topology »r,Om L,
and that for the respective Scott topologies

(P,op) ey (Ch00)
is a (topological) embedding. Furthermore, it is observed
in [Hg)7.4 that _,

2
(€,A,) = H(X),

35

the Fell compactification of the locally quasicompact (sober)

space X:=(P,6,) - where, as noted in [Hg]7.5, "=" (instead
of "Z") 4s correct if we choose Ab.ﬂﬁvnuaﬁw~ﬂwv (as we shall
do here and in the following).

Since the Scott—open sets of a continuous poset are
precisely the Lawson-open upper sets (cf.[Hg]o.5), we can
infer from 6.4 (and [Hg]7.4): !

7.1.1 PROPOSITION: ’ i

For a continuous poset P, the CL-compactification of
P endowed with the respective Scott topologies
(P,6,) e {C, )

P
is (equivalent to) the fnmxnmswwos of ~m~qmv..

The CL-compactification P.;C of a continuous poset P
1
is a bijection iff the Lawson topology vv of P is compact
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Hausdorff. In view of 1.13 “(3) iff (5)" we can infer

7.1.2 COROLLARY:
The Scott topology ép of a continuous poset P is
strongly sober iff the Lawson topology vm of P is
compact (Hausdorff).

64

;7.2 For a distributive continuous lattice L, we have seen
-in 2.12 that

Art

DFilt L & DID(L)

is a complete lattice, 1i.e.

- DID(L) ¥ IDID(L) .

21t is not unlikely that this is true for arbitrary continu-

wo:m lattices L or, equivalently, that _ .
DIDI(P) = IDIDI(P)

for arbitrary continuous posets P.

If this were true, then the number of pon-isomorphic
‘=continuous posets which can be built up form a given con-

tinuous poset P by applying D(?) and I(?) would be finite

s. 1[2023]

1

S

in Semilattices, Vol

Indeed, there seems to be some evidence from examples that

or every continuous poset P the following sharper formula
is valiad: ; ¢

DIDI(P) £ IDID(P) .

o

Let e.q.

r on Continu

P = {a,b} U(o,1]

Swhere (0,1}, the real numbers x with o< x £1, receives the

.mzwncuuw order from the order < of P and

v a<x and b<x

for x € (0,1] are the only occurences of 4« involving a or b.
We then have the following figures (where < is

realized as "strictly below", o indicates a missing point,

whereas e designates an existing point):

~70-

° [ ° . @ H
. ‘ H . ®
.
P ip IDIP DIDIP \
e ® e

® L ]
DP ibpp DIDP IDIDP

The construction of I(Q) relies upon the observation in
ﬁmdoumd that the convergence sets of a continuous poset Q
are the Scott closures of the Frink ideals of Q: The Frink

ideals of Q are easily computed, and so are their Scott
closures.

7.3 Is, for arbitrary (not necessarily locally quasi-
compact) spaces X, p A
%x

an idempotent construction?

7.4 Certainly desired is an external characterization of

the y-extension e (as well as an intrinsic characte-
!

rization). .

7.5 In Hmmduw.m J.M.G.Fell has given an interpretation
of H(X) in m:bonﬁoswpxmsmwwnﬂa\nmnsm in the special case
that X is the "dual space"” of a Oulmwamvnm A, It seems to
be a natural question whether for every n»swwwmdnw A there

36
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exists an Yassociated" ON1mwomUnu A' such that *x,#m the
"dual space"” of A' (and whether there exists a natural
morphism between A and A' inducing, in a sense to be made
precise, the extension xni,wxv.

7.6 It has been pointed out in [H,]§8 that the "dual"
(of a eoamvuom with an injective hull which is »ﬁ general
non-sober) also plays a role in the study of ordinary
Hausdorff compactifications, i.e. dense embeddings of a
completely regular Hausdorff space into a compact Hausdorff
space. Indeed, the analogy with the Fell compactification
can be pursued further, bringing into light the role of
the injective hull. (This will be explained in detail in

a forthcoming memo or paper.) Also, there is an interest-
ing question arising from this analogy (in order to pursue
it still further). If the answer is non-vacyous, it will
possibly induce a new viewpoint in the study of
Hausdorff compactifications.
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